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We consider the reliability of graphs for which nodes fail independently of each other with a constant probability 
1 - p.  The reliability of a graph is defined to be the probability that the induced subgraph of surviving nodes 
is connected. A graph is said to be uniformly best when, for all choices of p, it is most reliable in the class 
of graphs with the same number of nodes and same number of edges. In this paper, we first extend the 
existing known set of uniformly best graphs. Next, we show that most classes of sparse graphs do not 
contain a uniformly best graph. Finally, we introduce the important notions of locally best and asymptotically 
best graphs and illustrate these concepts with a detailed study of graphs having the same number of nodes 
and edges. 0 1994 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Reliability theory is concerned mainly with computing 
the probability that a complex system is functional given 
the failure probabilities of its elements. Network reliability 
pertains to systems that can be modeled as graphs whose 
vertices and/or edges have associated probabilities of being 
operational. This latter field has been the focus of abun- 
dant scientific literature in the last decades. For recent 
surveys, the reader is referred to the books of Colbourn 
[4] and Shier [9]. Various reliability measures, linked to 
different types of system performance, have been defined 
but most of them suppose that the vertices of the graph 
are perfectly reliable while its edges fail independently of 
each other with given probabilities. 

* The work of this author has been supported by a University Fel- 
lowship. 

Only recently have experts in network reliability been 
interested in graphs whose edges never fail but whose 
vertices break down independently of each other with 
given failure probabilities. For many applications, this 
model is more realistic. For example, in large commu- 
nication networks, the nodes usually represent complex 
systems while the links are sturdy cables or wires or, 
even better, radio waves. Attempts have been made to 
develop tools to measure the probability that the residual 
network is connected, i.e., there exists a path using only 
nonfailed components between any two of its working 
vertices. 

Shier [9] described the two broad objectives of reli- 
ability theory as the analysis question of assessing a given 
system's reliability and the synthesis question of designing 
the most reliable system from given elements. In our case, 
with respect to the analysis question, except for special 
graph structures (see [2, 5 ] ) ,  the problem of computing 
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the residual node connectedness is NP-hard [12]. The 
synthesis problem that we investigate is the following: 
Given n nodes with failure probability 1 - p and m per- 
fectly reliable links, construct a graph with n vertices and 
m edges that maximizes the node reliability function. 
When p is close to 1, a most reliable graph will be one 
with maximum connectivity, K (see [2, pp. 1 1 - 121). Boesch 
and Felzer [ 11 showed that regular complete multipartite 
graphs belong to this class; other results are due to Smith 
[lo], Hakimi and Amin [8], and Doty [6]. On the other 
hand, if the nodes are very unreliable ( p  is close to 0), 
then one wishes to design a graph that maximizes the 
number of connected induced subgraphs of three vertices. 
There are already several partial results on this ques- 
tion. A recent PhD thesis by Stivaros [ 1 I] summarized 
the findings. The complete solution to these questions 
is far from being known, however, for all possible n 
and m. 

A more general question is to ask whether, for given n 
and rn, there exists uniformly best graphs, i.e., graphs that 
are most reliable for all p, 0 < p < 1. As an example, for 
the class of spanning trees ( m  = n - l),  Stivaros [ 111 
showed that the star graph is uniformly best. If, however, 
m = n, then there are no uniformly best graphs. 

In this paper, we first extend the existing known set of 
uniformly best graphs. Next, we show that most classes 
of sparse graphs do not contain a uniformly best graph. 
Finally, we introduce the important notions of locally best 
and asymptotically best graphs and illustrate these con- 
cepts via the detailed study of the case m = n. Section 2 
contains definitions and two technical lemmas that are 
used in some of the proofs in the following sections. In 
[2], Bermond is credited with the result that almost regular 
complete k-partite graphs are uniformly best in their class, 
though no proof has been published. In Section 3, we 
present a rigorous proof of this claim. Also, in Section 3, 
we show that the complete bipartite graphs, Kb,b+Z, are 
uniformly best. We also show that not every complete k- 
partite graph whose partition sizes differ by at most two 
is uniformly best and, finally, that Kb,b+i is not uniformly 
best when i > 2. In Section 4, we establish one of the 
main results of this paper, namely, that most sparse classes 
do not contain uniformly best graphs. From this result, 
it follows that there are at least two locally best graphs in 
these classes. In the case where the number of vertices 
equals the number of edges, n = m, we prove that there 
exists exactly two locally best graphs, one that maximizes 
the number of induced subgraphs on r vertices, 0 I r 
I n - 2, and the other having maximum connectivity in 
its class. In Section 5, we motivate and introduce asymp- 
totically best families of graphs. These families consist of 
graphs that are most reliable as the number of vertices 
increase, no matter what p is. Finally, concluding remarks 
and open problems are presented in Section 6. 

2. DEFINITIONS AND PRELIMINARY 
RESULTS 

We define Q(n, m )  to be the set of all connected graphs 
with n nodes and m edges. Assume that the nodes of a 
graph fail independently of each other with probability 1 
- p.  The reliability equation gives the probability that a 
graph G is connected: 

n 

R(G) = 2 Sr(G)pr(l - p)"-'. (1) 
r= 1 

Here, S,(G) is the number of connected induced subgraphs 
of G that contain exactly r nodes. An r-cutset of G is de- 
fined to be a set of r nodes of G that, when removed from 
G, leave it disconnected. The number of r-cutsets of G is 
denoted Cr( G). Since any set of r nodes in G must either 
be connected or disconnected, the following relation holds: 

Given p ,  there is always at least one locally best graph in 
Q(n, m), i.e., a graph that is most reliable [since Q(n, m )  
is finite]. If there exists G E Q(n, m )  that is most reliable 
for all p ,  0 < p < 1, then G is called uniformly best. 

A graph G E Q(n, m )  is Sr-optimal if Sr(G) 2 Sr(H)  
for all H E Q(n, m). K(H) denotes the connectivity of a 
graph H. A K-optimal graph in Q(n, m )  Will have the highest 
possible connectivity ( K  = L2rn/nJ) and also the maximum 
Sn-K among all graphs in Q(n, m )  with connectivity K .  

A complete almost regular k-partite graph is a graph 
whose vertex set can be partitioned into k independent 
sets, the sizes of which differ by at most one, and such 
that any two vertices belonging to different partitions are 
connected by an edge. We will assume that there are h 
independent sets of size b + 1, and k - h independent 
sets of size b. The total number of nodes in this complete 
almost regular k-partite graph is then n = (k  - h)b + h(b 
+ 1) = kb + h. The degree of any node is either n - b or 
n - b - 1. By counting the degree of each node, we then 
have 2rn = (k - h)b(n - b) + h(b + I)(n - b - 1). 

Given a graph G(V, E) ,  the neighbor set of a set A 
E V is denoted NA and contains all nodes of V \ A  that 
are adjacent to a node of A .  

The following lemma will be used in this paper: 

Lemma 1. Let (di):=, be the degree sequence of a graph 
H with n nodes. then 

(3) 
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Proof: Let V be the set of nodes of H and let C,(H) 
= q. Let the q r-cutsets of H be denoted A l ,  A2, . . . , 
A,. Now let N, be the neighbor set of A, ,  i.e., N, = NA,. 1 
I l I q :  

and the left-hand side will always be greater or equal to 
the first two terms on the right. 

When there exists an a, > 1 or a, < 0, use the above 
inequality to bring the aJ closer to 1 and 0. When all the 
a, are 0 or 1, then there are b 1’s and n - b 0’s (since 

w N, E U A , -  IN,[ I n  - r, (4) C a, = b) and the lemma follows. 

SO 
3. UNIFORMLY BEST GRAPHS 

4 

Cr(H)(n - r) = d n  - r) 2 2 I NI 1 .  ( 5 )  3.1. Background 
i= I 

Stivaros 11 11 showed that the star graph, Kl,n-l is uni- 
formly best in Q(n, n - 1) by showing that it is S,-optimal 
for all r. In fact, it is this method that is used to prove all 
known instances of uniformly best graphs. Stivaros also 
showed that a complete graph minus a matching is uni- 
formly best in its class. These latter graphs are a subset of 
a much larger group, the complete almost regular mul- 
tipartite graphs, which are also uniformly best. This result 
is attributed to Bermond [2, p. 131 though no proof has 
been published. We now present a proof. 

Theorem 1 (Bermond). Complete almost regular k-partite 
graphs are uniformly best in Q(n, m). 

For x E V, letf(x) be the number of N;s that contain x. 
Then, 

4 

2 lNil = C S(X). (6)  
I= 1 X E  v 

If the degree of node x is d(x), then 

(7) r - d(x) 

Proof The idea of our proof is a generalization of the 

Smith [lo]. Let G be a complete almost regular k-partite 

because we can find at least (n;,d6;?;’) distinct r-cutsets that 
x* The lemma then from ( 5 ) >  (6)> and (7)’ method used by Boesch and Felzer [ 1 1  and also used by 

The next lemma helps bound the sum from the last 
lemma. 

Lemma 2. Given integers n, t, u, b, and aj, 1 I j I n with 
0 I b < n, t 2 0, and C:=, uj = b, then 

~ ( t + a ’ ) z ( n - b ) ( ~ ) + b (  t + l  ) .  (8) 
, = I  u + aj u +  1 

Proof: First note that if al > 0, a2 I 0, then 

graph with n nodes and m edges. To show that R(G) 
2 R ( H )  for all p, 0 s p 5 1 ,  and for all H E Q(n, m), 
we calculate Sr(G) to show that it is an upper bound for 
Sr(H) for any H and any r, 1 I r 5 n. Then, it follows 
that R(G) L R(H)  from (1). But S,(G) 2 S,(H)  C,-,(G) 
I C,-,(H) from (2). So, in order to show R(G) 2 R(H) 
we show that C,(G) I C,(H) for 0 I r I n - 1 and any 
H E  n(n, m). 

More specifically, let G be such that V = Vl U V2 
U U V,, V , n  V , = @ V i # j ,  IVll = IV21 = - . -  
for some h, and E = {(w, z)l w E Vi, z E V,,  i Z j } .  Let 
H be an arbitrary graph in O(n, m). 

CASE 1 .  0 I r I n - (b + 2). 

= lVhl = b +  1 ,  IVh+ll = IVh+21 = * . *  = lVkl = b  

In this case, C,(G) = 0; so, trivially, C,(G) 5 C J H ) .  

 CASE^. n - 2 I r I n -  1 .  
This case is also easy. For r = n - 2, C,(G) = C,(H) 
= (2) - m, and for r = n - 1, Cr(G) = C,(H) = 0. This is trivially true for al = 1 and a2 = 0, and for al  

- a2 2 2, we have 

( l + a l ) + ( t + a 2 ) 2 ( t + a 1  - 1 )  
u + u l  u + a 2  u + a l - l  

CASE 3. n - (b + 1) s r I n - 2. 
In this case, 2 I n - r I b + 1 .  First we calculate 
C,(G). For a set to be a r-cutset of G, all the remaining 
n - r nodes must lie in the same part of G, i.e., the 
same Vi .  Since there are k - h parts of size b and h 
parts of size b + 1 ,  

(10) t + a 2 + i  
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C , ( G ) = ( k - h ) (  ' ) + h (  b +  1 ) .  (11) 
n - r  n - r  

Starting with Lemma 1, we obtain 

where xi ,  i = 1 - - . n, are the n nodes of H .  We use 
Lemma 2 to bound this sum. First, rewrite the sum on 
the right-hand side of (12): 

(13) 
( b  - 1 )  + ( n  - b - d(xi)) 

r + b - n) + (n  - b - d(xi)) 

(13) 
( b  - 1 )  + ( n  - b - d(xi)) 

r + b - n) + (n  - b - d(xi)) 

To apply the lemma, we let the ai be n - b - d(xi): 

n 

2 ai = n(n - b) - 2m 
i= 1 

= n(n - b) - ( k  - h)b(n - b) 

- h(b + l)(n - b) + h(b + 1 )  

= ( n  - 6)  [n  - ( k  - h)b - h(b + l ) ]  

(14) 

+ h(b + 1) 

= h(b + I ) ,  

so 

n - d ( X i )  - 1 

2 (n - h(b + 1)) 

+ h(b + I)( 
r + b - n + l  

b -  1 
r + b - n  

= ( k -  h)b( ) 
r + b - n + l  

+ h(b + 1)( 

= (k - h)b( b -  1 ) + h(b + 1)(  
b ) n - r - 1  n - r - 1  

b +  1 
) ( n  - r) + h( 

n - r  n - r  
= ( k -  h)( ) ( n  - r) 

= Cr(G)(n - r). 

In conclusion, Cr(H)  2 Cr(G) for 0 I r I n - 1, 
which implies that G is uniformly best in Q(n, m). W 

3.2. Extensions 

In this subsection, we investigate possible extensions of 
the result obtained above. Let Kb,b+2 denote the complete 
bipartite graph with a node partition of cardinalities b 
and b + 2, respectively, and let R(2b + 2, b2 + 2b) be the 
set of all connected graphs with n = 2b + 2 nodes and m 
= b2 + 2b edges. The main result of this subsection is the 
following: 

Theorem 2. The complete bipartite graph &b+2 is uni- 
formly best among all graphs in Q(2b + 2, b2 + 2b), 
6 2  1. 

Proof: For all graphs Gin R(2b + 2, b2 + 2b), let Cr(G) 
be the number of node cutsets of G of cardinality r. We 
will prove this lemma by showing that for all graphs G in 
Q(2b + 2, b2 + 2b) we have Cr(Kb,b+2) I Cr(G), for all 0 

First, note that for any graph G E Q(n, m )  we have 
Co(G) = 0, CJG) = 1 ,  C,-,(G) = 0, and C,-,(G) = (2") 
- in. Also, if K denotes the connectivity of the graph G, 
then Cr(G) = 0 for r < K .  

The connectivity of the complete bipartite graph Kb,b+2 

is easily seen to be b [which is maximum in R(2b + 2, b2 
+ 2b)], and a simple counting argument shows that we 
have 

- ( r s n .  

for all b I r I 2b - 1 ,  with the convention that (5) = 0 
if y < 0. 

Let us then bound Cr(G), b I r I 2b - 1 ,  for any 
graph G. Note that if G E Q(2b + 2, b2 + 2b) then either 
G has at least one node of degree b or else it must have 
at least one node of degree I b - 1 (indeed, otherwise 
the sum of the degree of the nodes of G would exceed 
2m). Let us consider both cases separately. 

CASE 1 .  G has at least one node of degree b. ( 1 5 )  
Let v be such a node, and let G - v be the induced 

subgraph of G obtained by removing node v. We then 
have 

Together with (12), this gives Cr(H) 2 Cr(G) as desired. [(";lib) is a lower bound on the number of cutsets of 
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cardinality r that do not include the node u.] Now, G 
- u is in Q(2b + 1, b2 + b), a class that contains Kb,b+l, 
which we know, from Subsection 3.1 (see Theorem l), 
to be uniformly best. So, we have 

b +  1 b (18) 
= ( r  - b -  l ) + ( r  - b - 2 ) ’  

the last equality being obtained again via a simple 
counting argument. From (1  7) and ( 18), we then have 

Cr(G)>( b+  1 ) + (  b+ 1 ) + (  b ) 
r - b  r - b - 1  r - b - 2  

b + 2  b 
= ( r  - b )  + ( r  - b - 2) 

(19) 

One then concludes Case I from ( 16) and ( 19). 

CASE 2. G has no nodes of degree b, and so has at least 
one node of degree I b - 1. Let d* be the degree of a 
node of G not exceeding b - 1, and let w be a node of 
G of degree d*. Then. using the same rationale as for 
( 1  7), we have 

G - IV belongs to R(2b + 1 ,  b2 t 2b - d*), so let n’ 
= 2b + 1 and m’ = b2 t 2b - d*. By using the bounding 
method given in Lemma 1 of Section 2, we have 

( 2 1 )  

2 

- - 

Let us now apply Lemma 2 of Section 2 in order to 
bound this last summation. We need to consider two 
subcases, depending on d*. 

(i) r(b - 1)/21 I d* I b - 1: We use Lemma 2 with 
a, = h + 1 - d(uj). Using (20) and (21), we then get 

2b + 1 - d* 
c r ( G ) 2 (  r - d *  ) 

1 
2 b + 2 - r  

+ 

b 
r - b - I  

+ (2d* + 1 - b)( )) . (22) 

(ii) 1 I d* I ~ ( b  - 1)/2]: We use Lemma 2 with a, 
= b t 2 - d(u,), and finally get 

+ (2d* + 2 + b)( b -  1 )), 

r - b - 2  

Now, for fixed b and r, the lower bounds are, in both 
subcases, decreasing functions of d*. Moreover, the 
lower bound in subcase (ii) is always larger than the 
lower bound in subcase (i). We can then concentrate 
on our worst case, i.e., when d* = b - 1. In that case, 
we have 

b -  1 + 
2 b t 2 - r  r - b - 2  

b 
r -b -1  

(24) b b +  1 
= ( :T h’) + (r  - b - 2 )  ( r  - b + 1 )  

- 

b + 2  b 
( r -  b)’ ( r -  b - 2 ) ’  

One then concludes Case 2 from ( 1  6) and (24). rn 

Remarks. The previous result is best possible in the fol- 
lowing two senses: 

I .  Kb,b+i is not uniformly best for i > 2. Indeed, its con- 
nectivity is b, and thus it is not of maximum connec- 
tivity in R(2b + i, b2 t ib) (the maximum connectivity 
is L2m/nJ = t2(b2 t ib)/(2b t i)J > b when i > 2). 
Moreover, Kb,b+i is not &-optimal for a large number 
of k. For instance, we have constructed a graph G 

any r in the range b + 1 I r I 1.186 (see [7]). 
2. The complete “almost-almost’’ regular k-partite graphs 

are not (in general) uniformly best. H = (V ,  E )  is said 

E n(2b  + 3, b2 + 3b) such that C,(G) < cr(Kb,b+3) for 
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to be a complete almost-almost regular k-partite graph 
if V is partitioned in k sets, Vl, . . . , Vk, where 1 VI I 

with 0 < h < k and b > 0, and if E = { (v ,  w) : v E Vi, 
w E V,, i P j } .  

H i s  then a member of Q(n, m) with n = h(b + 2)  
+ (k - h)  b and 2m = (n  - b) (k - h)  b + ( n  - b - 2)  h ( b  
+ 2). To prove our claim, it suffices to show that H is 
not always K-optimal. The maximum connectivity of 
any graph G E Q(n,  m), say K * ,  easily verifies ( n  - b 
- 2) I K* I (n  - b). Now the connectivity of H is n 
- b - 2. We just have to find values of b, h, and k 
for which K* = n - b - 1. After some elementary steps, 
one can show that this will be the case whenever we 
have b = 2h/(k - 2h). As an example, take h = 1 and 
k = 4, then, b = 1 and H i s  in Q(6,  12); the maximum 
connectivity is then 24/6 = 4, but the connectivity of 
H i s  3. 

lVhl = b + 2 ,  lVh+Il = a * *  = IVkl = b, - - . . .  = 

In conclusion, the result of Subsection 3.1 is best possible 
and the uniformly best property of Kb,b+Z is an exception. 

4. LOCALLY BEST GRAPHS 

4.1. Background 

We do not know if there are any other classes other than 
those of Section 3 that have uniformly best graphs. How- 
ever, we show next that for a wide range of the sparse 
classes (m < n2/4, m # n - I), uniformly best graphs do 
not exist. There must be at least two locally best graphs 
in these classes, and, in fact, we show that there are exactly 
two in the class Q(n, n). 

4.2. Many Classes Do Not Have Uniformly 
Best Graphs 

A uniformly best graph necessarily is both S3-optimal and 
K-optimal [2]. Stivaros [ 111 showed that the star graph 
with one extra edge is the unique S3-optimal graph in its 
class, whereas the cycle of length n is the unique K-optimal 
graph. Hence, no uniformly best graph exists in Q(n, n). 

This same idea can be used to show that most sparse 
classes do not contain uniformly best graphs. Specifically, 
given a class Q(n, m), first find a graph in it with a relatively 
large value for S3. Since Stivaros [ 1 11 showed that com- 
plete bipartite graphs are 3-optimal in their classes, we 
choose a complete bipartite graph if possible, and if not, 
then a complete bipartite plus or minus some edges. Then, 
second, we use the fact that the minimum degree of a K-  

optimal graph in Q(n, rn) will be d = ~2rn/nj and find an 
upper bound for the S3 value of any K-optimal graph. The 
result for most sparse classes will be that all K-optimal 
graphs in Q(n, m) cannot also be 3-optimal. 

Theorem 3. For m = rn + k, 2 I r I n/5 - 4, 0 I k 
< n/2, then Q(n, m) does not contain a uniformly best 
graph. 

To prove this result, we will use two lemmas. The first 
lemma shows the existence of a graph with a fairly high 
value of S3, namely, a bipartite graph with extra edges 
added. 

Lemma 3. rfm = rn + k, m I (;), and 0 I k < n, then 
3G E Q(n, m) with S3(G) 2 r(n - r)(n - 2)/2. 

Proof: Let J = Kr,,,-r. From Stivaros' formula for S3 
[ 1 I ,  Chap. I], we know that 

where T ( J )  is the number of triangles of J. But 7 ( J )  = 0 
since J is bipartite. Hence, 

r(n - r)(n - 2)  
2 

- - 

J has rn - r2 edges. Add any r2 + k edges to obtain G 
E Q(n, m = rn + k). Then, 

(27) 
r(n - r)(n - 2) 

2 
S3(G) 2 S3(J) = 

If (di)r=l is the degree sequence of a graph, then the next 
lemma will bound the function Crc1 (9). 

Lemma 4. Let (di)i be the degree sequence of a graph of 
Q(n, m), so that El di = 2m. Also, let d = ~2m/nj  and d 
I di I n - 1 for i = 1 - * .n. Then, 

i (:) I ( n  - 2)  (i) + ('2") + (" 1 I). (28) 
i= I 

Proot Assume that the di are arranged in nondecreas- 
ing order. 2m 2 nd since di 2 d for all i, so let 2m = nd 
+ p with p 2 0. Since d = ~ 2 m / n j  = L(nd + p)/nj = id 
+ p/nj, p must be less than n: p I n - 1. For any di > d 
where 1 I i I n - 2, decreasing di by 1 and increasing 
d,, (or dn-J by 1 will only increase the value of CFI  ($). 
We continue in this way until di = d for i = 1 - - n - 1, 
if possible, in which case d, = d + p (or if d + p > n 
- 1, then until d,, = n - I and d,,-t = p + 2d + 1 - n 
I 2 4 .  In either case, the result follows. 
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Proof of Theorem 3. Let H E  Q(n, m) with maximum 
connectivity, i.e., K(H) = ~2m/nj ,  where K(H) is the node 
connectivity of the graph H, We have 

( 2 9 )  

d = K ( H )  = [2m/nJ = 

In light of Lemma 3, we need to show that S 3 ( H )  < r(n 
- r)(n - 2)/2.  We use Lemma 4 to obtain 

Then, the question becomes, when is 

. (31) 

4.3. The Locally Best Graphs of Q(n, n )  

In this subsection, we show that when n 2 6, the star plus 
one edge and the cycle are the only two locally best graphs 
of Q(n, n). More precisely, we have 

Theorem 4. Let n 2 6. The star plus one edge, K,,, ,- l  
+ 1, issuch that, for3 s r I n - 2 

The cycle, Cycle,,, is such that 

S,-,(Cycle,,) > S,,-,(G) for all 
(33) 

G E Q(n, n)\{Cycle,,}. 

Proof First (33) is true since the cycle is the only graph 
of Q(n, n)  of maximum connectivity 2. In particular, we 
have S,,-,(Cyde,J = n and Sn-l(Kl,n-l + 1) = n - 1. Let 
us now concentrate on (32) .  

It is easy to see that we have 

n -  1 A little algebra shows that (31) holds given the conditions 
of the theorem. w r -  1 S,(K,,,,-~ + 1) = ( ) for all 3 5 r I n - 2. (34) 

Remarks. The above theorem can be refined to handle 
all classes Q(n, m )  with n 2 m < n2/4 - 3n: 

I .  To handle the case n/2 I k < n in Theorem 3, d in 
(29)  becomes 2r + 1 and a similar result is obtained. 

2. To handle the case n/5 - 4 I r < n/4 - 3, Lemma 3 
must be more sophisticated. Instead of J = K,,,-,, let 
J = K,,,,-,,, where r' is the largest integer such that r'(n 
- r ' )  I m. 

Moreover, we have Sr(cycle,,) = - 2 j  

which is clearly less than the values given in (34). More 
generally, let us prove that for all other graphs G E Q(n, 
n) we also have 

for 

s,(G) < (" - ') for all 3 I r I n - 2. (35) 

We will do that by induction on n. By complete enumer- 

r -  1 

3.  To handle r = 1, Lemma 3 must be strengthened to 
consider the increase in &(.I) that results from adding 
k + 1 edges. 

4. Special cases for low values of n that do not fall into 
any of the above categories are handled on a case by 

ation [there are 13 graphs in Q(6,  6 ) ] ,  (35) is easily seen 
to be true for n = 6. Let us then assume that (35) is true 
up to n - 1, and let us prove it for n. Let G be any graph 
of Q(n, n) that is not the cycle Cycle,,. It has at least a 
node of degree 1, say v .  We then have 

case basis by a combination of the above techniques. 
We have used a computer program to verify all cases 
Q(n,  m)  with n I m < n2/4 - n/2 - 2 where n I 170. 

S,(G) = S,(G - v )  + S,(G u) for all 
(36) 

3 I r 5  n - 2, 

For details, see [7]. The above technique is more dif- 
ficult to apply in the range n2/4 - 3n I m < n2/4 - 2 
and not all cases have been proved in this range. But for 
Q(2b + i, b2 + ib), i 2 3, no uniformly best graphs exist. 
This is because the unique &-optimal graphs in these 
classes are Kb,b+i [ 1 11, which are not K-optimal. 

where G - u is the induced subgraph of G obtained by 
removing node v, and S,(G; u)  is the total number of 
connected induced subgraphs of r nodes containing u. It 
is easy to see that one can always choose v such that G 
- u is not Kl,n-2 + 1. By our induction hypothesis, we 
then know that 
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Also, an induced subgraph of r nodes containing v must 
also contain its unique adjacent node, in order to be con- 
nected. We then have the freedom to choose r - 2 other 
nodes among the remaining n - 2 nodes. Hence, 

Sr(G; v )  I (: 1;) for all 3 I r I n - 3. (38) 

From (37) and (38), we then have 

S,(G) < ( n  - ') + (" - ' )  
r -  1 r - 2  

(39) 

It remains to cover the case r = n - 2 in order to 
complete the proof. If G - v is not the cycle Cycle,-l, 
then the previous argument still holds. If G - v is the 
cycle Cycle,-I, then the right-hand side of (37) is n - 1 
instead of n - 2, but now Sr(G; v )  = n - 3, and so we 
still have n - 1 + n - 3 = 2n - 4 < ( ; - I )  when n 2 6..  

From this theorem, it is easy to deduce the following 
result: 

Corollary 1. The star plus one edge and the cycle are the 
onry two locally best graphs in O(n, n), n 2 6 .  

Remarks. When n I 4, the cycle is uniformly best, so it 
is the only locally best graph in Q(n,  n). When n = 5, 
three graphs are locally best: the star plus one edge and 
the cycle, but also a third graph that has the same reliability 
as the star plus one edge. This last graph is built from the 
cycle on four nodes with a leaf attached to one of them. 

5. ASYMPTOTICALLY BEST GRAPHS 

When Q(n, m) does not contain uniformly best graphs, 
there may still be graphs in O ( n ,  m) that are most reliable 
when n is large enough. For example, for all 0 < p I 0.99, 
the star plus one edge, K l , n - l  + 1 ,  is the most reliable 
graph in Q(n,  n), for all n > 16. This most practical ob- 
servation motivates the introduction of asymptotically 
best graphs that intuitively describes graphs that are most 
reliable as the number of nodes increases, no matter what 
p is. The precise definition of this notion is as follows: 

A family of graphs (G,),"=l, where G, E Q(n,  m(n))  
and m( n)  a nondecreasing integer-valued function, 

is said to be asymptotically best in (O(n, m(n))) ,  
if for all 0 < p < 1 there exists an N ( p ) ,  such that 
for all n 2 N ( p )  we have R(G,) 2 R ( H )  for all H 
E Q(n, m(n)>. 

From Theorem 4, it is easy to see that we have 

Corollary 2. The family of the star plus one edge, ( K l  , , - I  

+ l),, is asymptotically best in (C!(n, n)),. 

Indeed, we know that for any fixed n > 5, K I  + 1 
and Cycle,, are the only two possible best graphs. Also, 
since KI ,n- l  + 1 dominates all Sk except the result 
follows. Alternatively, one obtains from Theorem 4 that 

R(K1,n-I + 1 )  

=p+p2(1 - p ) " - 2 + ( n -  l)p(l - P ) ~ - '  (40) 

and that 

( 1  - p)n-I - pn-I 
R(Cycle,) = p" + np( 1 - p )  7 (41) 1 - 2p 

from which it is straightforward to conclude. 

6. CONCLUSION 

In this paper, we proved that most classes of sparse graphs 
contain no uniformly best graphs. We also extended the 
set of classes for which there exist uniformly best graphs. 
The notion of asymptotically best graphs is introduced 
and illustrated in the class Q(n,  n). 

However, the subject is far from being exhausted. First, 
there are still classes for which it is not known whether 
uniformly best graphs exist or not. Among sparse graphs, 
these are the cases n2/4 - 3n < m I n2/4 - 2. Among 
dense graphs (rn > n2/4), these are the cases where O(n, 
m) does not contain a complete almost regular k-partite 
graph. Also, all uniformly best graphs that have been 
found so far are S,-optimal for all r. From ( l ) ,  this is a 
sufficient condition for a graph to be uniformly best but 
it is not known whether the condition is also necessary. 

Second, for the classes with no uniformly best graph, 
one wishes to identify a minimum set of locally best graphs 
covering the whole range of p ,  0 < p < 1 .  Two related 
questions are whether the cardinality of such a set is 
bounded by a constant and whether it is true that if a 
graph is locally best for two different values of p,  say pI 
and p2, then it is also locally best for all intermediate values 
O f P ,  PI 5 P I P2. 

Asymptotically best graphs provide a family of graphs 
of high reliability. We would like to characterize the func- 
tions m(n) that give rise to such families. Finally, we rec- 
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ognize the need to generalize these results to the case of 
graphs with edge weights, so that the problem becomes 
the design of a graph of maximum reliability with a given 
cost. 
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