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Consider the problem of finding the shortest paths from a node source s to a node sink t 
in a complete network. On any given instance of the problem, only a subset of the 
intermediate nodes can be used to go from s to t ,  the subset being chosen according to a 
given probability law. We wish to find an a priori path from s to f such that, on any given 
instance of the problem, the sequence of nodes defining the path is preserved but only 
the permissible nodes are traversed, the others being skipped. The problem of finding an 
a priori path of minimum expected length is defined as the Probabilistic Shortest Path 
Problem (PSPP). Note that if the network is not originally complete, the PSPP method- 
ology can still be used if we first add each missing edge, together with a deterministic 
length (being defined by an alternative path using nodes that have no probability of 
failure). In this paper, after discussing potential applications of the PSPP, we study the 
complexity of this class of problems. We first show that the problem is, in general, NP- 
hard and then we develop polynomial time procedures for special cases of it. We also 
consider the complexity of a related problem: the Probabilistic Minimum Spanning Tree 
Problem (PMSTP). Finally, we provide a discussion of the implications of the results. 
0 1992 John Wiley & Sons, Inc. 

1. INTRODUCTION 

Combinatorial optimization problems on graphs are important. They cover a 
wide variety of models with practical applications and the theory behind them 
is, in general, very rich. 

Most (but not all) of the research devoted to  this area has concentrated on 
deterministic situations. By that, we mean situations in which the number of 
nodes, the length of the arcs,  e tc . ,  are known with certainty before a particular 
optimization problem is solved. One can identify, however, a practically end- 
less variety of problems in which one or more of these parameters are random 
variables, i.e., subject t o  uncertainty in accordance with some probability law. 
Most of the existing literature addressing uncertainty has been confined to  the 
analysis of problems under the assumptions of random distances between 
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nodes (see [13] for an introduction to the analysis of network problems under 
uncertainty; see also [ 1 ,  5 ,  61). 

Here, we are concerned with a somewhat different approach toward intro- 
ducing and analyzing uncertainty in combinatorial problems. This approach 
was initiated in [8] with the traveling salesman problem and since then has been 
extended to the vehicle routing problem (see [9, 12]), the spanning tree prob- 
lem, and the traveling salesman facility location problem (see [2]). Our main 
concern is to define and analyze probabilistic versions of well-known combina- 
torial optimization problems while keeping their original (combinatorial) flavor. 
There are several motivations behind this work. Among them, two are particu- 
larly important-The first one is the desire to formulate and analyze models 
that are more appropriate for real-world problems where randomness is 
present. The second motivation is an attempt to analyze the robustness (with 
respect to optimality) of optimal solutions for deterministic problems when the 
network for which the problem has been solved is modified (in our case the 
perturbation of the problem instances is simulated by the presence or not of the 
given nodes). 

In this paper, we consider special versions of the Probabilistic Shortest Path 
Problem (PSPP) and of the Probabilistic Minimum Spanning Tree Problem 
(PMSTP). We first analyze the PSPP and, after showing that the problem is, in 
general, NP-hard, we give polynomial time procedures for special cases of it. 
We then show that the recognition versions of the analogous special cases for 
the PMSTP are NP-complete. Finally, we provide a discussion of the implica- 
tions of these results. 

2. THE PROBABILISTIC SHORTEST PATH PROBLEM 

2.1. Introduction 

The Deterministic Shortest Path Problem (DSPP) is one of the most studied 
problems in network optimization and can be easily solved in polynomial time 
through a number of well-known algorithms (for instance, see [14] for a sur- 
vey). Stochastic versions of this problem have received little attention so far 
and have been limited mainly to the case of random arc lengths (see 1 1 ,  61). 

The PSPP can be described as follows: Consider the problem of finding a 
shortest path between a node source s and a node sink t in a complete network 
having a length associated with each arc. On any given instance of the problem, 
only a subset among intermediate nodes can be used to go from s to f, the 
subset being chosen according to a given probability law. We wish to construct 
an a priori path such that, on any given instance of the problem, the sequence 
of nodes defining the path is preserved but only the permissible nodes are 
traversed, the others being skipped. The problem of finding an a priori path of 
minimum expected length is defined as a PSPP. This problem was first intro- 
duced in [lo] in which a branch-and-bound scheme was proposed. Note that 
this definition is based on a very specific strategy, called here a priori optimiza- 
tion, which differs radically from the strategy of reoptimization. More specifi- 
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cally, rather than reoptimizing every potential instance, we wish to find an a 
priori solution to the original problem and then update in a simple way this a 
priori solution to answer each particular instance. Also, it is worth mentionning 
that if the physical underlying network is not complete the model can still be 
used by first extending the network to a complete one. In that case, a crucial 
condition for the network completion to be valid with respect to the PSPP is the 
following: Given the selected a priori path (s,nl,n2, . . . , n~,i), if nodes n l t 1  
through ni+, fail, then they are skipped by either taking the arc ( t ~ , , n , + , . + ~ )  if it 
exists or by taking an alternative path from n, to using only nodes that 
have no probability offailure. This latter case is to ensure that we do not define 
a “random” length for this missing edge, i.e., an edge whose length would 
depend on the presence or not of probabilistic nodes. 

The generic PSPP, as stated, can be of interest in many modeling applica- 
tions. First, consider a network in which arcs represent streets of a city and 
nodes are intersections, and suppose we want to go from an origin s to a 
destination t along this network. The length of an arc ( i j )  is defined to be the 
time needed to go from i toj ,  a value that may vary greatly. Usually, one either 
uses the means and solves a deterministic shortest path problem or one con- 
siders the travel times as random variables and tries to solve one of many 
possible problems such as finding the path with maximum probability of being 
the shortest, or finding the path with minimum variance among the shortest, 
etc. (see [ I ]  for a discussion on these formulations). However, if the traffic is 
close to saturation, a little perturbation in the flow can create a blocking situa- 
tion. In that case, we have a critical situation in which the travel time does not 
vary much anymore (being constantly high because of congestion) except when 
a blocking situation is faced (a street unexpectedly blocked by unloading trucks 
or garbage collecting trucks; an intersection with conflicting flows of vehicles; 
etc.). Depending on the frequencies of these blockings, one might then choose 
longer but less risky paths to go from one place to another. Let us see how the 
PSPP offers an analytical way to choose between paths with these uncertain- 
ties. First of all, one can model a risky street ( i j )  by adding an artificial “proba- 
bilistic” node k that can or cannot be traversed: In  the first case, the length of 
the street would be its normal travel time; in the second case, it would be much 
higher. In the case of a risky intersection, the model is even simpler: We simply 
model the intersection as a “probabilistic” node. The only apparent difficulty 
in applying the PSPP model for this kind of problem is that the physical net- 
work of streets is usually not complete. But this can be resolved by adding 
weighted arcs as follows (see Fig. 1 for the case of a simple symmetric net- 
work): 

0 First, delete all “probabilistic” nodes and their adjacent arcs, and call the 
remaining network the backbone B .  Make B complete by using shortest 
paths. In  our example, edges ( s , f ) ,  (1,3), and ( 1 , t )  are thus added. Note that 
if B is disconnected, every arc added between disconnected components 
will then be given a large chosen weight, say M (this case is not covered in 
our example). 
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FIG. 1. An original network and the addition of missing weighted arcs. 

0 Then, consider a “probabilistic” node, say i, and add it (together with 
adjacent arcs) to B. From i, add all necessary arcs with weight equal to 
shortest paths that do not use t as an intermediate node. Then, remove i 
from B and repeat the procedure for the other “probabilistic” nodes. In 
our example, the edges (2,t) ,  then (s,4), (3,4), and, finally, ( s 3 ,  (IS), (33 
are thus added. Again, if the “probabilistic” node is not connected to B by 
a node other than t ,  each added arc will then be given the large value M (in 
our example, it is the case for node 5). 
Finally, consider two nonadjacent “probabilistic” nodes, say i and j, and 
add them (with adjacent arcs) to B. Add arc (ij) with weight equal to the 
shortest path between i a n d j  that does not use t as an intermediate node. 
Then, remove the pair ij, and repeat the procedure for the other pairs of 
nonadjacent “probabilistic” nodes [in our example, edge (43) is thus 
added]. 

Note that this entire procedure require (see above) the choice of a single large 
value M. This quantity can be interpreted as the penality (in units of time) of 
being, at one point along the path, in the impossibility of moving forward on a 
given instance of the problem. 

Let us now turn our attention to some other applications. In the context of 
flying operations, nodes s and t can be airports and the other nodes can repre- 
sent geographical areas (mountains, countries, etc.) that can or cannot be flown 
over by aircraft going from s to t (e.g., because of weather conditions, unex- 
pected military restrictions, etc.). The modifications of the route the plane has 
to take, because of such unexpected restrictions, can be very costly if not 
planned ahead. The idea would be to include explicitly these uncertainties in 
the model in order to find routes of minimum expected costs. The PSPP model 
is quite appropriate for such a situation. 

More important, consider the following class of problems: Suppose one has 
to go from a “city” s to another city t ,  possibly going through other cities in 
which one can receive some “revenue” with a given probability. With the 
objective of minimizing the expected total net cost, this problem can be mod- 
eled as a PSPP: The underlying network is a complete graph built on all cities of 
interest, and the length of an arc (i.j) is the net cost between city i and ci tyj  
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[minimum cost of traveling from i t o j  minus half the total revenue in the cities, 
cij - (ri + r j ) / 2 ] .  

Let us finally mention another useful characteristic of the PSPP: In the 
context of network reliability, the PSPP can be interpreted as a local (hence, 
easily implementable) strategy of handling node failures (“we skip them”) that 
is optimal in a global sense (minimization of the expected cost). This can be 
useful either for describing operating strategies of unreliable networks or for 
having a polynomial time computable estimate of “connecting cost versus node 
failures” for such networks. 

2.2. Notation and Assumptions 

G = ( N , A , d )  denotes a complete, loopless, directed, weighted graph where 
N is the node set, A is the set of arcs joining the nodes of N, and d is a function 
A I+ R. We consider a node source s, a node sink t ,  and paths from s to t .  A 
path c will be given by the sequence of nodes defining it, i.e., c = (s,nlrn2, . . . , 
nk,t). The set of nodes N is partitioned into two subsets N ,  and N2: 

N 1  is the set of nodes without failure or always working (“black” nodes), of 
cardinality INI( = m(m 2 2 since s and t belong to NI). 

N2 is the set of nodes with possible failure or not always working (“white” 
nodes), of cardinality IN21 = n. 

We assume given a probability P on a, the power set of N 2  (an outcome o 
defines the subset of white nodes with no failure on this particular instance). 
We restrict P to be such that all outcomes of equal cardinality have the same 
probability of occurring, i.e.: 

If W is the random variable that represents the number of white nodes with no 
failure, we have 

Hence, our probabilistic models can be specified equivalently by giving the 
probability P or the probability distribution of W. Note also that the restriction 
imposed on P implies that, given W = k, the k nodes are selected uniformly at 
random among the set of n nodes; any probability P satisfying (1) will then be 
said to be node invariant. 

One important specific example (hereafter, named PI) is 

which corresponds to the case for which each white node has a probability p of 
being present, independently of the others; we then speak informally of a 
Bernouilli process with parameter p. 
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For a given a priori path c between s and t ,  the length L,. covered in travers- 
ing the nodes without failure on each instance of the problem is a random 
variable. The general PSPP can then be stated as follows: 

Problem PSPP: Given a network G = ( N , A , d )  with node source s and node 
sink t and a probability P, find an a priori path c of minimum expected length, 
E[L,.l. 

2.3. Properties and Characteristics of Optimal Solutions to PSPPs 

its deterministic counterpart. 
In this subsection, we investigate the complexity of the PSPP and its links to 

2.3.1. The Expected Length of a Given Path 

Let us consider a PSPP problem. For a given path c = ( s , n l ,  . . . , n L , t ) ,  L, is 
a random variable that can have up to 2k different values. By considering all 
cases, its expected value would then be obtained in O(k29 additions in the 
worst case, which is prohibitive. In fact, one can develop efficient methods to 
compute E[L,.] for general node invariant probabilities. The most general result, 
based on an extension of results obtained for the PTSP (see [ I  l ] ) ,  is the follow- 
ing: 

Theorem 1. 
from s to t (by convention 0 3 s and k + I = t ) ,  use have 

Given a node invariant PSPP and a path c = (0,1, . . . , k.k+ 1) 

1 - 2  1-1 

where 

I-I-, 

Air' = d,.(i,i 

B!? = d,.(O,r + 1 

C:!) = d,.(O,k + 1) 

t r +  1) 

+ d,.(k - r,k + 1) 

-'s ((" - - ' ) / ( ; ) )  Pr(W = n - j ) f o r  all r E [0 . . . k - 21 
a r  - j - r  

I - r  

pr = 2 ((" - - 'I/(;)) Pr(W = n - j ) f o r  all r E [0 . . . k - I ]  j - r  
1 - r  
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with the following convention: 

d c ( i , i + r +  l ) = C : = o d ( b , , b , + I ) , ~ , h e r e b o ~ i , b , , + I - i + r +  I , u n d ( b l . .  . . ,b,,) 
is the sequence of bluck nodes drawn from (i + 1 ,  . . . , i + r ) .  

Proof. The proof is similar to the one given in [ 1 11 for the PTSP and is not 
reproduced here in all the details. Suppose first that m = 2 .  On any given 
instance of the problem, the arc (i,i  + r + I )  is in the resulting path if and only if 
the nodes i and i + r + 1 are working and the nodes i + 1,  . . . , i + r are not 
working. The probability of presence of this arc will then depend on three 
cases: 

1. i # 0 and i + r + I # k + I ,  the probability of presence is ar. 
2 .  i = 0 or i + r + 1 = k + I ,  the probability is pr .  
3. i = 0 or i + r + I = k + 1 .  the probability is y!,. 

The definitions of A , ’ s ,  B , ’ s ,  and C :  are then based on a regrouping of arcs with 
equal probabilities (as an illustration of these quantities, see Fig. 2 for a simple 
example). Finally, when m > 2 ,  we introduce a “transformed” distance d, that 
reflects the possibility of having black nodes (hence, always working) between i 
and i + r + 1 along the path c. It is then straightforward, but cumbersome, to 
verify that (4) indeed leads to the right probability of presence for all edges of 
the given path. For example, consider the case in which the path contains one 
black node, say node 3. Then, from our theorem, an edge such as (0,3) will not 
only appear in B!?, but also in all BY’ for r > 2 and in C!.. The total weight for 
this edge will then be 

The Pa th  

A: (ilgn:) and 01 (heavy) 

Ao ( l ight )  and Bo (heavy) 

FIG. 2.  A path and the arcs representing some A,’s and B,’s. 
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This simplifies to 

which is, indeed, the true probability of presence of edge (0,3). 

Remarks: 

1. When k = 1 or when k = 0, Eq. (4) gives, respectively, E[L,I = &BL0' + 
yIC$" and E[L,I = yoC$. 

2. The closed form formula (4) gives the expected length of a path from s to 
t through k intermediate nodes in O(k2) elementary operations (for a 
general node invariant P and assuming that the ar's have been previously 
computed). As a consequence, it shows that the recognition version of 
this problem belongs to the class NP. 

3 .  For the case of a Bernouilli process PI, ar = p 2 ( l  - pY,  p r  = p ( 1  - p) ' ,  
and Y k  = ( 1  - P ) ~ .  

2.3.2. The Complexity of the PSPP and Its Relationship to the DSPP 

The DSPP is a special case of the PSPP in which all nodes are black; it is then 
natural to investigate the possible links between the two problems. We show in 
this section that the two problems are fundamentally different so that the PSPP 
requires entirely new solution procedures. The following results are easily 
proved and confirm previous knowledge about the drastic changes that ran- 
domness causes to well-known combinatorial problems (see [ 1, 2, 1 I]). 

Result 1. The PSPP is NP-hard. Indeed, consider the special case in which 
P = PI and in which we have only two black nodes (s and t). From Theorem 1, 
the expected length of a path containing k ( k  5 n)  white nodes depends on d(s,t) 
via a weight equal to ( 1  - P ) ~ .  Since (1  - 2 ( 1  - p)", if we take d(s,t) 
arbitrarily large (everything else being equal), we can force the potential candi- 
dates for  the corresponding PSPP to go  through all the n white nodes. But this 
last problem is the Probabilistic Hamiltonian Path Problem that is NP-hard 
(being equivalent to the PTSP, see [S]). 

Result 2. Suppose that the distances do not satisfy the triangular inequality, 
since, otherwise, the optimal PSPP path would simply be the arc (s,t). Under 
that condition, it is easy to construct examples in which an optimal DSPP path 
is arbitrarily bad for  the corresponding PSPP. See, e .g . ,  Figure 3 in which all 
arcs not shown are of length 4 and in which M > 4 and P = PI. The optimal 
DSPP path (s,1,2,t) of length 3 has an expected length depending on M ,  the 
length of arc (1 , t ) ,  which is traversed when node 1 works and node 2 fails; it can 
then be made arbitrarily large as compared to the expected length of path (s,t) 
(ofvalue 4). 
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FIG. 3. The optimal deterministic shortest path can be bad. 

Result 3. The principle of optimality (which helps solving the DSPP)  does not 
work here. The main reason is that the expected length of a path is not an 
additive functional (as compared to the length of a path),  in the sense that in 
general E [ L C , ~ C 2 ]  f E[L,,] + E[L,,], where c I  @ c2 = (il, . . . , i k )  stands for the 
concatenation of the two paths c I  = (i,, . . . , 4) and c2 = (4 ,  . . . , i k ) .  

From Result 1, a polynomial time algorithm for the PSPP seems out of reach; 
from Result 2, the optimal DSPP path cannot be considered as a good candidate 
for approximating the corresponding PSPP; and from Result 3,  one has to be 
careful about transferring classical DSPP algorithms to the PSPP. 

A practical consequence of these results is the necessity to develop entirely 
new solution procedures. As mentioned in the Introduction, a branch-and- 
bound scheme was proposed in [ 101. We will concentrate in the next section on 
showing that certain subclasses of the PSPP are solvable in polynomial time. 

2.4. Polynomial Procedures for Special Cases of the Problem 

In this section, we consider special cases of the PSPP for which we are able 
to give polynomial time procedures. Let us first consider the simplest of these 
cases and show how this can be done. The other cases will be straightforward 
extensions of the main idea developed here. 

2.4.1. A Simple Special Case 

consider a probability P such that 
Let us assume that m = 2 ,  i.e., the only black nodes are s and t .  Also, let us 

Pr(W 5 n - 2 )  = 0 and Pr(W = n - 1 )  > 0, 

i.e., either all white nodes are working or only one of them has a failure. A path 
c = (s, 1, . . . , k,t) will then have an expected length given by 
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FIG. 4. The auxiliary network when N 2  = {1,2,3}. 

Indeed, ( 5 )  is obtained from Eq. (4) by noticing that a,. = 0 and p,. = 0 for all r 2 
2, yk = 0 if k 2 2,  and yo = 1. 

Let us construct an auxiliary network (V,E,cp) as follows (see Fig. 4 for an 
illustration): 

0 The set of nodes is V = (Nz @ Nz) U N I  U Nz of cardinality (VI = n2 + 2 

0 The set of arcs E and the arc-length function cp are defined by 
(where the notation A @ A stands for (A  x A)\diag(A)). 

-Arc (s,?) of length cp(s,t) = &,I).  
-Arcs (s ,u)  for all u = i in Nz of length cp(s,i) = pod(s,i)  + (y l /2)d(s , t ) .  
-Arcs (s ,u)  for all u = ( i j )  in N z @  N Z  of length cp(s,(ij)) = pOd(s,i) + (ao/ 

-Arcs (u,t)  for all u = i in Nz of length cp(i.t) = pod(i,t) + (y l /2)d(s , t ) .  
-Arcs (u, t )  for all u = ( i J )  in NZ @ N 2  of length cp((ij),t) = pod( j , t )  + (ao/ 

-Arcs (u ,w)  for all u = (ij),  w = ( j , k ) ,  i # j f k of length q ( ( i j ) , ( j , k ) )  = (a0/ 

2 ) d ( i j )  + Pid( s j ) .  

2 ) d ( i j )  + pld(i , t ) .  

2 ) ( d ( i j )  + d ( j , k ) )  + ald(i,k). 

The cardinality of E is then 

IEl = n(n - l ) (n  - 2) + 1 + 2(n(n - 1 )  + n )  = n3 - n2 + 2n + 1. 

One can now give the fundamental relationship between the two networks: 

Lemma 1. There is a one-to-one correspondence between the set of paths 
f rom s to t in ( N , A , d )  and the set o fpaths  f r o m  s to t i n  (V,E,cp). Moreover, the 
expected length of each path f r o m  s to t in (N ,A ,d )  is equul to the length of a 
corresponding path in (V,E,(p). 
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Proof. For each path c from s to t in ( N , A , d ) ,  let us exhibit a path C in 

Let c = (s,l, . . . , k, t )  be a path in ( N , A , d ) .  Three cases have to be consid- 
(V,E,(a) such that E[LJ = Lc. 

ered: 

k = 0, i.e., c = ( s , t ) ,  then C = ( s , t )  is the corresponding path. From Eq. (5 )  
and the construction of (a, we have 

E[L,.] = d(s, t )  = (a (s , t )  = Lc. 

k = I ,  i.e., c = (s, i , t) ,  then C = ( s , i , t )  is the corresponding path. From Eq. 
(3, we have 

E[L,.l = po(d(s,i) + d(i,t)) + yld(s,t). 

Also, from the construction of (a, we have 

SO E[L,] = Lc. 
k L 2 ,  i.e., c = (s,l,  . . . , k , t ) ,  then C = (s,(1,2), (2 ,3) ,  . . . , ( k  - I , k ) , t )  is 
the corresponding path. From Eq. ( 5 ) ,  we have 

Also, from the construction of (a. we have 

so  E[L,.] = Lc. 
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Finally, given a path in (V,E,cp), its corresponding path in (N ,A ,d )  is uniquely 
obtained by reversing the previous argument. 

We are now in a position to give our main result: 

Theorem 2. Given a node invariant PSPP with m = 2 and with a probability P 
such that Pr( W I n - 2) = 0 and Pr( W = n - 1 )  > 0 ,  one can find an optimal 
PSPP path between s and t in time O(n3). 

Proof. From Lemma I ,  one can solve such a PSPP by finding the shortest 
path in the auxiliary network (V,E,(p). This can be done by a careful implemen- 
tation of the Dijkstra algorithm in time O(lEl + IVI log IVl) (see [31 or [41). 

2.4.2. Generalizations 

We can extend the idea of the previous subsection in several directions: 
We can first consider cases in which several white nodes can fail at the same 

time. For example, let us look at the case in which Pr( W I n - 3) = 0. The set 
of nodes V will be augmented to include all triplets ( i j , k )  with i # j  # k ,  i.e., of 
n(n - l ) (n  - 2) nodes. The set of arcs E and the function cp will remain the same 
except that we add arcs of the types ( s , ( i j , k ) ) ,  ( ( i j , k ) , t ) ,  and ( ( i j ,k) , ( j ,k , l ) )  
(with 1 # i) and that we delete arcs of the type ( ( i j ) , ( j , k ) ) .  The length of  the 
added arcs are defined with the same idea as before, e.g.: 

Now a path c = (s,l, . . . , k , t )  in (N ,A ,d )  will correspond to the path C = 
(s,(1,2,3),(2,3,4), . . . , (k  - 2 , k - l , k ) , t )  in (V,E,(p). We have 

( V J  = 2 + n + n(n - 1) + n(n - I)(n - 2 )  = O(n3) 

(El = 1 + 2n + 2n(n - I )  + 2n(n - I)(n - 2) + n(n - l ) (n  - 2)(n - 3) 

Hence, the PSPP can be solved in O(n4). 
Another example of generalization is to consider the case of Subsection 2.4.1 

but with more than two black nodes: The set V would be augmented to include 
m - 2 additional nodes, and we would have to add arcs of the types (i,u), (u,i), 
( ( i j ) ,u ) ,  and (u , ( i j ) )  for all u in N,\{s,t} and i j , i  # j  in N 2 ,  and arcs of the types 
(s,u),(u,t) ,(u,w),  and (w,u) for all u # w in Nl\{s,t}. The weight of these addi- 
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tional edges would be defined as before [e.g., cp(v,w) = d(u,w), cp(u,(ij)) = 
&d(u,i) + ( a 0 / 2 ) d ( i j )  + p l d ( v j ) l .  The most general result is obtained by con- 
sidering a combination of the two previous extensions: 

Theorem 3. Given a node invariant PSPP with m black nodes ( m  2 2) and a 
probability P such that Pr(W 5 n - k - 1) = 0 and Pr(W = n - k )  > 0 ,  one can 
find an optimal PSPP path between s and t in time O(mnk+' + nk+2 + m2). 

Proof. The theorem results from the fact that 

IVI = m + n + n(n - 1 )  + * f n(n - 1) .  . . (n - k )  

= O(m + nk+9 

IEl = (2m - 2)(IV( - rn) + n(n - 1)  . . . (n - k - 1)  + ( m  - l)(m - 2) + 1 

= 0(mnk+I + nk+2 + m2). 

3. PROBABILISTIC MINIMUM SPANNING TREE PROBLEM 

3.1. Introduction 

The Probabilistic Minimum Spanning Tree Problem (PMSTP) was first intro- 
duced in [2] and its rationale is based on the same motivations as for the PTSP, 
PSPP, etc. (see Section 1). The problem is a probabilistic generalization of the 
classical minimum spanning tree problem. Given a set of nodes in a network 
(not necessarily complete), only a random subset of them is present on any 
particular instance of the problem. We wish to find a priori a spanning tree 
through all the nodes, so that, for any subsequent random subset of nodes, the 
tree is retraced deleting only the nodes that are not present (with their adjacent 
edges) provided the deletion does not disconnect the tree. The problem of 
finding an a priori spanning tree of minimum expected length is the PMST 
problem. 

For a description of many applications of the PMSTP in the areas of com- 
munication, infrastructure planning, circuit design, routing, and organizational 
structures, see [2]. 

After specifying the notation and the probabilistic assumptions to be used 
throughout Section 3,  we first give in Section 3.3  efficient closed-form expres- 
sions for the expected length of a given spanning tree. In Section 3.4, we show 
that the simplest version of the PMSTP is NP-hard. 

3.2. Notation and Assumptions 

Throughout this section, G = (V,E,c)  is a loopless, undirected, weighted 
graph where V is the node set, E is the set of edges joining the nodes of V ,  and c 
is a function Ei+ R .  Otherwise, the notation and assumptions are the same as 
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in Section 2.2 except that, for simplicity, we do not consider black nodes. With 
our assumptions, the PMSTP can be formulated as follows: 

Problem PMSTP. 
priori tree T of minimum expected length, E[LTI. 

Given a network G = (V ,E ,c )  and a probability P, find an a 

3.3. The Expected Length of a Given Tree 

general node invariant probabilities. The result is the following: 
One can develop an efficient closed-form expression to compute E[LT] for 

Theorem 4. Given a PMSTP and a spanning tree, we have 

where 

a(e ,k)  = 1 - 
fn\ 

with K ,  being the subset of nodes contained in the smallest of the two subtrees 
obtained f rom T by removing the edge e ,  and with the convention that (:) = 0 if 
y > x. 

Proof. By conditioning on the number of present nodes, we have E[LT] = xkn=l EILTIW = k ]  Pr(W = k ) .  Now EILTIW = kl = &,,,c(e)a(e,k), where a(e ,k )  
is the conditional probability that the edge e remains in the tree. To evaluate 
this last quantity, note that the edge e is absent from the tree if and only if the 
set of present nodes is fully contained either in the set K ,  or in its complement. 

rn The probability of such an event is exactly 1 - a(e ,k ) .  

Remarks. 

1. 

2 .  

This theorem gives the expected length of a spanning tree in O(n2) ele- 
mentary operations (for a general node invariant P). 
For the case of a Bernouilli process PI, we have c;=, a(e ,k )  Pr( W = k )  = 
(1 - (1 - p)lKcl)(l - ( 1  - p)"-IK,1), a result obtained in [2]. The expected 
length can then be computed in O(n). 
Similar results are obtained in [2] for the case in which each node i has a 
probability p i  of being present, independently of the others (this case 
cannot be modeled by a node invariant probability P). 

3.  
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3.4. The Intrinsic Complexity of the Problem 

In [2] it has been shown that the simple PMSTP with P = PI and with equal 
weights c(e)  = 1 is NP-hard. We show in this section that the simpler case with 
P such that Pr( W < n - 1) = 0 and with equal weights c(e)  = 1 is also NP-hard. 
Let us define the recognition version of this simple problem. 

SPECIAL PMSTP (SPMSTP) 
Instance: Given a weighted graph G = (V,E,c) ,  a probability P such that 
Pr( W = n - 1) > 0 and Pr( W < n - I )  = 0, weights c(e)  = 1 for all e E E, and a 
bound B .  
Question: Is there a spanning tree T for G with E[LT] 5 B? 

Theorem 5. SPMSTP is a NP-complete problem. 

Proof. The problem is in N P ,  since for a given tree we can compute E[LT] in 
polynomial time and compare it with B .  The proof of the completeness is 
obtained by reducing the NP-complete problem MAXIMUM LEAF SPAN- 
NING TREE (see [ 7 ] )  to it. 

MAXIMUM LEAF SPANNING TREE PROBLEM 

Instance: Graph G = ( V , E ) .  positive integer K I /VI. 
Question: Is there a spanning tree for G in which K or more nodes have 
degree I ?  

Given an instance of this problem, we define an instance of the SPMSTP using 
the same graph G .  Now from Theorem 4, E[LT] is, in fact, equal to CrET(Pr 
(W = n - I)a(e,n - 1) + Pr(W = n)a(e ,n) ) .  Since a(e ,n )  = 1 and a(e,n - 1) = 
(n  - l) /n or 1 depending if lKel = I or not, we finally have 

It is now obvious that we can reduce the problem MAXIMUM LEAF SPAN- 
NING TREE to our problem [take B = n - 1 - Pr(W = n - l ) K / n ] .  

4. CONCLUSION AND DISCUSSION 

In Section 2, we have analyzed the PSPP, a conceptual model for many 
potential application areas. The analysis, presented here, implies that the prob- 
lem presents sufficiently different features from its deterministic counterpart to 
necessitate devising entirely new solution procedures. In Section 3,  we have 
looked at PMSTPs under the assumptions of general node invariant probabili- 
ties. We showed that the expected length of a given spanning tree can still be 
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obtained efficiently via closed form expressions (see Theorem 4). We finally 
demonstrated that the simplest version of the PMSTP in which only one node 
can at any time be absent remains NP-hard. 

The main contribution of this paper was to delineate the computational com- 
plexity of the PSPP and PMSTP and, most importantly, to give polynomial time 
procedures for special versions of the first problem. 

With respect to the first point, we are facing the following peculiar phenome- 
non. Although the spanning tree problem is “easier” to solve than the shortest 
path problem in a deterministic network, it becomes “harder” as soon as one 
node (chosen at  random) may or may not be working (the first problem be- 
comes NP-hard and the other one remains easy to solve). Moreover, we 
showed that, if the number of malfunctioning nodes is, at any time, bounded by 
a constant, the PSPP can still be solved in polynomial time (in general, how- 
ever, it is also NP-hard). A possible explanation of this changing status is that 
the presence or not of a given node has a local effect in the case of the PSPP 
(we go through or skip this node), but a global effect in the case of the PMSTP 
(the tree has to remain connected). 

With respect to the second point, one should note that this is the first time, 
since the beginning of the analysis of probabilistic combinatorial optimization 
problems, that we have been able to find a large subclass of problems solvable 
by polynomial time procedures. The techniques developed in Section 2.4 can 
be applied to special versions of other problems such as the PTSP (transforming 
a PTSP into a TSP). Finally, it is worthwhile to mention that these results can 
be used to obtain good heuristics to the PSPP or PTSP when the probability 
distribution of W is such that Pr(W I n - k) = E with E very small (e.g., when 
P = PI and p very close to 1) .  One can also analyze precisely the quality of 
these heuristics using the general framework given in [8, pp. 163-1691. 

I would like to thank two anonymous referees for useful comments that helped in 
improving the presentation. Also, special thanks to one of the referees who brought to 
my attention the Fibonacci heaps of Fredman and Tarjan (or the relaxed heaps of 
Driscoll, Gabow, Shrairman, and Tarjan) that allow implementation of Dijkstra’s algo- 
rithm in O((E1 + IVJ log IVl) time, rather than the traditional O(lEl log IVl) time. This led 
to an improvement of the computational bound in Theorem 3. 
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