
Edge-Weighted Online Windowed Matching
Itai Ashlagi,a Maximilien Burq,b Chinmoy Dutta,c,* Patrick Jaillet,d Amin Saberi,a Chris Sholleye

aManagement Science and Engineering Department, Stanford University, Stanford, California 94305; bVerily Life Sciences LLC, South San
Francisco, California 94080; cTuring Research Inc., Mountain View, California 94040; dDepartment of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; eLyft, San Francisco, California 94107
*Corresponding author
Contact: iashlagi@stanford.edu (IA); burq.maximilien@gmail.com (MB); chinmoy.dutta@gmail.com, https://orcid.org/0000-0003-0705-0249
(CD); jaillet@MIT.edu (PJ); saberi@stanford.edu (AS); chris@lyft.com (CS)

Received: February 13, 2021
Revised: January 3, 2022
Accepted: May 7, 2022
Published Online in Articles in Advance:
July 19, 2022

MSC2020 Subject Classification: Primary:
68W27; secondary: 68W20, 68W40, 68Q25

https://doi.org/10.1287/moor.2022.1289

Copyright: © 2022 INFORMS

Abstract. Consider a matching problem, in which agents arrive to a marketplace over time
and leave after some time periods. Agents can only bematchedwhile present in themarket-
place. Each pair of agents can yield a different match value, and a social planner seeks to
maximize the total value frommatches over a finite time horizon. First we study the case in
which vertices arrive in an adversarial order. For the case when agents depart in the order
of arrival, we provide a randomized 1=4-competitive algorithm. When departure times are
drawn independently from a distribution with nondecreasing hazard rate, we establish a
1=8-competitive algorithm. When the arrival order is chosen uniformly at random and
agents leave after a fixed number of time periods, a batching algorithm, which computes a
maximum-weightedmatching periodically, is shown to be 0.279-competitive.

Keywords: online matching algorithms • edge-weighted online matching • nonbipartite matching • windowed matching •
adversarial arrivals • random order arrivals • batching

1. Introduction
We study the following online weighted matching problem. Agents, represented as vertices in a general (not
necessarily bipartite) graph, arrive sequentially in a market over n time periods. Potential matches, repre-
sented by nondirected edges, have heterogeneous weights (match values). Each agent that is not matched
within d time periods leaves the market unmatched. The edges between two vertices along with its weight is
observed only when both the agents are in the market. The goal is to design an online matching algorithm
that generates a matching with as large total weight as possible. After d time period since arrival, a vertex is
said to be critical at which point the algorithm must decide either to match it with one of its existing neighbors
or leave it unmatched.

Our problem is partly inspired by the challenge ride-sharing platforms face when attempting to carpool pas-
sengers. Agents in our problem can be viewed as passengers who request to share a ride. Leaving unmatched
after d periods can be interpreted as sending a passenger who requests to carpool on a single trip instead of being
matched with another passenger. Needless to say, the problem in consideration focuses on the matching angle
and abstracts away from relevant carpooling features, such as prices (see Vickrey [38]), costs, travel destinations,
and even possible predictions over future demand.

1.1. Contributions
We begin by studying the setting in which vertices arrive in an adversarial order. We introduce a 1=4-competitive
algorithm termed POSTPONED GREEDY (PG). We also show a hardness result that no algorithm achieves a
competitive ratio that is higher than 1=2.

The key idea behind PG is to consider a virtual bipartite graph in which each vertex is duplicated into a buyer
and a seller copy. Next we proceed in a manner similar to Feldman et al. [18]: tentatively match each arriving
buyer copy to the seller copy that maximizes its margin, that is, the difference between the weight of its edge
with the seller and the weight of the seller’s current matched edge. We enforce that the seller copy does not
match before the vertex becomes critical. This allows to postpone the matching decision and learn more about
the graph structure and the likely matchings.

We extend the model to the case in which departure of vertices are determined stochastically according to a
memoryless distribution. If departure times of vertices are revealed to the algorithm just when they become crit-
ical and are about to leave the market, the PG algorithm can be adapted to achieve a competitive ratio of 1=8.

999

MATHEMATICS OF OPERATIONS RESEARCH
Vol. 48, No. 2, May 2023, pp. 999–1016

ISSN 0364-765X (print), ISSN 1526-5471 (online)https://pubsonline.informs.org/journal/moor

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

mailto:iashlagi@stanford.edu
mailto:burq.maximilien@gmail.com
mailto:chinmoy.dutta@gmail.com
https://orcid.org/0000-0003-0705-0249
mailto:jaillet@MIT.edu
mailto:saberi@stanford.edu
mailto:chris@lyft.com
https://orcid.org/0000-0003-0705-0249
https://pubsonline.informs.org/journal/moor

Next we study the setting in which vertices arrive in a random order. We introduce a batching algorithm
termed BATCHING that, every d + 1 time steps, computes a maximum weighted matching among the last d +
1 arrivals. Batching is a practically useful algorithmic technique commonly used in ride-sharing platforms as
well as in numerous kidney exchange platforms (from personal communications). Vertices that do not match
within the batch leave and remain unmatched forever. We show that when the number of vertices is suffi-
ciently large, BATCHING is 0.279-competitive. We note that in contrast to our result, Aouad and Saritac [4]
show that batching algorithms can be arbitrarily bad in a different setting where vertices have widely hetero-
geneous sojourn times in the market. (Also note that their negative result holds in the cost minimization ver-
sion of the problem.)

The analysis of the BATCHING proceeds in three steps. First, we show that the competitive ratio is bounded
by the solution to a graph covering problem. Second, we show how covers for small graphs can be extended to
covers for larger graphs. Finally, we establish a reduction that allows us to consider only a finite set of values for
d. The proof concludes with a computer-aided argument for graphs in the finite family.

Note that in several models of online matching with adversarial arrivals, it is not possible to obtain any con-
stant competitive ratio for edge-weighted graphs. At a high level, the difficulty stems from the inherent trade-off
between matching a vertex with a current neighbor (in which case it foregoes a potential high value future
match) and waiting in anticipation of future arrivals (in which case it foregoes current matches and a future
match may never arrive). In the case of classic bipartite matching, Feldman et al. [18] circumvented this difficulty
by imposing the free disposal assumption that lets an offline vertex tentatively match an arriving online vertex (so
as to not forego the current possibility) while keeping the option open to revoke the match in future for a better
one (so as to not forego a future better possibility). In our model, the difficulty is circumvented because of the
crucial guarantee that vertices depart in order of arrivals (deterministically or stochastically). This allows us to
commit the match for a vertex only after learning all its match possibilities with constant probability.

Our techniques of making separate copies of arriving vertices and postponing match decisions to better learn
the graph structure might find use in other matching problems where this crucial property of relatively homoge-
neous sojourn times and orderly departures is guaranteed.

Note that our bounds do not specifically depend on the parameter dwhich control departures. For the adversa-
rial order of arrivals, our results essentially depend upon the guarantee that for any two vertices, there is a con-
stant probability that the vertex that arrives earlier departs earlier as well. (See Section 5.1.) This is in particular
guaranteed when each vertex stays in the system for exactly d time steps. For the random order of arrivals, the
parameter d essentially defines the structure of the algorithm by setting the batchingwindow.

1.2. Related Literature
This paper contributes to the literature on online matching. In the classic problem, introduced in Karp et al. [25],
the graph is bipartite with vertices on one side waiting, while those on the other side arriving sequentially have
to be matched (or left unmatched forever) immediately and irrevocably upon arrival. This work has numerous
extensions, for example, to stochastic arrivals and in the adwords context, such as Mehta et al. [31], Goel and
Mehta [19], Feldman et al. [17], Manshadi et al. [29], and Jaillet and Lu [23]. See Mehta [30] for a detailed survey.
Our work contributes to this literature in three ways. First, our graph can be nonbipartite, which is the case in
applications such as ride-sharing and kidney exchange. Second, all vertices arrive over time and remain for some
given time until they are matched or hit their deadline and depart. Third, we provide algorithms that perform
well on edge-weighted graphs.

Closely related are Huang et al. [21, 22], which study a similar model to ours in the nonweighted case but allow
departure times to be adversarial. The results in Huang et al. [21] are obtained by extending the primal-dual analy-
sis technique of Devanur et al. [12] with a novel gain sharing and compensation mechanism. However, those tech-
niques do not extend to our edge-weighted case. Another related work is Aouad and Saritac [4], which studies
dynamic stochastic matching on edge-weighted graphs where vertex arrivals and departures are stochastic and
heterogeneous. In particular, vertices of different types arrive as independent Poisson processes and abandon
with different rates. The weight of an edge between two vertices is a function of their types. In the rewardmaximi-
zation version of their problem, the authors give a matching algorithm with an approximation ratio of e−1

4e . The
analysis of the algorithm is based on a novel linear-programming-based fluid relaxation of their problem.

Several papers consider the problem of dynamic matching in the edge-weighted case. Feldman et al. [18] find
that in the classic online bipartite setting, no algorithm achieves a constant approximation. They introduce a free
disposal assumption, which allows an offline vertex to discard its existing match vertex in favor of a new arriving
vertex. They show, based on an algorithm by Lehmann et al. [27], that a greedy algorithm that matches a vertex

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1000 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

to the vertex with highest marginal utility is 0.5-competitive. We build on this result for a special class of bipartite
graphs. Ezra et al. [16] studied edge-weighted matching in general graphs under the vertex and edge arrival
models in the secretary setting. Their vertex arrival model somewhat resembles the random order arrival in our
model, but vertices do not depart the system in their model. They showed a competitive ratio of 5

12 for their case.
In the adversarial setting, Emek et al. [15] and Ashlagi et al. [6] study the problem of minimizing the sum of dis-
tances between matched vertices and the sum of their waiting times. In their model, no vertex leaves unmatched.
The stochastic setting is considered in works such as Baccara et al. [7], Ozkan and Ward [33], and Hu and Zhou
[20]. These papers find that some waiting before matching is beneficial for improving efficiency.

The paper is also related to several other streams of literature. One stream of papers is concerned with job or
packet scheduling. Jobs arrive online to a buffer and reveal upon arrival the deadline by which they need to be
scheduled. The algorithm can schedule at most one job per time, and the value of scheduling a job is independent
of the time slot. Constant approximation algorithms are given by Chin et al. [11] and Li et al. [28].

This paper is motivated by ride-sharing challenges. It is worth noting that carpooling, as argued in Ostrovsky
and Schwarz [32], is a major technological advancement toward reducing congestion and traffic costs (and, as
they quote from the U.S. Census Bureau, more than 75% of the U.S. population still drive alone to work). Santi
et al. [35] finds that about 80% of rides in Manhattan could be shared by two passengers. Most studies focus on
rebalancing or dispatching problems without pooling such as Pavone et al. [34], Zhang and Pavone [39], Santi
et al. [35], Spieser et al. [36], Banerjee et al. [8], Kanoria and Qian [24]. Alonso-Mora et al. [2] studies high-
capacity ride-sharing. Dutta [14] studies the problem of making real-time high-capacity ride-sharing scalable
using high-dimensional similarity search. However, these papers do not consider a graph-theoretic online match-
ing problem.

Finally, several papers study dynamic matching problems that are motivated by kidney exchange challenges,
for example, Ünver [37], Anderson et al. [3], Dickerson et al. [13], Ashlagi et al. [5], and Blum and Mansour [10].
These papers mostly focus on random graphs with no weights. Closer to our paper is Akbarpour et al. [1], which
finds that in a sparse random graph, knowledge about the departure time of a vertex is beneficial and matching
a vertex only when it becomes critical performs well. We deviate from these papers in two ways: we consider the
edge-weighted case and we make no assumption on the graph structure.

2. Model
Let [n] � {1, : : : ,n}. Consider an edge-weighted undirected graph G with n vertices indexed by i ∈ [n]. We will let
vij ≥ 0 denote the weight (or value) of the undirected edge between vertices i and j. Without loss of generality, we
will assume vij � 0 if there is no edge between i and j.

The vertices arrive sequentially over n time periods, denoted by t ∈ [n]. Denote by σ(i) the arrival time of vertex
i. For any two vertices i and jwith σ(i) < σ(j), the weight on the edge between i and j is observed only after vertex
j has arrived.

For d ≥ 1, the online graph with deadline d, denoted by Gd,σ, has the same vertices as G and an edge between ver-
tices i and j in G exists (with the same weight) if and only if |σ(i) − σ(j) | ≤ d. We say that a vertex i becomes critical
at time period σ(i) + d.

An online matching algorithm receives as input a graph Gd,σ and determines at each time period which vertices
to match with each other (if at all). A vertex i can be matched only between the time period it arrived and the
time period it becomes critical, that is, in the duration [σ(i),σ(i) + d]. We say that vertex i is present in the
“market” in the duration [σ(i), t], where t is the time period at which it gets matched or becomes critical; matches
are irrevocable and the vertex departs after time period t (matched or unmatched).

Given the order σ, the value of the maximum weight matching that can be generated is given by the integer
program (Offline Matching).

maximize
∑

i, j∈[n]: i<j, |σ(i)−σ(j) | ≤d
xijvij

subject to
∑

j∈[n]: i<j
xij +

∑
j∈[n]: j<i

xji ≤ 1 ∀i ∈ [n],

xij ∈ {0, 1} ∀i < j, i, j ∈ [n]: (Offline Matching)

The goal is to develop an online algorithm that for each graph Gd,σ outputs a matching with a large total weight.
More precisely, we seek to design a randomized online algorithm that obtains in expectation a high fraction of
the expected maximum weight of a matching over Gd,σ.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1001

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Two models for arrivals of vertices will be considered in this paper. First is the adversarial order model, in
which σ(i) � i. Second is the random order model, in which σ is sampled uniformly at random from Sn, the set of
all possible permutations over [n] � {1, : : : ,n}.

To illustrate a natural trade-off, consider the example in Figure 1 for d � 1. At time 2, the online algorithm can either
match vertices 1 and 2 or let vertex 1 remain unmatched. This simple example shows that no deterministic algorithm
can obtain a constant competitive ratio. Furthermore, no algorithm can achieve a competitive ratio higher than 1=2.

3. Adversarial Order of Arrivals
It is instructive to first consider a special case that we call the constrained bipartite case. Here, the underlying
input graph is bipartite. For exposition purposes, we refer to vertices on one side of the bipartition as buyers
and on the other side as sellers. The online graph is further constrained so that there is no edge between a
buyer and a seller if the buyer arrives before the seller. For such graphs, we will show that a greedy algorithm
given by Feldman et al. [18] is 0.5-competitive.

We will then build on this algorithm to design a randomized 1=4-competitive algorithm for arbitrary graphs.
The algorithm we construct will transform the input graph into a constrained bipartite graph in an online man-
ner by making two copies, a seller copy and a buyer copy, of each arriving vertex. We will prevent both copies of
a vertex to be matched by assigning vertices the status of a seller or a buyer in a synchronized random fashion.

3.1. Constrained Bipartite Case
Let G be a bipartite graph and σ be the order of arrivals. The online graph with deadline d, Gd,σ, is called con-
strained bipartite if for every seller s and buyer b, there is no edge between s and b if σ(b) < σ(s), that is, buyer b
and seller s cannot match if b arrives before s.

Consider the following algorithm termed GREEDY, which attempts to match buyers in their arriving order.
The marginal value of a seller for an arriving buyer is defined as the increment in the match value for the
seller if matched with the arriving buyer, that is, the value of the edge between the seller and the arriving
buyer minus the value of the current matched edge of the seller, if any. An arriving buyer b is matched to the
seller with the highest marginal value for the buyer if that marginal value is positive. If the seller is already
matched with another buyer b′, b′ becomes unmatched and never matches again. Note that a buyer gets only
one chance to get matched immediately on arrival but may subsequently get unmatched. The algorithm is for-
mally presented as Algorithm 1.

Algorithm 1 GREEDY (Feldman et al. [18])
• Input:A constrained bipartite online graph Gd,σ with deadline d.
•Output:AmatchingM onGd,σ.
1. InitializeM←∅.
2. Let S denote the set of sellers present in the market. Initialize S←∅.
3. For each time period t � 1, : : : ,n, process events in the following way:

a. Seller s arrives:
i. (Set arriving seller unmatched.) Initializem(s) ← null and p(s) ← 0.
ii (Add the seller.) S← S ∪ {s}.

b. Buyer b arrives:
i. (Find the seller with highest marginal utility for the arriving buyer.) Let s :� argmaxs′∈S{vs′b − p(s′)}.
ii (Tentatively match to that seller, if the marginal utility is positive.) If vsb − p(s) > 0:m(s) ← b and p(s) ← vsb.

c. Seller s becomes critical:
i (Finalize departing seller’s tentative match, if any.) Ifm(s)≠ null:M←M ∪ {(s,m(s))}.
ii. (Remove the seller.) S← S\{s}:

Figure 1. Hardness of edge-weighted online windowedmatching model.

Notes. Here, d = 1. Therefore, there is no edge between vertices 1 and 3. The algorithm needs to decide whether to match 1 with 2 and collect v1,2
without knowing y.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1002 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proposition 2 (Feldman et al. [18]). GREEDY is 1=2-competitive for constrained bipartite online graphs.

Feldman et al. [18] prove that this algorithm is 1=2-competitive for an online matching problem with free dis-
posal. In their setting, all sellers exist in the system at the outset and buyers arrive one at a time. Buyers need to
be matched immediately on arrival or left unmatched forever. A matched seller is allowed to forego its previous
match and form a new match at any point (in which case the buyer that was its previous match becomes
unmatched and never matches again). The algorithm provides the same guarantees for a constrained bipartite
graph because, by definition of such a graph, any seller with whom an arriving buyer has an edge is guaranteed
to have already arrived. Thus, from the point view of the algorithm, it makes no difference to assume that all the
sellers are present in the system at the outset. The result, in fact, follows from a result by Lehmann et al. [27] who
study combinatorial auctions with submodular valuations. The key behind the proof is that the value that a seller
derives from a set of buyers available to match (from which it matches the one with largest edge weight to it) is
submodular. For completeness, we include a formal proof below.

Proof of Proposition 2. Let St be the set of all the sellers present in the market at time period t. Let pf (s) be the
final match value of seller s. For time period t and a seller s ∈ St, let pt(s) be the match value of s at the start of
time period t (before any matches of time period t are made). Note that pσ(s)(s) � 0.

Let q(b) be the largest positive marginal value of a seller in Sσ(b) for buyer bwhen b arrives: q(b) �max{maxs∈Sσ(b)
(vsb − pσ(b)(s)), 0}. We call q(b) the margin of buyer b. Because every increase in the match value of a seller is associ-
atedwith themargin of a buyer, we have ∑

s:seller
pf (s) �

∑
b:buyer

q(b):

Let ALG be the value of the matching constructed by GREEDY. We have ALG �∑
s:sellerpf (s). Let OFF be the max-

imum value of any matching that can be constructed. To obtain an upper bound on OFF, consider the dual of the
offline matching linear program (LP) (Offline Matching).

minimize
∑
i∈[n]

λi

subject to λi +λj ≥ vij ∀i, j ∈ [n], s:t: i < j, |σ(i) − σ(j) | ≤ d

λi ≥ 0 ∀i ∈ [n]: (Offline Dual)

Consider an edge between seller s and buyer b such that σ(s) < σ(b) and σ(b) − σ(s) ≤ d. Because a seller matches
only after it becomes critical, we have s ∈ Sσ(b). Therefore, we get q(b) ≥ vsb − pσ(b)(s). Because the value of a seller’s
match never decreases during the run of the algorithm, we also have pf (s) ≥ pσ(b)(s). Thus, pf (s) + q(b) ≥ vsb, and
{pf (s)}s:seller ∪ {q(b)}b:buyer is a feasible solution to (Offline Dual).

We conclude OFF ≤∑
sp f (s) +∑

bq(b) � 2
∑

sp f (s) � 2 ALG. Q.E.D.

3.2. General Case
In this section, we extend the GREEDY algorithm for the constrained bipartite case to the general case. A naive
way to generate a constrained bipartite online graph from an arbitrary input online graph is to randomly assign
the status of each arriving vertex to be either a seller or a buyer, independently and with probability 1/2. Then
only keep the edges between each buyer and all the sellers who arrived before him or her. Observe that for verti-
ces i, jwith σ(i) < σ(j), edge (i, j) in the original online graph remains in the generated constrained bipartite online
graph with probability 1/4 (if i is a seller and j is a buyer). The NAIVE GREEDY algorithm then runs the
GREEDY algorithm on this generated constrained bipartite graph. We can use Proposition 2 to prove that this
algorithm is 1=8-competitive.

Algorithm 2 NAIVE GREEDY
• Input:An online graph Gd,σ with deadline d.
•Output:AmatchingM onGd,σ.
1. For each time period t � 1, : : : ,n:

a. Toss a fair coin to decide whether status(j) of arriving vertex j is seller or buyer. Construct the online con-
strained bipartite graph G̃(d,σ) as follows: If status(j) � seller, discard all edges revealed in this time period. If
status(j) � buyer, of all the edges revealed in this time period, keep the ones between j and vertices with status
seller and discard the rest.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1003

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

b. Process vertex arrival and vertex becoming critical according to the GREEDY algorithm on G̃(d,σ) to con-
struct matchingM on G̃(d,σ).

Corollary 1. NAIVE GREEDY is 1=8-competitive for arbitrary online graphs.

One source of inefficiency in the NAIVE GREEDY algorithm is that the decision whether the status of a vertex
is a seller or a buyer is done independently at random and without taking the graph structure into consideration.
We next introduce the POSTPONED GREEDY algorithm that defers these decisions as long as possible in order
to construct the constrained bipartite online graph more carefully.

When a vertex j arrives, we add two copies of j to a virtual graph: a seller copy sj and a buyer copy bj. On arrival
of vertex j at time period j, the seller copy sj does not have any edge, and the buyer copy bj has an edge with seller
copy sr of value vrj for every neighbor r of j. Then we run the GREEDY algorithm with the virtual graph as input.
When a vertex i becomes critical, the seller copy si becomes critical in the virtual graph and we compute its
matches generated by GREEDY.

Both the seller and the buyer copies of a vertex can be matched in this process. If we were to honor both
matches, the outcome would correspond to a two-matching, in which each vertex has degree at most two. Now
observe that because of the structure of the constrained bipartite graph, this two-matching does not have any
cycles; it is just a collection of disjoint paths. We decompose each path into two disjoint matchings and choose
each matching with probability 1/2.

In order to do that, the algorithm must determine, for each original vertex i, whether the seller copy si or the
buyer copy bi will be used in the final matching. We say that the status of i is a seller or a buyer depending on
which copy is used. The vertex i has its status undetermined until the algorithm decides which copy will be
used. When a vertex with undetermined status becomes critical, the algorithm flips a fair coin to decide whether
its status is a seller or a buyer. This decision is then propagated to the next vertex in the two-matching: if status
of i is a seller then the status of the next vertex will be a buyer and vice versa. This mechanism ensures that
assignments are correlated and saves a factor two compared with uncorrelated assignments in the NAIVE
GREEDY algorithm.

Algorithm 3 POSTPONED GREEDY
• Input:An online graph Gd,σ with deadline d.
•Output:AmatchingM onGd,σ.
1. InitializeM←∅.
2. Let S be the set of seller copies present in the market. Initialize S←∅.
3. For each time period t � 1, : : : ,n, process events in the following way:

a. Vertex j arrives:
i. (Set status undetermined.) Initialize status(j) ← undetermined.
ii. (Add a seller copy with no edges.) S← S ∪ {sj}. Initializem(sj) ← null and p(sj) ← 0.
iii. (Add a buyer copy with edges to existing seller copies.) Set vsrbj ← vrj, ∀sr ∈ S.
iv. (Find a seller copy with highest marginal utility for the arriving buyer copy.) Let sk :� argmaxsr∈Svsrbj − p(sr).
v. (Tentatively match, if the marginal utility is positive.) If vskbj − p(sk) > 0:m(sk) ← bj and p(sk) ← vskbj .

b. Vertex i becomes critical:
i. (Determine status.) If status(i) � � undetermined: set it to be either seller or buyerwith probability 1=2 each.
ii. Ifm(si)≠ null:

A. (Find tentative match for the seller copy.) Let bl :�m(si).
B. (Finalize matching, if seller.) If status(i) �� seller:M←M ∪ {(i, l)}.
C. (Propagate status.) If status(i) �� seller: status(l) ← buyer. Otherwise (status(i) �� buyer): status(l) ←

seller.
D. (Remove the seller copy.) S← S\{si}.

Theorem 1. POSTPONED GREEDY is 1=4-competitive for arbitrary online graphs.

Proof. Let St denote the set of all the seller copies present in the market at time t. Let pf (si) be the final match
value of seller copy si. For time period t and a seller copy si ∈ St, let pt(si) be the match value of si at the start of
time period t (before any matches of time period t are made). Note that pi(si) � 0.

Let PG denote the expected weight of the matching constructed by the POSTPONED GREEDY algorithm. If
the status of i is a seller, then PG collects pf (si). The status of a vertex is a seller with probability exactly 1=2. Note
that for a vertex i, the indicator random variable that its status is a seller is independent of the random variable

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1004 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

pf (si). Thus,

PG � E

∑
i∈[n]

1(i is a seller) pf (si)
[]

� 1
2

∑
i∈[n]

pf (si):

Let q(bj) be the largest positive marginal value of a seller copy in Sj for buyer copy bj when vertex j arrives:
q(bj) �max{maxsr∈Sj(vsrbj − pj(sr)), 0}. We call q(bj) the margin of buyer copy bj. Note that every increase in a seller
copy’s match value corresponds to a buyer copy’s margin. This implies∑

i∈[n]
pf (si) �

∑
j∈[n]

q(bj):

Let OFF be the value of the maximum value matching that can be generated. Similar to the proof of Proposition
2, we obtain an upper bound on OFF by considering the dual (Offline Dual) of the offline matching linear pro-
gram (Offline Matching).

Consider an edge between two vertices i and j such that i < j and j− i ≤ d. Because a seller copy matches only
after it becomes critical, we have si ∈ Sj. Therefore, we get q(bj) ≥ vsibj − pj(si) � vij − pj(si). Together with the fact
that pf (si) ≥ pj(si) as value of a seller copy’s match never decreases during the run of the algorithm, this implies
that {pf (si) + q(bi)}i∈[n] is a feasible solution to (Offline Dual).

We can conclude that OFF ≤∑
ip f (si) + q(bi) � 2

∑
ip f (si) � 4 PG. Q.E.D.

3.3. Hardness Results
This section establishes hardness results for the adversarial order setting.

Claim 1. When the input is a constrained bipartite graph:
1. No deterministic algorithm can obtain a competitive ratio above

��
5

√ −1
2 ≈ 0:618.

2. No randomized algorithm can obtain a competitive ratio above 4
5.

Proof. For the first part, consider the example on the left of Figure 2. When seller 1 becomes critical, the algo-
rithm either matches him or her with buyer 3 or lets seller 1 depart unmatched. The adversary then chooses x
accordingly. Thus, the competitive ratio cannot exceed the following:

max min
x∈{0, 1}

��
5

√ −1
2 + x
ρ(x) , min

x∈{0, 1}
1

ρ(x)

()
�

��
5

√ − 1
2

,

where ρ(x) �max(
��
5

√ −1
2 + x, 1).

For the second part, consider the example on the right of Figure 2. Similar to the first part, when seller 1
becomes critical, the algorithm decides to match him or her with buyer 3 with probability p. The adversary then
chooses x accordingly. Thus, the competitive ratio cannot exceed the following:

max
p∈[0, 1]

min
x∈{0, 1}

p(1=2 + x) + (1 − p)
max(1=2 + x, 1) � 4=5:

This completes the proof. Q.E.D.
The next result shows that the analysis for POSTPONED GREEDY is tight.

Claim 2. There exists a constrained bipartite graph for which POSTPONED GREEDY is 1=(4− ε) -competitive.

Figure 2. Hardness of constrained bipartite case.

Notes. Constrained bipartite graph with deadline d where S � {1, 2} and B � {3, 4}, with d � 2. Vertex 1 becomes critical before 4 arrives. The
adversary is allowed to choose the weight of edge (2, 4) to be either one or zero. Left: instance for the deterministic case. Right: instance for the
randomized case.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1005

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proof. Consider the input graph in Figure 3. Seller 2 gets temporarily matched with buyer 3, and seller 1 departs
unmatched. When seller 2 becomes critical, with probability 1=2, he or she is determined to be a buyer and departs
unmatched. Therefore, PG collects 1=2 in expectationwhile the offline algorithm collects 2− ε=2. Q.E.D.

3.4. Time-Decreasing Match Value
In several real-life matching markets, an online decision maker can make better decisions if he or she waits lon-
ger for better matches to arrive. In doing so, the decision maker faces two issues. One is the possibility of agents
departing from the market unmatched, which is considered in this paper. Another is the fact that the perceived
value of a match decreases over time even when the agents are still in the market and can be matched. For exam-
ple, ride-sharing platforms face a trade-off between efficiency gains from better matches by delaying the match-
ing decision and deterioration of user experience with increased wait times. Our model ignores this fact and
assumes match values stay the same as long as agents are still in the market. In this section, we show that the
POSTPONED GREEDY algorithm loses its guarantee if edge weights decrease over time.

Consider the example in Figure 4. Vertices arrive sequentially in n � 2k+ d time periods. For j � 1, : : : ,k, vertex 2j
reveals an edge with vertex 2j− 1 on arrival. Vertices 2j− 1 for j � 1, : : : k and vertices 2k+ i for i � 1, : : : ,d reveal no
edges on arrival. The value of an edge is one when first revealed and decreases by a discount factor 0 < α < 1 with
each time period. The optimal online algorithm matches vertex 2j− 1 with vertex 2j at time period 2j, for j � 1, : : : ,k,
and collects a total match value of k. On the other hand, POSTPONED GREEDY matches vertex 2j− 1 with vertex 2j
with probability 1=2 at time period 2j− 1+ d, for j � 1, : : : , k, and collects an expected match weight of kαd−1=2. The
competitive ratio of αd−1=2 can be made smaller than any constant by increasing d, proving that POSTPONED
GREEDY cannot guarantee a constant competitive ratiowith adversarial arrival and time-decreasingmatch values.

4. Random Order of Arrivals
The assumption that vertices arrive in adversarial order and the edge weights are chosen adversarially is strong.
This section considers the random order arrival model, in which the adversary chooses the weights but the verti-
ces arrive in a random order.

We study a simple and natural algorithm called BATCHING under the random order model and achieve a
competitive ratio that improves upon the 1=4 ratio achieved for the adversarial arrival model. In Section 4.2, we
show that no algorithm can achieve a competitive ratio better than 1=2 under the random order model.

4.1. BATCHING
The BATCHING algorithm computes and selects maximum-weight matchings periodically, namely, every d + 1
time steps. Every vertex in the selected matching is then matched, and all other vertices are discarded.

Batching is a commonly used algorithmic technique in practice. In the context of kidney exchange, for exam-
ple, most programs operate on a fixed schedule (every few weeks or months). In ride-hailing and ride-sharing
applications, platforms often match passengers with rides in batches.

Figure 3. Tightness of analysis of POSTPONEDGREEDY.

Note. Constrained bipartite graphwith deadline d � 2 where S � {1, 2} and B � {3, 4}.

Figure 4. Insufficiency of POSTPONEDGREEDYwith time-decreasing match values.

Notes. Vertices arrive sequentially in n � 2k+ d time periods. Vertex 2j reveals an edge with vertex 2j− 1 on arrival, for j � 1, 2, : : : , k. Other vertices
reveal no edges on arrival. The weight of each revealed edge is one initially and decreases by a discount factor 0 < α < 1 with each time period.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1006 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

We conjecture that the competitive ratio of BATCHING is indeed 1
2. In what follows, we prove that it is lower

bound bounded by 0.279 for all n and d.

Theorem 2. The competitive ratio of BATCHING is at least 0:279+O(1=n)().
The proof of Theorem 2 requires multiple steps. First, we reduce the analysis of the competitive ratio of BATCH-

ING to a graph covering problem.More precisely, we show that it is enough to show that Cd
n, the cycle with n verti-

ces to the power d, can be covered by a small number of cliques. Recall that raising a graph to the power d results
in a graph with the same set of vertices and paths of at most d hops in the original graph as edges. Second, we
show how a cover for small n can be extended to larger values of n at the cost of a small rounding error. Finally, we
establish a reduction that allows to consider only a finite set of values for d. We conclude with a computer-aided
argument for graphs in the finite family. The remainder of this subsection provides the proof.

4.1.1. Reduction to a Graph Theoretic Problem. The first step is to reduce the analysis of the performance of
BATCHING to the problem of fractionally covering graphs from the family Cd

n, using ensembles of n
d+1 cliques of

size d + 1.
Given that the weights are arbitrary, we can assume that the underlying graph G is complete. For any d and any

arrival sequence σ ∈ Sn, define the path graph Pd
n(σ)with edge-weight vij� 1 if |σ(i) − σ(j) | ≤ d and vij� 0 otherwise.

In other words, Pd
n(σ) is essentially the path (σ(1),σ(2)), (σ(2),σ(3)), ⋯ , (σ(n− 1),σ(n)) taken to the power d.

Every batch in the algorithm has d + 1 vertices except the last batch, which may have fewer vertices. Let bi(σ,d)
be the batch of vertex i under permutation σ and batch size d + 1: bi(σ,d) is the unique integer such that (d+ 1)
(bi − 1) < σ(i) ≤ (d+ 1)bi:We define the batched graph Bd

n(σ) with edge-weight vij � 1 if i and j are in the same batch
(i.e., bi(σ,d) � bj(σ,d)) and vij � 0 otherwise. Observe that Bd

n(σ) is a collection of disjoint (d+ 1)-cliques. The follow-
ing two definitions are crucial.

Definition 1 (Graph Operations). For any two graphs H and H′ with vertices 1, 2, : : : ,n and respective edge
weights vij,v′ij, we define the following:

i. The linear combination aH+ bH′ denotes the graph with edge weights avij + bv′ij.
ii. The productH ∗H′ denotes the graph with edge weights vij ∗ v′ij.
iii. We say thatH is a cover ofH′ if for all i, j, vi,j ≥ v′ij.

Definition 2 ((α,d)-Cover). Let F be an unweighted graph with n vertices. We say that a set of permutations
{σ1, : : : ,σK} ∈ Sn forms an (α,d)-cover of F if there exist values λ1, : : : ,λK ∈ [0, 1] such that

i.
∑

k≤KλkBd
n(σk) is a cover of F.

ii.
∑

k≤Kλk � α.
The next proposition will allow us to rephrase the competitive ratio of BATCHING in terms of a graph cover-

ing problem. Note that the reduction abstracts away from the weights that are chosen by the adversary.

Proposition 3. If there exists an (α,d)-cover of Cd
n, then BATCHING is 1=α-competitive.

Proof. For any graph H, let m(H) denote the value of a maximum-weight matching over H. Observe that when
the arrival sequence is σ, the graph G(d,σ) � Pd

n(σ) ∗G; therefore, the offline algorithm collects weight equal to
m(Pd

n(σ) ∗G). Note that BATCHING collects m(Bd
n(σ) ∗G).— Q.E.D.

Remark 1. Observe that for any graphs H,H′,G and any a,b ∈ R, we have the following:
–m(aH + bH′) ≤ am(H) + bm(H′).
–IfH is a cover ofH′, thenm(H′ ∗G) ≤m(H ∗G).
Let id be the identity permutation. Let {σ1, : : : ,σK} be an (α,d)-cover of Cd

n. Fix an arrival sequence σ ∈ Sn. We
first claim that {σ1 ◦ σ, : : : ,σK ◦ σ} is an (α,d)-cover of Pd

n(σ).
For any σ ∈ Sn, let us denote βi,j(σ) and ρi,j(σ) to be the weights of edge (i, j) in Bd

n(σ) and Pd
n(σ), respectively.

Consider (i, j) ∈ Pd
n(σ): |σ(i) − σ(j) | ≤ d:∑

k
λkβi,j(σk ◦ σ) �

∑
k
λkI[bi(σk ◦ σ,d) � bj(σk ◦ σ,d)]

�∑
k
λkI[bσ(i)(σk,d) � bσ(j)(σk,d)]

≥ ρ(id)σ(i),σ(j) � 1,

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1007

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

where the last inequality is implied by the fact that {σ1, : : : ,σK} is an (α,d)-cover of Cd
n and therefore of Pd

n(id).
Therefore, the claim holds using Remark 1.

Denote by BAT the value collected by the BATCHING algorithm and OFF the value collected by the offline
algorithm. Observe that

OFF � 1
n!

∑
σ∈Sn

m(Pd
n(σ) ∗ G)

≤ 1
n!

∑
σ∈Sn

∑
k
λkm(Bd

n(σk ◦ σ) ∗ G)

� 1
n!

∑
k
λk

∑
σ′∈Sn

m(Bd
n(σ′) ∗ G)

� αBAT,

where we used the change of variable σ′ � σk ◦ σ and the fact that the application Ak : σ �→ σk ◦ σ is a
bijection. w

We have reduced the analysis of BATCHING to a graph-theoretic problem without edge weights. In what
follows, we will show that we can reduce the problem further to find covers of Cd

n for only small values of n
and d.

4.1.2. Reducing n: Periodic Covers. We now wish to find (α,d)-covers for Cd
n for every n and d. In Proposition 4,

we show that it is sufficient to find periodic covers for small values of n.

Definition 3 (Periodic Permutation). For p < n such that p divides n, we say that a permutation σ ∈ Sn is p-periodic
if for all i ∈ [1,n− p], σ(i+ p) ≡ σ(i) + p mod n.

A permutation σ is periodic if there exists p such that σ is p-periodic. Furthermore, an (α,d)-cover {σ1, : : : ,σK} is
p-periodic if for all 1 ≤ k ≤ K, σk is p-periodic.

Proposition 4. Let p be a multiple of d + 1 and n1 a multiple of p. Any p-periodic (α,d)-cover of Cd
n1 can be extended into

an (α+O(p=n),d)-cover of Cd
n for any n ≥ n1.

Proof. Let {σ1, : : : ,σK} be a p-periodic (α,d)-cover of Cd
n1 . We will show that it can be extended into an (α,d)-cover

of Cd
n.

Assume first now that n is a multiple of p. Let σ′k be the p-periodic permutation over 1, : : : ,n such that for
all i ∈ [1,p], σ′k(i) � σk(i). Take i′, j′ ∈ [1,n] such that | i′ − j′ | ≤ d. Because n1 > p is a multiple of p, there exist i, j ∈
[1,n1] such that i ≡ i′ mod p, j ≡ j′ mod p and | i− j | ≤ d.

For any graph H, let Hij denote the weight vij in H. By p-periodicity of σk and σ′k, we know that Bd
n(σ′k)i′,j′

� Bd
n1(σk)i,j. Thus we can conclude that {σ′1, : : : ,σ′K} is an (α,d)-cover of Cd

n.
Consider next the general case. When n is not a multiple of p, let v ∈ [1,p− 1] be the remainder of the Euclidian

division of n by p and u be such that n � pu+ v. Let {σ1, : : : ,σK} be a p-periodic (α,d)-cover of Cd
n1 with associated

weights {λ1, : : : ,λK}. We will show that it can be extended into an (α u=u− 2(),d)-cover of Cd
n.

We set σ̃k to be the p-periodic permutation over 1, : : : ,pu such that for all i ∈ [1,p], σ̃k(i) � σk(i). Let x be an inte-
ger in the interval [1,u+ 1]. Define the permutation σ′k,x as follows:

σ′k,x(i) �
σ̃k(i) i ≤ px

i+ (u− x)p i ∈ [px+ 1,px+ 1+ v]
σ̃k(i− v) i > px+ 1+ v: (1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Take i′, j′ ∈ [1,px] ∪ [px+ 1+ v,n] such that | i′ − j′ | ≤ d. Because n1 > p is a multiple of p, there exist i, j ∈ [1,n1]
such that i ≡ i′ mod p, j ≡ j′ mod p and | i− j | ≤ d. By p-periodicity of σk and σ′k, we know that edge (i′, j′) is in
Bd
n(σ′k) iff (i, j) is in Bd

n1(σk). Thus, we can conclude that
∑

kλkBd
n(σ′k,x) covers edge (i′, j′) of Cd

n.

Every edge is therefore covered for at least u – 2 different values of x. Therefore,
∑

k
∑

x
u

u−2λkBd
n(σ′k,x) covers Cd

n.
This means that σk,x

()
k,x is an α u=u− 2(),d()-cover of Cd

n. w

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1008 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

4.1.3. Reducing d: Cycle Contraction. In Proposition 4, we show that it is enough to find periodic (α,d)-covers
of Cd

n for small values of n. Next, we provide a reduction that enables us to consider only a finite set of values for
d. The key idea of the reduction is to contract vertices of Cd

n into n/u groups of u vertices (see Definition 4 for
precise definition and Figure 5 for an illustration). The resulting graph also happens to be a cycle C(d+1)=u

n=u . In
Proposition 5, we provide a way to expand an (α,u− 1)-cover on the contracted graph into an (α,d) cover on the
original graph.

Definition 4 (Cycle Contraction). For any n, d, and an integer u that divides n, we define the u-contraction fu(Cd
n) to

be the graph with vertices ak � {uk+ 1, : : : ,u(k+ 1)} for k ∈ [0,n=u− 1] where an edge (ak, al) exists if and only if
there exist i ∈ ak and j ∈ al with an edge (i, j) in Cd

n.

Claim 3. For any d, if u > 1 divides d + 1 and d + 1 divides n, then fu(Cd
n) � C(d+1)=u

n=u .

Proof. We first prove that C(d+1)=u
n=u covers fk(Cd

n). Fix k, l ∈ [0,n=u− 1], and assume that k < l. If | l− k | ≤ (d+ 1)=u,
then let i � u(k+ 1) and j � ul+ 1. We have | j− i | � u(l− k− 1) + 1 ≤ d, thus (i, j) ∈ Cd

n and (k, l) ∈ fu(Cd
n).

Conversely, we now prove that fu(Cd
n) covers C(d+1)=u

n=u . If there exist i ∈ ak and j ∈ al such that | j− i | ≤ d, then

u(l− k) ≤ ul+ 1− u(k+ 1) ≤ d+ 1, which implies that (k, l) ∈ C(d+1)=u
n=u . Q.E.D.

Proposition 5. Fix d ≥ 1. For d+ 1 > k ≥ 1, suppose that there is a periodic (α,k− 1)-cover of Ck
rk.

i. For any integer r, if k divides d + 1, then there exists a periodic α,d()-cover of Cd
r(d+1).

ii. In general, if v is the remainder of the Euclidian division of d + 1 by k, then there exists a periodic (α(1+ v=d+
1− v)2,d)-cover of Cd

r(d+1).

Proof. Part (i). Suppose that d+ 1 � ku and suppose that there exists p multiple of d + 1 such that we have a

p-periodic (α, k− 1)-cover {σ1, : : : ,σK} of fu
(
Cd
r(d+1)

)
� Ck

rk. For any permutation σ ∈ Srk, we can construct a permuta-

tion σ′ ∈ Sr(d+1) in the following way: if i ∈ at, then σ′(i) � n
k σ(t) + i. Because Bk

rk(σi) is a cover of Bd
r(d+1), we can con-

clude that σ′1, : : : ,σ′K is an (α,d)-cover of Cd
r(d+1).

Part (ii). Suppose now that d+ 1 � ku+ v with 1 ≤ v < k. We first select vertices in the following way: select a
subset Φ ⊂ [1,d+ 1] of d+ 1− v vertices uniformly at random. Take Δ �Φ+ ku[1, r− 1] � {a+ kub |a ∈Φ,b ∈
[1, r− 1]} and note that |Δ | � kur.

We now contract vertices in Δ. This is the same as in Definition 4: for t ∈ [1,u], at is the set of u smallest vertices
of Δ that are not in a1 ∪ : : : ∪ at−1. Because d+ 1− v is a multiple of u, we have ai+k � ai + (d+ 1). This implies that
the contracted graph is C(d+1)=u

n=u .
Similarly to the proof of case (i), we extend a cover for C(d+1)=u

n=u to cover every edge (i, j) for i, j ∈ Δ. If we sum
over all the possible ways to select subset Φ, we note that every edge (i, j) ∈ Cd

r(d+1) is covered with probability at

least d+1−v
d+1

()2
. Q.E.D.

Figure 5. Illustration of cycle contraction.

Notes. Left: C3
12, with contraction for u � 2. Right: 2-Contracted graph f2(C3

12) � C2
6 with vertices a � {1, 2}, b � {3, 4}, … f � {11,12}.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1009

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

4.1.4. Final Step: Computer-Aided Proof of Factor 2.79. We will now apply Proposition 4 with p � 2(d+ 1) and
n1 � 4(d+ 1). Let Ωd be the set of 2(d+ 1)-periodic permutations of 1, : : : , 4(d+ 1). We can find covers for Cd

4(d+1)
using the following linear program:

min
∑
σ∈Ωd

λσ

s:t:
∑
σ∈Ωd

λσI[bi(σ,d) � bj(σ,d)] ≥ 1, ∀(i, j) ∈ Cd
4(d+1)

λσ ∈ R
+, σ ∈Ωd (LPd)

Proposition 6. Let αd be the solution to (LPd). Let α � sup d≥1αd. BATCHING is 1=α+O(1=n)()-competitive.

Proof. The proof follows from Propositions 3 and 4. Q.E.D.
The linear program (LPd) has O(d!) variables, and solving it may not be computationally possible when d is

large. Using Proposition 5, we now provide a way to find upper bounds on αd by solving a different LP on a
smaller graph. Recall that Ωk−1 is the set of 2k-periodic permutations of 1, : : : , 4k. We define the problem of find-
ing an (α, k− 1)-cover of the cycle Ck

4k.

min
∑

σ∈Ωk−1
λσ

s:t:
∑

σ∈Ωk−1
λσI[bi(σ,k− 1) � bj(σ,k− 1)] ≥ 1, ∀(i, j) ∈ Ck

4k

λσ ∈ R
+, σ ∈Ωk−1 (LP’k)

We denote by α′
k the solution to (LP’k). Solving (LP’k) numerically for k � 4 yields α′

4 ≤ 3:17 (See Table 1). For all

d ≥ 52, Proposition 5 therefore implies that αd ≤ 3:17 ∗ 51
49

()2 � 3:58. We note that our methodology can be extended

to obtain a better factor. For instance, being able to solve (LPd) for values higher than 50 should bring the compet-
itive ratio closer to 1

3.
It remains to check that for all d ≤ 50, αd ≤ 3:58. We either solve (LPd) directly (see left Table 1) or use Proposi-

tion 5 (see right Table 1) to conclude. Observing that 2:79 ≤ 1
3:58, we conclude that BATCHING is 0.279-competi-

tive, which concludes the proof for Theorem 2.

4.2. A Hardness Result

Proposition 7. No algorithm is more than 1
2-competitive even under the random arrival model.

Table 1. Left: Numerical values for αd and α′
d for small values of d.

d αd α′
d d αd ≤ k used

1 2 17 3.58 4
2 2.33 4 19 3.48 6
3 2.5 3.45 23 3.44 11
4 2.64 3.17 29 3.31 7
5 2.71 3.15 31 3.36 5
6 2.75 3.12 37 3.30 6
7 2.79 3.09 41 3.31 5
8 2.83 3.08 43 3.24 7
9 2.99 3.07 47 3.35 9
10 3.2a 3.20a

11 3.11a 3.153a

12 3.264a

13 3.23a 3.318a

Note. Right: Upper bounds for αd for prime values of d, derived from Proposition 5 using the following formula:

αd ≤ αk
d+1−v
d+1

()2
for k ≤ d and v � dmod k.

aSolved approximately (are therefore upper bounds on the actual value).

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1010 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proof. For the sake of contradiction, assume there is a (1=2+ ε)-competitive algorithm A under the random
arrival model for some 0 < ε < 1=2. Consider a graph with three vertices {1, 2, 3}, with v12 � α and v23 � v13 � ε′α,
where 0 < α and 0 < ε′ < 1. Let d � 1, that is, vertices can only be matched to the ones arriving just before or after
them. Let E denote the event that the arrival order is such that vertices 1 and 2 can be matched together. We have
Pr [E] � 2=3. Because OFF can collect α by matching vertices 1 and 2 when event E occurs, it collects an expected
match value of at least 2α

3 . Given A is (1=2+ ε)-competitive, it must collect an expected match value of at least
α
3 + 2αε

3 . Because any algorithm can collect at most αε′ when event E does not occur, we infer that, conditioned on
E, the conditional expected match value collected byA is at least (α3 + 2αε

3 − αε′
3)= 2

3 � α
2 +αε− αε′

2 .
On the other hand, it is easy to see that conditioned on E, A essentially solves a secretary problem with two

arrivals (corresponding to the two edge arrivals in the second and third time steps). Because no randomized
algorithm can pick the larger value edge with probability larger than 1=2 in this case, the conditional expected
match value collected byA, conditioned on E, is at most α

2 + αε′
2 .

We obtain α
2 + αε− αε′

2 ≤ α
2 + αε′

2 . Choosing ε′ < ε gives us the desired contradiction. Q.E.D.

5. Extensions
5.1. Adversarial Order: Stochastic Departures
Note that the analysis of POSTPONED GREEDY did not assume that vertices depart exactly after d time steps
since arrival. In particular, we can obtain a 1=4-competitive algorithm as long as departures are in order of arriv-
als and we get to know when a vertex becomes critical. Here, we reconsider the adversarial order setting but
relax the assumption that vertices depart in order of arrivals. In particular, we assume that the departure time di
of vertex i is sampled independently from a distribution D. Moreover, for every vertex i, the realization di is
observed at the time i becomes critical.

We can run the POSTPONED GREEDY algorithm even in this setting of stochastic departures. We need a nat-
ural modification to the algorithm. When vertex i becomes critical withm(si) � bl, we finalize the matching of ver-
tex iwith vertex l if the status of vertex i is a seller and vertex l has not already departed.

Proposition 1. Suppose that there exists α ∈ (0, 1) such that D satisfies the property that for all i < j,

P[i+ di ≤ j+ dj | i+ di ≥ j] ≥ α:

Then modified POSTPONED GREEDY is α=4-competitive.

Proof. Recall that in the case of departures in order of arrivals, POSTPONED GREEDY ensures statuses of verti-
ces are synchronized. In the case of stochastic departures, however, when a vertex i becomes critical with
m(si) � bl, the statuses of vertices i and l can both turn out to be sellers. But if that happens, it implies that vertex l
has departed when vertex i becomes critical and the modified algorithm will not match the two vertices together.
Thus, the algorithm always outputs a valid matching.

Note that a vertex assumes the status of a seller or buyer with probability 1=2 each, independent of the realiza-
tion of the departure times. Moreover, with probability at least α, vertex l is still present when vertex i becomes
critical. Thus, when vertex i becomes critical, we collect pf (si) with probability at least α=2. The rest of the proof
follows similarly to that of Theorem 1. w

D is called a memory-less process, if conditional on i still being present when j arrives, the probability that i
departs first is exactly 1/2. Therefore, the above condition is satisfied with α � 1=2.

Corollary 2. POSTPONED GREEDY is 1=8-competitive when D is memory-less.

5.2. Random Order: Look-Ahead
Here, we assume that the online algorithm knows the vertices that will arrive in the next l time steps along with
their adjacent edges. We can update the BATCHING algorithm in the following way: Compute a maximum-
weight matching every d+ l+ 1 time steps on both the current vertices and the next l arrivals. Match vertices as
they become critical according to the matching, and discard unmatched vertices. Note that this is the same as
running BATCHING when the deadline is d + l.

Proposition 8. There exists an (d+l+1l+1 ,d+ l)-cover of Cd
n.

Proof. For k ∈ [0,d+ l], let σk(i) � i+ k mod n. Let i, j be such that | i− j | ≤ d, then bi(σk,d) � bj(σk,d) for at least
l + 1 different values of k. We can conclude that σ0, : : : ,σd+l is a (d+l+1l+1 ,d+ l)-cover by taking λ0 � : : : � λd+l
� 1

l+1. Q.E.D.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1011

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Corollary 3. BATCHING with l-lookahead is l+1
d+l+1-competitive when n is large.

5.3. Adversarial Order: Alternative to POSTPONED GREEDY
Consider the adversarial arrival order model. Observe that under the POSTPONED GREEDY algorithm, once a
buyer becomes unmatched it never matches again. In this section, we present another algorithm, referred to as
DYNAMIC DEFERRED ACCEPTANCE (DDA), that does not have this property.

The DDA will receive as input a constrained bipartite graph. The main idea is to maintain a tentative
maximum-weight matching m at all times during the run of the algorithm. This tentative matching is updated
according to an auction mechanism: every seller s is associated with a price ps, which is initiated at zero upon
arrival. Every buyer b that has already arrived is associated with a profit margin qb, which corresponds to the
value of matching to their most preferred seller minus the price associated with that seller. Every time a new
buyer arrives, he or she bids on his or her most preferred seller at the current set of prices. This triggers a bidding
process that terminates when no unmatched buyer can profitably bid on a seller.

When a seller becomes critical, he or she is irrevocably matched to his or her tentative match. A buyer is dis-
carded if he or she is unmatched and becomes critical.

At any point t throughout the algorithm, we maintain a set St of sellers present in the market, a set Bt of buyers
present in the market, as well as a matching m, a price ps for every seller s ∈ St, and a marginal profit qb for every
buyer b ∈ Bt.

Algorithm 4 DYNAMIC DEFERRED ACCEPTANCE
• Input:A constrained bipartite online graph Gd,σ with deadline d.
•Output:AmatchingM onGd,σ.
1. InitializeM←∅.
2. Let S denote the set of sellers present in the market. Initialize S←∅.
3. Process each event in the following way:
a. Seller s arrives:

i. (Set arriving seller unmatched.) Initializem(s) ← null and ps ← 0.
ii. (Add the seller.) S← S ∪ {s}.

b. Buyer b arrives:
i. (Start an ascending auction.) Repeat
A. Let qb :�maxs′∈Svs′b − ps′ and s :� argmaxs′∈Svs′b − ps′ .
B. (Tentatively match s to b and set b to the previous match of s, if any.) If qb > 0: ps ← ps + ε and swapm(s) ↔ b.
Until b �� null or qb ≤ 0.

c. Seller s becomes critical:
i. (Finalize departing seller’s tentative match, if any.) Ifm(s)≠ null:M←M ∪ {(s,m(s))}.
ii. (Remove the seller.) S← S\{s}.

Our algorithm bears similarities to the auction algorithm by Bertsekas [9]. Prices in this auction increase by ε
to ensure termination and optimality is proven through ε-complementary slackness conditions. For the analysis,
we consider the limit ε→ 0 and assume the auction phase terminates with the maximum weight matching. One
way to formalize this argument is through the Hungarian algorithm (Kuhn [26]), where prices are increased
simultaneously along an alternating path that only uses edges for which the dual constraint is tight.

The auction phase is always initiated at the existing prices and profit margins. This, together with the fact that
the graph is bipartite, ensures that prices never decrease and marginal profits never increase throughout the
algorithm. Furthermore, the prices and marginal profits form an optimum dual for the matching linear program
associated with the sellers and buyers that are present in the market.

Lemma 1. Consider the DDA algorithm on a constrained bipartite graph.
1. Sellers’ prices never decrease, and buyers’ profit margins never increase.
2. At the end of every ascending auction, prices of the sellers and the marginal profits of the buyers form an

optimal solution to the dual of the matching linear program associated with the sellers and buyers present at
that particular time.

Maintaining a maximum-weight matching along with optimum dual variables does not guarantee an efficient
matching for the whole graph. The dual values are not always feasible for the offline problem. Indeed, the profit
margin of some buyer b may decrease after some seller departs the market. This is because b may face increasing
competition from new buyers, while the bidding process excludes sellers that have already departed the market
(whether matched or not).

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1012 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Proposition 9. DDA is 1=2-competitive for constrained bipartite graphs.

Proof. Let S and B be the set of all the sellers and the set of all the buyers that arrive during the run of the algo-
rithm, respectively. Let St and Bt be the set of sellers and buyers that are present in the market at time period t.
The proof follows the primal-dual framework.

First, observe that by complementary slackness, any seller s (buyer b) that departs unmatched has a final price
pf
s � 0 (final profit margin qfb � 0). When a seller s is critical and matches to b, we have vsb � pf

s + qfb . Therefore,

DDA collects a reward ofA �∑
s∈Sp

f
s +∑

b∈Bq
f
b .

Second, let us consider a buyer b and a seller s ∈ [b− d,b) who has arrived before b but not more than d steps
before. Because sellers do not finalize their matching before they are critical, we know that s ∈ Sb. We have
vsb ≤ ps(b) + qb(b) ≤ pf

s + qib, where ps(b) and qb(b) are the price of s and profit margin of b, respectively, at time
period b (after the end of any ascending auction that may get triggered because of the arrival of buyer b); the sec-
ond inequality follows from defining qib � qb(b) (initial profit margin) and the monotonicity of sellers’ prices

(Lemma 1). Thus, ({pf
s : s ∈ S}, {qib : b ∈ B}) is a feasible solution to the offline dual problem.

Finally, we observe that upon the arrival of a new buyer, the ascending auction does not change the sum of
prices and margins for vertices that were already present:

Claim 4. Consider an arriving buyer b̄, and let p, q (p′, q′) be the prices and margins before the beginning (at the end) of the
ascending auction phase (step 3b in Algorithm 4). Then,∑

s∈Sb̄
ps +

∑
b∈Bb̄ \{b̄}

qb �
∑
s∈Sb̄

p′s +
∑

b∈Bb̄ \{b̄}
q′b: (2)

By applying this equality iteratively after each arrival, we can relate the initial margins qi to the final margins q f

and prices p f:

Claim 5. Sum of and final prices of sellers and final margins of buyers is equal to the sum of initial margins of buyers:

∑
s∈Sp

f
s +

∑
b∈Bq

f
b � ∑

b∈Bq
i
b:

Note that the offline algorithm achieves at most

O ≤ ∑
s∈S

p f
s +

∑
b∈B

qib ≤ 2A:

This completes the proof of Proposition 9. Q.E.D.

Proof of Claim 4. Because auctions are always started by buyers, no previously matched seller will become
unmatched. Thus, except for the buyer that started the auction, every increase in a seller’s price is exactly
matched by a buyer’s decrease in margin. Q.E.D.

Proof of Claim 5. We iteratively apply the result of Claim 4 after any new arrival. Let S̃t (respectively, B̃t) be
the set of sellers (buyers) who have departed (matched or unmatched) before time period t. Recall that ps(t) and
qb(t) are respectively the price of seller s and profit margin of buyer b at time period t after any ascending auction
triggered by the arrival in that time period has finished.

We show by induction over t ≤ n that

∑
s∈S̃t

p f
s +

∑
b∈B̃t

q fb +
∑
s∈St

ps(t) +
∑
b∈Bt

qb(t) �
∑
b∈B̃t

qib +
∑
b∈Bt

qib: (3)

This is obvious for t � 1. Now suppose that it is true for t ∈ [1,n− 1]. Let L(t) and R(t) denote the left- and right-
hand side of Equation (3), respectively. Note that departures at time period t do not affect L(t+ 1) − L(t). This is
because for any s ∈ S̃t+1\S̃t, p

f
s � ps(t) and for any b ∈ B̃t+1\B̃t, q

f
b � qb(t). Also note that R(t+ 1) −R(t) is zero if

agent arriving at time period t + 1 is a seller and qit+1 otherwise.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1013

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

If t + 1 is a seller, then for all sellers s ∈ St+1\{t+ 1}, ps(t+ 1) � ps(t) and for all buyers b ∈ Bt+1, qb(t+ 1) � qb(t).
Therefore,

L(t+ 1) − L(t) � pt+1(t+ 1) + ∑
s∈St+1\{t+1}

(ps(t+ 1) − ps(t)) +
∑
b∈Bt+1

(qb(t+ 1) − qb(t))

� 0

If t + 1 is a buyer,

L(t + 1) − L(t) � qt+1(t + 1) + ∑
s∈St+1

(ps(t + 1) − ps(t)) +
∑

b∈Bt+1\{t+1}
(qb(t + 1) − qb(t))

� qit+1 +
∑
s∈St+1

ps(t + 1) + ∑
b∈Bt+1\{t+1}

qb(t + 1)
()

− ∑
s∈St+1

ps(t) +
∑

b∈Bt+1\{t+1}
qb(t)

()
� qit+1,

where the last equality follows from Equation (2). This completes the induction step.
Note that S̃n ∪ Sn � S and B̃n ∪ Bn � B. Also note that ps(n) � pf

s for any s ∈ Sn and qb(n) � qfb for any b ∈ Bn.
Therefore, ∑

b∈B
qib �

∑
b∈B̃n

qib +
∑
b∈Bn

qib

� ∑
s∈S̃n

p f
s +

∑
s∈Sn

ps(n) +
∑
b∈B̃n

q fb +
∑
b∈Bn

qb(n)

� ∑
s∈S̃n

p f
s +

∑
s∈Sn

p f
s +

∑
b∈B̃n

q fb +
∑
b∈Bn

q fb

�∑
s∈S

pf
s +

∑
b∈B

qfb :

This concludes the proof of Claim 5. Q.E.D.

6. Conclusion
This paper introduces a model for dynamic matching in which agents arrive in the market over time and depart
after being in the market for some amount of time. Match values are heterogeneous and the underlying graph
may be nonbipartite. Online algorithms are established for settings in which vertices arrive either in an adversa-
rial or in random order. The model imposes restrictions on the departure process and allows the algorithm to
know when vertices become critical and are about to leave.

In the adversarial arrival case, we introduce two new 1/4-competitive algorithms when departures are deter-
ministic and agents depart in order of arrival. In the random arrival case, we show that a batching algorithm is
0.279-competitive. Closing the gaps between the upper bound of 1=2 and the achievable competitive ratios
remain interesting open problems.

We also point out a few other interesting research directions. One is to consider an alternative objective that in
addition to achieve a high total value from matches also seeks to match a large number of agents. The algorith-
mic techniques developed in this paper might prove useful in devising online matching strategies with better
guarantees in this setting.

Another direction is to consider a stochastic setting with prior information over weights and future arrivals.
Such information is available in several real-life situations. For example, in ride-sharing applications, stochastic
information of future arrivals is usually available from past arrival data or other extraneous sources, such as
weather and events data. Designing algorithms that can harness stochastic information of future arrivals has
been an active and fruitful area of research in a variety of matching models. Our algorithms in this paper do not
exploit any stochastic information of future arrivals, and designing algorithmic techniques that can do so in our
matching model is a very important research direction.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1014 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

Lastly, our model assumes that matches retain the same value regardless of when they are made as long as the
agents are still in the market. We showed that the POSTPONED GREEDY algorithm does not guarantee any con-
stant competitive ratio if matches lose their value over time. Thus, an interesting research direction is to devise
algorithms accounting for agents’waiting times in the matching process. This would require devising techniques
to balance the trade-off between waiting longer for better matches and making matches faster to retain their
value.

References
[1] Akbarpour M, Li S, Oveis Gharan S (2020) Thickness and information in dynamic matching markets. J. Political Econom. 128(3):783–815.
[2] Alonso-Mora J, Samaranayake S, Wallar A, Frazzoli E, Rus D (2017) On-demand high-capacity ride-sharing via dynamic trip-vehicle

assignment. Proc. Natl. Acad. Sci. USA 114(3):462–467.
[3] Anderson R, Ashlagi I, Gamarnik D, Kanoria Y (2015) A dynamic model of barter exchange. Proc. 26th Annual ACM-SIAM Sympos. Discrete

Algorithms (Society for Industrial andAppliedMathematics, Philadelphia), 1925–1933.
[4] Aouad A, Saritac O (2020) Dynamic stochastic matching under limited time. Proc. 21st ACM Conf. Econom. Comput. (Association for

Computing Machinery, New York), 789–790.
[5] Ashlagi I, Burq M, Jaillet P, Manshadi V (2019) On matching and thickness in heterogeneous dynamic markets. Oper. Res. 67(4):927–949.
[6] Ashlagi I, Azar Y, Charikar M, Chiplunkar A, Geri O, Kaplan H, Makhijani R, Wang Y, Wattenhofer R (2017) Min-cost bipartite perfect

matching with delays. Jansen K, Rolim JDP, Williamson D, Vempala SS, eds. Approximation, Randomization, and Combinatorial Optimization:
Algorithms and Techniques, Leibniz International Proceedings in Informatics, vol. 81 (Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Wadern, Germany), 1:1–1:20.

[7] Baccara M, Lee S, Yariv L (2020) Optimal dynamic matching. Theoret. Econom. 15(3):1221–1278.
[8] Banerjee S, Kanoria Y, Qian P (2018) State dependent control of closed queueing networks. Abstracts 2018 ACM Internat. Conf. Measure-

ment Model. Comput. Systems (Association for Computing Machinery, New York), 2–4.
[9] Bertsekas DP (1988) The auction algorithm: A distributed relaxation method for the assignment problem. Ann. Oper. Res. 14(1):105–123.
[10] Blum A, Mansour Y (2020) Kidney exchange and endless paths: On the optimal use of an altruistic donor. Preprint, submitted October 4,

https://arxiv.org/abs/2010.01645.
[11] Chin FY, Chrobak M, Fung SP, Jawor W, Sgall J, Tichỳ T (2006) Online competitive algorithms for maximizing weighted throughput of

unit jobs. J. Discrete Algorithms 4(2):255–276.
[12] Devanur NR, Jain K, Kleinberg RD (2013) Randomized primal-dual analysis of ranking for online bipartite matching. Proc. 24th Annual

ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 101–107.
[13] Dickerson JP, Procaccia AD, Sandholm T (2013) Failure-aware kidney exchange. Proc. 14th ACM Conf. Electronic Commerce (Association

for Computing Machinery, New York), 323–340.
[14] Dutta C (2021) When hashing met matching: Efficient spatio-temporal search for ridesharing. Proc. 35th AAAI Conf. Artificial Intelligence

(AAAI Press, Palo Alto, CA), 90–98.
[15] Emek Y, Kutten S, Wattenhofer R (2016) Online matching: Haste makes waste! Proc. 48th Annual ACM Sympos. Theory Comput. (Associa-

tion for Computing Machinery, New York), 333–344.
[16] Ezra T, Feldman M, Gravin N, Tang ZG (2020) Secretary matching with general arrivals. Preprint, submitted November 3, https://arxiv.

org/abs/2011.01559.
[17] Feldman J, Mehta A, Mirrokni VS, Muthukrishnan S (2009) Online stochastic matching: Beating 1-1/e. Proc. 50th Annual IEEE Sympos.

Foundations Comput. Sci. (IEEE Computer Society, Washington, DC), 117–126.
[18] Feldman J, Korula N, Mirrokni V, Muthukrishnan S, Pál M (2009) Online ad assignment with free disposal. Leonardi S, ed. Internat.

Workshop Internet Network Econom. (Springer-Verlag, Berlin, Heidelberg), 374–385.
[19] Goel G, Mehta A (2008) Online budgeted matching in random input models with applications to adwords. Proc. 19th Annual ACM-SIAM

Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 982–991.
[20] Hu M, Zhou Y (2021) Dynamic type matching. Manufacturing Service Oper. Management 24(1):125–142.
[21] Huang Z, Kang N, Tang ZG, Wu X, Zhang Y, Zhu X (2018) How to match when all vertices arrive online. Proc. 50th Annual ACM

SIGACT Sympos. Theory Comput. (Association for Computing Machinery, New York), 17–29.
[22] Huang Z, Peng B, Tang ZG, Tao R, Wu X, Zhang Y (2019) Tight competitive ratios of classic matching algorithms in the fully online model.

Proc. 30th Annual ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 2875–2886.
[23] Jaillet P, Lu X (2013) Online stochastic matching: New algorithms with better bounds. Math. Oper. Res. 39(3):624–646.
[24] Kanoria Y, Qian P (2019) Near optimal control of a ride-hailing platform via mirror backpressure. Preprint, submitted March 7, https://

arxiv.org/abs/1903.02764v1.
[25] Karp RM, Vazirani UV, Vazirani VV (1990) An optimal algorithm for on-line bipartite matching. Ortiz H, ed. Proc. 22nd Annual ACM

Sympos. Theory Comput. (Association for Computing Machinery, New York), 352–358.
[26] Kuhn HW (1955) The Hungarian method for the assignment problem. Naval Res. Logist. 2(1–2):83–97.
[27] Lehmann B, Lehmann D, Nisan N (2006) Combinatorial auctions with decreasing marginal utilities. Games Econom. Behav. 55(2):270–296.
[28] Li F, Sethuraman J, Stein C (2005) An optimal online algorithm for packet scheduling with agreeable deadlines. Proc. 16th Annual

ACM-SIAM Sympos. Discrete Algorithms (Society for Industrial and Applied Mathematics, Philadelphia), 801–802.
[29] Manshadi VH, Oveis-Gharan S, Saberi A (2012) Online stochastic matching: Online actions based on offline statistics. Math. Oper.

Res. 37(4):559–573.
[30] Mehta A (2013) Online matching and ad allocation. Foundations TrendsVR Theoret. Comput. Sci. 8(4):265–368.
[31] Mehta A, Saberi A, Vazirani U, Vazirani V (2007) Adwords and generalized online matching. J. ACM 54(5):22-es.
[32] Ostrovsky M, Schwarz M (2018) Carpooling and the economics of self-driving cars. Technical report, National Bureau of Economic

Research, Cambridge, MA.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS 1015

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

https://arxiv.org/abs/2010.01645
https://arxiv.org/abs/2011.01559
https://arxiv.org/abs/2011.01559
https://arxiv.org/abs/1903.02764v1
https://arxiv.org/abs/1903.02764v1

[33] Ozkan E, Ward AR (2020) Dynamic matching for real-time ridesharing. Stochastic Systems 10(1):29–70.
[34] Pavone M, Smith SL, Frazzoli E, Rus D (2012) Robotic load balancing for mobility-on-demand systems. Internat. J. Robotics Res. 31(7):

839–854.
[35] Santi P, Resta G, Szell M, Sobolevsky S, Strogatz SH, Ratti C (2014) Quantifying the benefits of vehicle pooling with shareability net-

works. Proc. Natl. Acad. Sci. USA 111(37):13290–13294.
[36] Spieser K, Samaranayake S, Gruel W, Frazzoli E (2016) Shared-vehicle mobility-on-demand systems: A fleet operator’s guide to rebalanc-

ing empty vehicles. Presented at the Transportation Research Board 95th Annual Meeting, Washington, DC.
[37] Ünver MU (2010) Dynamic kidney exchange. Rev. Econom. Stud. 77(1):372–414.
[38] Vickrey W (1965) Pricing as a tool in coordination of local transportation. Transportation Economics (National Bureau of Economic

Research, New York), 275–296.
[39] Zhang R, Pavone M (2016) Control of robotic mobility-on-demand systems: A queueing-theoretical perspective. Internat. J. Robotics Res.

35(1–3):186–203.

Ashlagi et al.: Edge-Weighted Online Windowed Matching
1016 Mathematics of Operations Research, 2023, vol. 48, no. 2, pp. 999–1016, © 2022 INFORMS

D
ow

nl
oa

de
d

fr
om

 in
fo

rm
s.

or
g

by
 [

26
00

:4
04

0:
52

07
:6

90
0:

89
79

:d
b5

0:
28

7f
:3

50
3]

 o
n

05
 M

ay
 2

02
3,

 a
t 0

6:
40

 .
Fo

r
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll

ri
gh

ts
 r

es
er

ve
d.

	s1
	s1A
	s1B
	s2
	s3
	s3A
	s3B
	s3C
	s3D
	s4
	s4A
	s4A1
	s4A2
	s4A3
	s4A4
	s4B
	TF1
	TF2
	s5
	s5A
	s5B
	s5C
	s6

