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In portfolio optimization, the computational complexity of implementing almost stochastic dominance has

limited its practical applications. In this study, we introduce an optimization framework aimed at identi-

fying the optimal portfolio that outperforms a specified benchmark under almost second-degree stochastic

dominance (ASSD). Our approach involves discretizing the return range and establishing both sufficient

and necessary conditions for ASSD. We then propose a three-step iterative procedure: first, identifying a

candidate portfolio; second, assessing its optimality; and third, refining the discretization scheme. Theo-

retical analysis guarantees that the portfolio identified through this iterative process improves with each

iteration, ultimately converging to the optimal solution. Our empirical study, utilizing industry portfolios,

demonstrates the efficacy of our approach by consistently identifying an optimal portfolio within a few

iterations. Furthermore, comparative analysis against other decision criteria, such as mean-variance, second-

degree stochastic dominance, and third-degree stochastic dominance, reveals that ASSD generally leads to

portfolios with higher out-of-sample average excess returns but also entails increased variations and risks.

Key words : portfolio optimization; almost stochastic dominance; stochastic dominance constraints;

quadratically constrained programming; cutting-plane algorithm

1. Introduction

Portfolio optimization based on stochastic dominance (SD) has been studied with growing interest

in recent literature (e.g., Dentcheva and Ruszczyński (2006), Roman et al. (2006), Kallio and
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Hardoroudi (2018), Post et al. (2018)). Compared with mainstream classical mean-variance (MV)

models (Markowitz 1952), SD approaches are theoretically more appealing because of its sound

basis for decision making under risk and uncertainty. To be specific, SD is consistent with expected

utility theory and can guarantee the preference of one random variable over another across a set

of permissible utility functions. For example, a portfolio which dominates another portfolio by

second-degree SD (SSD) will be preferred by all non-satiable and risk averse decision makers, that

is, individuals whose utility function is non-decreasing and concave (u′(x)≥ 0, u′′(x)≤ 0). Another

advantage of SD is that it can provide a partial ranking of random variables based on partial utility

information.

However, it has been recognized by researchers that conventional SD conditions might appear

excessively stringent, encompassing certain ‘pathological’ utility functions that correspond to very

few, if any, observed preferences in practical scenarios (Leshno and Levy 2002). To address this

limitation, Leshno and Levy (2002) first proposed almost SD (ASD) as a relaxation of conven-

tional SD conditions. In particular, they proposed almost first-degree SD (AFSD) that considers

nondecreasing utility functions whose deviation in marginal utilities u′(x) is bounded, and almost

second-degree SD (ASSD) that considers risk-averse utility functions whose ratio of second deriva-

tive u′′(x) is bounded. The condition of ASSD was refined by Tzeng et al. (2013) later.

AFSD and ASSD mark the inception of the ASD field, motivating researchers to refine the set of

utility functions associated with traditional SD rules by excluding extreme ones. This modification

aims to enable ASD to more effectively discern clear preferences between random variables and

explain certain common investment practices that conventional SD conditions cannot capture (Bali

et al. 2009, 2013, Levy 2009). ASSD endeavors to achieve this objective by limiting the ratio of

u′′(x), in line with AFSD. However, some researchers (Luo and Tan 2020, Arvanitis et al. 2021)

highlight that this approach still accommodates certain pathological utility functions (e.g., all

quadratic utility functions) while potentially excluding realistic utility functions (e.g., logarithmic

utility with a wide wealth range). To address these issues, different forms of ASD have been
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proposed in the literature, considering different features of utility functions. For example, Tsetlin

et al. (2015) generalized ASD by simultaneously restricting Nth derivatives of utility functions.

Müller et al. (2017) and Huang et al. (2020) relaxed FSD and developed a continuum of SD

by bounding the ratio of marginal utilities and the degree of absolute risk aversion, respectively.

Luo and Tan (2020) focused on SSD and proposed another specification of ASSD by imposing

restrictions on the degree of absolute risk aversion. Liu and Meyer (2021) further provided an

alternative form of ASSD by considering utility functions whose absolute or relative risk aversion

measure is constrained by both an upper bound and a lower bound. In addition to these works,

generalizations of ASD designated for other settings have also emerged in the literature (e.g.,

Denuit et al. (2014), Lizyayev and Ruszczyński (2012), Tsetlin and Winkler (2018)).

Despite the theoretically enticing characteristics of SD and ASD, their practical implementa-

tion in portfolio optimization encounters significant computational complexity. SD encompasses

the entire probability distribution of investment returns, leading to computationally demanding

approaches. This complexity becomes apparent, especially when compared to the prevalent two-

moment MV models that have long dominated the field of portfolio analysis. MV models excel

in constructing efficient portfolios through parametric optimization problems. However, the litera-

ture lacks effective methods for SD, leaving a gap in the optimization methodologies available for

portfolio analysis (Kuosmanen 2004).

In addressing this complexity, various strategies have been proposed in literature. Some

researchers have focused on approaches to assess the efficiency or optimality of a specified portfolio.

For instance, Bawa et al. (1985) introduced linear programming (LP) algorithms for identifying

FSD and SSD optimal sets concerning discrete distributions. Furthermore, several scholars (Post

2003, Kuosmanen 2004, Roman et al. 2006, Kopa and Chovanec 2008, Kopa and Post 2015) have

developed LP methodologies to evaluate the stochastic dominance efficiency of given portfolios. The

work by Fang and Post (2017) expanded this research by characterizing optimality and efficiency in

higher-degree stochastic dominance using LP or convex quadratic programming. Numerous other
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studies have also delved into similar methodologies, including those by Kopa and Post (2009), Post

and Kopa (2013), Post et al. (2015), Longarela (2016), Post and Pot̀ı (2017). For a comprehensive

exploration of this subject, interested readers can refer to Post (2017). While these works offer

methods to assess individual portfolios based on stochastic dominance, constructing an optimal

portfolio remains a challenging task, particularly in investment scenarios with an infinite array of

feasible portfolios.

Another main stream of research, which addresses the problem of constructing portfolios, is to

identify an enhanced portfolio that dominates a given benchmark, that is, a desirable ‘reference’

portfolio such as the return rate of an index. Early publications in this direction include Dentcheva

and Ruszczyński (2003, 2004a,b), which introduced stochastic optimization models involving FSD,

SSD and higher-degree SD constraints to guarantee that solutions dominate a benchmark random

variable. Later, Dentcheva et al. (2007) and Dentcheva and Römisch (2013) further investigated

the stability and sensitivity of SD-enhanced portfolio optimization models. These models typically

contain a large number of constraints (Kallio and Hardoroudi 2018) and are difficult to solve. To

deal with this issue, a number of approaches have been proposed, such as cutting-plane method

(Rudolf and Ruszczyński 2008, Dentcheva and Ruszczyński 2010, Fábián et al. 2011, Sun et al.

2013), sample average approximation method (Hu et al. 2012), primal-dual algorithm (Haskell et al.

2017). Portfolio optimization enhanced by SD has also been specifically studied in the literature. For

example, Dentcheva and Ruszczyński (2006) constructed LP models for SSD constrained portfolio

optimization problem and analyzed optimality and duality of these models. Post and Kopa (2017)

developed an optimization method to identify a portfolio that dominates a benchmark in terms of

third-degree SD (TSD). Additional studies within this domain include works by Post et al. (2018),

Kallio and Hardoroudi (2018), Liesiö et al. (2020), among others. In this paper, we follow a similar

trajectory to explore the portfolio optimization problem based on ASD.

Compared to conventional SD conditions, portfolio optimization based on ASD is even more

challenging. ASD has more complex formulation, which requires not only to compare cumula-

tive probability distribution (CDF) but also to quantitatively calculate integrals of the distances
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between CDFs. Due to these complexities in implementation (Bruni et al. 2017), this area has

been relatively underexplored. This paper addresses this gap by introducing a novel approach and

devising an optimization method for portfolio selection based on ASSD proposed by Leshno and

Levy (2002) and Tzeng et al. (2013). Our contribution lies in the development of mathematical pro-

gramming models and algorithms aimed at constructing an optimal portfolio that invests in a set

of base assets and dominates a benchmark portfolio in terms of ASSD. The primary contributions

are summarized below:

• We propose an approximate ASSD (AASSD) condition via approximating the probability dis-

tribution of the portfolio return by a mean-preserving spread of the exact one. AASSD has

the advantage that it could be determined based on mean, variance and values of first-order

lower partial moment (LPM) at a series of discrete points. We show that AASSD is a sufficient

condition of ASSD. The gap between AASSD and ASSD could be measured by a closeness

index, which is defined to be the half variance difference between the approximate and the true

distribution. As we refine the discretization of return range, the closeness index becomes smaller

and AASSD gradually approaches ASSD.

• We further develop a three-step iterative method for identifying an optimal portfolio that sat-

isfies the ASSD constraints. To the best of our knowledge, this is the first attempt to do so.

Our proposed procedure includes three iterative steps: obtain a candidate portfolio by finding

an optimal AASSD-enhanced portfolio; check the optimality of the candidate portfolio based

on a necessary condition of ASSD by means of quadratic programming (QP) and quadratically

constrained programming (QCP); refine discretization of return range to update and improve

the obtained candidate portfolio. We theoretically prove that the identified portfolio improves

over iterations and converges to the optimal one. Empirical applications show that our iterative

procedure converges in a few iterations.

• An important component in the iterative procedure is a tailored cutting-plane algorithm. This

algorithm mainly involves a QCP model that only contains one quadratic constraint and a series
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of linear constraints, which could be solved by off-the-shelf algorithms and tools. It is used to

find a candidate portfolio which dominates the benchmark in terms of AASSD and also ASSD in

the first step, and to find an upper bound of the optimal objective value of the ASSD-enhanced

portfolio problem in the second step so that optimality gap could be explicitly calculated.

This paper is structured as follows. Section 2 describes the portfolio optimization problem under

study. Section 3 introduces an approximation condition of ASSD and discusses its properties.

Section 4 presents optimization models and algorithms to identify ASSD-enhanced portfolios. Sec-

tion 5 applies our optimization methods to the Fama and French 49 industry portfolios. Further

discussions are expounded in Section 6, followed by the conclusion in Section 7.

2. Preliminaries

We consider here the setting of a one-period portfolio optimization problem, which is also the

general setting commonly considered in portfolio optimization literature (e.g., Dentcheva and

Ruszczyński (2006), Post and Pot̀ı (2017), Post and Kopa (2017), Post et al. (2018), Kallio and

Hardoroudi (2018), Liesiö et al. (2020)). Consider n distinct base assets {1,2, ..., n} with random

investment returns (X1,X2, ...,Xn) ∈X n, where X := [a, b],−∞< a< b <∞. Without loss of gen-

erality, we assume that the investment return is finite and bounded between a and b. Let ui denote

the expected value of Xi and Cov(xi, xj) denote the covariance between Xi and Xj. Suppose the

joint CDF of the returns of the base assets F (x1, ..., xn) are discrete with T mutually exclusive

and collectively exhaustive scenarios. Let xi,t denote the realization of Xi under scenario t. The

probability of scenario t denoted by pt satisfies
∑T

t=1 pt = 1. A portfolio is a convex combination

of these assets characterized by a vector of asset weights λ= (λ1, ..., λn)∈Λ representing the share

of initial capital allocated for each asset, where Λ := {λ ∈Rn :
∑n

i=1 λi = 1, λi ≥ 0} is the set of all

possible portfolios. The return of a portfolio λ, denoted by X =
∑n

i=1Xiλi, is a random variable.

We use Y to denote the investment return of a given benchmark portfolio, which can be a mixture

of the base assets or any desired target return distributions of the decision maker. The objective of

our research is to construct an enhanced portfolio that dominates the benchmark portfolio in terms
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of ASSD. Without loss of generality, we assume that Y is discrete with scenarios t′ = 1, ..., Tb with

probability pt′ and its return is ranked in ascending order b1 ≤ b2...≤ bTb
. The scenarios of Y can

be either the same or different from the scenarios of the base assets. The CDF of the investment

return X of portfolio λ is given by:

Fλ(x) =
T∑

t=1

ptIλ,t(x),

where Iλ,t(x) is an indicator function that takes value 1 if
∑n

i=1 xi,tλi ≤ x and zero otherwise. The

first-order LPM for X is given by:

F
(2)
λ (z) =

∫ z

a

Fλ(x)dx=EFλ
[(z−x)Iλ,t(z)] =

T∑
t=1

pt(z−
n∑

i=1

xi,tλi)Iλ,t(z).

In general, F
(2)
λ (z) is a nonnegative, nondecreasing and convex function. We could obtain the value

of F
(2)
λ (z) with the following LP problem (Rockafellar et al. (2000), Section 3):

F
(2)
λ (z) =min

θ

T∑
t=1

ptθt

s.t. θt ≥ z−
n∑

i=1

xi,tλi, t= 1, ..., T

θt ≥ 0, t= 1, ..., T.

(1)

Similarly, the CDF of the benchmark portfolio Y is given by:

G(x) =

Tb∑
t′=1

pt′I(bt′ ≤ x)

and the first-order LPM for Y is given by:

G(2)(z) =

Tb∑
t′=1

pt′(z− bt′)I(bt′ ≤ z),

where I(bt′ ≤ z) is an indicator function that takes value of 1 if bt′ ≤ z and zero otherwise. Under

our problem setting, G(2)(z) is a piecewise-linear, nondecreasing and convex function.
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3. Approximation of ASSD

In this paper, we aim at identifying the best portfolio that dominates the given benchmark portfolio

by ASSD. The key challenge in this problem is to identify the set of feasible portfolios that satisfy

the ASSD constraint when there exist an infinite number of candidate portfolios. To address this

challenge, we propose an approximation condition of ASSD in this section, which is the foundation

of our optimization models and algorithms.

We first begin with an introduction of ASSD. In this study, we will focus on ASSD proposed by

Leshno and Levy (2002) and Tzeng et al. (2013) and introduce it in detail in the following section.

Other versions of ASD are omitted here for concise presentation. Interested readers are referred to

Levy (2016) and Luo and Tan (2020) for a detailed review.

3.1. Almost second-order stochastic dominance

Consider two random variables X and Y . Let F and G denote the CDF of X and Y respectively.

Without loss of generality, we assume EF (X)≥ EG(Y ) throughout this paper, where EF (X) and

EG(Y ) denote the expected value of X and Y respectively. Suppose X and Y are bounded in

the range of [a, b]. Define the set of outcomes S2 as S2 = {t ∈ [a, b] : F (2)(t) > G(2)(t)}, where

F (2)(t) =
∫ t

−∞F (x)dx and G(2)(t) =
∫ t

−∞G(x)dx. In particular, S2 is the range of outcomes where

the condition for F dominating G by SSD is violated. Let S̄2 denote the complement of S2.

Definition 1 (ASSD). For τ ∈ (1,∞), F dominates G by τ -ASSD if and only if:

τ ≤
∫
S̄2

(
G(2)(t)−F (2)(t)

)
dt∫

S2
(F (2)(t)−G(2)(t))dt

,

and EF (X)≥EG(Y ).

The parameter ε in the definition of ASSD in Leshno and Levy (2002) and Tzeng et al. (2013) is

replaced by τ (i.e., τ = 1
ε
− 1) in our definition above, which is consistent with Tan (2015), Tan

and Luo (2017), Luo and Tan (2020). Tzeng et al. (2013) showed that τ -ASSD is sufficient and

necessary for the preferences of decision makers whose utility function is in U∗
2 (τ):

U∗
2 (τ) = {u∈U2 :−u′′(t)≤ inf{−u′′(t)}τ,∀t},
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where U2 denotes the set of utility functions with u′(t)≥ 0 and u′′(t)≤ 0. In particular, ASSD is

necessary and sufficient for ensuring the preferences of all risk-averse decision makers whose second

derivatives of the utility function deviate by no more than τ .

3.2. Approximate ASSD

Let D := {d1, d2, ..., dTD} denote a discretization scheme of the investment return range, where

ds < ds+1, s= 1, ..., TD − 1. In particular, D divides the investment return range [a, b] into TD − 1

return sub-intervals: [ds, ds+1], s= 1, ..., TD−1. To guarantee the first-order LPM of the benchmark

portfolio G(2)(t) to be linear in each return sub-interval [ds, ds+1], s= 1, ..., TD−1, D is set to include

all possible realizations of the benchmark portfolio, that is, bt′ ∈ D,∀t′ = 1,2, ..., Tb. Without loss

of generality, we further set that d1 = a and dTD = b.

Definition 2 (Approximate SSD Violation). Given a discretization scheme D = {d1, d2,

..., dTD}, the approximate SSD violation of X dominating Y in return sub-interval [ds, ds+1], s =

1, ..., TD − 1, denoted by AD,s,λ, is defined by the following way:

• Case 1: if F
(2)
λ (ds)≤G(2)(ds) and F

(2)
λ (ds+1)≤G(2)(ds+1), then AD,s,λ = 0.

• Case 2: if F
(2)
λ (ds)≤G(2)(ds) and F

(2)
λ (ds+1)≥G(2)(ds+1) with at least one inequality to be strict,

then:

AD,s,λ =
(ds+1 − ds)

(
F

(2)
λ (ds+1)−G(2)(ds+1)

)2

2
(
F

(2)
λ (ds+1)−G(2)(ds+1)+G(2)(ds)−F

(2)
λ (ds)

) .
• Case 3: if F

(2)
λ (ds)≥G(2)(ds) and F

(2)
λ (ds+1)≤G(2)(ds+1) with at least one inequality to be strict,

then:

AD,s,λ =
(ds+1 − ds)

(
F

(2)
λ (ds)−G(2)(ds)

)2

2
(
G(2)(ds+1)−F

(2)
λ (ds+1)+F

(2)
λ (ds)−G(2)(ds)

) .
• Case 4: if F

(2)
λ (ds)≥G(2)(ds) and F

(2)
λ (ds+1)≥G(2)(ds+1) with at least one inequality to be strict,

then:

AD,s,λ =
(
F

(2)
λ (ds+1)+F

(2)
λ (ds)

) ds+1 − ds
2

−
(
G(2)(ds+1)+G(2)(ds)

) ds+1 − ds
2

.

The essence of the approximate SSD violation is that we approximate Fλ (the true probability

distribution of X) by an approximate probability distribution F̂D,λ such that:

F̂
(2)
D,λ(z) = F

(2)
λ (ds)+

F
(2)
λ (ds+1)−F

(2)
λ (ds)

ds+1 − ds
∗ (z− ds) if z ∈ [ds, ds+1], s= 1, ...TD − 1. (2)
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Specifically, F̂
(2)
D,λ(z) is a piecewise linear function such that F̂

(2)
D,λ(ds) = F

(2)
λ (ds), s= 1,2, ..., TD. By

simple derivation, it can be proved that F̂D,λ is a valid discrete probability distribution whose

support is a subset of the discretization scheme D.

The approximate SSD violation corresponding to the four cases in Definition 2 is demonstrated

in Figure 1. Note that G(2)(z) is linear in sub-interval [ds, ds+1] under our setting and F
(2)
λ (z)

is non-decreasing and convex. In Case 1, the condition F
(2)
λ (z) is no greater than G(2)(z) at the

endpoints implies that F
(2)
λ (z) ≤ F̂

(2)
D,λ(z) ≤ G(2)(z),∀z ∈ [ds, ds+1] (see Figure 1(a)). Hence, both

true and approximate SSD violation equal zero in this case. In Case 2, 3, and 4, the true SSD

violation is the area where F
(2)
λ (z)>G(2)(z) (the gray area in Figure 1) while the approximate SSD

violation AD,s,λ is the area where F̂D,λ >G(2)(z) (the dotted area Figure 1). Due to the convexity

property of F
(2)
λ (z), F̂

(2)
D,λ(x)≥ F

(2)
λ (x) always holds (shown in the following Proposition 1). As a

result, the approximate SSD violation is always no less than the true SSD violation. Next, we

present some important properties of F̂D,λ.

Proposition 1. F̂
(2)
D,λ(x)≥ F

(2)
λ (x),∀x∈R.

Proposition 1 states that the first-order LPM of the approximate probability distribution F̂D,λ is

always no smaller than that of the true probability distribution Fλ under any discretization scheme

of the return range. Proposition 1 also implies that F̂D,λ is dominated by Fλ in terms of SSD.

In the following, we use EF̂D,λ
and V arF̂D,λ

to denote the expected value and variance of F̂D,λ,

respectively. Similar notations are used for Fλ.

Proposition 2. EF̂D,λ
=EFλ

and V arF̂D,λ
≥ V arFλ

.

Proposition 2 shows that the approximate distribution F̂D,λ is a mean-preserving spread of true

distribution Fλ, that is, F̂D,λ and Fλ has identical expected value. Moreover, F̂D,λ has higher

variance than Fλ. Hence, F̂D,λ is also dominated by Fλ in terms of MV criterion. Proposition 1 and

2 show that the approximate distribution F̂D,λ has higher risk than Fλ in terms of both SSD and

MV criterion.
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Figure 1 Approximate SSD violations. The gray area is the true SSD violation while the dotted area is the

approximate SSD violation.

Proposition 3.
∫
Ŝ2

F̂
(2)
D,λ(t) − G(2)(t)dt =

∑TD−1

s=1 AD,s,λ, where Ŝ2 = {t ∈ [a, b] : F̂
(2)
D,λ(t) >

G(2)(t)}.

Proposition 3 indicates that the approximate SSD violation between Fλ and G equals the SSD

violation between F̂D,λ and G. Next, we define approximate ASSD between portfolio λ with invest-

ment return X and the benchmark portfolio Y based on approximate SSD violation. For conve-

nience of notation, in the rest of this paper we will use X (or Y ) to represent portfolio λ (or the

benchmark) as well as its return when no ambiguity is present. In addition, we will use EFλ
(X)

and V ar(X) to denote the expected value and variance of X, and similar notations for Y .

Definition 3 (Approximate ASSD). Given a discretization scheme D, for τ ∈ (1,∞), port-

folio X dominates portfolio Y by τ -AASSD if and only if:

τ ≤
V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ

(X))2

2
∑TD−1

s=1 AD,s,λ

+1,
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and EFλ
(X)≥EG(Y ).

AASSD is intended as an approximation of ASSD rather than as an alternative of ASSD. Com-

pared with ASSD, AASSD is easier to identify and use in practice. To be specific, ASSD needs to

know the exact CDF formulation of the compared portfolios. However, AASSD only needs mean,

variance and values of LPM at a series of discrete points in D. Next, we show that AASSD is a

sufficient condition of ASSD.

Theorem 1. If there exist a discretization scheme D such that portfolio X dominates portfolio

Y by τ -AASSD, then X dominates Y by τ -ASSD, that is, (τ -AASSD)⇒(τ -ASSD).

Theorem 1 shows that if portfolio X dominates Y by τ -AASSD under a discretization scheme,

then X dominates Y by τ -ASSD. However, the other direction does not necessarily hold. This

implies that AASSD is sufficient but not necessary for ASSD. Another thing of interest about

AASSD is whether it converges to ASSD in some way. In particular, whether the ‘gap’ between

AASSD and ASSD could be reduced or eliminated as the discretization scheme is refined? In the

following section, we show this is the case.

3.3. Convergence of AASSD

In this section, we will show that AASSD approaches ASSD as we refine the discretization scheme

by dividing some or all return sub-intervals into multiple smaller sub-intervals. In essence, AASSD

approximates ASSD by approximating Fλ by F̂D,λ. Hence, the closeness between AASSD and ASSD

is determined by the difference between Fλ and F̂D,λ. Next, we introduce a closeness index δD,λ,

which is defined to be the half variance difference between F̂D,λ and Fλ. We will show how δD,λ

measures the closeness between F̂D,λ and Fλ as well as closeness between AASSD and ASSD.

Definition 4 (Closeness index between F̂D,λ and Fλ). Given a discretization scheme D,

F̂D,λ and Fλ, the closeness index δD,λ =
V ar

F̂D,λ
−V arFλ

2
.

Proposition 4. δD,λ =
∫ b

a

(
F̂

(2)
D,λ(t)−F

(2)
λ (t)

)
dt.

Proposition 4 shows that δD,λ equals the integral of the first-order LPM difference between F̂D,λ

and Fλ. As F̂
(2)
D,λ(t)≥ F

(2)
λ (t),∀t∈R (see Proposition 1), a smaller δD,λ implies a smaller difference

between F̂D,λ and Fλ and δD,λ = 0 implies that F̂D,λ = Fλ.
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Theorem 2. Given a discretization scheme D, 0≤
∑TD−1

s=1 AD,s,λ −
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt≤

δD,λ.

Note that in Definition 3, AASSD replaces true SSD violation
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt in the

definition of ASSD by approximate SSD violation
∑TD−1

s=1 AD,s,λ. Hence, the difference between∑TD−1

s=1 AD,s,λ and
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt is the cause of the difference between ASSD and

AASSD. Theorem 2 shows that the difference between
∑TD−1

s=1 AD,s,λ and
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt

is nonnegative and bounded from above by δD,λ. The nonnegative property is consistent with the

property that AASSD is sufficient for ASSD. The upper bound property implies that the smaller

δD,λ is, the smaller the difference between ASSD and AASSD is.

Corollary 1. When δD,λ → 0,F̂D,λ → Fλ and τ -AASSD→ τ -ASSD.

Corollary 1 states that when the closeness index δD,λ approaches zero, the approximate distribu-

tion F̂D,λ will approach the true distribution Fλ and τ -AASSD will approach τ -ASSD. Corollary 1

shows the convergence of AASSD to ASSD at its limiting case. Next, we will show that refining

discretization scheme will make AASSD closer to ASSD.

Given a discretization scheme D= {d1, d2, ..., dTD}, we define Dr as a refined discretization scheme

of D if D ⊂Dr, that is, Dr contains all discrete points d1, d2, ..., dTD in D and at least one extra

distinct discrete point. More specifically, Dr refines D by dividing some or all return sub-intervals

into multiple smaller sub-intervals.

Proposition 5. Given a discretization scheme D, if Dr is a refined discretization scheme of D,

then the following two statements are true:

(1) δDr,λ ≤ δD,λ;

(2)
∑

ADr,s,λ ≤
∑

AD,s,λ.

The first statement of Proposition 5 indicates that refining the discretization scheme by divid-

ing some or all return sub-intervals into smaller ones will lead to a smaller closeness index, and

therefore make the approximate distribution closer to the true distribution. The second statement
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of Proposition 5 further shows that refining the discretization scheme will make approximate SSD

violation smaller and closer to the true SSD violation, which therefore will make AASSD closer to

ASSD.

Proposition 6. If X dominates Y by τ -AASSD under discretization scheme D, then X dom-

inates Y by τ -AASSD under any refined discretization scheme of D (i.e., Dr).

Proposition 6 states that existing AASSD will be preserved when refining the discretization

scheme. On the other hand, it follows from Proposition 5 that AASSD relationship that does

not exist under D may be identified under the refined discretization scheme Dr. Hence, refining

discretization scheme shall identify more portfolios dominating the benchmark in terms of AASSD

as well as ASSD.

Example 1. (Numerical Example of AASSD). We consider a simple numerical example here

to demonstrate the relationship between AASSD and ASSD. Suppose X and Y are two random

portfolios with random equal-probability investment returns {−0.1,0.1,0.3,0.5} and {0.02,0.04},

respectively. Let F (t) and G(t) denote the probability distribution of X and Y respectively. Their

CDFs and first-order LPMs are shown in Figure 2(a) and 2(b), respectively. The SSD viola-

tion area of X dominating Y is the orange area filled with circles in Figure 2(b) and equals:∫
S2

(
F (2)(t)−G(2)(t)

)
dt= 0.002767. The light blue area filled with slash “/” in Figure 2(b) repre-

sents:
∫
S̄2

(
G(2)(t)−F (2)(t)

)
dt= 0.04327. The existence of SSD violation indicates that X does not

dominates Y by SSD and vice-versa. According to Definition 1, portfolio X dominates portfolio Y

by τ -ASSD if and only if:

τ ≤
∫
S̄2

(
G(2)(t)−F (2)(t)

)
dt∫

S2
(F (2)(t)−G(2)(t))dt

=
0.04327

0.00277
= 15.64.

Next, we show how AASSD works. Consider a discretization scheme of return range D1 =

{−0.1,0.02,0.04,0.5}, which includes all possible realizations of the benchmark portfolio Y as

required by our setting. It can be observed from Figure 2(b) that the approximate first-order LPM

F̂
(2)
D1

(z) (the red dash-dotted line) is always greater than the true function F (2)(z) (the solid blue
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line), which is consistent with Proposition 1. In addition, F̂
(2)
D1

(z) and F (2)(z) takes the same value

when z = 0.5 (upper bound for investment return of X as well as Y), indicating EF̂D,λ
= EFλ

and

V arF̂D,λ
≥ V arFλ

, as shown in Proposition 2. By calculation, the approximate ASSD violation

under D1 equals:

TD1
−1∑

s=1

AD1,s,λ = 0.003087≥
∫
S2

(
F (2)(t)−G(2)(t)

)
dt= 0.002767,

which is shown in Theorem 2. According to the definition of AASSD (Definition 3), X dominates

Y by τ -AASSD if and only if:

τ ≤
V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ

(X))2

2
∑TD−1

s=1 AD,s,λ

+1=
0.081

2 ∗ 0.003087
+1= 14.12.

Note that X dominates Y by AASSD for all τ ≥ 14.12 while ASSD holds for all τ ≥ 15.64. Hence, for

any given value of τ , if AASSD holds, ASSD also holds. But the other direction does not necessarily

hold. This is consistent with Theorem 1.

Next, we show the convergence of AASSD to ASSD. We consider a refined discretization scheme

D2 = {−0.1,0.02,0.04,0.2,0.5}, as shown by the green dotted line in Figure 2(b). Under D2, approx-

imate SSD violation
∑TD2

−1

s=1 AD2,s,λ = 0.0028763 and X dominates Y by τ -AASSD for all τ ≤ 15.08,

both of which become closer to the values under ASSD. When the discretization scheme is further

refined as D3 = {−0.1,0.02,0.04,0.1,0.2,0.3,0.5},
∑TD3

−1

s=1 AD3,s,λ = 0.002767 and X dominates Y

by τ -AASSD for all τ ≤ 15.64, indicating convergence to ASSD.

4. Optimization model and algorithm

In this section, we develop an optimization method for constructing portfolios that dominate a

benchmark portfolio in terms of ASSD based on AASSD. In particular, we focus on the following

problem:

max
λ∈Λ

f(λ)

subject to λ⪰τ−ASSD Y

(3)

where Λ := {λ∈Rn :
∑n

i=1 λi = 1, λi ≥ 0} and f(λ) is the user-defined objective function.
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Figure 2 CDF and first-order LPM of X and Y in Example 1.

To achieve this goal, we first develop optimization models and algorithm to identify the opti-

mal portfolio that dominates the benchmark portfolio in terms of AASSD. An optimal AASSD-

enhanced portfolio is a candidate solution of Problem (3), which dominates the benchmark solution

by ASSD but may not have optimal f(λ). Then we develop a method to calculate the optimal-

ity gap between the obtained candidate solution and the optimal solution of Problem (3). If the

obtained optimality gap does not satisfy optimality tolerance level, then the discretization scheme

will be refined. This three-step procedure will be repeated (i.e., obtain a solution, check if it is

optimal, refine discretization scheme) until an optimal ASSD-enhanced solution is found.

4.1. AASSD-enhanced portfolio optimization

In this section, we develop an approach to solve the AASSD-enhanced portfolio optimization prob-

lem:

max
λ∈Λ

f(λ)

subject to λ⪰τ−AASSD Y

(4)

According to the definition of AASSD (Definition 3), Problem (4) can be transformed into the

following equivalent problem:

max
λ

f(λ) (5a)

s.t.
n∑

i=1

λi = 1 (5b)
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n∑
i=1

λiµi ≥ µy (5c)

2(τ − 1)

TD−1∑
s=1

AD,s,λ ≤ V ar(Y )+ (b−µy)
2 −

n∑
i=1

n∑
j=1

λiλjCov(xi, xj)− (b−
n∑

i=1

λiµi)
2 (5d)

λ≥ 0 (5e)

where µi and µy is the mean ofXi and Y respectively. Constraints (5b) and (5c) are linear. However,

Constraint (5d) is very complex. The right-hand-side of Constraint (5d) is quadratic in terms of

λ. The left-right-hand-side of Constraint (5d) is even more challenging and intractable because

AD,s,λ depends on λ with a complex relationship given by Definition 2, which is neither linear nor

quadratic. Hence, it is impossible to solve this AASSD-enhanced portfolio optimization problem

with off-the-shelf algorithms or tools. To address this issue, we develop a cutting-plane algorithm.

Let S2,s,λ denote the SSD violation area between F̂D,λ(t) and G(t) in the area of [ds, ds+1],

that is, S2,s,λ = {t ∈ [ds, ds+1] : F̂
(2)
D,λ(t)>G(2)(t)} and let S̄2,s,λ = {t ∈ [ds, ds+1] : F̂

(2)
D,λ(t) ≤G(2)(t)}

denote the complementary set of S2,s,λ. Next, we present a theorem which is the foundation of the

cutting-plane algorithm.

Theorem 3. Given a known portfolio λ′, then for all portfolio λ∈Λ and s∈ [1,2, ...., TD − 1]:

AD,s,λ ≥

(
AD,s,λ′ +

∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂

(2)

D,λ′(t)
)
dt

)+

+

(∫
S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

Theorem 3 shows that given a known solution λ′, then a lower bound of approximate SSD

violation AD,s,λ of any portfolio λ can be obtained.

Corollary 2. If S2,s,λ = S2,s,λ′, then

AD,s,λ =

(
AD,s,λ′ +

∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂

(2)

D,λ′(t)
)
dt

)+

+

(∫
S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

.

Next, we show that the lower bound of AD,s,λ given by Theorem 3 can be represented by a

series of linear constraints. As F̂
(2)

D,λ′(t) and G(2)(t) are both linear in return interval [ds, ds+1],

they can intersect at most once in [ds, ds+1] . Without loss of generality we let S2,s,λ′ = (vs, v̄s) and

S̄2,s,λ′ = (cs, c̄s).
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Theorem 4. Given AD,s,λ′, S2,s,λ′ = (vs, v̄s) and S̄2,s,λ′ = (cs, c̄s), inequality:

AD,s,λ ≥

(
AD,s,λ′ +

∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂

(2)

D,λ′(t)
)
dt

)+

+

(∫
S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

is equivalent to the following system of linear constraints:

θs,t ≥ ds −
n∑

i=1

xi,tλi, t= 1, ..., T (6a)

θs+1,t ≥ ds+1 −
n∑

i=1

xi,tλi, t= 1, ..., T (6b)

h1,s ≥AD,s,λ′ +

(
T∑

t=1

ptθs,t (2ds+1 − v̄s − vs)+
T∑

t=1

ptθs+1,t (v̄s + vs − 2ds)

)
v̄s − vs

2(ds+1 − ds)

−
(
F̂

(2)

D,λ′(v̄s)+ F̂
(2)

D,λ′(vs)
) v̄s − vs

2
(6c)

h2,s ≥

(
T∑

t=1

ptθs,t (2ds+1 − c̄s − cs)+
T∑

t=1

ptθs+1,t (c̄s + cs − 2ds)

)
c̄s − cs

2(ds+1 − ds)

−
(
G(2)(c̄s)+G(2)(cs)

) c̄s − cs
2

(6d)

AD,s,λ ≥ h1,s +h2,s (6e)

h1,s, h2,s,AD,s,λ, λ, θs,t, θs+1,t ≥ 0, t= 1, ..., T (6f)

Note AD,s,λ′ , F̂
(2)

D,λ′ and G(2) in (6) are all known constant given that λ′ is known. Theorem 3

and 4 indicate that AD,s,λ (defined by Definition 2) in Constraint (5d) could be relaxed by a

system of linear constraints. Based on this property, we develop a cutting-plane algorithm to solve

the AASSD-enhanced portfolio optimization Problem (5). In this algorithm, we first relax the

problem based on a given portfolio and check whether the optimal solution of the relaxed problem

dominates the benchmark portfolio Y . If yes, then the obtained solution is an optimal solution of

Problem (5). Otherwise, new cuts will be iteratively introduced into the relaxed problem until an

optimal solution is found.

Let λk, k = 0, ...,M, denote an optimal solution of the relaxed problem (also called the mas-

ter problem) in the kth iteration, which are all known in (M + 1)th iteration. Let (vks , v̄
k
s ) and

(cks , c̄
k
s), k = 0, ...,M, denote the area of S2,s,λk and S̄2,s,λk respectively. The relaxed AASSD-

enhanced portfolio optimization problem in (M +1)th iteration is as follows:

max f(λ)
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s.t.
n∑

i=1

λi = 1 (7a)

n∑
i=1

λiµi ≥ µy (7b)

2(τ − 1)

TD−1∑
s=1

AD,s,λ ≤ V ar(Y )+ (b−µy)
2 −

n∑
i=1

n∑
j=1

λiλjCov(xi, xj)− (b−
n∑

i=1

λiµi)
2 (7c)

θs,t ≥ ds −
n∑

i=1

xi,tλi, t= 1, ..., T, and s= 1, ..., TD (7d)

hk
1,s ≥AD,s,λk +

(
T∑

t=1

ptθs,t
(
2ds+1 − v̄ks − vks

)
+

T∑
t=1

ptθs+1,t

(
v̄ks + vks − 2ds

)) v̄ks − vks
2(ds+1 − ds)

−
(
F̂

(2)

D,λ′(v̄
k
s )+ F̂

(2)

D,λ′(v
k
s)
) v̄ks − vks

2
, s= 1, ..., TD − 1, and k= 0, ...,M (7e)

hk
2,s ≥

(
T∑

t=1

ptθs,t
(
2ds+1 − c̄ks − cks

)
+

T∑
t=1

ptθs+1,t

(
c̄ks + cks − 2ds

)) c̄ks − cks
2(ds+1 − ds)

−
(
G(2)(c̄ks)+G(2)(cks)

) c̄ks − cks
2

, s= 1, ..., TD − 1, and k= 0, ...,M (7f)

AD,s,λ ≥ hk
1,s +hk

2,s, s= 1, ..., TD − 1, and k= 0, ...,M (7g)

hk
1,s, h

k
2,s,AD,s,λ, θs,t, λ≥ 0, s= 1, ..., TD − 1, t= 1, ..., T, and k= 0, ...,M (7h)

Constraint (7a) ensures that λ∈Λ. Constraints (7b) and (7c) follow from the definition of AASSD.

Constraints (7d) to (7g) follow from Theorem 4 and relax Problem 5 by relaxing AD,s,λ with a

series of lower bounds corresponding to λk, k = 1, ...,M . Constraints (7h) defines the domain of

decision variables. Note that Problem (7) is a QCP problem with one single convex quadratic

constraint (7c). All other constraints in Problem (7) are linear. This problem is a relaxed problem

of Problem (5). An optimal solution λM+1 of Problem (7) is optimal to Problem (5) if it satisfies the

AASSD constraint. Otherwise, new constraints (6a)-(6f) corresponding to λM+1 for s= 1, ..., TD−1

shall be introduced to Problem (7) to further refine the feasible set. The cutting-plane algorithm

is presented in Algorithm 1.

Two key concerns on Algorithm 1 are: (1) whether this algorithm will be trapped in an endless

loop where subsequent iterations obtain the same optimal solution as the previous iteration, i.e.,

the situation where λM = λM+1; (2) whether updating the master problem in Step 2 could efficiently

reduce the feasible set. We address these concerns in the following. Let λk denote an optimal
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Algorithm 1 The cutting-plane algorithm for AASSD-enhanced portfolio optimization problem

Step 1: Set M = 0 and obtain the initial portfolio λ0 by solving the following relaxed portfolio

optimization problem:

max
λ∈Λ

f(λ)

s.t.
n∑

i=1

λiµi ≥ µy

(8)

Step 2: Check whether λM dominates Y by τ -AASSD.

• If λM is not dominated, update master Problem (7) by adding Constraints (6a)-(6f) for

s= 1, ..., TD − 1 that correspond to λM .

• Otherwise, terminate and return λM .

Step 3: Set M =M +1. Solve updated master Problem (7).

• If the model is feasible, let λM denote an optimal solution to this problem. Go back to

Step 2.

• Otherwise, terminate and return the result that the model is infeasible.

Step 4: Repeat Step 2 and Step 3 until the obtained solution λM dominates Y by τ -AASSD or

the master Problem (7) becomes infeasible.
Remark:
(1) In Setp 1, we assume Problem (8) is feasible without loss of generality.
(2) In Step 2, we set a tolerance value δ≥ 0 for dominance condition and check whether λM dominates Y by τ -AASSD by the
following condition:

2(τ − 1)

TD−1∑
s=1

AD,s,λ ≤ (1+ δ)

(
V ar(Y )+ (b−µy)

2 −
n∑

i=1

n∑
j=1

λiλjCov(xi, xj)− (b−
n∑

i=1

λiµi)
2

)

solution of the master problem in the kth iteration of Algorithm 1. Let Ω(λ,λk) = {λ : S2,s,λ =

S2,s,λk , s= 1,2, ..., TD − 1}. To be specific, Ω(λ,λk) is the set of portfolios whose approximate SSD

violation area is the same as that of λk.

Proposition 7. The following statements are true for Algorithm 1:

(1) If λk+1 ∈Ω(λ,λk), then λk+1 is an optimal solution of AASSD-enhanced portfolio optimization

Problem (5). On the other hand, if λk+1 is not an optimal solution of Problem (5), then

λk+1 /∈Ω(λ,λk).
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(2) In (k+ 1)th iteration, all portfolios λ ∈ Ω(λ,λk) which do not dominate Y by τ -AASSD are

excluded from the feasible set of the master Problem (7).

The first statement of Proposition 7 demonstrates that the obtained solution in (k+1)th iteration

will lie outside Ω(λ,λk) if it is not an optimal solution of AASSD-enhanced portfolio optimization

problem. As λk is in Ω(λ,λk) and does not satisfy dominance condition if the algorithm does not

terminate at kth iteration, λk+1 will be different from λk as well as λn,∀n< k. This implies that the

solution found in each iteration will be different from all solutions found in preceding iterations.

Hence, additional cuts introduced to the master problem in each iteration will also be different from

all cuts introduced before. The second statement of Proposition 7 indicates that in each iteration,

new introduced cuts shall efficiently refine the feasible region of Problem (7) and make it closer to

the feasible region of Problem (5) by excluding at least an extra set of portfolios. These facts show

that Algorithm 1 does not fall into an infinite loop and guarantee that the solution obtained via

this algorithm gradually converges to the desired optimal portfolio.

AASSD-enhanced portfolio optimization model identifies an optimal solution that dominates

the benchmark solution by AASSD. As AASSD is a sufficient condition of ASSD (Theorem 1),

this solution is a candidate solution of the ASSD-enhanced portfolio optimization problem (3). In

particular, it dominates the benchmark by ASSD but may not have the best objective among all

ASSD-enhanced solutions.

Example 2. (Example of AASSD-enhanced portfolio optimization.) We consider a small port-

folio optimization problem with AASSD constraint and an objective function that maximizes

expected return. The distributions of three base assets with investment return (X1,X2,X3) and

a benchmark asset Y are shown in Table 1. To be specific, base assets X1 and X2 are random

variables and X3 are risk-free with deterministic return rate. It can be easily find that E(X1) >

E(X2)> E(X3) while V ar(X1)> V ar(X2)> V ar(X3), indicating declining level of return as well

as risk. The benchmark asset Y has two possible returns 0.02 and 0.1 with equal probability in

Scenario 1 and 2.
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Table 1 Distributions of investment return of the base assets and benchmark.

Scenario X1 X2 X3 Probability Scenario Y Probability

1 -0.2 -0.1 0.06 0.25 1 0.02 0.5

2 -0.2 0.3 0.06 0.25 2 0.1 0.5

3 0.5 -0.1 0.06 0.25

4 0.5 0.3 0.06 0.25

We consider the case where τ = 6 and the discretization scheme is D =

{−0.2,−0.1,0.02,0.06,0.1,0.3,0.5}, which is simply set to include all possible realizations of

the base assets and benchmark. Next, we show how to apply Algorithm 1 to find an optimal

AASSD-enhanced portfolio.

• Step 1: Solve Problem (8) with f(λ) =
∑3

i=1 λiµi and we obtain a candidate solution λ0 =

[1.0,0.0,0.0].

• Step 2: Check whether λ0 dominates Y by τ -AASSD. By calculation, we find that R∗ =

V ar(Y )+(b−EG(Y ))2−V ar(X)−(b−EF
λ0

(X))2

2
∑TD−1

s=1 AD,s,λ0

+ 1 = 0.25 < 6, indicating that λ0 does not satisfy the

AASSD Constraint (5d) and does not dominate the benchmark Y 1. Hence, we update master

Problem (7) by adding Constraints (6a)-(6f) corresponding to λ0 for all s= 1,2, ...,6.

• Step 3: Solve the updated master Problem (7) and obtain a new candidate solution λ1 =

(0.2341,0.3466,0.4193).

• Step 4: Repeat step 2 and 3 until termination. The obtained solution and its performance in

each iteration are reported in Table 2. In this problem Algorithm 1 terminates at the second

iteration and the obtained optimal AASSD-enhanced solution is (0.2231,0.3636,0.4133).

4.2. Iterative Method for ASSD-enhanced portfolio optimization

In this section, we first introduce how to quantify the optimality gap between an obtained candidate

solution (i.e., an obtained optimal AASSD-enhanced portfolio) and an optimal ASSD-enhanced

portfolio. Next, we develop a method for identifying an optimal ASSD-enhanced portfolio based

on these results.

1 In this example, we define R∗ =
V ar(Y )+(b−EG(Y ))2−V ar(X)−(b−EFλ

(X))2

2
∑TD−1

s=1 AD,s,λ

+1, which is used to determine whether the

obtained solution dominates the benchmark by τ -AASSD.
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Table 2 Solution update of Algorithm 1 in Example 2

Iteration Solution Objective Value R∗

Initialized (1.0, 0.0, 0.0) 0.1500 0.25

1st (0.2341, 0.3466, 0.4193) 0.0949 5.92

2ed (0.2231, 0.3636, 0.4133) 0.0946 6.05

Let δD := max{δD,λ,∀λ ∈ Λ} denote the maximal closeness index among all valid portfolios. A

necessary condition of ASSD could be established based on δD, which is presented as follows.

Theorem 5. Given
∑TD−1

s=1 AD,s,λ − δD > 0, if X dominates Y by τ -ASSD, then:

τ ≤
V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ

(X))2

2(
∑TD−1

s=1 AD,s,λ − δD)
+ 1. (9)

Theorem 5 present a necessary condition of ASSD based on AD,s,λ and δD. Incorporating this

necessary condition into the portfolio optimization problem will lead to a feasible set containing

all portfolios that dominate the benchmark in terms of ASSD. Hence, an optimal portfolio that

satisfies this necessary condition has better or equivalent performance than all ASSD-enhanced

portfolios and provides an upper bound for the optimal objective value of the ASSD-enhanced

portfolio optimization problem. Based on this result, optimality gap between the candidate and

optimal ASSD-enhanced solution could be calculated. To achieve this goal, we first develop a QP

model to identify the value of δD.

Proposition 8. Given a discretization scheme D,

δD =max
λ,θ

TD−1∑
s=1

(
T∑

t=1

ptθs,t +
T∑

t=1

ptθs+1,t

)
ds+1 − ds

2
− 1

2

(
n∑

i=1

n∑
j=1

λiλjCov(xi, xj)+ (b−
n∑

i=1

λiµi)
2

)

(10a)

s.t.
n∑

i=1

λi = 1 (10b)

n∑
i=1

λiµi ≥ µy (10c)

θs,t = {ds −
n∑

i=1

xi,tλi}+, s= 1, ..., TD and t= 1, ..., T (10d)

λ≥ 0 (10e)
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where {z}+ =max{z,0}.

Proposition 8 shows that δD equals optimal value of objective function (10a). With δD obtained, an

upper bound of ASSD-enhanced portfolio could be identified based on Theorem 5 via the following

optimization problem2.

max
λ

f(λ) (11a)

s.t.
n∑

i=1

λi = 1 (11b)

n∑
i=1

λiµi ≥ µy (11c)

2(τ − 1)

(
TD−1∑
s=1

AD,s,λ − δd

)
≤ V ar(Y )+ (b−µy)

2 −
n∑

i=1

n∑
j=1

λiλjCov(xi, xj)− (b−
n∑

i=1

λiµi)
2

(11d)

λ≥ 0 (11e)

Problem (11) identifies an optimal portfolio that satisfies the necessary condition of ASSD presented

in Theorem 5. Constraint (11d) is a simple equivalent transformation of Condition (9). Note that

Problem (11) is almost the same as Problem (5) except that Constraint (11d) contains an extra

constant δD, whose value could be calculated by solving Problem (10). Hence, Problem (11) could

also be solved by the cutting-plane Algorithm 1.

Let λU denote an optimal solution of Problem (11). According to the above analysis, this solution

has better or equivalent performance than all portfolios that dominates the benchmark portfolio

by ASSD and could be used as an upper bound for the optimal objective value of ASSD-enhanced

optimization problem (3). Hence, given a candidate solution λ for problem (3), its optimality gap

could be estimated by:

gap(λ) = f(λU)− f(λ).

2 Without loss of generality, we assume
∑TD−1

s=1 AD,s,λ−δD > 0. This assumption could always be achieved by refining

the discretization scheme finely enough.
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Based on all of the above results, we develop an iterative method for solving Problem (3) and

identifying an optimal portfolio that dominates the benchmark in terms of ASSD. Given a user-

defined value of τ for ASSD, the steps of this method are as follows:

Start. Initialization: define an initialized discretization scheme D of the return range.

Step 1. Solve the τ -AASSD enhanced portfolio optimization problem (5) under discretization

scheme D with Algorithm 1 to obtain a candidate solution λ∗ for τ -ASSD enhanced

optimization problem.

Step 2. Check whether the obtained candidate solution is optimal: solve Problem (10) and (11)

and calculate the optimality gap gap(λ∗).

• If the optimality gap is smaller than the optimality tolerance, then terminate and

return the obtained candidate solution λ∗ as the optimal solution.

• Otherwise, go to the next step.

Step 3. Refine the discretization scheme D and go back to the first step to update the candidate

solution under the refined discretization scheme. Repeat the process until an optimal

ASSD-enhanced portfolio is found3.

The main contribution of this method is that it provides for the first time a feasible and tractable

way to solve a portfolio optimization problem with ASSD constraints. Due to the complex formu-

lation of ASSD, the analytical challenge of optimization with ASSD has been recognized (Arvanitis

et al. 2021), and has prevented the application of ASSD in portfolio optimization as well as other

areas of optimizations ever since its introduction in 2002 (Leshno and Levy 2002). Our method

overcomes this challenge and transforms the problem into multiple iterative steps mainly involving

QP and QCP, both of which could be solved by off-the-shelf solvers. Based on results about conver-

gence of AASSD we proved in Section 3, it is theoretically guaranteed that a solution generated by

our method improves and converges to an optimal ASSD-enhanced portfolio. Although this paper

3 More details about how to apply this method is shown in Algorithm 2 in Appendix B. We adopt a naive rule in our

work but other different refinement rules may be used. Specific study may be done in future on finding more efficient

refinement rules.
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(a) Asset allocation of solutions (b) Solution performance

Figure 3 Solution update of the iterative method in Example 3

focuses on portfolio optimization, to the best of our knowledge, this is the first attempt to tackle

an optimization problem with ASSD constraints, and the proposed approach could be tailored and

extended to other problems.

Example 3. (Example 2 continued: ASSD-enhanced portfolio optimization.) We continue to

study the problem considered in Example 2 and show how to apply our iterative method to identify

an optimal ASSD-enhanced portfolio. First, we consider the case where τ = 6 and set the initial-

ized discretization scheme D0 = {−0.2,−0.1,0.02,0.06,0.1,0.3,0.5}. Detailed steps of our iterative

method are presented as follows.

• Identify candidate solution. As shown in Example 2, we apply Algorithm 1 to identify an

optimal AASSD-enhanced portfolio λ∗0 = (0.2231,0.3636,0.4133) with expected return 0.0946.

This solution is a candidate optimal solution that dominates Y by ASSD with τ = 6 but it may

not be optimal.

• Check optimality. Next, we check whether λ∗0 is optimal by calculating the optimality gap

of λ∗0. Solve Problem (11) with δD0 obtained by solving Problem (10). The obtained optimal

objective value of Problem (11) is f(λU) = 0.1326 and the optimality gap equals gap(λ∗0) =

0.1326− 0.0946 = 0.0379. As the gap is greater than our optimality tolerance (set to be 0.001

here), λ∗0 is not optimal.
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(a) Asset allocation (b) Expected value and standard deviation of return

Figure 4 Solutions of ASSD-enhanced portfolio optimization problems with different values of τ

• Refine discretization scheme and update candidate solution. Here we simply refine

D0 by adding extra points
ds+ds+1

2
for all ds ∈ D0 and the refined scheme D1 =

{−0.2,−0.15,−0.1,−0.04,0.02,0.04,0.06,0.08,0.1,0.2,0.3,0.4,0.5}. Again we apply Algorithm 1

under D1 to find an updated candidate solution λ∗1 = (0.2403,0.3909,0.3688).

• Go back to the step of checking optimality step. Repeat the processes until the gap of the

obtained solution is smaller than the tolerance level. The solution and its performance in each

iteration are shown in Figure 3. It can be found that the optimality gap of the obtained solution

declined quickly as the number of iterations increases and our method identifies an optimal

ASSD-enhanced portfolio (0.2581,0.3816,0.3604) with expected return 0.0985 in the 4th itera-

tion.

Next, we investigate the effect of value of τ . Figure 4 show that as τ increase, τ -ASSD enhanced

strategy invests smaller proportion in asset with high risk and high return (i.e., X1) and assigns

higher proportion in risk-free asset (i.e., X3), leading to lower expected return and variance. This

observation is consistent with the implication of ASSD that a larger τ implies a larger set of utility

functions to be considered and higher level of conservatism (or risk-aversion). When τ becomes

extremely large, solution and performance of ASSD-enhanced strategy converge to those of SSD-



28

Figure 5 Expected utility of ASSD-enhanced portfolio with τ approaches 1 and MV-enhanced portfolio.

enhanced strategy. This is because when τ approaches infinity, U∗
2 (τ) contains utility functions of

all non-satiable and risk averse decision makers and therefore ASSD approaches SSD.

We further study another special case when τ approaches one. In this case, U∗
2 (τ) only contains

quadratic utility function, which is known to be an important sufficient condition for MV model.

However, as it is shown in Figure 4, the optimal portfolios based on MV and ASSD strategy with τ

approaches one4 are quite different from each other. Specifically, the optimal solution of MV model

is (0.0902,0.1227,0.787) while it is (0.6848,0.3152,0.0) for ASSD strategy with τ = 1.0001. The

former has smaller expected return and also smaller variance (0.073 and 0.0016) than the latter

(0.134 and 0.0614 respectively). The difference between these two solutions could be explained by

the fact that quadratic utility is sufficient but not necessary for the use of MV analysis in practice

and “the necessary and sufficient condition for the practical use of mean–variance analysis is that

a careful choice from a mean–variance efficient frontier will approximately maximize expected

utility for a wide variety of concave (risk-averse) utility functions”, as stated by Markowitz (2014).

4 As τ is defined to be in the range of (1,∞), we take τ = 1.0001 to represent τ approaches 1 in this paper.
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Compared with the benchmark asset, portfolio optimization models based on MV and ASSD with

τ approaches 1 generate two different solutions belonging to MV efficient frontier. Choice between

these two solutions depends on decision maker’s preference. We compare the expected utility of

these two solutions by considering a quadratic utility function u(x) = x− bx2 with b∈ [0,1], which

guarantees that the utility function is non-decreasing and concave in the range of return outcomes.

Figure 5 shows that both portfolios have higher expected utility than the benchmark across all

quadratic utility functions. However, portfolio generated by ASSD with τ approaches one has

larger expected utility than MV portfolio for b smaller than 0.85 and the opposite for b greater

than 0.85. This indicates that quadratic-utility decision makers with low or moderate degree of

risk-aversion shall prefer ASSD-enhanced portfolio but these with high degree of risk-aversion will

prefer MV-enhanced portfolio.

5. Application

We implement our optimization approach on the combination of the Fama and French 49 industry

portfolios, which has been extensively studied in the literature (e.g., Hodder et al. (2015), Post

and Kopa (2017), Liesiö et al. (2020)). We use average value weighted daily return data retrieved

from the data library of Kenneth French5 and our analysis commences from January 1927. The

benchmark reflects the stock market return, based on the value-weighted return of all CRSP firms

incorporated in the US and listed on the NYSE, AMEX, or NASDAQ, also available through

Kenneth French’s online library. Our study involves a comparison of portfolio performances, partic-

ularly portfolios enhanced by τ -ASSD against those enhanced by other criteria, including MV, SSD,

superconvex TSD (SCTSD) proposed by Post and Kopa (2017), and stochastic bounding (SBK)

methods using three distinct reference sets (K2, K3, and K4) as detailed in Arvanitis et al. (2021).

Additionally, we explore heuristic rules that involve purchasing an equal-weighted combination of

5, 10, and 15 industries with the highest average returns among the 49 industries.

Motivated by existing SD studies on momentum strategies (Post and Kopa 2017, Liesiö et al.

2020), a standard buy-hold trading strategy is employed with a 12-month formation period and

5 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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a 3-month holding period. No short positions are allowed. Under this strategy, the portfolio is

constructed through optimization with 12-month historical return data and rebalanced after 3

months. The objective is to maximize the expected return with constraints that guarantee the

enhanced portfolio dominates the benchmark by ASSD and other criteria (MV, SSD, SCTSD and

SBK), respectively. We consider 377 overlapping formation periods from January 1927 to the end

of 2021 and invest in base assets with the above investment strategies from January 1928 to March

2022 (for more than 94 years). We estimate the empirical joint return distribution using daily

returns within each formation period and subsequently solve for the optimal portfolio during each

period.

The algorithms are coded in Python and solved by Gurobi 9.1 running on a personal computer

with 11th Gen Intel(R) Core(TM) i7-11700K @ 3.60GHz and 64.0 GB RAM. In our application,

we adopt a naive approach for discretization scheme refinement in a way that divides all return

sub-intervals in half. Computations for all optimization strategies are done based on brute-force use

of Gurobi solver without further speeding up using more advanced algorithms (e.g., non-smooth

convex optimization algorithms). On average the ASSD-enhanced optimization problem could be

solved in about 2 minutes and 3 iterations. The average number of iterations of the cutting-plane

Algorithm 1 is also less than 3.

5.1. Selection of τ

When implementing the proposed algorithm, an important task is to identify the value of τ , as

it represents how small a violation of the SD rules would be allowed by decision makers. In the

literature, the methods of identifying τ can be broadly categorized into two groups. The first group

of methods use the individual selection data between two options and choose τ such that the

considered dominance exists for most of the decision makers (Bali et al. 2013, Levy 2016, Lee et al.

2018, Bi and Zhu 2022, Han et al. 2023, Huang et al. 2021). However, due to differing definitions

of ASSD in these studies compared to our framework, their estimated τ values cannot be directly

applied to our model. The second approach for determining τ relies solely on historical data. For
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example, Post (2015) connects τ with the relative risk aversion (RRA) and the relative range b/a

([a, b] is the range of the historical returns). This method leverages the extensive literature on RRA

coefficients to derive the critical value of τ . However, this approach is not applicable to our case

since it requires 0<a< b and otherwise yielding τ value below 1.

In this study, we develop an intuitive data-driven selection rule for τ . In specific, we divide each

formation period into two parts: a training period consisting of the first 9-month data and a testing

period consisting of the last 3-month data. Based on the training dataset, the ASSD portfolio

optimization is solved for each value of τ ∈ {1.0001,2,4,6,8,10,12,16,20,30,50,100,500,1000}. The

optimal τ is then selected such that its enhanced portfolio achieves best performance in terms

of a certain criterion in the testing dataset, e.g., the average return, the Sharpe ratio, or the

certainty equivalent. This selected τ is then applied to the whole formation period which yields

the optimal portfolio for the subsequent holding period. Table 3 shows the percentage of selected

τ ’s by the criteria average return, Sharpe ratio and certainty equivalent for constant risk aversion

utility functions with RAA equal to 5. As seen, the overall selection proportions of τ are quite

consistent by different criteria. The most frequent choice is τ = 1.0001, indicating the preference

for solutions situated within the MV efficient frontier. Note that the optimal portfolios based on

MV and ASSD strategy with τ approaching one could differ significantly, as discussed in Figure 5.

On the other hand, τ = 1000 is occasionally selected, implying that in such instances, the ASSD-

enhanced portfolio is anticipated to perform similarly to the SSD-enhanced portfolio. Nevertheless,

the moderate values of τ (τ ∈ [2,500]) account for approximately half of all the selected τ values,

which underlines the distinctive value of using the ASSD-enhanced portfolio optimization.

5.2. Daily performance summary

In this section, we evaluate the performance of portfolios enhanced by the strategies under consider-

ation. Table 4 and Table 5 show the in-sample and out-of-sample performances of ASSD-enhanced

portfolios using three different selected τ values, along with portfolios enhanced by MV, SSD,

SBK, SCTSD, and equal-weighted heuristics. We specifically evaluate the performances of these
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Table 3 Percentage of different selected τ values

1.0001 2 4 6 8 10 12 16 20 30 50 100 500 1000

τ -Mean 32.6 4.5 4.5 3.2 3.4 1.1 2.9 1.3 2.1 2.1 4.2 10.1 11.7 16.2

τ -Sharpe 39.5 5.6 6.4 4.8 2.9 2.7 1.6 1.9 3.2 2.9 3.2 6.1 10.6 8.8

τ -CE5 39.3 5.8 6.4 3.4 3.2 1.9 2.1 2.1 1.3 2.1 2.4 8.8 10.3 10.9

Notes: Shown are the percentage of different selected τ values based on the 377 formation period
data. The first row represents the list of τ values. The last three rows represent the percentage
of each τ by the criteria including daily average return, Sharpe ratio and certainty equivalent for
constant risk aversion utility functions with degree of relative risk aversion 5 (CE5), respectively.

enhanced portfolios concerning excess returns over the risk-free Treasury bill (T-bill), and a series

of performance metrics is presented. The in-sample performances involve the evaluation of port-

folios using return data within the formation period. The reported values of performance metrics

are the averages across 377 overlapping formation periods. Moreover, out-of-sample performance

measures are computed using return data spanning from 1928 to 2022 across 377 holding periods.

Table 4 Daily in-sample performance based on excess over T-bill

Mean Std VaR CVaR Skew Sharpe Sortino CE2 CE5 CE10

MKT 0.0305 0.9457 -1.4881 -2.2376 -0.3487 0.0488 0.0461 0.0191 0.0018 -0.0278

EW5 0.1406 1.1568 -1.7141 -2.6065 -0.3420 0.1359 0.2165 0.1243 0.0997 0.0575

EW10 0.1147 1.0413 -1.5761 -2.4049 -0.4339 0.1262 0.1976 0.1016 0.0816 0.0474

EW15 0.0984 0.9958 -1.5241 -2.3287 -0.4644 0.1159 0.1798 0.0863 0.0680 0.0365

MV 0.1275 0.9359 -1.3497 -2.0868 -0.3245 0.1627 0.2646 0.1164 0.0997 0.0713

SSD 0.1297 0.9714 -1.4010 -2.0972 -0.1120 0.1550 0.2585 0.1181 0.1007 0.0712

SBK2 0.1278 0.9306 -1.3429 -2.0263 -0.1660 0.1577 0.2622 0.1173 0.1016 0.0749

SBK3 0.1253 0.8999 -1.2959 -2.0095 -0.3340 0.1631 0.2658 0.1154 0.1003 0.0746

SBK4 0.1223 0.8422 -1.2042 -1.8841 -0.3479 0.1610 0.2640 0.1139 0.1012 0.0797

SCTSD 0.1318 0.9886 -1.4321 -2.1346 -0.0912 0.1552 0.2587 0.1197 0.1016 0.0710

ASSD (τ -Mean) 0.1492 1.2195 -1.7593 -2.6422 -0.0755 0.1430 0.2355 0.1307 0.1027 0.0550

ASSD (τ -Sharpe) 0.1587 1.3026 -1.8778 -2.8060 -0.0600 0.1353 0.2205 0.1379 0.1067 0.0537

ASSD (τ -CE5) 0.1569 1.3025 -1.8736 -2.8200 -0.0605 0.1401 0.2304 0.1355 0.1031 0.0479

Notes: Shown are the average of performance measures across 377 formation periods for portfolios enhanced by different criteria. MKT represents
the benchmark stock market, EWm represents equal-weighted combination of Top-m industries, and SBKm represents the stochastic bounding
with reference set Km. In terms of the performance measures, Mean and Std are mean and standard deviation of daily excess return over T-bill.
VaR is 5% value at risk, which is the maximum possible loss when 5% percent of the left tail of the distribution is ignored. CVaR is 5% conditional
value at risk, which equals the expected return on condition that the realized return belongs to the worst 5% of the distribution. Skew represents
the skewness of daily excess return over T-bill. Sharpe ratio and Sortino ratio are risk-adjusted performance measures. The last three columns
present the certainty equivalent for constant risk aversion utility functions with degree of relative risk aversion equal 2, 5 and 10 respectively.
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Table 5 Daily out-of-sample performance based on excess over T-bill

Strategy Mean Std VaR CVaR Skew Sharpe Sortino CE2 CE5 CE10

MKT 0.0298 0.9067 -1.4004 -2.2893 -0.2214 0.0642 0.1210 0.0185 0.0014 -0.0275

EW5 0.0381 0.9700 -1.4990 -2.4262 -0.1730 0.0680 0.1342 0.0258 0.0072 -0.0242

EW10 0.0361 0.9289 -1.4381 -2.3493 -0.2441 0.0712 0.1397 0.0246 0.0072 -0.0223

EW15 0.0351 0.9180 -1.4166 -2.3354 -0.2714 0.0713 0.1398 0.0237 0.0064 -0.0229

MV 0.0524 0.9668 -1.4801 -2.4674 -0.2796 0.0842 0.1617 0.0400 0.0212 -0.0109

SSD 0.0531 1.0014 -1.5172 -2.5336 -0.2106 0.0796 0.1543 0.0401 0.0204 -0.0133

SBK2 0.0526 0.9670 -1.4764 -2.4564 -0.2246 0.0819 0.1595 0.0406 0.0224 -0.0088

SBK3 0.0510 0.9363 -1.4424 -2.3979 -0.2821 0.0853 0.1635 0.0395 0.0221 -0.0078

SBK4 0.0485 0.8928 -1.3747 -2.3032 -0.2826 0.0876 0.1667 0.0380 0.0221 -0.0053

SCTSD 0.0532 1.0174 -1.5432 -2.5721 -0.2076 0.0786 0.1526 0.0397 0.0193 -0.0152

ASSD (τ -Mean) 0.0573 1.2367 -1.8677 -3.1031 -0.1458 0.0731 0.1422 0.0368 0.0059 -0.0471

ASSD (τ -Sharpe) 0.0593 1.3096 -1.9795 -3.2730 -0.1119 0.0683 0.1341 0.0373 0.0039 -0.0528

ASSD (τ -CE5) 0.0581 1.3051 -1.9700 -3.2703 -0.1383 0.0692 0.1351 0.0356 0.0015 -0.0567

Notes: Shown are the performance measures of out-of-sample daily excess return over free-risk T-bill using data from January 1928 to March
2022 for portfolios enhanced by different criteria. MKT represents the benchmark stock market, EWm represents equal-weighted combination of
Top-m industries, and SBKm represents the stochastic bounding with reference set Km. In terms of the performance measures, Mean and Std are
mean and standard deviation of daily excess return over T-bill. VaR is 5% value at risk, which is the maximum possible loss when 5% percent of
the left tail of the distribution is ignored. CVaR is 5% conditional value at risk, which equals the expected return on condition that the realized
return belongs to the worst 5% of the distribution. Skew represents the skewness of daily excess return over T-bill. Sharpe ratio and Sortino ratio
are risk-adjusted performance measures. The last three columns present the certainty equivalent for constant risk aversion utility functions with
degree of relative risk aversion equal 2, 5 and 10 respectively.

In the formation periods (see Table 4), the ASSD strategies stand out with notable characteristics

in comparison to existing strategies. They show higher mean returns, accompanied by increased

volatility as reflected by elevated standard deviations. Furthermore, the ASSD strategies generally

present higher 5% value at risk (VaR) and conditional value at risk (CVaR) compared to other

strategies, indicating a heightened likelihood of encountering more substantial losses during extreme

market downturns. This pattern remains consistent when observed across holding periods (see

Table 5). Among the three ASSD procedures, the ASSD strategy with optimized τ based on the

Sharpe ratio exhibits larger means, both in-sample and out-of-sample.
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To further compare the risk-return performances of portfolios, we present several commonly used

risk-adjusted performance measures in Table 4 and Table 5: Sharpe ratio and Sortino ratio6. We

find that while the ASSD strategies are generally comparable to the heuristic approaches (EW5,

EW10 and EW15), they fall short when compared to strategies like MV, SSD, SBK and SCTSD

across both in-sample and out-of-sample assessments. This discrepancy in performance metrics is

crucial as it signifies potential differences in risk-return trade-offs between the ASSD and the other

strategies. The lower Sharpe and Sortino ratios for ASSD portfolios indicate that they might offer

relatively lower returns per unit of risk or fail to adequately manage downside risk compared to

these alternative strategies.

Another important measure for assessing risk-adjusted performance is the certainty equivalent

(CE), indicating the specific return level that provides the same expected utility as a risky portfolio.

Here, we calculate CE using constant RRA utility functions, considering RRA values of 2, 5, and 10.

At lower levels of risk aversion (CE2 and CE5), the ASSD strategies demonstrate higher certainty

equivalent values in-sample. However, when evaluating out-of-sample CE5 and CE10, the ASSD

strategies generally exhibit poorer performance compared to alternative strategies. This disparity

between in-sample and out-of-sample CE values for ASSD strategies suggests that while they might

have offered superior utility for risk-averse investors in historical data, their performance weakens

when assessed using new data, particularly at higher levels of risk aversion. Notably, the out-of-

sample CE values of all the considered portfolios at the RRA of 10 are negative, indicating that

extremely risk-averse decision-makers are inclined to avoid the risky excess return provided by the

enhanced portfolios.

The aforementioned analysis highlights the importance of evaluating ASSD-enhanced portfolios

in terms of the excess over T-bill, taking into account both the potential for higher returns and the

associated higher risks. On the other hand, when evaluating investment strategies, exploring their

6 Sharpe ratio and Sortino ratio measure the expected excess return of a portfolio over a risk-free asset per unit of

risk, using standard deviation and downside deviation as the measure of risk respectively. We adopt the one-month

Treasury bill rate (from Ibbotson Associates) as risk-free rate.



35

performance in terms of excess returns over the benchmark, which in this context is the stock mar-

ket return, becomes important. As demonstrated in Table 6, portfolios optimized using ASSD not

only showcase increased mean returns but also demonstrate superior risk-adjusted performance,

as evidenced by improved information and modified Sortino ratios akin to the Sharpe and Sortino

ratios in the case of excess over T-bill. This outcome could be attributed to the ASSD approach,

particularly when incorporating a significant proportion of moderate τ values, thereby imposing

relatively looser constraints over the benchmark in the optimization process. Consequently, opti-

mized portfolios might better encapsulate the underlying dynamics of the market. This argument

is also partially supported by the diminishing performance of the stochastic bounding strategies as

the reference set expands (from K2 to K4). In practical investment scenarios, individual preferences

for distinct portfolios may vary based on investors’ risk tolerance levels, with higher risk-tolerant

investors leaning towards market-based excess returns, while more risk-averse investors might find

T-bill-based excess returns more aligned with their investment goals and risk tolerance thresholds.

5.3. Further investigation of out-of-sample performance

We will delve deeper into the out-of-sample performance, a more practical consideration for

investors. Figure 6 illustrates the cumulative performance of the enhanced portfolios by strategies

including equal-weighted, MV, SBK, SSD, SCTSC, and ASSD, throughout the holding period from

January 1928 to March 2022. To ensure clarity, among the equal-weighted, SBK, and ASSD strate-

gies, we depict EW5, SBK4, and ASSD (τ -Sharpe) as they achieve the highest cumulative values.

As seen, strategies employing ASSD, SCTSD, SSD, and MV exhibit significant outperformance

compared to SBK, EW, and the benchmark. By March 2022, the ASSD strategy accumulates a

value approximately 406.9 times higher than the benchmark, emphasizing the considerable poten-

tial of these advanced portfolio optimization approaches. When comparing ASSD, SCTSD, SSD,

and MV, the ASSD strategy displays higher volatility in its performance trajectory. Initially lag-

ging behind other criteria before 1943, it indicates a slower start or potentially less effectiveness

during that period. Between 1943 and 1998, the ASSD strategy closely intersects and competes
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Table 6 Daily out-of-sample performance based on excess over benchmark

Strategy Mean Std VaR CVaR Skew Information Sortino CE2 CE5 CE10

EW5 0.0083 0.4466 -0.6808 -1.0829 -0.0143 -0.0144 -0.0010 0.0058 0.0020 -0.0044

EW10 0.0063 0.3347 -0.5165 -0.8097 -0.0149 -0.0267 -0.0052 0.0049 0.0028 -0.0007

EW15 0.0053 0.2894 -0.4432 -0.7056 -0.0268 -0.0348 -0.0074 0.0042 0.0026 0.0000

MV 0.0226 0.5869 -0.9026 -1.4377 -0.0642 0.0161 0.0241 0.0177 0.0105 -0.0018

SSD 0.0233 0.6210 -0.9415 -1.5126 -0.0414 0.0154 0.0253 0.0180 0.0101 -0.0034

SBK2 0.0228 0.5843 -0.8824 -1.4330 -0.0688 0.0158 0.0248 0.0184 0.0117 0.0005

SBK3 0.0212 0.5511 -0.8417 -1.3612 -0.0893 0.0148 0.0211 0.0171 0.0110 0.0008

SBK4 0.0187 0.5766 -0.8925 -1.4346 -0.0985 0.0083 0.0124 0.0143 0.0076 -0.0036

SCTSD 0.0234 0.6424 -0.9726 -1.5670 -0.0333 0.0155 0.0256 0.0176 0.0090 -0.0057

ASSD (τ -Mean) 0.0275 0.8600 -1.2932 -2.0795 0.0455 0.0187 0.0333 0.0164 -0.0004 -0.0285

ASSD (τ -Sharpe) 0.0295 0.9339 -1.4115 -2.2626 0.0596 0.0166 0.0335 0.0174 -0.0009 -0.0315

ASSD (τ -CE5) 0.0283 0.9279 -1.3967 -2.2441 0.0673 0.0196 0.0341 0.0157 -0.0033 -0.0353

Notes: Shown are the performance measures of out-of-sample daily excess return over benchmark using data from January 1928 to March 2022 for
portfolios enhanced by different criteria. MKT represents the benchmark stock market, EWm represents equal-weighted combination of Top-m industries,
and SBKm represents the stochastic bounding with reference set Km. In terms of the performance measures, Mean and Std are mean and standard
deviation of daily excess return over the T-bill. VaR is 5% value at risk, which is the maximum possible loss when 5% percent of the left tail of the
distribution is ignored. CVaR is 5% conditional value at risk, which equals the expected return on condition that the realized return belongs to the
worst 5% of the distribution. Skew represents the skewness of daily excess return over the benchmark. Information ratio and modified Sortino ratio are
risk-adjusted performance measures. The last three columns present the certainty equivalent for constant risk aversion utility functions with degree of
relative risk aversion equal 2, 5 and 10 respectively.

with other strategies, demonstrating a phase of comparable performance and convergence. After

1998, the ASSD strategy consistently outperforms its counterparts, demonstrating sustained supe-

rior performance. By the end of March 2022, the ASSD-enhanced portfolio is at least 1.5 times

more valuable than alternative portfolios.

Some other noteworthy out-of-sample performance measures are presented in Figure 7. Fig-

ure 7(a) displays the box plots representing the daily excess returns over free T-bill across differ-

ent strategies. The return distributions appear to be symmetric overall, with the ASSD strategy

exhibiting larger volatilities, aligning with our earlier observations. Moreover, Figure 7(b) illus-

trates the maximum drawdown during the out-of-sample period. The ASSD strategy experiences

a smaller maximum drawdown compared to equal-weighted strategies but larger than other alter-

natives, further confirming the increased volatility of the ASSD-enhanced portfolios. Additionally,

Figures 7(c) and 7(d) showcase the spreads of the number of industries and turnover across 377
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Figure 6 The solid black line represents the cumulative value of 1 unit of fund invested in the benchmark

portfolio from January 1928. Additional lines denote portfolios employing various momentum-based strategies,

including equal-weighted (EW), MV, SBK, SSD, SCTSD, and ASSD. Among the equal-weighted, SBK, and

ASSD strategies, the graph highlights EW5, SBK4, and ASSD (τ -Sharpe) due to their achievement of the highest

cumulative values. The graph is presented using a logarithmic scale.

out-of-sample periods. It is evident that the ASSD-enhanced portfolio tends to be less diversified

and exhibits higher turnover compared to the SBK, SSD, MV, and SCTSD enhanced portfolios.

An important advantage of ASSD-enhanced portfolios lies in their higher excess returns compared

to portfolios based on other strategies. This is evidenced by the increased expected value of daily

excess returns, depicted in the first column of Table 4 and Table 5, and also in the cumulative

returns shown in Figure 6. As daily excess returns tend to vary (as depicted in Figure 7(a)),

we seek to ascertain the statistical significance of the observed out-of-sample improvement in

expected excess returns through a paired t-test. Our null hypothesis posits that the mean of daily
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(a) Daily Excess (b) Maximum Drawdown

(c) Number of Industries (d) Turnover

Figure 7 Out-of-sample performance measures. Bars denote portfolios employing various momentum-based

strategies, including equal-weighted (EW), MV-enhanced, SBK-enhanced, SSD-enhanced, SCTSD-enhanced, and

ASSD-enhanced. Among the equal-weighted, SBK-enhanced, and ASSD-enhanced strategies, the graph

highlights EW5, SBK4, and ASSD (τ -Sharpe) due to their achievement of the highest cumulative values.

excess returns of the ASSD-enhanced portfolio is not greater than that of portfolios based on

other strategies. Employing out-of-sample return data spanning the entire holding period from

1928 to 2022, Table 7 reports the corresponding p-values obtained from the test results. The

analysis indicates that the ASSD-enhanced portfolio, especially based on τ -Sharpe, consistently

demonstrates higher mean returns compared to all other alternatives at the 0.1 significance level.

The only exception is observed with the SCTSD, where the associated p-value slightly exceeds 0.1.
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Conversely, portfolios enhanced by τ -Mean and τ -CE5 exhibit performance superiority compared

to the benchmark and heuristic rules based on top industries. However, their differences with the

MV-based and SD-based rules are not statistically significant.

Table 7 p-values of tests on mean of out-of-sample daily excess.

ASSD (τ -Mean) ASSD (τ -Sharpe) ASSD (τ -CE5)

MKT 0.000 0.000 0.000

EW5 0.003 0.002 0.003

EW10 0.001 0.000 0.001

EW15 0.000 0.000 0.001

MV 0.134 0.072 0.119

SSD 0.184 0.099 0.161

SBK2 0.153 0.084 0.136

SBK3 0.105 0.057 0.096

SBK4 0.047 0.024 0.043

SCTSD 0.193 0.105 0.169

Note: The null hypothesis is that the expected value of out-of-sample
daily excess of τ -ASSD enhanced portfolio is not greater than that of
portfolios enhanced by other strategies.

The primary aim of our models is to identify portfolios that dominate the benchmark through

ASSD. As per the propositions and theorems outlined in previous sections, ASSD is ensured to hold

in the formation periods. However, it remains both interesting and essential to analyze whether

the identified portfolio continues to dominate the benchmark in the holding periods. On the other

hand, it is also intriguing to investigate whether portfolios enhanced by other strategies exhibit

ASSD dominance in the holding periods. In this study, we adhere to the test procedures proposed

by Guo et al. (2015) to assess the τ -ASSD in the holding periods, utilizing the optimized τ for each

specific holding period. The percentage of non-ASSD dominance scenarios over the benchmark at

the significance level of 0.05 is outlined in Table 8. Notably, approximately 6% of ASSD-enhanced

portfolios display violations of the ASSD rule during the holding periods, while only 1% of portfolios

enhanced by MV, SSD, SCTSD, and SBK strategies exhibit such violations. These findings are



40

consistent with the results obtained from the out-of-sample performance evaluation using excess

over the benchmark, as illustrated in Table 6. The relatively higher percentage of ASSD-enhanced

portfolios violating the ASSD rule during the holding periods can be attributed to the moderate

constraint imposed by ASSD with moderate values of τ in the optimization process, rendering the

corresponding ASSD dominance more susceptible to being violated compared to other strategies.

Table 8 Percentage of no ASSD dominance in holding periods

EW5 EW10 EW15 MV SSD SBK2 SBK3 SBK4 SCTSD ASSD (τ -Mean) ASSD (τ -Sharpe) ASSD (τ -CE5)

0.5 0.0 0.0 1.6 1.3 1.3 1.3 1.1 1.3 5.6 6.4 6.4

Notes: Shown are the percentages of no τ -ASSD dominance by strategies including equal-weighted (EW), MV-enhanced, SBK-
enhanced, SSD-enhanced, SCTSD-enhanced, and ASSD-enhanced, utilizing the optimized τ in each holding period. The detailed test
procedures can be found in Guo et al. (2015) and the critical values are obtained by bootstrap at significance level 0.05.

At last, we investigate the effects of return frequency on the out-of-sample performance. Specif-

ically, we examine both weekly and monthly returns and the results are provided in Table 9. In

consistent with the daily performance, the ASSD-enhanced portfolios continue to show superior

performance in terms of average returns, albeit with escalated variations and risks. One signifi-

cant observation is the considerable variance noticed in the weekly performance of ASSD, SCTSD,

and MV-enhanced portfolios. Given their heightened risk and considerable fluctuations, employ-

ing these strategies with weekly data might pose significant risks. Conversely, the equal-weighted

heuristics and stochastic bounding approaches appear as comparatively better options within the

weekly data context.

6. Discussion

In this study, we introduce a straightforward data-driven approach to select τ by partitioning

each formation period into training and test periods. This method provides a notable advantage

over fixed τ strategies by dynamically adjusting τ during each formation period. This adaptability

enables the method to more accurately adapt to shifts in investor preferences over time, resulting

in a more precise reflection of the ASSD relationship. Among the three different selection strategies

observed, τ -Sharpe generally demonstrates the largest out-of-sample returns, while τ -Mean shows

the most favorable risk-adjusted performance. τ -CE5, on the other hand, displays intermediate
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Table 9 Weekly and monthly out-of-sample performance based on excess over T-bill

Weekly Monthly

Mean Std VaR Sortino CE2 Mean Std VaR Sortino CE2

MKT 0.1500 2.4632 -3.7840 0.0770 0.0886 0.6675 5.3593 -7.9000 0.1682 0.3779

EW5 0.3179 4.8004 -6.9710 0.0791 0.0751 1.1765 6.5111 -9.4400 0.2457 0.7389

EW10 0.5056 7.5526 -11.037 0.0789 -0.1279 1.1765 6.5111 -9.4400 0.2457 0.7389

EW15 0.7570 10.382 -14.956 0.0887 -0.5051 1.0201 5.7032 -8.3660 0.2343 0.6841

MV 1.8281 21.509 -31.897 0.1071 -2.0362 1.1069 6.2449 -8.8609 0.2390 0.7065

SSD 0.2984 3.8929 -5.5530 0.0990 0.1447 1.4503 7.7768 -10.994 0.2755 0.8393

SBK2 0.3105 4.0956 -5.9320 0.0978 0.1396 1.3762 7.3152 -10.292 0.2740 0.8337

SBK3 0.3360 4.8915 -6.7569 0.0842 0.0824 1.3762 7.3152 -10.292 0.2740 0.8337

SBK4 0.2844 4.3750 -6.1109 0.0805 0.0878 1.2579 7.0983 -10.543 0.2500 0.7431

SCTSD 1.8688 21.693 -32.374 0.1086 -2.6022 1.4630 7.8371 -11.0400 0.2762 0.8431

ASSD (τ -Mean) 1.9272 21.431 -30.443 0.1086 -3.4878 1.5072 8.9546 -13.110 0.2482 0.6945

ASSD (τ -Sharpe) 1.9823 21.509 -30.509 0.1120 -3.6875 1.4829 9.0407 -13.295 0.2385 0.6500

ASSD (τ -CE5) 1.9379 21.739 -31.209 0.1088 -4.4697 1.5479 9.0818 -13.295 0.2524 0.7136

Notes: Shown are the performance measures of out-of-sample daily excess return over free-risk T-bill using data from January 1928 to March 2022
for portfolios enhanced by different criteria. MKT represents the benchmark stock market, EWm represents equal-weighted combination of Top-m
industries, and SBKm represents the stochastic bounding with reference set Km. In terms of the performance measures, Mean and Std are mean
and standard deviation of daily excess return over T-bill. VaR (5%) is 5% value at risk, which is the maximum possible loss when 5% percent of
the left tail of the distribution is ignored. Sortino ratio is a risk-adjusted performance measure. CE2 represents the certainty equivalent for constant
risk aversion utility functions with degree of relative risk aversion equal 2.

performance characteristics. The practical selection among these three methods relies on the pref-

erences of the decision makers. It is also worth noting that alternative criteria for selecting τ , such

as maximizing the Sortino ratio or considering other CE values in the 3-month testing period,

could also be considered in practice. Moreover, it is essential to acknowledge that the division of

the formation period remains somewhat subjective, and there exists the possibility of developing

more objective methods in future studies.

From our numerical investigations, it is evident that ASSD strategies generally outperform other

strategies concerning returns. However, they also exhibit higher volatility and downside risks com-

pared to MV, SBK, and other SD-based strategies. This might be attributed to relatively larger

out-of-sample ASSD violations. To mitigate out-of-sample downside risk, one potential avenue is

through robust optimization techniques that focus on minimizing downside risk measures. In our
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empirical application, we concentrated on a commonly used linear objective function aimed at max-

imizing expected return. Nonetheless, the preferences of investors can be catered to by adopting

various other objective functions, linear or non-linear in nature. These could include minimizing

left semi-variance, VaR, or CVaR, or maximizing metrics like Sharpe ratio or CE, as widely seen

in existing portfolio optimization literature (for example, refer to Ghaoui et al. (2003), Quaranta

and Zaffaroni (2008), Hodder et al. (2015)). Our algorithms and methods are adaptable to solving

optimization problems with ASSD constraints, regardless of the objective functions used. How-

ever, addressing computational challenges arising from complex objective functions might require

specific modifications. Additionally, more advanced optimization approaches like distributionally

robust optimization can be adopted to consider a set of potential asset return distributions (Liesiö

et al. (2020), Peng and Delage (2022)).

To assess the ASSD relation in the out-of-sample periods, we adopt the methodologies outlined

in Guo et al. (2015). While hypothesis tests for SD have been extensively studied in the research

community (e.g., Anderson 1996, Davidson and Duclos 2000, Barrett and Donald 2003, Linton

et al. 2005, Donald and Hsu 2016, Linton et al. 2023, Beare and Clarke 2022, Lee et al. 2023),

the literature on hypothesis testing for ASD remains relatively limited (Whang 2019, sec 5.4).

The primary challenge lies in formulating a suitable test statistic and determining its distribution.

Even though Guo et al. (2015) introduced consistent test procedures, the statistical power of these

procedures has yet to be thoroughly validated. This may lead to high Type II error rates, conse-

quently resulting in small ASSD violation percentages observed in Table 8. We believe addressing

this aspect would require substantial efforts to develop a specialized test procedure tailored for

more accurate ASSD assessments.

This study primarily delves into the distributional conditions of ASSD. Leveraging the proper-

ties of LPM, we introduce the concept of approximate ASSD and devise algorithms for portfolio

optimization under ASSD constraints. These algorithms resolve the complex and intractable opti-

mization problems through an iterative approach, transforming them into tractable QP and QCPs.
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While ASSD can be interpreted from the perspective of preference conditions, it would be intrigu-

ing for future research to explore solving methods and analyze the optimality of this problem in

the context of expected utility. This parallels existing studies focusing on optimization with SSD

constraints (e.g., Dentcheva and Ruszczyński (2003, 2004a, 2006), Haskell et al. (2017)).

The computational challenges associated with optimization under ASSD constraints have lim-

ited the proposals in the literature. Our work addresses this challenge for the first time in the

context of portfolio optimization. Although our focus lies in portfolio optimization, the algorithms

and methodologies developed herein can be extended to address general optimization problems

incorporating ASSD constraints. Furthermore, while our work primarily emphasizes the ASSD

proposed by Leshno and Levy (2002) and Tzeng et al. (2013), these models and algorithms can

be broadened to accommodate other formulations of ASSD, such as those presented by Luo and

Tan (2020), through suitable modifications to the dominance constraints in optimization models.

Future investigations might explore alternative degrees of ASD (Tsetlin et al. 2015, Liu and Meyer

2021) and relaxed formulations of SD (Müller et al. 2017, Huang et al. 2020) proposed in the

existing literature.

7. Conclusion

The landscape of portfolio optimization has witnessed extensive research on SSD, yet its stringent

nature incorporating extreme and ‘unrealistic’ utility functions has posed limitations for many

decision makers. To counter this constraint, ASSD emerged as a promising solution in the litera-

ture. ASSD, permitting minor deviations from SSD, offers a more practical reflection of investment

practices, thereby addressing some inadequacies unexplained by the SSD framework (Leshno and

Levy 2002, Bali et al. 2009, 2013). The theoretical appeal of ASSD in portfolio optimization is unde-

niable. Nevertheless, its computational complexity has restricted its practical application. In this

study, we have successfully overcome these computational barriers and, for the first time, presented

a computationally viable approach to address portfolio optimization under ASSD constraints.

We developed optimization models and algorithms to identify portfolios dominating the bench-

mark portfolio by ASSD. To tackle the challenge of checking the ASSD condition in portfolio
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optimization with an infinite feasible solution space, we discretized the portfolio return range and

propose an approach using QP and QCP. Specifically, we introduced an approximation condi-

tion for ASSD, serving as a sufficient criterion for ASSD. Utilizing this condition, we presented

a cutting-plane algorithm to identify a candidate ASSD-enhanced portfolio satisfying the ASSD

constraint, although not guaranteed to be optimal. Subsequently, an iterative algorithm refined

the candidate portfolio by enhancing the discretization scheme of the return range iteratively until

obtaining an optimal portfolio. Our approach mainly employed a QP model and QCP model with

a single quadratic constraint, amenable to solving with commonly available business solvers. We

demonstrated that both proposed algorithms are efficiently solvable with few iterations.

The empirical investigations conducted on optimizing combinations of the Fama and French 49

industry portfolios revealed the superiority of ASSD-enhanced portfolios over those enhanced by

other strategies, such as equal-weighted heuristics, MV, and other SD-based strategies, in terms of

excess returns. Nevertheless, it is crucial to acknowledge that while the ASSD-enhanced portfolios

exhibit higher returns, they tend to be accompanied by amplified variations and risks. Consequently,

the choice of strategies significantly relies on the risk tolerance levels of investors in practical

investment scenarios.
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Appendix A: Proofs

We first present the following lemma introduced in Luo and Tan (2020), which is important in the proofs.

Lemma 1. Suppose random variable X are bounded between a and b. Then V ar(X) + (b−EF (X))
2
=

2
∫ b

a
F (2)(x)dx.

Proof of Proposition 1. The proof follows from the definition of F̂
(2)
D,λ(x) and the convexity of

F
(2)
λ (x).□

Proof of Proposition 2. It follows from the definition of expected value that EFλ
= b−

∫ b

a
Fλ(x)dx=

b− F
(2)
λ (b) and similarly EF̂D,λ

= b− F̂
(2)
D,λ(b). By the definition of F̂

(2)
D,λ, we have F̂

(2)
D,λ(b) = F

(2)
λ (b). Hence,

EF̂D,λ
=EFλ

. From Proposition 1,
∫ b

a
F̂

(2)
D,λ(x)dx≥

∫ b

a
F

(2)
λ (x)dx. Together with Lemma 1, we have V arF̂D,λ

≥

V arFλ
. □

Proof of Proposition 3. To prove Proposition 3, we prove that
∫
Ŝ2∩[ds,ds+1]

F̂
(2)
D,λ(t)−G(2)(t)dt=AD,s,λ

for all s, s= 1,2, ..., TD − 1.

Note that F̂
(2)
D,λ(t) and G(2)(t) are both linear in return sub-interval [ds, ds+1], which follows from their

definitions. Hence, under Case 1 and Case 4 it is straightforward that
∫
Ŝ2∩[ds,ds+1]

F̂
(2)
D,λ(t)−G(2)(t)dt=AD,s,λ.

Next, we prove this point for Case 2 and 3.

Under Case 2, F
(2)
λ (ds)≤G(2)(ds) and F

(2)
λ (ds+1)≥G(2)(ds+1). By calculation, it can be found that

Ŝ2 ∩ [ds, ds+1] = [
(ds+1 − ds)(F

(2)
λ (ds)−G(2)(ds))

G(2)(ds+1)−G(2)(ds)−F
(2)
λ (ds+1)+F

(2)
λ (ds)

+ ds, ds+1].

Following from the fact that F̂
(2)
D,λ(t) and G(2)(t) are both linear in return sub-interval [ds, ds+1], we have∫

Ŝ2∩[ds,ds+1]
F̂

(2)
D,λ(t)−G(2)(t)dt equals the area of the triangle between F

(2)
λ (ds+1) and G(2)(ds+1) in the range

of Ŝ2 ∩ [ds, ds+1], that is:∫
Ŝ2∩[ds,ds+1]

F̂
(2)
D,λ(t)−G(2)(t)dt

=
1

2
(F

(2)
λ (ds+1)−G(2)(ds+1)) ∗ (ds+1 −

(ds+1 − ds)(F
(2)
λ (ds)−G(2)(ds))

G(2)(ds+1)−G(2)(ds)−F
(2)
λ (ds+1)+F

(2)
λ (ds)

− ds)

=
(ds+1 − ds)

(
F

(2)
λ (ds+1)−G(2)(ds+1)

)2
2
(
F

(2)
λ (ds+1)−G(2)(ds+1)+G(2)(ds)−F

(2)
λ (ds)

)
=AD,s,λ

Similar to Case 2, it can be proved that under Case 3,
∫
Ŝ2∩[ds,ds+1]

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt=AD,s,λ.
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In summary,
∫
Ŝ2∩[ds,ds+1]

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt= AD,s,λ holds under all possible cases, which shows that∫

Ŝ2

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt=

∑TD−1
s=1 AD,s,λ. □

Proof of Theorem 1. If there exist a discretization scheme D such that X dominates Y by τ -AASSD,

then:

τ ≤ V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ
(X))2

2
∑TD−1

s=1 AD,s,λ

+1

τ ≤ V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ
(X))2

2
∫
Ŝ2

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

+1 (12a)

τ ≤ V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ
(X))2

2
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt

+1 (12b)

τ ≤

∫ b

a

(
G(2)(t)−F

(2)
λ (t)

)
dt∫

S2

(
F

(2)
λ (t)−G(2)(t)

)
dt

+1 (12c)

τ ≤

∫
S̄2

(
G(2)(t)−F

(2)
λ (t)

)
dt∫

S2

(
F

(2)
λ (t)−G(2)(t)

)
dt

(12d)

Equation (12a) and (12b) follows from Proposition 3 and 1 respectively. Equation (12c) follows from

Lemma 1. Equation (12d) shows that Fλ dominates G by τ -ASSD. □

Proof of Proposition 4. The proof follows Lemma 1 and Proposition 2. □

Proof of Theorem 2. The proof of
∑TD−1

s=1 AD,s,λ −
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt≥ 0 follows from Propo-

sition 1 and 3. Next, we prove
∑TD−1

s=1 AD,s,λ −
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt≤ δD,λ.

TD−1∑
s=1

AD,s,λ −
∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt

=

∫
Ŝ2

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt−

∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt (13a)

=

∫
Ŝ2−S2

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt+

∫
S2

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt−

∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt (13b)

=

∫
Ŝ2−S2

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt+

∫
S2

(
F̂

(2)
D,λ(t)−F

(2)
λ (t)

)
dt

≤
∫
Ŝ2−S2

(
F̂

(2)
D,λ(t)−F

(2)
λ (t)

)
dt+

∫
S2

(
F̂

(2)
D,λ(t)−F

(2)
λ (t)dt

)
(13c)

≤
∫ b

a

(
F̂

(2)
D,λ(t)−F

(2)
λ (t)

)
dt (13d)

=δD,λ (13e)

Equation (13a) follows from Proposition 3. Let Ŝ2−S2 = {t : t∈ Ŝ2 and t /∈ S2}. It follows from Proposition 1

that F
(2)
λ (t) ≥ G(2)(t) always implies F̂

(2)
D,λ(t) ≥ G(2)(t). Hence, S2 is a subset of Ŝ2, that is, S2 ⊆ Ŝ2. This
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indicates that Equation (13b) holds. Equation (13c) follows from the fact that Ŝ2 −S2 ∈ S̄2 where G(2)(t)≥

F
(2)
λ (t). Equation (13d) follows from Proposition 1. Equation (13e) follows from Proposition 4. □

Proof of Corollary 1. When δD,λ → 0, it follows from Proposition 1 and 4 that F̂D,λ → Fλ. Moreover,

it follows from Theorem 2 that when δD,λ → 0,
∑TD−1

s=1 AD,s,λ →
∫
S2

F
(2)
λ (t)−G(2)(t)dt, which implies that

V ar(Y )+(b−EG(Y ))2−V ar(X)−(b−EFλ
(X))2

2
∑TD−1

s=1 AD,s,λ

+1→
∫
S̄2
(G(2)(t)−F (2)(t))dt∫

S2
(F (2)(t)−G(2)(t))dt

. Hence, τ -AASSD approaches τ -ASSD. □

Proof of Proposition 5. The proof follows from the fact that F
(2)
Dr,λ(t)≤ F

(2)
D,λ(t),∀t∈ [a, b], which fol-

lows from the convexity of F
(2)
λ (t). □

Proof of Proposition 6. Proposition 6 follows from the definition of AASSD and Proposition 5. □

Proof of Theorem 3. Note that

S2,s,λ = S2,s,λ ∩ [ds, ds+1] = S2,s,λ ∩ (S2,s,λ′ ∪ S̄2,s,λ′) = S2,s,λ ∩S2,s,λ′ +S2,s,λ ∩ S̄2,s,λ′ . (14)

It follows from Definition 2 and the proof of Proposition 3 that:

AD,s,λ =

∫
S2,s,λ

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

=

∫
S2,s,λ∩S2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt+

∫
S2,s,λ∩S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt (15a)

≥

(∫
S2,s,λ′∩(S2,s,λ+S̄2,s,λ)

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

+

(∫
S̄2,s,λ′∩(S2,s,λ+S̄2,s,λ)

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

(15b)

=

(∫
S2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

+

(∫
S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

=

(∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂

(2)
D,λ′(t)+ F̂

(2)
D,λ′(t)−G(2)(t)

)
dt

)+

+

(∫
S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G(2)(t)

)
dt

)+

=

(
AD,s,λ′ +

∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂ 2

D,λ′(t)
)
dt

)+

+

(∫
S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G2(t)

)
dt

)+

(15c)

Equation (15a) follows from Equation (14). The first term in Equation (15b) follows from the fact that

F̂
(2)
D,λ(t) > G(2)(t),∀t ∈ S2,s,λ and F̂

(2)
D,λ(t) ≤ G(2)(t),∀t ∈ S̄2,s,λ. The second term in Equation (15b) holds

similarly. Equation (15c) follows from the fact that AD,s,λ′ =
∫
S2,s,λ′

(
F̂

(2)
D,λ′(t)−G(2)(t)

)
dt, which is shown

in the proof of Proposition 3. □

Proof of Corollary 2. The proof of Corollary 2 follows from the proof Theorem 3 with Equation (15b)

to be equality rater than inequality. □
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Proof of Theorem 4. Given S2,s,λ′ = [vs, v̄s], we have:

∫
S2,s,λ′

F̂
(2)
D,λ(t)dt

=

∫ v̄s

vs

F̂
(2)
D,λ(t)dt

=

∫ v̄s

vs

(
F

(2)
λ (ds)+

F
(2)
λ (ds+1)−F

(2)
λ (ds)

ds+1 − ds

(x− ds)

)
dx (16a)

=
(
F

(2)
λ (ds) (2ds+1 − v̄s − vs)+F

(2)
λ (ds+1) (v̄s + vs − 2ds)

) v̄s − vs

2(ds+1 − ds)
. (16b)

Equation (16a) follows from the the definition of F̂
(2)
D,λ, which implies that F̂

(2)
D,λ(t) is linear in [ds, ds+1] and

F̂
(2)
D,λ(ds) = F

(2)
D,λ(ds),∀s= 1,2, ..., TD. It follows from Constraint (6c) that:

h1,s ≥AD,s,λ′ +

(
T∑

t=1

ptθs,t (2ds+1 − v̄s − vs)+

T∑
t=1

ptθs+1,t (v̄s + vs − 2ds)

)
v̄s − vs

2(ds+1 − ds)

−
(
F̂

(2)
D,λ′(v̄s)+ F̂

(2)
D,λ′(vs)

) v̄s − vs

2

≥AD,s,λ′ +
(
F

(2)
λ (ds) (2ds+1 − v̄s − vs)+F

(2)
λ (ds+1) (v̄s + vs − 2ds)

) v̄s − vs

2(ds+1 − ds)

−
(
F̂

(2)
D,λ′(v̄s)+ F̂

(2)
D,λ′(vs)

) v̄s − vs

2
(17a)

=AD,s,λ′ +

∫
S2,s,λ′

F̂
(2)
D,λ(t)dt+

∫
S2,s,λ′

F̂ 2
D,λ′(t)dt (17b)

Equation (17a) follows from Constraints (6a) and (6b) which ensure that
∑T

t=1 ptθs,t ≥ F
(2)
λ (ds) and∑T

t=1 ptθs+1,t ≥ F
(2)
λ (ds+1) (following from Problem (1)) and the facts that 2ds+1 − v̄s − vs ≥ 0 and v̄s +

vs − 2ds ≥ 0. Equation (17b) follows from Equation (16b) and the fact that F̂ 2
D,λ′(t) is linear in [ds, ds+1].

Following from Equation (17b) and the constraint that h1,s ≥ 0, we have:

h1,s ≥

(
AD,s,λ′ +

∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂ 2

D,λ′(t)
)
dt

)+

. (18)

Hence, Constraints (6a), (6b), and (6c) guarantee that h1,s ≥
(
AD,s,λ′ +

∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂ 2

D,λ′(t)
)
dt
)+

.

Similarly, it can be proved that:∫
S̄2,s,λ′

F̂
(2)
D,λ(t)dt=

(
F

(2)
λ (ds) (2ds+1 − c̄s − cs)+F

(2)
λ (ds+1) (c̄s + cs − 2ds)

) c̄s − cs
2(ds+1 − ds)

, (19)

and Constraints (6a), (6b), and (6d) guarantee that h2,s ≥
(∫

S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G2(t)

)
dt
)+

. Hence, Con-

straint (6e) implies that:

AD,s,λ ≥ h1,s +h2,s ≥

(
AD,s,λ′ +

∫
S2,s,λ′

(
F̂

(2)
D,λ(t)− F̂ 2

D,λ′(t)
)
dt

)+

+

(∫
S̄2,s,λ′

(
F̂

(2)
D,λ(t)−G2(t)

)
dt

)+

,

which completes the proof. □
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Proof of Proposition 7. For statement (1), it follows from Corollary 2 that if λk+1 ∈ Ω(λ,λk), then

AD,s,λk+1 is bounded from below by its true value in Problem (7), which guarantees that λk+1 dominates Y

by τ -AASSD and thus is the optimal solution of Problem (5). On the other hand, if λk+1 is not the optimal

solution of Problem (5), then it does not dominate Y , which implies that AD,s,λk+1 is bounded from below

by a value smaller than its true value in master problem (7). This implies that λk+1 /∈Ω(λ,λk).

Statement (2) also follows from Corollary 2. For all λ∈Ω(λ,λk), AD,s,λ is bounded from below by its true

value in Problem (7). If it does not dominate Y by τ -AASSD, then it will be excluded by Constraint (7c).

This completes the proof. □

Proof of Theorem 5. It follows from Theorem 2 and the definition of δD :=max{δD,λ,∀λ∈Λ} that:∫
S2

(
F

(2)
λ (t)−G(2)(t)

)
dt≥

TD−1∑
s=1

AD,s,λ − δD,λ ≥
TD−1∑
s=1

AD,s,λ − δD. (20)

If X dominates Y by τ -ASSD, then:

τ ≤
∫
S̄2

(
G(2)(t)−F (2)(t)

)
dt∫

S2
(F (2)(t)−G(2)(t))dt

=
V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ

(X))2

2
∫
S2

(F (2)(t)−G(2)(t))dt
+1 (21a)

≤ V ar(Y )+ (b−EG(Y ))2 −V ar(X)− (b−EFλ
(X))2

2
∑TD−1

s=1 (AD,s,λ − δD)
+ 1 (21b)

Equation (21a) follows from Lemma 1. Equation (21b) follows from Equation (20) and the given fact that∑TD−1
s=1 AD,s,λ − δD > 0. □

Proof of Proposition 8. It follows from Proposition 4 that:

δD,λ =

∫ b

a

F̂
(2)
D,λ(x)dx−

∫ b

a

F
(2)
λ (x)dx (22a)

=

TD−1∑
t=1

(F̂
(2)
D,λ(ds)+ F̂

(2)
D,λ(ds+1))

ds+1 − ds

2
− 1

2

(
n∑

i=1

n∑
j=1

λiλjCov(xi, xj)+ (b−
n∑

i=1

λiµi)
2

)
(22b)

=

TD−1∑
s=1

(
T∑

t=1

ptθs,t +

T∑
t=1

ptθs+1,t

)
ds+1 − ds

2
− 1

2

(
n∑

i=1

n∑
j=1

λiλjCov(xi, xj)+ (b−
n∑

i=1

λiµi)
2

)
(22c)

where θs,t =max{ds −
∑n

i=1 xi,tλi,0}. The first term in Equation (22b) follows from the fact that F̂
(2)
D,λ(x)

is linear in return sub-interval [ds, ds+1], s= 1,2, ..., TD − 1. The second term in Equation (22b) follows from

Lemma 1. Equation (22c) follows from Problem (1). Following from this property and the definition that

δD :=max{δD,λ,∀λ∈Λ}, δD equals the optimal value of objective function (10a), which completes the proof.

□



50

Appendix B: Algorithm

Algorithm 2 Algorithm for the ASSD-enhanced portfolio optimization problem

Step 1: Initialize the discretization scheme as D= {d1, d2, ...dTD}. Set lower bound LB =−∞ and

upper bound UB =∞. Define a predefined acceptable optimality gap level γ.

Step 2: Given D, solve Problem (5) with the cutting-plane Algorithm 1.

• If Problem (5) is feasible, let λ∗ denote an optimal solution of Problem (5). Set LB =

f(λ∗), i.e., the optimal objective value of Problem (5).

• Otherwise, mark LB as ‘infeasible’.

Step 3: Solve Problem (10) to obtain the value of δD.

Step 4: Given δD obtained in last step, solve Problem (11) with the cutting-plane Algorithm 1.

• If Problem (11) is feasible with λU as its optimal solution, set UB = f(λU).

• Otherwise, mark UB as ‘infeasible’.

Step 5: Analyze the result.

• If neither LB nor UB is ‘infeasible’, calculate the optimality gap UB−LB.

—If UB−LB ≤ γ, terminate and return solution λ∗.

—Otherwise, go to the next step.

• If both LB and UB are ‘infeasible’, terminate and return the result that the ASSD-

enhanced portfolio optimization problem is infeasible.

• Otherwise, go to next step.

Step 6: Refine the discretization scheme D and go back to Step 2.

Step 7: Repeat Step 2-6 until one of the following conditions are satisfied:

• The optimality gap of λ∗ is no greater than the optimality tolerance γ.

• Both LB and UB are marked as ‘infeasible’, which indicates that there exists no portfolio

dominating the benchmark by τ -ASSD.

Remark: In the application of this work, the discretization scheme D is refined in Step 6 by adding points
ds+ds+1

2
into D for

all ds ∈D, i.e., uniformly dividing all return sub-interval [ds, ds+1] into two sub-intervals. Other refinement rules like dividing

some selected sub-intervals may also be adopted to further accelerate the algorithm.
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Liesiö, J., Xu, P., and Kuosmanen, T. (2020), “Portfolio diversification based on stochastic dominance under

incomplete probability information,” European Journal of Operational Research, 286(2), 755–768.

Linton, O., Maasoumi, E., and Whang, Y.-J. (2005), “Consistent testing for stochastic dominance under

general sampling schemes,” The Review of Economic Studies, 72(3), 735–765.

Linton, O., Seo, M. H., and Whang, Y.-J. (2023), “Testing stochastic dominance with many conditioning

variables,” Journal of Econometrics, 235(2), 507–527.

Markowitz, H. (2014), “Mean–variance approximations to expected utility,” European Journal of Operational

Research, 234(2), 346–355.

Post, T. (2015), “Critical values for almost stochastic dominance based on relative risk aversion,” Available

at SSRN 2666209.

Post, T. and Kopa, M. (2017), “Portfolio choice based on third-degree stochastic dominance,” Management

Science, 63(10), 3381–3392.

Post, T. and Pot̀ı, V. (2017), “Portfolio analysis using stochastic dominance, relative entropy, and empirical

likelihood,” Management Science, 63(1), 153–165.

Whang, Y.-J. (2019), Econometric analysis of stochastic dominance: Concepts, methods, tools, and applica-

tions, Cambridge University Press.

Arvanitis, S., T. Post, and N. Topaloglou (2021). Stochastic bounds for reference sets in portfolio analysis.

Management Science 67 (12), 7737–7754.

Bali, T. G., S. J. Brown, and K. O. Demirtas (2013). Do hedge funds outperform stocks and bonds?

Management Science 59 (8), 1887–1903.

Bali, T. G., K. O. Demirtas, H. Levy, and A. Wolf (2009). Bonds versus stocks: Investors’ age and risk

taking. Journal of Monetary Economics 56 (6), 817–830.



53

Bawa, V. S., J. N. Bodurtha Jr, M. Rao, and H. L. Suri (1985). On determination of stochastic dominance

optimal sets. The Journal of Finance 40 (2), 417–431.

Bruni, R., F. Cesarone, A. Scozzari, and F. Tardella (2017). On exact and approximate stochastic dominance

strategies for portfolio selection. European Journal of Operational Research 259 (1), 322–329.
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Dentcheva, D. and A. Ruszczyński (2006). Portfolio optimization with stochastic dominance constraints.

Journal of Banking & Finance 30 (2), 433–451.
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