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The manpower planning problem of hiring and promoting has been the perennial difficulty of HR man-

agement. We propose a risk-based approach – finding a course of action that provides guarantees against

the risk of running short of organizational targets, such as productivity, budget, headcount and managerial

span of control. As such, this approach leads to an optimization model that minimizes a risk parameter,

inspired by Aumann and Serrano (2008)’s riskiness index. Additionally, our model departs from the litera-

ture by considering employees’ time-in-grade, which is known to affect resignations, as a decision variable. In

our formulation, decisions and the uncertainty are related. To solve the model, we introduce the technique

of pipeline invariance, which yields an exact re-formulation that may be tractably solved. Computational

performance of the model is studied by running simulations on a real dataset of employees performing the

same job function in the Singapore Civil Service. Using our model, we are able to illustrate insights into

HR, such as the consequences of a lack of organizational renewal. Our model is also likely the first numerical

illustration that lends weight to a time-based progression policy common to bureaucracies. We believe that

this technique of pipeline invariance could help solve a wider range of multi-period optimization problems.
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1. Introduction

Of late, the Human Resource (HR) function is gaining prominence. This is driven by the growing

practice of Strategic HR Management (SHRM) (Ulrich and Dulebohn 2015, Buyens and De Vos

2001), where human capital is structured to achieve transformational goals of the organization. In

addition, data analytics is enabling HR practitioners to consider costs and returns of investment

(ROI) of human capital as business decisions. This is evidenced by how HR analytics has been

introduced in almost every aspect of HR Management (Davenport et al. 2010). Examples include

attrition and flight risk, talent and pipeline management, recruitment analytics and employee value
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proposition, under-performance risks, remuneration and benefits, real-time employee engagement

and sentiment analysis, learning and gamification in the workplace, team performance and social

networks, to name only a few.

Nonetheless, HR analytics continues to struggle to draw the link between human capital and

organizational outcomes (Marler and Boudreau 2017, Angrave et al. 2016). Herein lies the irony

– despite possessing more information than ever, HR has found itself increasingly in a state of

decision paralysis (Kapoor and Kabra 2014). While data abounds, there remains a lack of an

operational frame integrating these data and secondary analyses into trade-offs and risks at the

organizational level. As such, few practitioners have managed to extend the current advances in

predictive analytics into the realm of prescriptive analytics.

In this paper, we hope to make some preliminary steps towards this overarching goal. In particular

we would like to concentrate on the topic of manpower planning – how should a business unit hire,

promote, and design its operational structure in order to achieve a targeted productivity level,

while constrained by budget, availability of manpower and managerial span of control? This is

not simple; the trade-offs between different HR decisions may not be at first glance apparent. For

example, the optimal staffing level across different competency bands could depend on both the

productivity targets that the organization aspires to meet and the expectation of employees on

promotion and remuneration.

We approach this problem from a risk perspective, to be detailed later. The logic comes from the

fact that different HR interventions cannot be assessed separately as it is their combination that

affects employees and their behaviors. For example, an employee’s career management can have

downstream effects on their flight risk, under-performance risk, engagement levels, etc.As such, it

may be possible to perceive HR management as a basket of interventions articulating into eventual

outcomes of individuals and organizational units, the risk of which we seek to minimize (Paul and

Mitlacher 2008).

HR in Public Services

We focus on manpower planning within public sector organizations (PSOs). In PSOs, HR decisions

may be constrained by many different and specific considerations from the private sector. This is

because of differences in risk attitudes (Nutt 2006, Rodrigues and Hickson 1995) – given the risk

of government failure and the fact of being embedded in the political landscape, PSOs are exposed

to greater downside risks than profit-seeking firms. This can limit HR in its perceived action space.

For example, many PSOs may find it difficult to voluntarily release their employees, either for fear

of political backlash or where such actions, as is the case in many countries, are constrained by
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the action of unions. We shall, in a later analysis, examine how this lack of organizational renewal

affects the risks of operations.

Another key distinction is the difficulty of measuring productivity and ROI of public service

employees. Public service outcomes can be ambiguous. Managers may at times grant heavier con-

sideration to the perceived outcomes of policies (to the polity) instead of their actual outcomes

(Heinrich and Marschke 2010). The long length of policy maturity too can make it difficult to

assess the impacts of policies, and to link them to decisions or actions taken by specific individuals.

These challenges in turn shape performance management and incentive structures, for example, in

public sector innovation (Walker et al. 2011). As such, it can be difficult to measure performances

and wages in the same units, or to describe their trade-offs.

These challenges describe an operating context wherein the objective functions are multiple,

competing and ambiguous. Instead, we posit that PSOs may best be characterized as trying to

balance a set of alternatives, so as to avoid the emergence of adverse circumstances. This philosophy

is fundamentally risk-based in nature and this motivates the paradigm that we shall adopt.

In response, many PSOs employ a time-based progression policy. This is a dogma where employees

are promoted only after spending a minimum amount of time at their present grade. Apart from

skirting the issue of having to directly measure the productivity of employees, it also embodies a

certain operational logic – an employee must spend a minimum amount of time learning the ropes,

before maturing as an active contributor. Conversely, remaining too long in the job may lead to

boredom, apathy, entrenchment and disengagement. As such, there is an optimal time to promote

employees. The goal of our paper is to study this.

Optimization in HR Management

The manpower planning problem is not new. Over the last half a century or so, there have been

various approaches, such as a simulation-based or systems dynamics approach (to raise a few

examples: Park et al. 2008, Chung et al. 2010), an econometric approach (e.g. Roos et al. 1999,

Sing et al. 2012), and finally, a mathematical programming approach, which is the focus of this

paper.

The most popular approach has been from the perspective of a Markov model. Bartholomew

et al. (1991) provides a broad overview. Various improvements over the years have incorporated

learning effects (e.g. Gans and Zhou 2002), inter-departmental flows (Song and Huang 2008), and

staff scheduling (such as Abernathy et al. 1973) just to name a few extensions. The primary goal

of the Markov model is to set up the transition probabilities through the hierarchy and determine

the two central questions of attainability (Is it possible to transit from one organization of work to

another?) and sustainability (What is the minimum cost to do so?). As explained in Gurrey and
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De Feyter (2012), attainability is not always guaranteed. As such, additional conditions (such as

the proportionality assumption in Nilakantan and Raghavendra 2004) and approximate measures

(such as fuzzy sets as in Dimitriou et al. 2013) have been introduced.

At the broader level, some researchers have moved away from the Markov paradigm and

approached the problem via dynamic programming (as in Mehlmann 1980, Flynn 1981, Rao 1990).

In order to balance between competing organizational outcomes, some have adopted a goal pro-

gramming paradigm (Price and Piskor 1972, Georgiou and Tsantas 2002). In more modern lit-

erature, researchers have applied stochastic programming techniques supported by linearisations

and Bender’s decomposition as in Zhu and Sherali (2009), in order to tackle the computational

difficulties.

Nonetheless, these methods suffer from the curse of dimensionality, and become rapidly unscal-

able with the number of input variables. For example, in Zhu and Sherali’s case, the stochastic

model only solved three out of ten times in computational tests. In the age of data analytics,

taking as input individual-level machine learning predictions of flight risk and performance risk

would very likely exceed the computational limits of these models. Moreover, it is not immediately

apparent how these models can be extended to be robust to uncertainty, especially resignations,

which are known to fluctuate wildly.

Most critically, time spent by an employee in a grade (time-in-grade, for short) is often ignored,

though it is known to be a major determinant of employee behavior, such as resignations. Incorpo-

rating them however poses challenges – the uncertainty at each time period will depend on decisions

made in the previous period. Hence, techniques to deal with it are few and far in between.

One of the earliest attempts was by Bres et al. (1980), which presented a linear goal program-

ming model that decided on the number of promotions where time-in-organization was a factor.

Subsequently, Kalamatianou (1987) retained the Markov framework, by cutting up the population

of employees into those yet-to-be and those ready-to-be-promoted, and estimating the transition

probabilities based on the age distribution. Nonetheless, this did not directly address the inter-

dependence of decision and uncertainty and was a workaround. Finally, Nilakantan and Raghaven-

dra (2008) attempted a Markov model based on both time-in-grade and time-in-organization, but

only under strict assumptions. Unfortunately, they also stopped short of attainability.

This lack of computational tractability and modeling flexibility limit the ability of HR practition-

ers to implement a recruitment and progression strategy based on time-in-grade. At its base, there

isn’t even conclusive numerical evidence in support of time-based progression, which is practiced

across many bureaucracies. We aim to fill this gap in this paper.

To address these challenges, we propose to consider approaches based on robust optimization.

Over the last decade and a half, modern robust optimization techniques have successfully been
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introduced in many disciplines, from logistics and supply chain management to healthcare opera-

tions and to transportation, etc. Its popularity comes from its ability to factor in the uncertainty

while preserving the complexity class of the original deterministic problem. This, in practice, leads

to scalable solutions (Ben-Tal et al. 2004, Bertsimas and Sim 2004). The flexibility of robust opti-

mization to prescribe different forms of uncertainty, such as in the distributional sense (Delage and

Ye 2010, Wiesemann et al. 2014) and fully data-driven sense (e.g. using the Wasserstein metric in

Mohajerin Esfahani and Kuhn 2017) is another contributing factor.

In manpower planning, robust optimization has traditionally been applied to staffing and schedul-

ing problems (for example, Burke et al. 2004, Lusby et al. 2012). However, to the best of our

knowledge, we haven’t seen any literature on its application to longer term manpower planning.

Contributions of this Paper

First, we propose a novel risk-based multi-period optimization framework where the uncertainty

and decision space have a specific inter-dependent structure, termed ‘pipeline invariance’. This

improves on the pre-existing literature:

1. The model circumvents the prescription of trade-offs between outcomes and policies by instead

requiring the articulation of risk attitudes for each macro-objective.

2. It provides guarantees against constraint violation.

3. It can be approximated to high order by a second-order conic program (SOCP), hence solved

efficiently despite the inter-dependence of uncertainty and decisions.

4. It may be reasonably extended to incorporate data at the individualized level, which can take

as input the results from various predictive analytics models.

Second, we claim that our model provides a novel and useful application in the domain of HR. We

shall illustrate insights drawn from our approach, in particular, giving quantitative substantiation

for a time-based progression model and the ramifications of a lack of organizational renewal. The

model has since been applied to study progression in a job function in the Singapore Civil Service.

Aside from HR, we also believe that our model can be applied more broadly in other multi-period

risk-centric contexts.

Notation

Given N ∈N, let [N ] represent {1, . . . ,N} and denote [N ]0 := {0}∪ [N ]. Let R+
0 be the non-negative

reals. We shall use bold-faced characters such as x ∈RN and A ∈RM×N to represent vectors and

matrices. We use xi to denote the i-th element of vector x. The tilde sign shall denote an uncertain

or random parameter such as z̃ without explicitly stating its probability distribution. We use the

convention, log 0 = max∅=−∞ and min∅=∞.
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We shall use E[·] to represent the expectation over the uncertainty across all time periods, unless

otherwise stated. Specifically, we shall use Et[·] to abbreviate the conditional expectation over time

t, given materializations of the uncertainty up to time t− 1. Consequently, after evaluating Et[·]

we also denote E≤t−1[·] as the expectation over all uncertainty up to time t− 1.

2. A Model for Manpower Planning

Traditionally, the manpower planning problem is set up over a finite time horizon t ∈ [T ]0, where

t= 0 is the present data and t= T is the last time period to be considered. Often, the objective is

to attain a known staffing level. Let the stock (s̃t)τl := s̃t,τl denote the number of employees at time

t for all the times up to the last planning time T , having spent τ ∈ [M ]0 years at grade l ∈ [L].

Each is paid wage wτl to generate a return of productivity rτl . Let the decision variables htl denote

the number of employees hired at time t into grade l and pt,τl officers to be promoted from grade l

to l+ 1 for l ∈ [L− 1].

The organizational structure is the hierarchy of grades. Similar to existing literature, we catego-

rize individual contributors into skills strata l ∈W := [Lw], where Lw is the highest skills stratum.

These contributors are supervised by managers, limited by the maximum number of employees

they can manage, called the span of control cτl . In our model, managers occupy the higher grades

l ∈M := {Lw + 1, . . . ,L}, where L is the highest grade in the hierarchy. Promotion is thus the

movement of employees between adjacent strata. For simplicity, assume that promotion only occurs

between adjacent grades and ignore complications, such as transfers across departments.

Employees may be lost through attrition. In the literature, attrition is often understood as a

rate – an annual proportion of stock s̃. Instead we hope to model attrition as a random variable

depending on the decision variables, so as to capture the inter-dependence – employees who were

not promoted have a different chance of leaving compared to those who were.

More specifically, given state space X ⊆R+
0 containing stock s̃t,τl , define attrition as the collection

of random variables mapping from X to itself, Aτl (ω;x) : Ω × X → X measurable under some

probability space (Ω,Σ,P) for all x ∈ X . Hence, x is the stock prior to the onset of attrition. For

brevity, we use the notation s̃t,τl = Z̃τl (x) to denote this dynamics s̃t,τl |x∼Aτl (·, x). In our case, we

consider the binomial random variable Bin(x, q), where the number of trials x represents the stock

and the success probability q := qτl represents the chance an employee stays within an organization

till the next year (also called ‘retention’).

Other than capturing the inter-dependence of uncertainty and decisions, this definition also

affords us further benefits. Distributions otherwise difficult to represent if attrition were expressed

as a rate, can now be described. For example, the O(x) behavior of the variance in the binomial

distribution, Bin(x, q), can now be captured. Moreover, the model can be extended to the case
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where individualized data is supplied. Here, q can be the predicted flight risk of individual employees

under separately constructed predictive models (e.g. a random forest model).

With this, we define the dynamics which depends on time-in-grade τ ∈ [M ]0:

s̃t,0l+1 = htl+1 +
∑
τ ′

pt−1,τ
′

l ∀t∈ [T ],∀l ∈ [L− 1]

s̃t,τl = Z̃τl (s̃t−1,τ−1l − pt−1,τ−1l ) ∀t∈ [T ],∀l ∈ [L− 1],∀τ ∈ [M ] (1)

s̃t,τL = Z̃τL(s̃t−1,τ−1L ) ∀t∈ [T ],∀τ ∈ [M ]

The first equation states that the employees new to grade l+ 1 at time t are the totality of new

hires and those promoted. The next two equations describe the erosion of the stock by promotions

and attrition at each time period. The model is also accompanied by the following constraints:

1. Headcount constraint:
∑
l,τ

s̃t,τl ≤Ht, ∀t∈ [T ].

2. Budget constraint:
∑
l,τ

s̃t,τl wτl ≤Bt, ∀t∈ [T ].

3. Productivity constraint:
∑
l,τ

s̃t,τl rτl ≥ Pt, ∀t∈ [T ].

4. Span of control constraint: For each l ∈M, let Wl ⊆ [l− 1] be the employee grades supervised

by the manager. Then
∑
τ

s̃t,τl cτl ≥
∑
λ∈Wl
τ

s̃t,τλ , ∀l ∈M, ∀t∈ [T ]. We can simplify this by letting

bτl,λ =


cτl if λ= l

−1 if λ∈Wl

0 otherwise

then the constraint may simply be written as
∑
λ,τ

s̃t,τλ bτl,λ ≥ 0, ∀t∈ [T ],∀l ∈M.

5. Trivial constraints htl ≥ 0 and 0≤ pt,τl ≤ s̃
t,τ
l for ∀t∈ [T ],∀l ∈ [L],∀τ ∈ [M ].

A Risk-based Model

In the literature, one might minimize the costs of maintaining a workforce, maximize the total

productivity of employees, or deal with these multiple objectives in the goal programming sense

(for example in Price and Piskor 1972). However, it could be difficult to prescribe the trade-offs

between costs and productivity (e.g. for a maintenance crew), say in goal programming.

It may also be more appropriate within some business contexts neither to maximise output nor

minimise operating costs, but to run the least risk of disruption, such as a service centre. This

approach is especially relevant for public sector organizations. Without a clear objective, we instead

pursue an optimization model which minimizes this risk. It sounds tempting to minimize the joint

probability of constraint violation, but this leads to a chance-constrained program, which, often

and in particular in this case, has intractable formulations. In fact, our goal doesn’t necessitate the

minimization of the chance of constraint violation per se. Instead, we simply desire a policy that
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does not fare too poorly, in other words, a course of action with some guarantees over the risks of

violation.

Aumann and Serrano (2008)’s riskiness index has this functionality. Let Z be the set of all

random variables on our probability space (Ω,Σ,P). Define the Aumann and Serrano (2008)’s

riskiness index as the functional µ :Z →R+
0 ∪{∞}:

µ(z̃) = inf {k > 0 :E exp(z̃/k)≤ exp(0) = 1} . (2)

Here, z̃ represents the size of the violation – a positive number constitutes a violation and vice

versa. The exponential disutility penalizes ever larger violations. The riskiness index gives the risk

level k, where the expected disutility is equal to a state where there are no violations. µ may also

be expressed as:

µ(z̃) = inf {k > 0 :Ck,1(z̃)≤ 0} , (3)

in terms of the certainty equivalence

Ck,θ(x) = k log

(
E
[

exp
(
x/kθ

)])
.

The riskiness index obeys the following properties:

1. Satisficing: µ(z̃) = 0 if and only if P[z̃ ≤ 0] = 1.

2. Infeasibility: If E[z̃]> 0, then µ(z̃) =∞.

3. Convexity: µ is convex in z̃.

4. Violation Guarantees: For µ(z̃)> 0, P[z̃ > φ]≤ exp(−φ/µ(z̃)).

The first property states that there is no risk if there is no chance of violation. The second dictates

that if violations are always expected, then the risk is always infinite. The third requires convexity

and the fourth is our desired guarantee against constraint violation, which is the consequence of

Markov’s inequality. Hence µ(z̃) captures the notion of risk – the lower µ(z̃) is, the sharper the

guarantee against ever larger violations φ of the constraint.

Aumann and Serrano (2008)’s riskiness index fits well to our setting – we seek a risk level k,

such that the riskiness index of every constraint is bounded by at most k. As a consequence, we

obtain guarantees against the chance of constraint violations for each constraints. This risk level k

hence is the objective that we seek to minimize.

Monotonicity of Ck,θ in k allows us to relax each linear constraint x̃≤G to Ck,θ(x̃−G)≤ 0. As

Ck,θ is a perspective map in k, it is jointly convex in k and x. As such, this relaxation preserves

convexity. The constraints can now be violated, but the level of violation is controlled for φ> 0,

P[x̃−G≥ φ]≤ exp(−φ/kθ).
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Note that θ acts as a tuning parameter, which behaves like k. As such, θ dictates the tightness

of this exponential envelope – a user may prescribe the degree of tightness based on the acceptable

level of risk for that constraint. Across constraints, θ calibrates the relative risk aversion of violating

each constraint, for example, say to emphasise that the budget constraint is more critical than

the headcount, or across time, such as a stronger aversion to earlier time violation than in the

future as with discounting. For simplicity, we shall assume θ= 1 in all subsequent discussions and

is dropped from further notation, until later in an analysis where we have to calibrate the tightness

of the hiring constraint (in page 24). The alternative to prescribing θ is to perform lexicographic

minimization. More shall be said about that later.

Before moving on, we make a final adjustment to represent promotion as a rate of stock instead

of an absolute figure. In particular, this changes the dynamics (1) to:

s̃t,0l+1 = htl+1 +
∑
τ

s̃t−1,τ−1l

dt−1,τ−1l − dt,τl
dt−1,τ−1l

∀t∈ [T ],∀l ∈ [L− 1]

s̃t,τl = Z̃τl

(
s̃t−1,τ−1l

dt,τl
dt−1,τ−1l

)
∀t∈ [T ],∀l ∈ [L− 1],∀τ ∈ [M ] (4)

s̃t,τL = Z̃τL(s̃t−1,τ−1L ) ∀t∈ [T ],∀τ ∈ [M ]

We also relax the requirement htl+1 ≥ 0, replacing it with

Ck

(∑
τ

s̃t−1,τ−1l

dt−1,τ−1l − dt,τl
dt−1,τ−1l

− s̃t,0l+1

)
≤ 0. (5)

This increases the flexibility of the model to ‘fire’ employees, while still remaining averse to releasing

a large number of them. In this case, st,0l becomes a decision variable. This has the desirable side

effect of reformulating 0≤ pt,τl ≤ s̃
t,τ
l in terms of decision variables only dt−1,τ−1l ≥ dt,τl ≥ 0.

We can now state our Risk-based Manpower Planning (RMP) model:

min k

s.t. s̃t,τl = Z̃τl

(
s̃t−1,τ−1l

dt,τl
dt−1,τ−1l

)
∀t∈ [T ],∀l ∈ [L− 1],∀τ ∈ [M ]

s̃t,τL = Z̃τL(s̃t−1,τ−1L ) ∀t∈ [T ],∀τ ∈ [M ]

k log

(
E
[

exp
(
(
∑
l,τ
s̃
t,τ
l
−Ht)/k

)])
≤ 0 ∀t∈ [T ]

k log

(
E
[

exp
(
(
∑
l,τ
s̃
t,τ
l
wτl −Bt)/k

)])
≤ 0 ∀t∈ [T ] (6)

k log

(
E
[

exp
(
(Pt−

∑
l,τ
s̃
t,τ
l
rτl )/k

)])
≤ 0 ∀t∈ [T ]

k log

(
E
[

exp
(
−

∑
λ,τ

s̃
t,τ
λ
bτl,λ/k

)])
≤ 0 ∀t∈ [T ],∀l ∈M
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k log

(
E
[

exp

((∑
τ
s̃
t−1,τ−1
l

d
t−1,τ−1
l

−dt,τ
l

d
t−1,τ−1
l

−st,0
l+1

)
/k

)])
≤ 0 ∀t∈ [T ],∀l ∈ [L]

st,0l ≥ 0, dt−1,τ−1l ≥ dt,τl ≥ 0 ∀t∈ [T ],∀l ∈ [L],∀τ ∈ [M ]

Pipeline Invariance

This model turns out to be tractable. We first state a property:

Property 1 (Pipeline Invariance) Let X ⊆Y ⊆R, where Y is closed under multiplication. The

X -collection of random variables A( · ;x) : Ω × X → X , represented as Z̃(x), satisfies pipeline

invariance if there exists non-constant functions π,ρ :Y →Y such that

E
[
π
(
yZ̃(x)

)]
= π
(
x · ρ(y)

)
,∀x∈X ,∀y ∈Y, (7)

and ρ(·) is solely a function of y. We call π and ρ the preservation function and the relay function

of Z̃ respectively. Moreover, if the family {Z̃l}, each satisfying pipeline invariance, shares the same

preservation function (but with possibly different relay functions), then we shall call this a pipeline

invariant family.

Pipeline invariance is effectively the preservation of the functional form of π(·) under the action

of taking expectations. For the binomial random variable Bin(x, q) for fixed q, pipeline invariance

is satisfied with preservation π(x) = exp(x) and relay ρ(y) = log(1 − q + qey). It turns out that

Pipeline Invariance is satisfied by a larger class of distributions, such as the Poisson random variable

Pois(x) with dependence on its rate x, or the Chi-squared distribution χ2(df) with dependence on

the degrees of freedom df . Moreover, their relay functions are convex over some domain.

Pipeline invariance lies at the heart of our core result:

Theorem 1 (Pipeline Reformulation). Let {Z̃τl } be a pipeline invariant family with preser-

vation function π(·) = exp(·). Suppose that ∀l ∈ [L], τ ∈ [M ] the relay functions ρτl are convex on

Y ⊇X . If integrality of s̃t is relaxed and if for each t > 0, s̃t,τl are independent for all l and τ , then

constraints of the form,

k log

(
E
[

exp
(
(
∑
l,τ
s̃
t,τ
l
uτl −Ut)/k

)])
≤ 0 (8)

under s̃t,τl = Z̃τl

(
s̃t−1,τ−1l

d
t,τ
l

d
t−1,τ−1
l

)
, is equivalent to the reformulation

∑
l

st,0l u
0
l + k

∑
l

1<t′≤t

s
t′−1,0
l

d
t′−1,0
l

ξt
′,1
l + k

∑
l

τ≥t

s
0,τ−t
l

d
0,τ−t
l

ξ1,τ−t+1
l ≤Ut

dt,τl ρτl (u
τ
l/k)≤ ξt,τl ∀τ ∈ [M ]

dt
′,τ
l ρτl (ξ

t′+1,τ+1
l /dt

′,τ
l

)≤ ξt
′,τ
l ∀t′ ∈ [t− 1], τ ∈ [M − t+ t′]

(9)
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Proof of Theorem 1. We prove by induction for j = 1, . . . , t that the constraint (8) has the

equivalent reformulation:∑
l

st,0l u
0
l +

∑
l

1<t′≤j

ξt−t
′+2,1

l

s̃t−t
′+1,0

l

dt−t
′+1,0

l

+ k log

(
E≤t−j

[ ∏
l

τ>j−1

exp
(
s̃t−j,τ−jl

ξt−j+1,τ−j+1
l

dt−j,τ−jl

)])
≤Ut

dt,τl ρτl (u
τ
l /k)≤ ξt,τl ∀τ ∈ [M ] (10)

dt−t
′,τ−t′

l ρτ−t
′

l

(
ξ
t−t′+1,τ−t′+1
l /dt−t

′,τ−t′
l

)
≤ ξt−t

′,τ−t′
l ∀t′ ∈ [j− 1],∀τ ∈ [M ]− [t′]

Indeed, when j = t, then (9) is recovered, with some manipulation of indices.

We first show the case when j = 1, i.e. that (8) has the reformulation∑
l

st,0l u
0
l + k log

(
E≤t−1

[ ∏
l,τ>0

exp
(
s̃t−1,τ−1l

ξ
t,τ
l

d
t−1,τ−1
l

)])
≤Ut

dt,τl ρτl (
uτl
k

)≤ ξt,τl ∀τ ∈ [M ]

(11)

Now, evaluating (8) gives

k log

(
E
[

exp
(
(
∑
l,τ
s̃
t,τ
l
uτl )/k

)])
= k log

(
E≤t−1

[∏
l,τ

Et
[

exp
(
(s̃
t,τ
l
uτl )/k

)]])
(12)

=
∑
l

st,0l u
0
l + k log

(
E≤t−1

[ ∏
l,τ>0

Et exp
(uτl
k
Z̃τl
(
s̃t−1,τ−1l

dt,τl
dt−1,τ−1l

))])
=
∑
l

st,0l u
0
l + k log

(
E≤t−1

[ ∏
l,τ>0

exp
(
s̃t−1,τ−1l

dt,τl
dt−1,τ−1l

ρτl
(uτl
k

))])
(13)

Here, we have used independence in (12) and then pipeline invariance in (13). Also notice that

the first term consists simply of constants and decision variables, and hence exiting it from the

expectation was valid. At this point, ρτl (u
τ
l/k) is just simply a constant. Hence we can create the

auxiliary variable ξt,τl and represent it as the epigraph dt,τl ρτl (
uτl
k

)≤ ξt,τl . This proves the j = 1 case.

To prove the induction step going from j to j+ 1, it suffices to prove that

k log

(
E≤t−j

[ ∏
l

τ>j−1

exp
(
s̃t−j,τ−jl

ξt−j+1,τ−j+1
l

dt−j,τ−jl

)])
≤X (14)

can be reformulated as∑
l

ξt−j+1,1
l

s̃
t−j,0
l

d
t−j,0
l

+ k log

(
E≤t−j−1

[ ∏
l,τ>j

exp
(
s̃t−j−1,τ−j−1l

ξ
t−j,τ−j
l

d
t−j−1,τ−j−1
l

)])
≤X

dt−j,τ−jl ρτ−jl

(
ξ
t−j+1,τ−j+1
l /dt−j,τ−j

l

)
≤ ξt−j,τ−jl ∀τ ∈ [M ]− [j]

(15)

We evaluate the LHS of (14), again using independence and shifting decision variables out of the

expectation in (16), and pipeline invariance in (17).∑
l

ξt−j+1,1
l

s̃t−j,0l

dt−j,0l

+ k log

(
E≤t−j−1

[ ∏
l,τ>j

Et−j exp
(
s̃t−j,τ−jl

ξt−j+1,τ−j+1
l

dt−j,τ−jl

)])
(16)
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=
∑
l

ξt−j+1,1
l

s̃t−j,0l

dt−j,0l

+k log

(
E≤t−j−1

[ ∏
l,τ>j

Et−j exp
(ξt−j+1,τ−j+1

l

dt−j,τ−jl

Z̃τ−jl

(
st−j−1,τ−j−1l

dt−j,τ−jl

dt−j−1,τ−j−1l

))])
=
∑
l

ξt−j+1,1
l

s̃t−j,0l

dt−j,0l

+k log

(
E≤t−j−1

[ ∏
l,τ>j

exp
(
s̃t−j−1,τ−j−1l

dt−j,τ−jl

dt−j−1,τ−j−1l

ρτ−jl

(
ξ
t−j+1,τ−j+1
l /dt−j,τ−j

l

))])
(17)

Now, notice that dt−j,τ−jl ρτ−jl

(
ξ
t−j+1,τ−j+1
l /dt−j,τ−j

l

)
is jointly convex in both dt−j,τ−jl and

ξt−j+1,τ−j+1
l , as it is simply the perspective on ρτ−jl (ξt−j+1,τ−j+1

l ). Moreover, exp(·), within which it

is lying, is convex increasing. Hence, we may replace it with a new auxiliary variable ξt−j,τ−jl and

its epigraph to recover (15), as desired. This completes the proof for the induction. �

Notice first that for fixed k, the reformulation is convex. Also, by defining our rate as a fraction
d
t,τ
l

d
t−1,τ−1
l

, we had availed ourselves a degree of freedom. For convenience, one may set st,τl = dt,τl for

all t and τ for which t= 0 or τ = 0, in which case, the first equation becomes linear for fixed k:∑
l

st,0l u
0
l + k

∑
l

∑
1<t′≤t

ξt
′,1
l + k

∑
l

∑
τ≥t

ξ1,τ−t+1
l ≤Ut.

Remark 1. One may be tempted to extend Theorem 1 to the general preservation function π and

its certainty equivalence, e.g. to change (8) into kπ−1
(
E
[
π
(
(
∑
l,τ
s̃
t,τ
l
uτl −Ut)/k

)])
≤ 0. Such an attempt,

however, turns out to be subtly challenging. The key issue lies with the use of the multiplicative

property of exp under independence: E
[
exp

(∑
l,τ

sτl
)]

= E
[∏
l,τ

exp(sτl )
]

=
∏
l,τ

E[exp(sτl )]. Replicating

this for a generic preservation π can be difficult.

The proof of Theorem 1 may seem cumbersome and technical, but mathematically, it is just a

repeated application of pipeline invariance. The idea is that the preservation function π(·) preserves

the functional form within the expectation, hence enabling us to evaluate Et[π(·)] repeatedly over

time. In this process, it creates a nested series of relay functions, which being convex, can be

represented as auxiliary variables ξ in epigraph form.

This is illustrative of the concept of pipelines, which the stock in each grade l is aligned in:

P0,0
l = {s0,0l , s1,1l , s2,2l , . . .}
P0,1
l = {s0,1l , s1,2l , s2,3l , . . .}

...
P1,0
l = {s1,0l , s2,1l , s3,2l , . . .}
P2,0
l = {s2,0l , s3,1l , s4,2l , . . .}

...

In the absence of any intervention, an employee belonging to a particular pipeline remains in the

same pipeline across time. Attrition, here acting as the random process Z̃, erodes the stock in
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the pipelines over time and promotion is a re-distribution mechanism across pipelines. Such an

interpretation also lends some justification to the independence assumption in Theorem 1. One

otherwise does not expect the pipelines to mix, save for the effect of promotions.

More specifically, in the case of manpower planning, we have the corollary:

Corollary 1 (Binomial Pipeline) Under the same assumptions as Theorem 1, where Zτl is bino-

mial with success probability qτl and dependence on the number of trials, the constraint

k log

(
E
[

exp
(
(
∑
l,τ
s̃
t,τ
l
uτl −Ut)/k

)])
≤ 0 (18)

may be reformulated as

∑
l

st,0l u
0
l + k

∑
l

1<t′≤t

s
t′−1,0
l

d
t′−1,0
l

ξt
′,1
l + k

∑
l

τ≥t

s
0,τ−t
l

d
0,τ−t
l

ξ1,τ−t+1
l ≤Ut

dt,τl log(1− qτl + qτl e
uτl /k)≤ ξt,τl ∀τ ∈ [M ]

dt
′,τ
l log(1− qτl + qτl e

ξ
t′+1,τ+1
l /dt

′,τ
l )≤ ξt

′,τ
l ∀t′ ∈ [t− 1], τ ∈ [M − t+ t′]

(19)

Proof. It is easy to check that the binomial family with dependence on x, the number of

trials, forms a pipeline invariant family with preservation function π(x) = ex and relay functions

ρτl (y) = log(1− qτl + qτl e
y), where ρ is convex on the whole real line for qτl ∈ [0,1]. �

The remaining challenging is to deal with the constraint associated with re-distribution across

pipelines, i.e. the non-negative hiring constraint. Thankfully, we have:

Proposition 1 (Re-distribution Constraint) Under the same assumptions as Corollary 1, for

fixed l, the constraint

k log

(
E
[

exp

((∑
τ
s̃
t−1,τ−1
l

d
t−1,τ−1
l

−dt,τ
l

d
t−1,τ−1
l

−s̃t,0
l+1

)
/k

)])
≤ 0 (20)

is equivalent to the set of equations

−st,0l+1 + st−1,0l

d
t−1,0
l

−dt,1
l

d
t−1,0
l

+ k
∑

1<t′<t

s
t′−1,0
l

d
t′−1,0
l

ξt
′,1
l + k

∑
τ≥t−1

s
0,τ−t+1
l

d
0,τ−t+1
l

ξ1,τ−t+2
l ≤ 0

dt−1,τl log(1− qτl + qτl e
(1−dt,τ+1

l /d
t−1,τ
l

)/k)≤ ξt−1,τl ∀τ ∈ [M ]

dt
′,τ
l log(1− qτl + qτl e

ξ
t′+1,τ+1
l /dt

′,τ
l )≤ ξt

′,τ
l ∀t′ ∈ [t− 2], τ ∈ [M − t+ t′+ 1]

(21)

The proof is technical and similar to the proof of Theorem 1; as such, it is omitted. Again, note

that for fixed k, the problem remains convex and the simplifying assumption to set st,τl = dt,τl for

all t and τ where either of them is 0, keeps the first equation linear.
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Robustness and Tractability

One may contest that the RMP model could be sensitive to the specification of the attrition

estimates q and that in reality, the estimates of q from data over only a few years would be subject

to large errors. These concerns are valid. Thankfully, the exponential disutility form of the riskiness

index affords another additional benefit – its dual representation relates to the Kullback-Leibler

(KL) divergence. More specifically, it is well known that:

Proposition 2 Let P and P̂ be distributions. Then

k log(EP̂e
Z̃/k) = sup

P
EP[Z̃]− kD(P||P̂) (22)

where D(P||P̂) is the Kullback-Leibler divergence.

In other words, Proposition 2 indicates that each constraint, evaluated under the empirical

distribution P̂, provides an upper bound for the expected violation, evaluated under the true

distribution Q, as long as the distance metric (in the KL divergence sense) between P̂ and Q is

small. Moreover, this distance is controlled by the risk parameter k. We shall see how this can lead

to robust outcomes later during the numerical illustration.

To solve the Risk-based Manpower Planning model, one can perform bisection search on k.

However, it requires the proper solution of the exponential cone. In our case, the cones are of the

form f(d, ζ; q) := d log(1− q+ qeζ/d)≤ ξ, where q ∈ [0,1]. We know that f ∼ d log(1− q) as ζ→−∞

and f ∼ ζ + d log q as ζ →∞. As such, the behavior of f is asymptotically linear. This suggests

that an approximation using a cutting plane method is likely to suffice. A sample algorithm could

go along the lines of Algorithm 1.

Alternatively, one can approximate f with a series of second-order cones:

Proposition 3 (SOC Approximation) For q ∈ [0,1], the function

f(d, ζ; q) := d log(1− q+ qeζ/d) (23)

has a second-order cone formulation that approximates it to at least the tenth order.

Proof of Proposition 3. The proof is provided in the Appendix. �

More recently, there have also been advances in the efficient computation of exponential cones,

especially using interior point methods. Solvers are already available in MATLAB (CVX Research

2012) and also in Julia/JuMP (e.g. Miles et al. 2016), extending to MICPs, which arises when we

extend the model to individuals.
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Algorithm 1 Cutting-Plane Algorithm for the Risk-based Manpower Planning Model

Require: Tolerances ε, εK. Set as objective to minimize any constraint for t= T (say headcount∑
l

st,0l + k
∑

l∈[L],1<t′≤t
ξt
′,1
l + k

∑
l∈[L],τ≥t

ξ1,τ−t+1
l ). Let UT be its target.

Initialization: k−← 0, sufficiently large k+.

Let R(k) be the model where all exponential cone constraints f(d, ζ; q)≤ ξ in (6) are replaced

with asymptotic linear estimates, d log(1− q)≤ ξ and ζ + d log q≤ ξ.

while k+− k− > ε do

k := k̄← (k+−k−)/2

Solve R(k). If feasible, obtain optimal value U∗ and optimal policy (d∗, ζ∗, ξ∗).

if R(k) infeasible or U∗ >UT then

k−← k̄

else

F ←{f | f(d∗, ζ∗; q)− ξ∗ > εK}

if F 6= ∅ then

Add hyperplane ∀f ∈F at (d∗, ζ∗, ξ∗) into R(k).

else

k+← k̄

end if

end if

end while

Output: Optimal k∗ = k+ and optimal policy (d∗, ζ∗, ξ∗).

Our model does not compromise tractability – the number of constraints does not grow expo-

nentially with time horizon T , or any of the other parameters, such as grades L or maximum

time-in-grade M . Indeed, in Theorem 1, for each t∈ [T ], the number of exponential cone constraints

required to reformulate one linear constraint is of order O(LMT ). Hence, in total, O(LMT 2) expo-

nential cone constraints are required. Moreover, Proposition 3 guarantees that estimating these

exponential cone constraints can be done so in the same order, O(LMT 2). Note that the depen-

dence on T , the length of the time horizon, is only quadratic, while often behavior similar to O(MT )

is observed. In practice, many solvers will exploit the redundancy in many of these constraints to

vastly speed up the computation.

Lastly, we comment that one can adapt the model, by using a different kj for each constraint,

indexed in a set j ∈J and then performing a lexicographic minimization on k := (kj)j∈J . A general

scheme of how to execute this can follow along the lines of Waltz (1967). This methodology may be

employed if the decision-maker is agnostic to the relative risk aversions of each constraint and would
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prefer to simply go for a ‘fair’ outcome in terms of the risk borne at the level of each constraint. In

the interest of brevity, we do not execute the lexicographic minimization approach in this paper.

3. Risk-based Manpower Planning in a Firm

In this section, we illustrate the Risk-based Manpower Planning model using real data of more

than 5,000 employees in the Singapore Civil Service, who can be safely assumed to have similar

job characteristics and backgrounds, tracked over 6 years. This data is collected periodically at the

individualized level, and for this illustration, we are able to summarize it into the form of the inputs

for our model. This includes their attrition, performance and wage patterns – personnel data that

is similarly collected by most large organizations. Due to confidentiality, we are unable to reveal

more about the nature of the data, though in the subsequent description, we will illustrate some

features as far as we are able to share. In this illustration, we shall look at a 5-year time window,

T = 5.

We model L = 4 grades in this organization, two ‘individual contributor’ grades labelled IC1

and IC2, which generate a large part of the productivity, and two manager grades, denoted M1

and M2. Progression occurs in this order and skipping of grades is disallowed. We truncate the

maximum number of years that an employee may remain in any grade to M = 20, where thereafter

the employee is assumed to have retired. At each grade l, we assume that employees are paid a

base wage ωl with an annual fixed increment ιl. Hence, wτl = ωl + τιl. The parameters ωl and ιl

were statistically estimated from wage data by means of a linear regression, and adjusted to make

sense. Due to its sensitivity, we are unable to disclose these estimates.

We obtained performance data which varies across time-in-grade. For simplicity, we assume that

the productivity of an employee can be written in the separable form, rτl = κlζ
τ . Here, ζτ is the

productivity profile across time-in-grade and κl is a scaling factor across different grades. The

profile ζτ is estimated from data and plotted in Figure 1. It rises with more years-in-grade, a

reflection of the accumulation of experience, before dipping with increasing employee boredom and

disengagement. Manager span of control is also assumed to follow this profile ζτ . Hence, cτl = κ̂lζ
τ .

Retention rates qτl were estimated from the data. Figure 2 illustrates the estimates. Where

the data was sparse, fluctuations were severe. Nonetheless, Proposition 2 provides some loose

guarantees that the estimation of constraints will remain within reasonable bounds. Later, when

analyzing the robustness of the model, we shall explore this further.

Finally, we specify the constraint targets. From here on, the targets shall always be fixed as a

geometric rate of growth g from the initial state at time t= 0. We vary these rates of growth in

different simulations. Table 1 summarizes this. We also require that the productivity target grows

at a slightly faster rate than the headcount and budget targets.
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Figure 1 Profile of Performance with Time-in-Grade
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Figure 2 Retention Rates with Time-in-Grade
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Because the certainty equivalence Ck is not scale invariant, we normalized all constraints so as

to ensure equitable comparisons (without having to calibrate a θ parameter for each constraint). In

other words, the model penalizes the proportional violation of targets equally across constraints.

With this specification, the model seeks to minimize the risk level, k. It returns k, in addition

to optimal solutions for the decision variables of hiring htl and promotion dt,τl . To simulate the

uncertainty and test the model, for each analysis, we ran 1,000 simulations with the random

outcomes of employees’ retention drawn from a binomial distribution of estimated retention rates,

qτl , as the success probability.
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Table 1 Specification of Constraints

Constraint Equation Target Specification

Headcount
∑
l,τ

st,τl ≤Ht Ht = gthH0 gh = g

Budget
∑
l,τ

st,τl wτl ≤Bt Bt = gtbB0 gb = g

Productivity
∑
l,τ

st,τl rτl ≥Rt Rt = gtpR0 gp = 1 + 1.05(g− 1)

Robustness

We first examine the robustness properties of the model. By design, the model provides guarantees

against constraint violation. To illustrate this, we shall compare the risk-based model against a

deterministic model. In the deterministic model, one evaluates the expected number of employees

as E[st,τl |s̃
t−1,τ−1
l ] = s̃t−1,τ−1l

d
t,τ
l

d
t−1,τ−1
l

qτl . Hence, in expectation,

E[st,τl ] =


s0,τ−tl

d
t,τ
l

d
0,τ−t
l

τ∏
j=τ−t+1

qjl = dt,τl
τ∏

j=τ−t+1

qjl if τ ≥ t

st−τ,0l

d
t,τ
l

d
t−τ,0
l

τ∏
j=1

qjl = dt,τl
τ∏
j=1

qjl if τ < t
(24)

In the case of the highest level l= 4, there can be no more promotions. As such, we instead obtain

E[st,τ4 ] =


s0,τ−t4

τ∏
j=τ−t+1

qj4 if τ ≥ t

st−τ,04

τ∏
j=1

qj4 if τ < t
(25)

With this, we can represent E
[∑
l,τ

s̃T,τl uτl

]
in terms of decision variables dt,τl and st,0l :

E

[∑
l,τ

s̃T,τl uτl

]
=

3∑
l=1

(
st,0l u

0
l +

t−1∑
τ=1

dt,τl uτl

τ∏
j=1

qjl +
M∑
τ=t

dt,τl uτl

τ∏
j=τ−t+1

qjl

)
(26)

+

(
st,04 u0

l +
t−1∑
τ=1

s̃0,τ−t4

τ∏
j=τ−t+1

qj4 +
M∑
τ=t

s̃t−τ,04

τ∏
j=1

qj4

)

We write the deterministic model below. We shall take productivity in the last time period (PT )

as the objective. Note that the deterministic model is obtained from the risk-based formulation in

the limit k→∞.

max E

[∑
l,τ

s̃T,τl rτl

]

s.t. E

[∑
l,τ

s̃t,τl

]
≤Ht ∀t∈ [T ]
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E

[∑
l,τ

s̃t,τl wτl

]
≤Bt ∀t∈ [T ]

E

[∑
l,τ

s̃t,τl rτl

]
≥ Pt ∀t∈ [T ] (27)

E

[∑
λ,τ

s̃t,τλ bτl,λ

]
≥ 0 ∀t∈ [T ],∀l ∈M

E

[∑
τ

s̃t−1,τ−1l

dt−1,τ−1l − dt,τl
dt−1,τ−1l

]
≤ st,0l+1 ∀t∈ [T ],∀l ∈ [L− 1]

st,0l ≥ 0, dt,τl ≥ 0 ∀t∈ [T ],∀l ∈ [L],∀τ ∈ [M ]

We first ran the model for growth rate g = 1.02, i.e. the organization is allowed to grow by 2%

annually. The risk-based model seeks the minimum risk level k∗. In this case, k∗ ≈ 35, which yields

the exponential envelope of the probability of constraint violation.

In Figure 3, we plot, for the headcount constraint, the actual materialized deviation from target

Ht−
∑
l,τ

st,τl based on the uncertainty. A positive figure indicates that the headcount target was not

exceeded and its magnitude gives the slack; a negative value indicates constraint violation and its

magnitude, the extent. The green line represents the Markov guarantee where the probability of

constraint violation should be no more than one-third. As Figure 3 illustrates, this guarantee is

very loose – only 2% of the simulations exceeded this bound.

Figure 3 Simulated Violation of Headcount Target in Year t=1
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We now compare this against the deterministic model. The simulated deviations from the head-

count target for each model is compared in Table 2. The risk-based model provides guarantees

against constraint violation, and if violations occur, they do so with a smaller magnitude.
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Table 2 Comparison of Constraint Violation in Risk-based and Deterministic Models

Deviation from H5 Risk-based Deterministic
Median 8.07 -4.40
Mean 7.18 -5.57
1st Quartile -14.29 -27.42

However, one can expect that the gains in the guarantees may not be universal for different

specification of the targets. To illustrate this, let us vary the productivity target Pt (via gp), while

keeping all other targets fixed. Intuitively, there should be a monotone relationship between Pt and

k∗ – the higher Pt, that is, the higher the productivity target that must be met, the more difficult

it is to do so and hence the risk level k∗ of failing should be expected to rise. We try this for 3

configurations: gp = 1.023 (where k∗ large), gp = 1.021 (an intermediate region), and gp = 1.015

(where k∗ small). Table 3 below summarizes the statistics for these 3 regimes, under a comparison

between the risk-based and deterministic models.

Table 3 Different Regimes of Tightness of Targets

Tougher target Intermediate Easier target
Growth Rate gp = 1.023 gp = 1.021 gp = 1.015
(Risk level) (k∗ ≈ 232) (k∗ ≈ 35) (k∗ ≈ 10)

Deviation from P5 Risk-based Deterministic Risk-based Deterministic Risk-based Deterministic
Median deviation -4.09 5.43 30.19 96.70 127.10 379.36
Mean deviation -5.16 4.14 29.13 97.63 123.16 379.07
1st Quartile -43.7 -28.60 -1.74 65.59 88.39 344.40

Deviation from H5 Risk-based Deterministic Risk-based Deterministic Risk-based Deterministic
Median deviation 17.95 15.81 41.64 18.39 111.18 14.51
Mean deviation 18.91 16.59 42.02 18.45 113.48 13.92
1st Quartile -14.30 -14.19 12.64 -12.61 82.18 -16.49

In Table 3, we compare two constraints. The first is the productivity constraint at time T .

This was the objective in the deterministic model and hence we should reasonably expect the

deterministic model to out-perform the risk-based model in all instances. Their difference can

be understood as the cost of having guarantees against constraint violations. In the second, we

compare the headcount constraint. Across the different regimes, since the deterministic model is

agnostic to the risk of constraint violation, the distribution in the deviation from the headcount

target is approximately the same. Here, however, we can see the action of the risk-based model.

We observe three kinds of scenarios:
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1. When k∗ is very large (first regime), the problem is near infeasible. In this case, the guarantees

on constraint violation erode away and the risk-based model approximates the deterministic

model. The guarantees are so minimal, it is effectively sub-optimal. In other words, when the

system is near its limits of operability, robustness is a luxury that cannot be afforded.

2. When k∗ is very small, we are in the third regime. Here, the guarantees are very sharp –

so sharp it is over-conservative. As seen in Table 3, the loss in productivity is sizeable. On

the other hand, the deterministic model is not without reproach – a huge trade-off between

headcount and productivity was made, just by virtue of the fact that productivity was the

objective. A reasonable course of action at this point is to tighten the target.

3. There is an intermediate region where the trade-off is balanced to some extent. In the sec-

ond regime, the risk-based model does not incur a large cost to productivity, yet provides

reasonable guarantees against constraint violation.

In the last segment of this analysis on robustness, we examine if the optimal solution is robust

to the input parameters of attrition rates. To do so, we smooth the attrition rates (one minus the

retention rates in Figure 2) using a Loess regression and prune negative values. The smoothed

attrition rates are shown in Figure 4. Here, points represent the raw estimates and lines the

smoothed outcome. We then perform the same analysis we have done before.

Figure 4 Loess Smoothed Attrition Rates for each Grade
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With smoothing, the risk level rises to k∗ ≈ 44 from the previous k∗ ≈ 35. Additionally, we also

examine the optimal policies for promotion (in Figure 5 which can be compared against the optimal

policy without smoothing in Figure 7) and hiring (in Figure 6 where the original policy is in points

and the smoothed version is lined). We can see that there are only slight differences between the

optimal policies suggested by the two models.
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Figure 5 Policy for Progressing from IC1 to IC2 under Smoothing
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Figure 6 Policy for Hiring across Grade and Time under Smoothing
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Insights into HR

In this section, we examine insights that can be gleaned for HR. In the first instance, we are

interested in the question: When is it optimal to promote employees? In other words, how long

should I keep an employee at a particular grade before promoting him/her?

We study the promotion ratio dt,τl /dt−1,τ−1l , the proportion of employees at time t− 1 whom we

are choosing to retain at grade l for an additional year, having already spent τ − 1 years at this

grade l. The remainder are promoted (or released if htl+1 < 0). The closer this ratio is to 1, the fewer

employees we are promoting. To keep the solutions reasonable, we have constrained in the model

that dt,τl /dt−1,τ−1l ≥ 0.5, that is, that no more than half of existing employees can be promoted in
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any particular year. Figure 7 shows the policy for progressing employees at grade IC1 to grade IC2

as prescribed by the Risk-based Manpower Planning model.

Figure 7 Policy for Progressing from IC1 to IC2 at Optimal Solution

Time-in-Grade

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

3

1

4

5

2

Time

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1
Pr

om
ot

io
n 

R
at

io

Promotion Ratios for Employees from IC1 to IC2 Strata

The prescribed policy is a threshold – the model believes that employees should not progress

to the next grade until they have accumulated a minimum number of years, after which, they

should be promoted with haste. There is a certain logic in this. In the early years, the productivity

of employees rises with time spent in that grade due to the learning curve (Figure 1). As such,

promoting employees too early incurs an opportunity cost of potential productivity. The model

avoids this. After some point, remaining for too long at the same grade can have a disengaging

effect on employees and they may leave the organization (Figure 2). The model also avoids this, by

expediting their promotion after some time. In other words, the model seeks a balance between the

productivity an employee brings, and the risk of losing the employee. This finding lends numerical

support not just to the choice of ‘time-based progression’, but also its rationale.

In this second piece of analysis, we shall examine the impact that the growth rate g has on

the optimal risk level k∗. As before, we fixed the allowed growth rates of headcount, budget and

productivity to be a function of g. Now we vary g. Figure 8 plots the relationship.

From Figure 8, we infer that there is a higher risk level when the growth rate is smaller. This

mirrors common wisdom that it is easier to grow firms than to downsize. The explanation the

model gives is this: Risk originates from the uncertainty – resignations. The higher the growth rate

g, the greater the number of new recruits. Recruitment of employees fills the vacancies created

by those who left and thus mitigates the uncertainty. As such, the more employees that can be

recruited, the larger the capacity of HR to manage the risks arising from resignation, and thus the

lower risk on the overall.
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Figure 8 Risk Level k∗ at Different Growth Rates g
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The simple consequence of this is that there are inherent operational risks to a lack of organi-

zational renewal! Yet this is not necessarily a straightforward question to address. For example, in

an organization with a higher attrition level, we can expect two competing forces at work. One,

the higher the attrition, the greater the uncertainty and hence the higher the risk. Two, the higher

the attrition, the greater the capacity to hire since there are more vacancies to replace, hence the

lower the risk. We study which effect really plays out in our dataset.

In our model, qτl represents the retention rate of officers having spent time τ at grade l. Hence,

the attrition rate is ατl = 1− qτl . We now artificially suppress or boost the attrition rate by a factor

of a, via ᾱτl = a ·ατl . If a < 1, the attrition rate is suppressed, and vice versa. As such, we have a

new q̄τl = 1− ᾱτl .
Figure 9 plots what happens to the risk level k∗ as we vary a. With lower attrition, the risk

level k∗ rises. This is a grim consequence for advanced economies where an ageing population

is beginning to take hold. As older employees are often less employable in the workforce, they

tend to move between organizations less frequently than younger employees. As such, with ageing

population, firms can expect to see attrition rates fall across the board. Instead, they will be faced

with ever rising challenges in managing their workforce. This is not to mention that the shrinking

workforce would force many firms to reduce their growth rates, which further heightens the risk.

For the final insight, we look at varying the tightness of a constraint. The inherent difficulty

of public sector organizations to lay off their employees has often been quoted as a challenge to

managing their workforce. To elucidate this, we perform the following analysis. Recall that we could

calibrate θ in Ck,θ to dictate the tightness the bounds required for the corresponding constraint.

Now, we do so for the hiring constraint. The lower the value of θ, the more averse the model is to

releasing employees. Figures 10 and 11 tell us the consequences of this.
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Figure 9 Risk Level k∗ with Different Scaling of Attrition a
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Figure 10 Risk Level k∗ with Tightening of Hiring Constraint
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In Figure 10, we can see that the difference between not allowing any firing and allowing some

firing is an almost doubling of the risk level. Figure 11 illustrates the trade-off. We plot here the

largest number of employees released amongst the 1,000 simulations. If this number is negative,

it means that in all the simulations, there wasn’t a single case where an employee was released.

At risk level k∗ ≈ 35 and θ= 1, about 40 employees were released in total across the grades. If the

decision-maker is to refrain from releasing any of these employees, then θ must be decreased to

10−3. This would incur an almost 50% increase in the risk level.

This quantifies the natural challenges faced by PSOs compared to their private sector coun-

terpartds. In this regard, it is therefore paramount that PSOs find new and innovative ways to

rejuvenate and renew their workforce.
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Figure 11 Largest Number of Employees Released in any of the 1,000 Simulations
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4. Conclusions

We have presented a tractable model for manpower planning. While the context is described within

a PSO, the model can be utilized in certain job functions in profit-seeking firms. We have also

illustrated HR insights that can be applicable to firms, such as the need for organizational renewal.

At its root, the Risk-based Manpower Planning model is an application of the concept of pipeline

invariance under the context of multi-period optimization. The general intuition is that while it

is difficult to perform multi-period optimization, we may alleviate these difficulties if we declare a

formal structure (here, pipeline invariance) on how the decisions and the uncertainty are related,

and hence exploit this structure to gain tractable formulations. On this note, we hope, in the

future, to construct a formal framework for using pipeline invariance in multi-period optimization

problems.
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A. Proof of Proposition 3

Proof. First, we show that our constraints of the form f(d, ζ; q) = d log(1−q+qeζ/d)≤ ξ can be

written in terms of exponential cones exp(x
z
)≤ y

z
, where y≥ 0 and z > 0. There is a subtlety about

z > 0 in the sense that we will take the closure of this set later, so we can allow z ≥ 0 eventually.

Now, with some manipulation, our constraint is equivalent to

(1− q)e−ξ/d + qe(ζ−ξ)/d ≤ 1 (28)

Notice that de−ξ/d is jointly convex in both d and ξ as it is a perspective map. As such, we could

have replaced it with its epigraph formulation by introducing an auxiliary variable. The same could

be done for the de(ζ−ξ)/d. As such, (28) has the re-formulation:

(1− q)y1 + qy2 ≤ d

e−ξ/d ≤ y1/d y1 ≥ 0 (29)

e(ζ−ξ)/d ≤ y2/d y2 ≥ 0
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In the second part of the proof, we show that any exponential cone of the form exp(x
z
)≤ y

z
, where

y ≥ 0 and z > 0 has a second-order cone approximation at least to the tenth order. It suffices to

show that ex can be expressed as a sum of squares of polynomials up to the tenth order. Indeed,

one can check that the following expansion holds:

ex =
1

10!
(x+ 1)

10
+

1

2 · 8!

(
x+

5

3

)8

+
7 · 19

9!

(
x+

1963

855

)6

+
3 · 179369

52 · 10!

(
x+

14417

4958

)4

(30)

+
37 · 130853761

5 · 13 · 5281 · 9!

(
x+

12929

3684

)2

+
2 · 27697

132 · 47 · 163
+O(x11)

�

Remark 2. Curiously, ex cannot be expanded in this manner to arbitrarily high order. Indeed,

this expansion fails to produce positive coefficients starting from the 72nd order.


