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ABSTRACT

Though some research efforts have been dedicated to constrained Bayesian opti-
mization (BO), there remains a notable absence of a principled approach with a
theoretical performance guarantee in the decoupled setting. Such a setting involves
independent evaluations of the objective function and constraints at different inputs,
and is hence a relaxation of the commonly-studied coupled setting where functions
must be evaluated together. As a result, the decoupled setting requires an adaptive
selection between evaluating either the objective function or a constraint, in ad-
dition to selecting an input (in the coupled setting). This paper presents a novel
constrained BO algorithm with a provable performance guarantee that can address
the above relaxed setting. Specifically, it considers the fundamental trade-off be-
tween exploration and exploitation in constrained BO, and, interestingly, affords
a noteworthy connection to active learning. The performance of our proposed
algorithms is also empirically evaluated using several synthetic and real-world
optimization problems.

1 INTRODUCTION

In real-world applications, we often encounter expensive-to-evaluate black-box objective functions
that can only be assessed through simulations or experimentation. For example, problems involve
optimizing the hyperparameters of a machine learning model (Wistuba et al., 2018; Perrone et al.,
2020), or choosing experiments in the fields of material and drug design (Schweidtmann et al., 2018).
To address these problems, Bayesian optimization (BO) has gained prominence as a widely adopted
approach (Brochu et al., 2010; Frazier, 2018; Garnett, 2022). It is an iterative model-based approach
that employs a probabilistic model, e.g., a Gaussian process (GP), to estimate the unknown objective
function. At each iteration, BO searches for the optimal solution by strategically selecting an input
query to evaluate the objective function, maintaining a balance between exploiting promising areas
and exploring poorly-estimated regions. BO encompasses many well-established techniques such as
the probability of improvement (Kushner, 1964), expected improvement (EI) (Mockus et al., 1978),
Gaussian process upper confidence bound (GP-UCB) (Srinivas et al., 2010), the knowledge-gradient
based approach (Frazier et al., 2008), and information-theoretic approaches: entropy search (Hennig
and Schuler, 2012), predictive entropy search (PES) (Hernández-Lobato et al., 2014), and max-value
entropy search (MES) (Wang and Jegelka, 2017).

Beyond the black-box objective function, recent advancements in BO have focused on addressing
the prevalent presence of black-box constraints. For example, there often exist prediction time
constraints and class-wise performance constraints when tuning machine learning models (Hernández-
Lobato et al., 2016; Takeno et al., 2022). They are just as costly to evaluate as the objective
function. Constrained BO has led to many BO extensions such as EIC (an EI-based method) (Gardner
et al., 2014), a knowledge gradient-based method (Chen et al., 2021), CMES-IBO (an MES-based
method) (Takeno et al., 2022), augmented Lagrangian approaches (Gramacy et al., 2016; Picheny
et al., 2016), and upper trust bound (UTB) (a GP-UCB-based method) (Priem et al., 2020).
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However, existing approaches primarily concentrate on empirical performance and lack a theoretical
analysis to ensure consistent performance. Recently, theoretical studies for constrained BO have
gained attention via the works of Lu and Paulson (2022) and Xu et al. (2023). While Lu and
Paulson (2022) perform the analysis by proposing a penalty-based regret, Xu et al. (2023) analyse the
cumulative regret due to the objective function and the constraint violation separately.

Besides the above largely unexplored theoretical analysis, existing works often overlook the potential
for evaluating the objective function and the constraints independently at different inputs, known
as decoupled queries. Specifically, the above works, including the theoretical analysis by Lu and
Paulson (2022), require simultaneous evaluations of the objective function and the constraints at
an input query, known as coupled queries. The distinction between coupled and decoupled queries
was first mentioned in the work of Gelbart et al. (2014). They discuss a chicken-and-egg pathology
which prevents extending a myopic BO approach such as EIC to the decoupled setting. Later,
Hernández-Lobato et al. (2016) introduce a principled approach based on PES, namely PESC, to
address constrained BO with decoupled queries. While PESC is functionally equivalent to a lookhead
approach, it leverages the symmetric property of mutual information to avoid performing the actual
lookahead computation. Regrettably, its implementation is fairly complex, making it less accessible to
practitioners. Besides, it lacks a theoretical performance guarantee. While ADMMBO (Ariafar et al.,
2019) deals with decoupled queries, it deterministically alternates the evaluations of the objective
function and constraints, without exploiting the benefits of an adaptive selection approach. Hence,
the question of devising an approach that offers a theoretical performance guarantee, is adaptable to
decoupled queries, and can be readily implemented by practitioners remains unanswered.

In this paper, we address this question by proposing a simple algorithm with a theoretical performance
guarantee, especially in the decoupled setting. Notably, our algorithm is myopic without expensive
lookaheads. In Sec. 2, we introduce a regret that does not require any penalty parameter, unlike that
in the work of Lu and Paulson (2022). Then, we discuss the exploration-exploitation trade-off in
constrained BO in Sec. 3. Specifically, we introduce a new form of exploration, namely horizontal
exploration, resulted from the presence of black-box constraints. It is to differentiate from the vertical
exploration in unconstrained BO (Srinivas et al., 2010). Then, we design a unified approach that
handles coupled and decoupled queries from this perspective. More importantly, our algorithms are
shown to be no-regret in Theorem 3.3 and App. B. While the viewpoint of balancing exploration and
exploitation is inherently grounded in BO, especially in the bandit setting like GP-UCB (Srinivas
et al., 2010), Sec. 3.3 shows that the choice of the function to query can also be framed within
the well-known uncertainty sampling paradigm in the active learning literature (Settles, 2009). In
Sec. 3.4, we propose an estimator for approximating the optimal solution at each BO iteration with a
theoretical performance guarantee. To empirically demonstrate the performance of our algorithms,
we presents several experiments using both synthetic and real-world optimization problems in Sec. 4.

2 CONSTRAINED BAYESIAN OPTIMIZATION AND REGRET DEFINITION

Let f be a real-valued black-box objective function and C be a finite set of real-valued black-box
constraints. Let the compact subset X ⊂ Rd be the input domain and d ∈ N+ be the input dimension.
We consider the following constrained optimization problem

max
x∈S

f(x) where the feasible region S ≜ {x ∈ X | c(x) ≥ λc ∀c ∈ C} and λc ∈ R ∀c ∈ C . (1)

Equality constraints can be transformed into two inequality constraints. Let us denote the set of the
objective function and constraints as F ≜ {f} ∪ C and denote a function in F as h.

To identify the optimal solution x∗ ≜ argmaxx∈S f(x), we employ BO which is an algorithm
operating in a sequential manner. In the decoupled query setting, at iteration t, we gather a noisy
observation of the function query ht ∈ F evaluated at an input query xt ∈ X

yht(xt) ≜ ht(xt) + ϵht(xt), ϵht(xt) ∼ N (0, σ2
ht
) . (2)

For instance, at iteration t, the algorithm may decide to query the objective function (i.e., ht = f )
whereas it may query a constraint (i.e., ht′ = c for some c ∈ C) at a different iteration t′ ̸= t. On the
contrary, in the coupled query setting, at iteration t, we query for observations {yh(xt)}h∈F of all
functions h ∈ F evaluated at the same input query xt ∈ X . The coupled setting is less challenging
since it does not require specifying the function query.
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Let Dh,t denote the set of observed inputs of h until iteration t (including xt) and Dt ≜ ∪h∈FDh,t.
Then,D0 consists of initial observed inputs. Let yh(Dt) = yh(Dh,t) ≜ {yh(x)}x∈Dh,t

denote the set
of observations from h at Dh,t. BO effectively utilizes the acquired observations {yh(Dh,t−1)}h∈F
in the previous t− 1 iterations to formulate a strategy for determining the next input query xt, the
next function query ht, and an estimator, denoted as x̃∗

t , for approximating the optimal solution x∗.
We will discuss the probabilistic model of h ∈ F given the acquired observations and a performance
metric of BO, called the regret, in the rest of this section. Then, we will elaborate on our strategy of
choosing xt, ht, and x̃∗

t in the following sections.

Gaussian process. For each h ∈ F , we model h with a Gaussian process (GP). It implies that
every finite subset of {h(x)}x∈X follows a multivariate Gaussian distribution. The GP is fully
specified by its prior mean mh(x) and its kernel kh(x,x′) ≜ cov(h(x), h(x′)). We employed the
commonly-used squared exponential (SE) kernel. At iteration t, given the observations yh(Dt−1) in
the previous t− 1 iterations, the posterior distribution of h(x) follows a Gaussian distribution with a
closed-form posterior mean and variance, denoted as µh,t−1(x) and σ2

h,t−1(x), respectively.1

Regrets. To analyse the theoretical performance of constrained BO, we propose the following
instantaneous regrets r including that of the objective function rf and the constraints rc.

r(xt) ≜ maxh∈F rh(xt) where rf (xt)≜ max(0, f(x∗)− f(xt))
∀c ∈ C, rc(xt)≜ max(0, λc − c(xt)) .

(3)

Then, our goal is to design BO algorithms that achieve a sublinear cumulative regret

lim
T→∞

1

T
RT ≜ lim

T→∞

1

T

T∑
t=1

r(xt) = 0 . (4)

as it implies that minx∈{xt}T
t=1

r(xt) ≤ 1
T

∑T
t=1 r(xt) approaches 0 as T approaches∞.

Remark 2.1 (Instantaneous regret as a sum). Alternatively, the instantaneous regret can be defined as
a sum of instantaneous regrets of the objective function and the constraints

s(xt) ≜
∑
h∈F

rh(xt) . (5)

Let us consider the case of a single constraint C = {c0}. For xt ̸= x′
t, if rf (xt) = rf (x

′
t) = 1

and rc0(xt) = 0 while rc0(x
′
t) = 1, then r(xt) = r(x′

t) = 1 while s(xt) = 1 < 2 = s(x′
t). As a

result, s(x) is more effective than r(x) at measuring the suboptimality of a solution. Nevertheless, a
sublinear cumulative regret w.r.t. r implies a sublinear cumulative regret w.r.t. s and vice versa since
r(xt) ≤ s(xt) ≤ |F| r(xt). We revisit s(xt) in Sec. 3.4 when discussing the estimator x̃∗

t .

3 OPTIMISTIC BAYESIAN OPTIMIZATION WITH UNKNOWN CONSTRAINTS

To simplify the derivation, we consider the case of finite input domain X and utilize the following
Lemma 5.1 of Srinivas et al. (2010) with a modification by applying the union bound for all functions
in F (Lu and Paulson, 2022).

Lemma 3.1. Pick δ ∈ [0, 1] and set βt = 2 log(|F||X |t2π2/6δ). Then,

|h(x)− µh,t−1(x)| ≤ β
1/2
t σh,t−1(x) ∀x ∈ X ∀t ≥ 1 ∀h ∈ F (6)

holds with probability ≥ 1− δ. It suggests

uh,t−1(x) ≜ µh,t−1(x) + β
1/2
t σh,t−1(x) and lh,t−1(x) ≜ µh,t−1(x)− β

1/2
t σh,t−1(x) (7)

as the upper and lower confidence bounds of h(x) for all h ∈ F , x ∈ X , and t ≥ 1, respectively.

1Please refer to Rasmussen and Williams (2006) for the closed-form expressions.
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3.1 INPUT QUERY

In the classic unconstrained GP-UCB work of Srinivas et al. (2010) (i.e., C = ∅), it balances
between exploiting the current posterior belief by selecting those with high posterior mean µf,t−1(x),
and exploring inputs with highly uncertain evaluations of f by selecting those with high posterior
standard deviations σf,t−1(x). Specifically, GP-UCB (Srinivas et al., 2010) selects an input query
that maximizes an optimistic objective function evaluation uf,t−1(x)

xGP-UCB
t = argmax

x∈X
uf,t−1(x) = argmax

x∈X

(
µf,t−1(x) + β

1/2
t σf,t−1(x)︸ ︷︷ ︸

vertical exploration bonus

)
. (8)

Let us call β1/2
t σf,t−1(x) the vertical exploration bonus as it encourages us to be optimistic about

the unknown objective function evaluations.2 It is shown as the blue region in Fig. 1a.

In the presence of unknown constraints C, apart from the above optimistic objective function evalu-
ation uf,t−1(x), we additionally consider an optimistic feasible region, denoted as Ot, which may
contain some infeasible inputs. It represents the exploration of the feasible region which we refer to
as horizontal exploration as opposed to the vertical exploration in the optimistic objective function
evaluation. Ideally, Ot is a superset of the feasible region S to ensure that the optimal solution x∗

remains in Ot. We consider the following optimistic feasible region

Ot ≜ {x ∈ X | uc,t−1(x) ≥ λc ∀c ∈ C} (9)
which aligns with our goal that Ot ⊃ S with high probability since uc,t−1(x) ≥ c(x) with high
probability (Lemma 3.1). By considering an optimistic feasible region, we avoid the subtle issue that
the probability mass of the feasible region is 0 given the GP posterior beliefs of the constraints. This
issue affects several existing approaches such as EIC, PESC, and CMES-IBO as discussed in App. A.

Combining the vertical and horizontal explorations, we select the input query xt that maximizes the
optimistic objective function uf,t−1 restricted to the optimistic feasible region Ot

xt ≜ argmax
x∈Ot

uf,t−1(x) . (10)

We derive an upper confidence bound of rf (xt) similar to that in GP-UCB, and an additional upper
confidence bound of rc(xt) which holds with probability ≥ 1− δ (see App. B)

rf (xt) ≤ 2β
1/2
t σf,t−1(xt) and rc(xt) ≤ 2β

1/2
t σc,t−1(xt) . (11)

If the queries are coupled, we can achieve a no-regret BO algorithm by simply obtaining observa-
tions {yh(xt)}h∈F at iteration t as elaborated in App. B. This algorithm for the coupled setting is
called UCB-C to distinguish it from another algorithm, namely UCB-D, for the decoupled setting
described in the next section.

While a condition resembling equation (9) is utilized in the work of Priem et al. (2020), they do
not offer any theoretical analysis. Furthermore, they maximize a variant of the EI criterion as
opposed to the upper confidence bound uf,t−1 in our approach. Besides, the optimization problem
in equation (10) can also be framed as the unconstrained penalized acquisition function in the work
of Lu and Paulson (2022). It suffers from an extra penalty parameter requiring automated fine-tuning,
which is left as a future work by Lu and Paulson (2022). The algorithm most closely related to our
UCB-C is the recent CONFIG algorithm (Xu et al., 2023), which is accompanied by theoretical
bounds on the cumulative regret from both the objective function and the constraints. However, the
decoupled queries remain unexplored in these studies. In the next section, we address this scenario by
adaptively selecting the function query ht while maintaining the theoretical performance guarantee.

In order for the choice of xt in equation (10) to exist, Ot must be non-empty. This holds with
probability ≥ 1− δ according to Lemma 3.1 if the optimization problem is feasible. To avoid the
subtle case of Ot = ∅, we recommend setting the GP prior mean of constraint c to λc in practice.

3.2 FUNCTION QUERY

To begin with, we provide insights into a rational function query selection strategy in the decoupled
setting. Then, we will rigorously translate them into a concrete strategy.

2The term “vertical” refers to the output of f often plotted as the (vertical) y-axis, as opposed to the term
“horizontal” which refers to the input of f often plotted as the (horizontal) x-axis, e.g., in Fig. 1a.
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f(x)

x

uf,t−1(x)

← vertical exploration bonus
(reduced by evaluating f )µf,t−1(x)

lf,t−1(x)

St Ut︸︷︷︸
horizontal exploration bonus (reduced by evaluating c)

c(x)

x

λc

λc−νt

uc,t−1(x)

lc,t−1(x)

St Ut︸︷︷︸
horizontal exploration bonus

(a) (b)

Figure 1: (a) Plot of the vertical and horizontal exploration bonuses in the space of the objective
function; and (b) Plot of the horizontal exploration bonus in the space of the constraint function.

Remark 3.2 (On a rational function query selection strategy). In the decoupled setting, it can be
inefficient by querying all functions in F at every iteration since the possibility of querying/evaluating
functions in F independently is left unexploited. On one hand, it is unnecessary to evaluate any
constraint at an input query that is likely to be feasible, which is illustrated in Fig. 2a in Sec. 4. On
the other hand, if there is a significant risk of a constraint violation at xt, it is likely that querying the
“most-violated” constraint eliminates xt from the feasible region (hence, from being x∗), in which
case querying the objective function at xt is redundant. It is illustrated in Figs. 2b-c in Sec. 4.

From the regret analysis perspective, the decoupled setting poses a challenge in bounding the
instantaneous regret r(xt) at each iteration. It is because r(xt) depends on all instantaneous re-
grets {rh(xt)}h∈F while we do not evaluate all functions in F at each iteration, unlike in the coupled
setting. Therefore, it is necessary to establish a connection across {rh(xt)}h∈F .

To motivate our choice of ht, we partition the optimistic feasible region Ot into a νt-relaxed feasible
confidence region St and an uncharted region Ut.

Ot = St ∪ Ut︸︷︷︸
horizontal exploration bonus

(12)

St ≜ {x ∈ X | lc,t−1(x) ≥ λc − νt ∀c ∈ C} ∩ Ot and Ut ≜ Ot \ St (13)

where νt ≥ 0 is a constraint-relaxation parameter (St and Ut are illustrated in Fig. 1b). Recall
that lc,t−1(x) ≤ c(x) holds with high probability (Lemma 3.1), so does St ⊂ S̃νt

where S̃νt
≜ {x ∈

X | c(x) ≥ λc− νt ∀c ∈ C} is a νt-relaxation of S . Therefore, St consists of feasible inputs w.r.t. S̃νt

with high probability. Furthermore, any input x in the uncharted region Ut satisfies

∃c ∈ C, uc,t−1(x) ≥ λc ∧ λc − νt > lc,t−1(x) . (14)

Hence, the uncharted region Ut consists inputs whose feasibilities w.r.t. S are unknown (be-
cause uc,t−1(x) ≥ λc > lc,t−1(x)) and whose risks of a constraint violation are sufficiently high
(because λc − lc,t−1(x) ≥ νt for some c ∈ C) as illustrated in Fig. 1b.

We interpret Ut as the horizontal exploration bonus. Its role in the optimistic feasible region Ot

is analogous to the vertical exploration bonus β
1/2
t σf,t−1(x) in the optimistic objective function

evaluation uf,t−1(x) (illustrated in Fig. 1a and equation (8) vs. equation (12)). Let us translate the 2
intuitive cases in Remark 3.2 into the following concrete conditions.

Querying a constraint when xt ∈ Ut. When xt ∈ Ut, the risk of a constraint violation at xt

is sufficiently high (λc − lc,t−1(xt) ≥ νt, illustrated in Fig. 1b). From Remark 3.2, we query
the “most-violated” constraint defined as the one with the highest risk of a constraint violation,
i.e., argmaxc∈C λc− lc,t−1(xt). It is noted that as νt decreases, the size of the uncharted region Ut is
non-decreasing (see Fig. 1b). Hence, we use νt to control the size of Ut, i.e., controlling the horizontal
exploration bonus. However, assigning a small value to νt is risky because we may excessively
query a constraint, i.e., excessive horizontal exploration. Let us consider an extreme scenario: νt = 0
and there exists an iteration t such that a constraint c ∈ C is active at xt, i.e., c(xt) = λc. In this
case, λc − lc,t−1(xt) = c(xt) − lc,t−1(xt) ≥ 0, so the algorithm will keep querying a constraint
without querying the objective function.
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Algorithm 1 UCB-D
Require: X , D0

1: Update GP posterior beliefs: {(µh,0, σh,0)}h∈F
2: for t← 1; t← t+ 1; t ≤ T do
3: xt ← argmaxx∈Ot

uf,t−1(x)
4: ct ← argmaxc∈C λc − lc,t−1(xt) // most-violated constraint

5: if λct− lct,t−1(xt) > 2β
1/2
t σf,t−1(xt) then // xt ∈ Ut

6: ht ← ct // query most-violated constraint
7: else // xt ∈ St
8: ht ← f // query objective function
9: end if

10: yht(Dht,t)← yht(Dht,t−1) ∪ {yht(xt)}
11: Update GP posterior belief: µht,t, σht,t

12: end for

Querying the objective function when xt ∈ St. When xt ∈ St, it is likely that xt is a feasible solu-
tion (relaxed by νt), illustrated in Fig. 1b. From Remark 3.2, we prefer querying the objective function.
However, assigning a large value to νt is risky because we may excessively query the objective func-
tion, i.e., insufficient horizontal exploration. In particular, if νt > maxc∈C maxx∈X λc − lc,t−1(x),
then Ut = ∅ and Ot = St. It means xt ∈ St and the algorithm queries the objective function.

To resolve the dilemma of setting νt not too large (excessively querying the objective function) nor
too small (excessively querying a constraint), we let νt to be “self-tuned” by tying its value with the
vertical exploration bonus, i.e., setting νt = 2β

1/2
t σf,t−1(xt). The broad intuition is that if νt is too

large, the algorithm repeats querying the objective function which reduces the vertical exploration
bonus β1/2

t σf,t−1(xt). It, in turn, reduces νt as νt = 2β
1/2
t σf,t−1(xt). On the contrary, νt is too

small only if 2β1/2
t σf,t−1(xt) is too small. From equation (11), it implies that rf (xt) is small, so it

is justifiable to refrain from querying the objective function. The resulting algorithm, called UCB-D,
for the decoupled setting is described in Algorithm 1. In App. C, we prove the following Theorem 3.3
on the cumulative regret of Algorithm 1.
Theorem 3.3. The cumulative regret RT of Algorithm 1 is bounded by

Pr
{
RT ≤

√
|F|TβT max

h∈F
Chγh,T ∀T ≥ 1

}
≥ 1− δ (15)

where Ch ≜ 8/ log(1+σ−2
h ) and γh,T adopted from the work of Srinivas et al. (2010) is the maximum

information gain from observing T noisy evaluations of h.

Srinivas et al. (2010) show that γh,T is sublinear for some commonly used kernels including SE and
Matérn kernels. Hence, Theorem 3.3 suggests that Algorithm 1 results in a cumulative regret that
grows sublinearly when employing GPs with these kernels.

3.3 FUNCTION QUERY FROM ACTIVE LEARNING PERSPECTIVE

The choice of the input query xt from GP-UCB exhibits an intriguing link to the concept of informa-
tion gain found in active learning literature, where one seeks the “most informative data point” or its
approximate equivalent, the “most uncertain data point” as discussed in the work of Srinivas et al.
(2010). Interestingly, one can view the choice of the function query ht as an uncertainty sampling
strategy as well (i.e., seeking the “most uncertain data point”) (Settles, 2009).

Let us denote the upper confidence bounds of the instantaneous regrets w.r.t the objective function f
and constraint c in equation (11) as

urf ,t−1(xt) ≜ 2β
1/2
t σf,t−1(xt) ≥ rf (xt) (16)

urc,t−1(xt) ≜ max(0, λc − lc,t−1(xt)) ≥ rc(xt) . (17)

While the nature of the uncertainty in active learning differs from that of the instantaneous regret in
our problem, we are interested in minimizing their values in both scenarios. Hence, we employ the
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uncertainty sampling paradigm to choose the function query by setting
ht = argmax

h∈F
urh,t−1(xt) . (18)

This resulting strategy, interestingly, coincides with the choice of ht in Algorithm 1. It is noted that
the uncertainty sampling approach may not be effective when there exists uncertainty that cannot
be reduced with observations, referred to as aleatoric uncertainty in the work of Hüllermeier and
Waegeman (2021). Fortunately, our instantaneous regrets are analogous to the epistemic uncertainty
that can be reduced with observations. Specifically, the more observations we obtain, the better the
objective function and constraints (hence, x∗) are estimated. Thus, a smaller regret can be achieved.
Remark 3.4. If the evaluation of h ∈ F incurs a cost l(h) > 0, then we would like to choose the
function query by maximizing a cost-aware upper confidence bound of the instantaneous regret.
Specifically, the function query is chosen as ht = argmaxh∈F urh,t−1(xt)/l(h). It is interpreted as
the upper confidence bound of the instantaneous regret per unit cost (Swersky et al., 2013).

3.4 ESTIMATOR OF THE OPTIMAL SOLUTION

Remark 2.1 states that s(x) is more effective than r(x) in assessing the suboptimality of a solu-
tion. Hence, we would like to use s(x) to propose an estimator x̃∗

t for approximating the optimal
solution x∗. From equation (11), we obtain an upper confidence bound of s(x) at iteration t

s(x) ≜
∑
h∈F

rh(x) ≤
∑
h∈F

urh,t−1(x) (19)

where urh,t−1 is defined in equation (16) and equation (17). We would like to select the input with
the lowest upper confidence bound of s(x) as the estimator by considering all previous t−1 iterations

x̃∗
t = x̃κ(t) , (20)

where
x̃t′ ≜ argmin

x∈X

∑
h∈F

urh,t′−1(x) and κ(t) ≜ argmin
t′=1,...,t

∑
h∈F

urh,t′−1(x̃t′) . (21)

Then, App. D proves the following lemma.
Lemma 3.5. By picking the estimator in equation (20), it holds with probability ≥ 1− δ that

∀t ≥ 1, s(x̃∗
t ) ≤ |F|

√
|F|βt max

h∈F
Chγh,t/t (22)

where Ch ≜ 8/ log(1+σ−2
h ) and γh,T adopted from the work of Srinivas et al. (2010) is the maximum

information gain from observing T noisy evaluations of h.

Hence, when γh,t is sublinear (e.g., when the kernel is SE or Matérn (Srinivas et al., 2010)), the
sum s(x̃∗

t ) of instantaneous regrets at the estimator approaches 0 as t→∞.

4 EXPERIMENTS

This section validates the empirical performance of our algorithms by comparing with EIC (Gardner
et al., 2014), ADMMBO (Ariafar et al., 2019), and the state-of-the-art CMES-IBO which significantly
outperforms other existing approaches including EIC and PESC in the work of Takeno et al. (2022).
We did not conduct a comparison with PESC due to the challenge of maintaining a consistent initial
configuration for PESC, as emphasized by Takeno et al. (2022). Moreover, in the decoupled setting,
PESC is not currently available in the primary branch of the Spearmint tool at https://github.
com/HIPS/Spearmint. This also highlights the complexity involved in implementing PESC for
decoupled queries and its limited accessibility to practitioners. For these baselines, we select the
estimator x̃∗

t = argmaxx∈X µf,t−1(x) such that ∀c ∈ C,Pr(c(x) ≥ λc) ≥ |C|
√
0.95 as suggested

by Takeno et al. (2022). This definition may be undefined in the presence of an inequality constraint,
so we do not consider equality constraints in our experiments. Our algorithms include UCB-C (the
coupled setting in Sec. 3.1) and UCB-D (the decoupled setting in Sec. 3.2). The estimator in our
algorithms is described in equation (20). To illustrate both the instantaneous regrets of the objective
function and constraints, we plot the average and standard error (over 10 repeated experiments) of
the sum s(x̃∗

t ) (equation (5)) of these regrets at the estimator against the number of queries |Dt|. The
noise’s standard deviation is set at σh = 0.01 ∀h ∈ F . Additional details are described in App. E.
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Figure 2: Synthetic problems: (a-c) Plots of the upper confidence bound uf,t−1 (plotted as the gray
heatmap), constraints (plotted as contour lines with arrows showing the side of the feasible region),
the optimal x∗, the estimator x̃∗

t , and input queries of UCB-D; (d-f) Plots of the percentage of the
objective function (the dotted area) and constraints selected as ht by UCB-D; (g-i) Plots of the
instantaneous regret s(x̃∗

t ) against the number of queries.

4.1 SYNTHETIC PROBLEMS

The experiments are conducted on 3 synthetic constrained optimization problems each labeled in
the format [S-A{#_of_active_constraints_at_x∗}]: [S-A0], [S-A1], and [S-A2] with 0, 1, and 2
active constraints, respectively (the formulations are described in App. E.1). In these problems,
there are 2 input dimensions so we can visualize the constraints and the input queries as shown in
Figs. 2a-c. [S-A0]: The constraint is inactive at x∗ which is located distant from the boundary of the
feasible region S (Fig. 2a). Thus, UCB-D does not require precise boundary estimations of S (i.e.,
of c0) to pinpoint x∗. This results in a sparse allocation of input queries around the boundary of S.
Furthermore, around the estimator x̃∗

t , a substantial number of queries are evaluated at the objective
function (i.e., ht = f , as plotted by the yellow pluses) due to the high certainty that the input query is
feasible, which aligns with Remark 3.2. Specifically, Fig. 2d shows that more than 70% of 60 input
queries are evaluated at the objective function f , as plotted by the dotted area. Despite the distance
between the estimator x̃∗

t and the optimal x∗, the difference between f(x̃∗
t ) and f(x∗) is minimal

because s(x̃∗
t ) is small in Fig. 2g for UCB-D. [S-A1]: At x∗, the constraint c0 is inactive, but unlike

[S-A0], the constraint c1 is active (Fig. 2b). Thus, it requires precise boundary estimations of c1
around x∗ to pinpoint x∗, but does not require precise boundary estimations of c0. This results in a
sparse allocation of input queries around the boundary of c0 and a denser allocation of input queries
around the boundary of c1, especially near x̃∗

t in Fig. 2b. Specifically, Fig. 2e shows that only a
small number of the input queries are evaluated at the inactive c0. [S-A2]: Both constraints c0 and c1
are active at x∗ (Fig. 2c). Thus, UCB-D requires precise boundary estimations of both c0 and c1
around x∗ to pinpoint x∗. This results in a dense allocation of input queries around the boundaries
of both c0 and c1, especially around x∗ in Fig. 2c. Specifically, Fig. 2f shows that the input queries
are roughly allocated equally to the objective function and the 2 constraints. Despite the distance
between x̃∗

t and x∗, the difference between f(x̃∗
t ) and f(x∗) is minimal because s(x̃∗

t ) is small in
Fig. 2i for UCB-D. In Figs. 2b-c, we also observe that only a minority of the function queries ht = f
are located far away from the feasible region S, which aligns with Remark 3.2.

Regarding the instantaneous regret, Figs. 2g-i show that our UCB-D converges faster than other
algorithms. Hence, UCB-D is more query-efficient, as explained by the above discussion. UCB-C
performs competitively compared to the state-of-the-art CMES-IBO as both are designed for the

8
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Figure 3: Real-world problems: Plots of (a-c) the instantaneous regret s(x̃∗) and (d-f) the percentage
of function queries (by UCB-D) against the number of queries.

coupled setting. ADMMBO does not work well probably because it requires tuning the number of
evaluations of f and c at each BO iteration. In our experiments, ADMMBO evaluates f and c once at
each BO iteration to be consistent with EIC, CMES-IBO, and UCB-C.

4.2 REAL-WORLD PROBLEMS

In this section, we introduce 3 optimization problems utilizing real-world objective functions and
constraints. These problems serve to assess the effectiveness of our algorithms when dealing with
actual function surfaces. We select a real-world problem of optimizing a gas transmission compressor
design, referred to as [Gas], from Kumar et al. (2020). It consists of d = 4 input dimensions and
has |C| = 1 constraint. The problem of tuning hyperparameters of a convolutional neural network
(CNN), referred to as [CNN], is taken from the work of Takeno et al. (2022). In the [CNN] problem,
a two-layer CNN is trained on a class-imbalanced CIFAR10 dataset. The goal is to maximize the
overall accuracy across 10 classes subject to the constraint that the recall of each class is at least
0.5, i.e., |C| = 10. There are d = 5 hyperparameters to be optimized. The final experiment, referred
to as [QChip], involves maximizing the coupling strength of a synthetic superconducting quantum
chip (Yan et al., 2018). While it is a critical aspect for the chip’s performance, coupling strength
must be carefully controlled within the constraints of the coupling energy to prevent issues like noise,
cross-talk between qubits, and poor gate fidelity (Kwon et al., 2021). In particular, we maximize the
coupling strength subject to |C| = 2 constraints specifying the desirable range of the coupling energy,
by adjusting d = 11 geometric features that describe the physical dimensions and arrangement of
quantum chip components. To create the groundtruth functions, we obtain a dataset consisting of 393
data points. They are rigorously generated through extensive simulations using electrical simulation
software. Please refer to App. E.3 for further details.

Figs. 3(a-c) show that our UCB-D and UCB-C converge faster than other baseline methods. Therefore,
when considering the same number of queries, our algorithms outperform other baseline methods
in identifying superior designs for the above real-world problems. In Figs. 3d and 3f, we observe
that the number of queries to the objective function dominates that to the constraints in the [Gas] and
[QChip] experiments, hinting that the constraints are inactive at the optimal solution, aligning with
the groundtruth. Fig. 3e shows that in the [CNN] experiment, UCB-D initially focuses on identifying
a feasible input as it allocates few queries to the objective function at the start. It is noted that locating
a feasible input is more challenging in this experiment due to the large number of constraints.

5 CONCLUSION

In this paper, we propose a novel constrained BO algorithm with a provable performance guarantee
that can adaptively select not only the input query but also the function query to account for the
decoupled query. We formulate the algorithm from the standpoint of the fundamental exploration-
exploitation trade-off and, interestingly, cast the proposed algorithm under the uncertainty sampling
paradigm in the active learning literature. As our constrained BO solution requires only the confidence
bounds of the function evaluations, we believe the approach can be applied to other BO problems
such as BO of risk measures (Cakmak et al., 2020; Nguyen et al., 2021b;a) and meta-BO (Nguyen
et al., 2023).
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REPRODUCIBILITY STATEMENT

We have described detailed proofs for the theoretical results in App. B, C, and D. These proofs
utilize an assumption from the work of Srinivas et al. (2010) as elaborated in Sec. 3. Regarding the
experimental results, we have included both the code and the datasets in the submission. We have
also provided a more detailed description of the experiment settings in App. E.
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A ON ISSUE WITH EQUALITY CONSTRAINT

Several existing works including EIC (Gardner et al., 2014) and CMES-IBO (Takeno et al., 2022)
rely on the probability mass P (c(x) ≥ λc ∀c ∈ C) where the unknown constraint c is modeled with
a GP. Let us consider an optimization problem where there is only 1 equality constraint c(x) = 0.
Then, the above probability mass P (c(x) = 0) is 0. As a result, existing works such as CMES-IBO
require manually adding a tolerance value to ensure the probability mass is strictly positive.

Regarding PESC (Hernández-Lobato et al., 2016), it relies on the sampling of x∗. When there are
several equality constraints, the probability of obtaining a feasible solution is small, making the
sampling inefficient.

In our approach, we consider an optimistic feasible region (which is partitioned into St and Ut shown
in Fig. 1b) that can handle equality constraints without any modification. Though one may argue that
the role of νt is similar to the tolerance added to the equality constraint in CMES-IBO, it is noted
that νt is not fixed to any pre-defined sequence but it is “self-tuned” by the vertical exploration bonus
as explained in Sec. 3.2 and has a theoretical justification.

When proposing an estimator for approximating the optimal solution, one may consider a pessimistic
feasible region to ensure the feasbility of the estimator with high probability. However, this may be
infeasible if the optimal solution is not an interior point of the feasible region, e.g., when there are
equality constraints.

B A BAYESIAN OPTIMIZATION ALGORITHM FOR COUPLED QUERIES

Algorithm 2 UCB-C
Require: X , D0

1: Update GP posterior beliefs: {(µh,0, σh,0)}h∈F
2: for t← 1; t← t+ 1; t ≤ T do
3: xt ← argmaxx∈Ot

uf,t−1(x)
4: for h ∈ F do // coupled query
5: yh(Dh,t)← yh(Dh,t−1) ∪ {yh(xt)}
6: Update GP posterior belief: µh,t, σh,t

7: end for
8: end for

Our proposed algorithm for coupled queries is shown in Algorithm 2. In this section, we assume
that h(x) ∈ [lh,t−1(x), uh,t−1(x)] for all h ∈ F , x ∈ X , and t ≥ 1, which happens with probability
≥ 1− δ from Lemma 3.1. In order to prove the upper confidence bound of its cumulative regret, we
derive the inequalities in equation (11) as follows.

The instantaneous regret w.r.t. the objective function f is bounded by

rf (xt) ≜ max(0, f(x∗)− f(xt)) (23)
≤ max(0, uf,t−1(x

∗)− lf,t−1(xt)) from Lemma 3.1 (24)
≤ max(0, uf,t−1(xt)− lf,t−1(xt)) (25)
= uf,t−1(xt)− lf,t−1(xt) (26)

= 2β
1/2
t σf,t−1(xt) (27)

where inequality equation (25) holds with probability ≥ 1− δ as

• x∗ ∈ Ot with probability ≥ 1− δ since Ot ⊃ S with probability ≥ 1− δ.

• uf,t−1(xt) ≥ uf,t−1(x) for all x ∈ Ot because xt ≜ argmaxx∈Ot
uf,t−1(x).
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The instantaneous regret w.r.t. the constraint c is bounded by

rc(xt) ≜ max(0, λc − c(xt)) (28)
≤ max(0, λc − lc,t−1(xt)) from Lemma 3.1 (29)
≤ max(0, uc,t−1(xt)− lc,t−1(xt)) (30)
= uc,t−1(xt)− lc,t−1(xt) (31)

= 2β
1/2
t σc,t−1(xt) (32)

where inequality equation (30) holds with probability ≥ 1− δ as uc,t−1(xt) ≥ λc because xt ∈ Ot.

Therefore,

r(xt) ≜ max
h∈F

rh(xt) ≤ max
h∈F

2β
1/2
t σh,t−1(xt) (33)

RT ≜
T∑

t=1

r(xt) ≤
T∑

t=1

max
h∈F

2β
1/2
t σh,t−1(xt) . (34)

Let Th ≜
∑T

t=1 1h=argmaxh′∈F σh′,t−1(xt) (breaking the tie arbitrarily if necessary to ensure a unique
maximizer) which implies that

∑
h∈F Th = T .

RT ≤
T∑

t=1

max
h∈F

2β
1/2
t σh,t−1(xt) (35)

≤
∑
h∈F

2β
1/2
T

Th∑
t=1

σh,t−1(xt) (36)

as βt is non-decreasing. Furthermore, from Lemma 5.4 in Srinivas et al. (2010):

Th∑
t=1

σ2
h,t−1(xt) ≤ Chγh,Th

/4 (37)

where Ch ≜ 8/ log(1 + σ−2
h ) and γh,Th

is the maximum information gain from observing Th noisy
evaluations of h. Therefore, applying the Cauchy-Schwarz inequality,

Th∑
t=1

σh,t−1(xt) ≤

√√√√Th

Th∑
t=1

σ2
h,t−1(xt) ≤

√
ThChγh,Th

/4 . (38)

Hence,

RT ≤
∑
h∈F

2β
1/2
T

√
ThChγh,Th

/4

≤ β
1/2
T

∑
h∈F

√
Th

√
Chγh,Th

≤ β
1/2
T

√( ∑
h∈F

Th

)( ∑
h′∈F

Ch′γh′,Th′

)
Cauchy-Schwarz inequality

=

√
TβT

∑
h′∈F

Ch′γh′,Th′

≤
√
TβT |F|max

h∈F
Chγh,Th

≤
√
|F|TβT max

h∈F
Chγh,T .
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C PROOF OF THEOREM 3.3

From Algorithm 1, we observe that:

Case 1. When ht = f , we show that the instantaneous regrets w.r.t. the objective function and
constraints are bounded by 2β

1/2
t σf,t−1(xt) as follows.

rf (xt) ≤ 2β
1/2
t σf,t−1(xt) from equation (11) .

Recall that we select ht = f when xt ∈ St, i.e., for all c ∈ C, λc − lc,t−1(xt) ≤ νt =

2β
1/2
t σf,t−1(xt), so

∀c ∈ C, rc(xt) ≜ max(0, λc − c(xt))

≤ max(0, λc − lc,t−1(xt)) from Lemma 3.1

≤ max(0, 2β
1/2
t σf,t−1(xt))

= 2β
1/2
t σf,t−1(xt) .

Therefore, when ht = f ,

r(xt) ≜ max
h∈F

rh(xt) ≤ 2β
1/2
t σf,t−1(xt) . (39)

Case 2. When ht = c, we show that the instantaneous regrets w.r.t. the objective function and
constraints are bounded by 2β

1/2
t σc,t−1(xt) as follows.

∀c ∈ C, rc(xt) ≤ 2β
1/2
t σc,t−1(xt) from equation (11) .

Recall that we select ht = c when xt ∈ Ut, i.e., ∃c ∈ C, λc − lc,t−1(xt) > νt = 2β
1/2
t σf,t−1(xt).

This implies that

2β
1/2
t σf,t−1(xt) < max

c∈C
λc − lc,t−1(xt)

= λct − lct,t−1(xt) where ct is defined in Algorithm 1 .

rf (xt) ≤ 2β
1/2
t σf,t−1(xt) from equation (11)

< λct − lct,t−1(xt)

≤ uct,t−1(xt)− lct,t−1(xt) as xt ∈ Ot, i.e., uc,t−1(xt) ≥ λc ∀c ∈ C

= 2β
1/2
t σct,t−1(xt) .

Therefore, when ht = c,

r(xt) ≜ max
h∈F

rh(xt) ≤ 2β
1/2
t σc,t−1(xt) . (40)

Combining the above 2 cases in equation (39) and equation (40),

r(xt) ≤ 2β
1/2
t σht,t−1(xt) . (41)

Hence,

RT ≜
T∑

t=1

r(xt) ≤
T∑

t=1

2β
1/2
t σht,t−1(xt) . (42)

Let T ′
h ≜

∑T
t=1 1h=ht

, then using the non-decreasing property of βt, we can rewrite the above
inequality as

RT ≤
∑
h∈F

2β
1/2
T

T ′
h∑

t=1

σh,t−1(xt) . (43)

The above result is the same as equation (36). Therefore, we can follow the argument in App. B to
obtain the same upper confidence bound of RT :

RT ≤
√
|F|TβT max

h∈F
Chγh,T . (44)
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D PROOF OF LEMMA 3.5

App. B and C both show that with probability ≥ 1− δ,

∀t ≥ 1,

t∑
t′=1

max
h∈F

urh,t′−1(xt′) ≤
√
|F|tβt max

h∈F
Chγh,t (45)

where urh,t−1(x) is defined in equation (16) and equation (17). Equivalently,

√
|F|βt max

h∈F
Chγh,t/t ≥

1

t

t∑
t′=1

max
h∈F

urh,t′−1(xt′) (46)

≥ 1

t

t∑
t′=1

1

|F|
∑
h∈F

urh,t′−1(xt′) (47)

≥ 1

t

t∑
t′=1

min
x∈X

1

|F|
∑
h∈F

urh,t′−1(x) (48)

≥ min
t′=1,...,t

min
x∈X

1

|F|
∑
h∈F

urh,t′−1(x) . (49)

Let

x̃t′ ≜ argmin
x∈X

∑
h∈F

urh,t′−1(x) (50)

κ(t) ≜ argmin
t′=1,...,t

∑
h∈F

urh,t′−1(x̃t) . (51)

Our estimator is chosen as

x̃∗
t = x̃κ(t) , (52)

then

min
t′=1,...,t

min
x∈X

1

|F|
∑
h∈F

urh,t′−1(x) =
1

|F|
∑
h∈F

urh,κ(t)−1(x̃
∗
t ) ≥

1

|F|
∑
h∈F

rh(x̃
∗
t ) =

s(x̃∗
t )

|F|
(53)

where the inequality holds with probability ≥ 1− δ. Hence,

Pr
{
s(x̃∗

t ) ≤ |F|
√
|F|βt max

h∈F
Chγh,t/t

}
≥ 1− δ . (54)

E ADDITIONAL EXPERIMENT DETAILS

We refrain from conducting a comparison with EPBO and PESC for the following reasons. EPBO is
equivalent to our UCB-C method when an appropriate value of ρ is chosen. However, an automated
strategy of selecting ρ is left unspecified in the work of Lu and Paulson (2022). On the other hand, the
noteworthy advantage of our proposed UCB-C approach is its ability to overcome the need of selecting
such a parameter. Regarding PESC in the coupled setting, Takeno et al. (2022) raises the difficulty in
implementing and assigning the initial configuration in the PESC package (Spearmint). This difficulty
poses obstacles to achieving consistent initial experiment configurations for PESC. Regarding PESC
in the decoupled setting, it is not included in the main branch of Spearmint. Therefore, we opt not to
use PESC as a baseline in the experiment. On the other hand, the work of Takeno et al. (2022) shows
that CMES-IBO outperforms PESC by a large margin in the coupled setting. Hence, we demonstrate
the performance of our algorithms by comparing with CMES-IBO.

To ensure that the global optimal solution can be identified and to prevent variations in performance
among different methods stemming from being trapped in distinct local optima when using continuous
optimization tools, we discretize the input space into 10,000 randomly selected input points in the
experiments: [S-A0], [S-A1], [S-A2], [Gas], and [Beam]. For the [CNN] and [QChip] experiments,
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the size of the input space matches that of the generated dataset, i.e., 5120 and 393, respectively.
In practice, our proposed methods can be implemented in a continuous input domain using any
continuous constrained optimization package because only step 3 (selecting xt) in both Algorithms 1
and 2 involves solving a constrained optimization problem (with a known objective function and
constraint).

The GP hyperparameters including the parameters of the SE kernel and the noise variance {σ2
h}h∈F

are assumed to be unknown in our experiments. We optimize them after every BO iteration by
maximizing the likelihood of the observations using Adam optimizer. We assign prior distributions to
the GP hyperparameters to avoid numerical issues when performing the likelihood maximization.
The prior distributions of the length-scale, the signal standard deviation, and the noise standard
deviation are Gamma(0.25, 0.5), Gamma(2, 0.15), and N (0.0, 0.1), respectively. Furthermore, the
noise standard deviation is constrained to be at least 0.01.

To ensure the initial observations are consistent with the coupled setting, we initialize all experiments
with coupled observations, i.e., the evaluations of the objective function and constraints are at the
same set of inputs: Df,0 = Dc,0 for all c ∈ C. In the synthetic experiments, the number of initial
coupled observations are 3, 5, and 5 for [S-A0], [S-A1], and [S-A2], respectively. In the real-world
experiments, the number of initial coupled observations are 7, 30, and 7 for [Gas], [CNN], and
[QChip], respectively.

Throughout the remainder of this section, we provide more detailed descriptions of several experi-
ments.

E.1 SYNTHETIC EXPERIMENTS

Let gb and gg denote the Branin-Hoo and the Goldstein-Price functions where the input domain is
normalized to range [0, 1]2. They are obtained from https://www.sfu.ca/~ssurjano.

Then, the [S-A0] problem is defined as

max
x

gb(x) s.t. gb(x) ≥ 0.6 .

The [S-A1] problem is defined as

max
x

gb(x)

s.t. gb(x) ≥ 0.5

gg(x) ≥ 0.7 .

The [S-A2] problem is defined as

max
x

gb(x)

s.t. gb(x) ≤ 0.6

gg(x) ≥ 0.7 .

It is noted that although the same function is used in both the objective function and a constraint in
the above optimization problems, we treat them as distinct black-box functions and model them with
independent GPs.

E.2 GAS TRANSMISSION COMPRESSOR DESIGN (KUMAR ET AL., 2020)

There are d = 4 input dimension: x = (xi)
4
i=1 with the following bounds:

20 ≤ x1 ≤ 50

1 ≤ x2 ≤ 10

20 ≤ x3 ≤ 50

0.1 ≤ x4 ≤ 60 .

17
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The objective function and the constraint are specified as follows.

f(x) = 8.16× 105x
1/2
1 x2x

−2/3
3 x

−1/2
4 + 3.69× 104x3 + 7.72× 108x−1

1 x0.219
2 − 765.43× 106x−1

1

c(x) = x4x
−2
2 + x−2

2 − 1 ≤ 0 .

We normalize the range of the objective function and the constraint to the range [−1, 1] and the input
to to domain [0, 1]4.

E.3 MAXIMIZING COUPLING STRENGTH OF SYNTHETIC SUPERCONDUCTING QUANTUM
CHIP

We address the optimization problem of fine-tuning the critical parameter of coupling strength in a
synthetic superconducting quantum chip (Yan et al., 2018). This optimization problem is motivated
by the fundamental role that coupling strength plays in influencing the chip’s performance (Sete
et al., 2021; Wu et al., 2021). Specifically, the coupling strength affects the speed and fidelity of
quantum operations, making it a critical factor in quantum chip design (Lu et al., 2012). However,
this parameter must be carefully controlled within the constraints of coupling energy to avoid issues
such as noise, cross-talk between qubits, and poor gate fidelity (Kwon et al., 2021).

The objective of our optimization problem is to maximize the coupling strength while adhering to
the constraint imposed by the coupling energy. We aim to find the optimal configuration of the
quantum chip that achieves the highest coupling strength possible within the predefined bounds of
the energy constraint. To achieve this, we use a dataset comprising 393 data points, each describing
the geometric and electrical features of the quantum chip. These features are utilized to calculate the
energy associated with each chip configuration, including the coupling strength. (Li and Jin, 2023).

Generating this dataset is practical because it captures the variability in quantum chip designs,
materials, and operational conditions. Furthermore, it allows us to explore and optimize the coupling
strength systematically, which is crucial for improving the performance and efficiency of quantum
computations (Liu et al., 2022; Miller, 1997). The choice of the energy feature, denoted as Eq1q2, as
the target for constraint optimization is based on experimental insights and considerations, which may
vary for different quantum chips (Li and Jin, 2023). By maintaining precise control over this energy
feature within the predefined range, we demonstrate the effectiveness of our proposed optimization
method in achieving our objectives in the context of synthetic quantum chip design.

E.4 DATASET COLLECTION

We initiate our experiment by curating a comprehensive dataset comprising 393 data points. Each
data point encompasses eleven geometric features describing the physical dimensions and layout of
quantum chip components. These are complemented by four electrical features obtained through
rigorous simulations utilizing standard electrical simulation software. The energy associated with
each quantum chip configuration is derived from these four electrical features. Additionally, we
calculate the coupling strength for each specific quantum chip layout using the energy and reference
frequency.

E.5 MODEL ARCHITECTURE

In quantum chip design, the coupling strength between qubits is a critical parameter. It determines
the rate at which qubits can exchange quantum information, and thus influences the speed and fidelity
of quantum operations (Lu et al., 2012).

However, the coupling strength must be carefully controlled under the constraints of coupling energy.
If the coupling energy is too high (i.e., the qubits are too strongly coupled), it can lead to unwanted
effects such as noise or cross-talk between qubits (Kwon et al., 2021). Cross-talk is a phenomenon
where a signal transmitted on one qubit influences another qubit, leading to errors in quantum
operations (Sarovar et al., 2020).

On the other hand, if the coupling energy is too low (i.e., the qubits are weakly coupled), it can result
in poor gate fidelity (Ghosh and Geller, 2010). Gate fidelity is a measure of how accurately quantum
gates (the basic operations of a quantum computer) can be implemented. If the gate fidelity is low,
the output of a quantum computation may be unreliable (Ghosh and Geller, 2010).
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Therefore, in the context of quantum chip design, achieving a higher coupling strength within a
certain constraint of coupling energy is often desirable. It allows for fast and accurate quantum
operations while avoiding the problems associated with too much or too little coupling.

Precise control over the energy feature within specific bounds is pivotal in optimizing the coupling
strength during the quantum chip design process for several reasons:

1. Optimal Coupling Strength: The coupling strength between qubits in a superconducting
quantum chip is intricately linked to the system’s energy feature. Meticulous management
of these parameters, closely tied to the energy feature, enables the attainment of optimal
coupling strength. This stands as a crucial factor in ensuring the high fidelity of two-qubit
gates (Li and Jin, 2023).

2. Energy Efficiency: Devices such as superconducting diodes can achieve enhanced energy
efficiency when equipped with a series of gates to control the energy flow (Gupta et al.,
2023)3.

3. Suppression of Energy Loss Channels: The choice of material and geometric design of
the sample plays a pivotal role in minimizing qubit energy loss channels4 (Lienhard et al.,
2019).

The constraints associated with the energy feature in a quantum chip hold significant sway over
the performance and viability of quantum computations. These constraints exhibit variability based
on the specific quantum chip under consideration, owing to differences in design, materials, and
operational conditions (Yang et al., 2020; Hao et al., 2022; Kwon et al., 2021)

For instance, most quantum computers under global development only operate at fractions of a degree
above absolute zero, necessitating multi-million-dollar refrigeration (Yang et al., 2020). Nevertheless,
researchers have pioneered a proof-of-concept quantum processor unit cell that functions at 1.5 Kelvin,
which is 15 times warmer than competing chip-based technologies (Yang et al., 2020). This elevated
operating temperature holds promise for more cost-effective and robust quantum computers (Yang
et al., 2020).

Furthermore, the incorporation of complex constraints poses a central challenge when applying near-
term quantum optimization algorithms to industrially relevant problems (Hao et al., 2022). In general,
such constraints cannot be easily encoded in the circuit, and there is no guarantee that quantum circuit
measurement outcomes will adhere to these constraints (Hao et al., 2022). Consequently, novel
approaches for solving constrained optimization problems with unconstrained, readily implementable
quantum ansatze are being proposed (Hao et al., 2022).

However, it’s imperative to acknowledge that the appropriate constraints for the energy feature can
fluctuate depending on the specific quantum chip under scrutiny. These constraints may necessitate
experimental observations for determination, with their range often rooted in prior experimental in-
sights. This is because the energy feature’s range can exert a substantial influence on the performance
and feasibility of quantum computations (Liu et al., 2022; Miller, 1997).

In our synthetic quantum chip example, we opted to focus on one specific energy feature, denoted as
Eq1q2, as the target for constraint optimization. In practical applications, the range for this energy
feature should be selected based on prior experimental insights and considerations, which may vary
for each unique chip. Nevertheless, for our synthetic chip, we delineated the range for this energy
feature ourselves, constraining it within the bounds of 30× 10−23J to 45× 10−23J.

By maintaining precise control over the energy feature within this pre-defined range, we systematically
explored and optimized the coupling strength for the synthetic superconducting quantum chip. This
experiment serves as a compelling demonstration of the efficacy of our proposed method in achieving
our optimization objectives.

3This feature has not been integrated into superconducting diodes previously.
4Qubits can spontaneously dissipate energy through dielectric defects on the surface and interfaces of the

sample or by coupling to unwanted package modes.
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E.6 EXTRACTION OF FEATURES AND COMPUTATION

In this study, we extract a set of 11 geometric features that encompass various aspects of the quantum
chip, such as parameters related to its length, width, the gap between components (qubit and coupler),
and the boundary layer. Following electrical simulations, we obtain four crucial electrical values: the
self-capacitance of the two qubits (C01 and C02), the self-capacitance of the coupler (C0c), and the
mutual capacitance between each qubit (C12) and between each qubit and the coupler (C1c and C2c).
For this structural context, we make the assumption of identical and symmetric properties for the two
qubits, resulting in C1c = C2c and C01 = C02.

The energy associated with each configuration of the quantum chip is computed using the following
equations (Sete et al., 2021; Li and Jin, 2023):

ECq1 =
e2

2 (C01 + C1c + C12)
,

ECc =
e2

2 (C0c + C1c + C2c)
,

ECq2 =
e2

2 (C02 + C2c + C12)
,

Eq1c = e2 (−C1c)
−1

,

Eq2c = e2 (−C2c)
−1

,

Eq1q2 = e2 (−C12)
−1

,

where e represents the elementary charge in coulombs (C). For convenience in calculation, we adopt
e = 1.602 (rather than 1.602 × 10−19). The corresponding coupling strength g is given by (Sete
et al., 2021; Li and Jin, 2023):

g =
2ωq

B

(
A− ω2

c

ω 2
c − ω 2

q

)
,

where

A =
2E12ECc

E1cE2c
, B =

16ECqECc

E1cE2c
,

and ωc and ωq represent the frequencies of the coupler and qubits, respectively. These values are
contingent on experimental results and may vary across different studies. According to (Li and Jin,
2023), ωc ranges from 9 GHz to over 16 GHz, while for the Zuchongzhi 2.1 quantum chip, ωq is
5.099 GHz, and for Sycamore, it is 6.924 GHz. In our synthetic chip, we set ωc = 20 GHz and
ωq = 6.9 GHz.

These equations encapsulate the energy associated with each component of the quantum chip config-
uration. The computed energy values furnish valuable insights into the performance and efficiency of
the quantum chip.

E.7 REGRETS DUE TO SUBOPTIMALITY AND CONSTRAINT VIOLATION

We plot the regrets at the estimator x̃t resulting from suboptimality, i.e., rf (x̃t), and from constraint
violation, i.e.,

∑
c∈C rc(x̃t), against the number of input queries in Fig. 4. The use of a log-scale

causes the line plot to extend beyond the plotting area when the regret is exactly 0 (a log value of
−∞).

Fig. 4a shows that the estimator x̃∗ of the optimal solution is typically a feasible input when there are
no active constraints at the optimal solution (such as in the problem [S-A0]). However, in cases where
active constraints exist at the optimal solution, accurately estimating the boundary of the feasible
region at the optimal solution becomes challenging. Consequently, the estimator often becomes an
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Figure 4: Plot of the regret rf (x̃t) at the estimator due to suboptimality (labeled as UCB-C Objective
and UCB-D Objective) and the regret

∑
c∈C rc(x̃t) due to constraint violation (labeled as UCB-C

Constraint and UCB-D Constraint) against the number of input queries.

infeasible input (Figs. 4b,c). Nevertheless, it is worth noting that the sum of regrets serves as an upper
bound for the regrets associated with the objective function and constraint functions. Hence, even if
the estimator is infeasible, the no-regret result in Lemma 3.5 shows that we can achieve arbitrarily
small constraint violation at the expense of more BO iterations.

Appendix A delves into the rationale behind our selecting an estimator within the optimistic feasible
region, even if it may be infeasible, particularly in the context of equality constraints. More generally,
if the feasible region has an empty interior (e.g., due to equality constraints), pinpointing a feasible
input accurately becomes impossible, regardless of the number of observations gathered. For example,
if the feasible region is only a line in the space, then estimating the line without any error (to identify
feasible inputs) using only noisy observations is not possible. Our strategy of utilizing the optimistic
feasible region circumvents this challenge, albeit with a minor constraint violation if active constraints
are present at the optimal solution. It is important to recall that in situations where there are no active
constraints at the optimal solution, our estimator is often a feasible input, as illustrated in Fig. 4a.
Additionally, as the number of BO iterations increases, the amount of constraint violation approaches
zero, allowing for arbitrarily small violations at the expense of a more extended BO procedure.
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