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ABSTRACT

We study the risk-aware reinforcement learning (RL) problem in the episodic
finite-horizon Markov decision process with unknown transition and reward
functions. In contrast to the risk-neutral RL problem, we consider minimizing the
risk of having low rewards, which arise due to the intrinsic randomness of the MDPs
and imperfect knowledge of the model. Our work provides a unified framework
to analyze the regret of risk-aware RL policy with coherent risk measures in
conjunction with non-linear function approximation, which gives the first sub-linear
regret bounds in the setting. Finally, we validate our theoretical results via empirical
experiments on synthetic and real-world data.

1 INTRODUCTION

Reinforcement learning (RL) (Sutton & Barto, 2018) is a control-theoretic problem in which an agent
interacts with an unknown environment and aims to maximize its expected total reward. Due to
the intrinsic randomness of the environment, even a policy with high expected total rewards may
occasionally produce very low rewards. This uncertainty is problematic in many real-life applications
like competitive games (Mnih et al., 2013) and healthcare (Liu et al., 2020), where the agent (or
decision-maker) needs to be risk-averse. For example, the drug responses to patients are stochastic
due to the patients’ varying physiology or genetic profiles (McMahon & Insel, 2012); therefore, it is
desirable to select a set of treatments that yield high effectiveness and minimize the possibility of
adverse effects (Beutler et al., 2016; Fatemi et al., 2021). The existing RL policies that maximize the
risk-neutral total reward can not lead to an optimal risk-aware RL policy for problems where the total
reward has uncertainty (Yu et al., 2018). Therefore, our goal is to design an RL algorithm that learns
a risk-aware RL policy to minimize the risk of having a small expected total reward.

Then, how should we learn a risk-aware RL policy? A natural approach is to directly learn a risk-aware
RL policy that minimizes the risk of having a small expected total reward (Howard & Matheson,
1972). For quantifying such a risk, one can use risk measures like entropic risk (Föllmer & Knispel,
2011), value-at-risk (VaR) (Dempster, 2002), conditional value-at-risk (CVaR) (Rockafellar et al.,
2000), or entropic value-at-risk (EVaR) (Ahmadi-Javid, 2012). These risk measures capture the
total reward volatility and quantify the possibility of rare but catastrophic events. The entropic risk
measure can be viewed as a mean-variance criterion, where the risk is expressed as the variance of
total reward (Fei et al., 2021). Alternatively, VaR, CVaR, and EVaR use quantile criteria, which are
often preferable for better risk management over the mean-variance criterion (Chapter 3 of Kisiala
(2015)). Among these risk measures, coherent risk measures1 such as CVaR and EVaR are preferred
as they enjoy compelling theoretical properties such as coherence (Rockafellar et al., 2000).

The risk-aware RL algorithms with CVaR as a risk measure (Bäuerle & Ott, 2011; Yu et al., 2018;
Rigter et al., 2021) exist in the literature. However, apart from being customized only for CVaR,
these algorithms suffer two significant shortcomings. First, most of them focus on the tabular MDP
setting and need multiple complete traversals of the state space (Bäuerle & Ott, 2011; Rigter et al.,

1Apart from CVaR and EVaR, the risk measures like g-entropic risk measures, Tail value-at-risk, Proportional
Hazard (PH) risk measure, Wang risk measure, and Superhedging price also belong to the coherent risk family.
More details about various coherent risk measures are given in Appendix C.
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2021). These traversals are prohibitively expensive for problems with large state space and impossible
for problems with continuous state space, thus limiting these algorithms’ applicability in practice.
Second, the existing algorithms considering continuous or infinite state space assume that MDP is
known, i.e., the probability transitions and reward of each state are known a priori to the algorithm.
In such settings, the agent does not need to explore or generalize to unseen scenarios. Therefore, the
problem considered in Yu et al. (2018) is a planning problem rather than a learning problem. This
paper alleviates both shortcomings by proposing a new risk-aware RL algorithm where MDPs are
unknown and uses non-linear function approximation for addressing continuous state space.

Recent works (Jin et al., 2020; Yang et al., 2020) have proposed RL algorithms with function
approximation and finite-sample regret guarantees, but they only focus on the risk-neutral RL setting.
Extending their results to a risk-aware RL setting is non-trivial due to two major challenges. First, the
existing analyses heavily rely on the linearity of the expectation in the risk-neutral Bellman equation.
This linearity property does not hold in the risk-aware RL setting when a coherent risk measure
replaces the expectation in the Bellman equation. Then, how can we address this challenge? We
overcome this challenge by the non-trivial application of the super-additivity property2 of coherent
risk measures (see Lemma 3 and its application in Appendix 4).

The risk-neutral RL algorithms only need one sample of the next state to construct an unbiased
estimate of the Bellman update (Yang et al., 2020) as one can unbiasedly estimate the expectation in
the risk-neutral Bellman equation with a single sample. However, this does not hold in the risk-aware
RL setting. Furthermore, whether one can construct an unbiased estimate of an arbitrary risk measure
using only one sample is unknown. This problem leads to the second major challenge: how can we
construct an unbiased estimate of the risk-aware Bellman update? To resolve this challenge, we
assume access to a weak simulator3 that can sample different next states given the current state and
action and use these samples to construct an unbiased estimator. Such an assumption is mild and
holds in many real-world applications, e.g., a player can anticipate the opponent’s next moves and
hence the possible next states of the game. After resolving both challenges, we propose an algorithm
that uses a risk-aware value iteration procedure based on the upper confidence bound (UCB) and has
a finite-sample sub-linear regret upper bound. Specifically, our contributions are as follows:

• We first formalize the risk-aware RL setting with coherent risk measures, namely the
risk-aware objective function and the risk-aware Bellman equation in Section 3. We then
introduce the notion of regret for a risk-aware RL policy.

• We propose a general risk-aware RL algorithm named Risk-Aware Upper Confidence
Bound (RA-UCB) for an entire class of coherent risk measures in Section 4. RA-UCB
uses UCB-based value functions with non-linear function approximation and also enjoys a
finite-sample sub-linear regret upper bound guarantee.

• We provide a unified framework to analyze regret for any coherent risk measure in
Section 4.1. The novelty in our analysis is in the decomposition of risk-aware RL policy’s
regret by the super-additivity property of coherent risk measures (shown in the proof of
Lemma 4 in Appendix D.2).

• Our empirical experiments on synthetic and real datasets validate the different performance
aspects of our proposed algorithm in Section 5.

1.1 RELATED WORK

Risk-aware MDPs first introduced in the seminal work of Howard & Matheson (1972) with the use
of an exponential utility function known as the entropic risk measure. Since then, the risk-aware
MDPs have been studied with different risk criteria: optimizing moments of the total reward (Jaquette,
1973), exponential utility or entropic risk (Borkar, 2001; 2002; Bäuerle & Rieder, 2014; Fei et al.,
2020; 2021; Moharrami et al., 2022), mean-variance criterion (Sobel, 1982; Li & Ng, 2000; La &
Ghavamzadeh, 2013; Tamar et al., 2016), and conditional value-at-risk (Boda & Filar, 2006; Artzner
et al., 2007; Bäuerle & Mundt, 2009; Bäuerle & Ott, 2011; Tamar et al., 2015; Yu et al., 2018; Rigter
et al., 2021). Vadori et al. (2020) focuses on the variability or uncertainty of the rewards.

2Super-additivity in the reward maximization setting becomes sub-additivity in the cost minimization setting.
3Note that the weak simulator can only sample possible next states and returns no information regarding the

rewards. In this sense, our simulator is weaker than the archetypal simulators often assumed in the RL literature.
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Many of these existing works assume the MDPs are known a priori (known reward and transition
kernels) (Yu et al., 2018), focus on the optimization problem (Bäuerle & Ott, 2011; Yu et al., 2018) or
asymptotic behaviors of algorithms (e.g., does an optimal policy exist, and if so, is it Markovian, etc.)
(Bäuerle & Ott, 2011; Bäuerle & Rieder, 2014). The closest works to ours are Fei et al. (2021); Fei
& Xu (2022), which consider the risk-aware reinforcement learning in the function approximation
and regret minimization setting. However, they use the entropic risk measure. In contrast, our work
considers a significantly different family of risk measures, namely the coherent risk measures. They
are preferable and widely used for risk management (Kisiala, 2015). The analysis in Fei et al. (2021);
Fei & Xu (2022) utilizes a technique called exponentiated Bellman equation, which is uniquely
applicable to the entropic risk measure (or more generally the exponential utility family) and cannot
be readily extended to coherent risk measures. Therefore, our analysis differs significantly from that
in Fei et al. (2021); Fei & Xu (2022). Tamar et al. (2015) proposes an actor-critic algorithm for the
entire class of coherent risk measures but does not provide any theoretical analysis of the regret.

Safe RL and constrained MDPs represent a parallel approach to obtaining risk-aware policies in the
presence of uncertainty. Unlike risk-aware MDPs, safe RL does not modify the optimality criteria.
Instead, the risk-aversion is captured via constraints on the rewards or risks (Chow & Pavone, 2013;
Chow et al., 2017), or as chance constraints (Ono et al., 2015; Chow et al., 2017). Compared with
risk-aware MDPs, the constrained MDPs approach enjoys less compelling theoretical properties. The
existence of a global optimal Markov policy using the constrained MDPs is unknown, and many
existing algorithms only return locally optimal Markov policies using gradient-based techniques. It
makes these methods extremely susceptible to policy initialization (Chow et al., 2017), and hence the
best theoretical result one can get in this setting is convergence to a locally optimal policy (Chow
et al., 2017). In contrast, our result in this paper considers the regret (or sub-optimality) with respect
to the global optimal policy.

Distributional RL (Bellemare et al., 2022) attempts to model the state-value distribution, and any
risk measure can be characterized by such distribution. Therefore, distributional RL represents
a more ambitious approach in which the agent needs to estimate the entire value distribution.
Existing distributional RL algorithms need to make additional distributional assumptions to work with
distributional estimates such as quantiles (Dabney et al., 2018) or empirical distributions (Rowland
et al., 2018). In contrast, our risk-aware RL framework only considers the risk measures that apply to
the random state-value. As a trade-off, the demand for data and computational resources to estimate
the value distribution at every state can be prohibitively expensive for even moderate-sized problems.
We establish more detailed connections between risk-aware RL and distribution RL in Appendix A.

2 COHERENT RISK MEASURES

Let Z ∈ L1(Ω,F ,P)4 be a real-valued random variable with a finite mean and the cumulative
distribution function FZ(z) = P(Z ≤ z). For Z ′ ∈ L1(Ω,F ,P), a function ρ : L1(Ω,F ,P) →
R ∪ {+∞} is a coherent risk measure if it satisfies the following properties:

1. Normalized: ρ(0) = 0.

2. Monotonic: If P(Z ≤ Z ′) = 1, then ρ(Z) ≤ ρ(Z ′).

3. Super-additive: ρ(Z + Z ′) ≥ ρ(Z) + ρ(Z ′).

4. Positively homogeneous: For α ≥ 0, we have ρ(αZ) = αρ(Z).

5. Translation invariant: For a constant variable A with value a, we have ρ(Z+A) = ρ(Z)+a.

Since our reward maximization setting contrasts with the cost minimization setting often considered
in the literature, we aim to maximize the risk applied to the random reward, i.e., maximizing ρ(Z).
Consequently, the properties of risk measure are upended compared to those usually presented in
cost minimization setting (Föllmer & Schied, 2010). For example, super-additivity in the reward
maximization setting becomes sub-additivity in the cost minimization setting.

Empirical estimation of the risk. The risk of a random variable ρ(Z) is completely determined by
the distribution of Z (FZ). In practice, we do not know the distribution FZ ; instead, we can observe

4In our risk-aware RL setting, the random variable Z represents the random total reward of the agent.
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m independent and identically distributed (IID) samples {Zi}mi=1 from the distribution FZ . Then we
can use these samples to get an empirical estimator of ρ(Z), which is denoted by ρ̂(Z1, . . . , Zm).

3 PROBLEM SETTING

We consider an episodic finite-horizon Markov decision process (MDP), denoted by a tupleM =
(S,A, H,P, r), where S and A are sets of possible states and actions, respectively, H ∈ Z+ is
the episode length, P = {Ph}h∈[H] are the state transition probability measures, and r = {rh :
S×A → [0, 1]}h∈[H] : are the deterministic reward functions. We assume S is a measurable space of
possibly infinite cardinality, andA is a finite set. For each h ∈ [H], Ph(·|x, a) denotes the probability
transition kernel when the agent takes action a at state x in time step h.

An agent interacts with the MDP as follows. There are T episodes. In the t-th episode, the agent
begins at state xt

1 chosen arbitrarily by the environment. In each step h ∈ [H], the agent observes a
state xt

h ∈ S , selects an action ath ∈ A, and receives a reward rh(x
t
h, a

t
h). The MDP then transitions

to the next state following the probability transition kernel xt
h+1 ∼ Ph(·|xt

h, a
t
h). The episode

terminates when the agent reaches state xH+1 at time step H + 1. In the last time step, the agent
takes no action and receives no reward.

A policy π of an agent is a sequence of H functions, i.e., π = {πh}h∈[H], in which each πh(·|x) is a
probability distribution over A. Here, πh(a|x) indicates the probability that the agent takes action a
at state x in time step h. Any policy π and an initial state x1 determine a probability measure Pπ

x1

and an associated stochastic process {(xh, ah), h ∈ [H]}. Let Eπ
x1
[·] denote the expectation operator

with respect to Pπ
x1

. The standard risk-neutral MDP objective is

max
π

Eπ
x1

[
H∑

h=1

rh(xh, ah)

]
. (1)

3.1 RISK-AWARE EPISODIC MDP

The risk-neutral objective defined in Eq. (1) does not account for the risk incurred due to the
stochasticity in the state transitions and the agent’s policy. Markov risk measures (Ruszczyński, 2010)
are proposed to model and analyze such risks. The risk-aware MDP objective is defined as

max
π

Jπ(x1), where Jπ(x1) := r1(x1, a1) + ρ(r2(x2, a2) + ρ(r3(x3, a3) + . . . )), (2)

where ρ is a coherent one-step conditional risk measure (Ruszczyński, 2010, Definition 6), and
{x1, a1, x2, a2, . . . } is a trajectory of states and actions from the MDP under policy π. Here, Jπ is
defined as a nested and multi-stage composition of ρ, rather than through a single-stage risk measure
on the cumulative reward ρ

(∑H
h=1 rh(xh, ah)

)
.

The choice of the risk-aware objective function in Eq. (2) has two advantages. Firstly, it guarantees
the existence of an optimal policy, and furthermore, this optimal policy is Markovian. Please refer to
Theorem 4 in Ruszczyński (2010) for a rigorous treatment of the existence of the optimal Markov
policy. Secondly, the above risk-aware objective satisfies the time consistency property. This property
ensures that we do not contradict ourselves in our risk evaluation. The sequence that is better today
should continue to be better tomorrow, i.e., our risk preference stays the same over time. Note
that in standard RL, where the risk measure is replaced with expectation, this property is trivially
satisfied. In contrast, a single-stage risk measure (i.e., static version) applied on the cumulative
reward ρ

(∑H
h=1 rh(xh, ah)

)
does not enjoy this time consistency property (Ruszczyński, 2010).

More detailed discussions about this are in Appendix B.

3.2 BELLMAN EQUATION AND REGRET

The risk-aware Bellman equation is developed for the risk-aware objective defined in Eq. (2)
(Ruszczyński, 2010). More specifically, let us define the risk-aware state- and action-value functions
with respect to the Markov risk measure ρ as

V π
h (x) = rh(x, πh(x)) + ρ

(
rh+1(xh+1, πh+1(xh+1)) + ρ

(
rh+2(xh+2, πh+2(xh+2)) + . . .

))
,
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Qπ
h(x, a) = rh(x, a) + ρ

(
rh+1(xh+1, πh+1(xh+1)) + ρ

(
rh+2(xh+2, πh+2(xh+2)) + . . .

))
.

We also define the optimal policy π⋆ to be the policy that yields the optimal value function V ⋆
h (x) =

supπ V
π
h (x). The advantage of the formulation given in Eq. (2) is that one can show that the optimal

policy exists, and it is Markovian (Theorem 4 of Ruszczyński (2010)). For notations convenience, for
any measurable function V : S → [0, H], we define the operator Dρ

h as

(Dρ
hV )(x, a) := ρ (V (x′)) , (3)

where the risk measure ρ is taken over the random variable x′ ∼ Ph(·|x, a). Then, the risk-aware
Bellman equation associated with a policy π takes the form

Qπ
h(x, a) = (rh +Dρ

hV
π
h+1)(x, a), V π

h (x) = ⟨Qπ
h(x, ·), πh(·|x)⟩A, V π

H+1(x) = 0,

where ⟨·, ·⟩A denote the inner product5 over A and (f + g)(x) = f(x) + g(x) for function f and g.
Similarly, the Bellman optimality equation is given by

Q⋆
h(x, a) = (rh +Dρ

hV
⋆
h+1)(x, a), V ⋆

h (x) = max
a∈A

Q⋆
h(x, a), V ⋆

H+1(x) = 0. (4)

The above equation implies that the optimal policy π⋆ is the greedy policy with respect to the optimal
action-value function {Q⋆

h}h∈[H].

In the episodic MDP setting, the agent interacts with the environment through T episodes to learn
the optimal policy. At the beginning of episode t, the agent selects a policy πt, and the environment
chooses an initial state xt

1. The difference in values between V πt

1 (xt
1) and V ⋆(xt

1) quantifies the
sub-optimality of πt, which serves as the regret of the agent at episode t. The total regret after T
episodes is defined as

RT (ρ) =

T∑
t=1

[
V ⋆
1 (x

t
1)− V πt

1 (xt
1)
]
. (5)

We use the widely adopted notion of regret in the risk-neutral setting (Jin et al., 2020; Yang et al., 2020)
and risk-aware setting (Fei et al., 2020; 2021). Here, the policy’s regret depends on the risk measure
ρ via the optimal policy π⋆. A good policy should have sub-linear regret, i.e., limT→∞ RT /T = 0,
which implies that the policy will eventually learn to select the best risk-averse actions.
Remark 1. Given two risk measures ρ1 and ρ2 with RT (ρ1) < RT (ρ2), does not imply ρ1 is a
better choice of risk measure for the given problem. Because the optimal policies for ρ1 and ρ2 can
be different, their regrets are not directly comparable. Therefore, we cannot use regret as a measure
to compare or select the risk measure.

3.3 WEAK SIMULATOR ASSUMPTION

One key challenge for the risk-aware RL policy is that the empirical estimation of risk is more
complex than the estimation of expectation in risk-neutral RL (Yu et al., 2018). In this paper, we
assume the existence of a weak simulator that we can use to draw samples from the probability
transition kernel Ph(·|x, a) for any h ∈ [H], x ∈ S, a ∈ A. This assumption is much weaker than the
archetypal simulator assumptions often seen in the RL literature, as they also allow to query reward
of a given state and action rh(x, a). To the best of our knowledge, all existing works in risk-aware RL
with coherent risk measures require some assumptions on the transition probabilities to facilitate the
risk estimation procedure. Among these assumptions, our weak simulator assumption is the weakest.

3.4 ESTIMATING NON-LINEAR FUNCTIONS

We use reproducing kernel Hilbert space (RKHS) as the class of non-linear functions to represent
the optimal action-value function Q∗

h. For notational convenience, let us denote z = (x, a) and
Z = S ×A. Following the standard setting, we assume that Z is a compact subset of Rd for fixed
dimension d. LetH denote the RKHS defined on Z with the kernel function k : Z × Z → R. Let
⟨·, ·⟩H and ∥·∥H be the inner product and the RKHS norm onH, respectively. SinceH is an RKHS,
there exists a feature map ϕ : Z → H such that ϕ(z) = k(z, ·) and f(z) = ⟨ϕ(z), f⟩H for all f ∈ H
and for all z ∈ Z , this is known as the reproducing kernel property.

5Since A is a finite set, the inner product over A is the canonical inner product on Euclidean vector space.
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4 RISK-AWARE RL ALGORITHM WITH COHERENT RISK MEASURES

We now introduce our algorithm named Risk-Aware Upper Confidence Bound (RA-UCB), which is
built upon the celebrated Value Iteration Algorithm (Sutton & Barto, 2018). RA-UCB first estimates
the value function using kernel least-square regression. Then, it computes an optimistic bonus that
gets added to the estimated value function to encourage exploration. Finally, it executes the greedy
policy with respect to the estimated value function in the next episode.

RA-UCB Risk-Aware Upper Confidence Bound

1:Input: Hyperparameters of coherent risk measure ρ (e.g., confidence level α ∈ (0, 1) for CVaR)
2: for episode t = 1, 2, . . . , T do
3: Receive the initial state xt

1 and initialize V t
H+1 as the zero function.

4: for step h = H, . . . , 1 do
5: For τ ∈ [t− 1], draw m samples from the weak simulator and construct the response vector

yth using Eq. (7).
6: Compute µt

h and σt
h using Eq. (8).

7: Compute Qt
h and V t

h using Eq. (9).
8: end for
9: for step h = 1, . . . ,H do

10: Take action ath ← argmax
a∈A

Qt
h(x

t
h, a).

11: Observe reward rh(x
t
h, a

t
h) and the next state xt

h+1.
12: end for
13: end for

Recall that we defined z = (x, a) and Z = S × A in Section 3.4. We define the following Gram
matrix Kt

h ∈ R(t−1)×(t−1) and a function kth : Z → Rt−1 associated with the RKHSH as

Kt
h =

[
k(zτh, z

τ ′

h )
]
τ,τ ′∈[t−1]

, kth(z) =
[
k(z1h, z), . . . , k(z

t−1
h , z)

]⊤
. (6)

Given the observed histories and the weak simulator, we define the response vector yth ∈ Rt−1 as

[yth] =
[
rh(x

τ
h, a

τ
h) + ρ̂({V t

h+1(x
′
(i))}

m
i=1)

]
τ∈[t−1]

, (7)

where {x′
(i)}

m
i=1 are m next states drawn from the weak simulator Ph(·|xτ

h, a
τ
h). This step contains

one of the key differences between RA-UCB and its risk-neutral counterpart, with the presence of
the empirical risk estimator in the definition of the response vector yth. With the newly introduced
notations, we define two functions µt : Z → R and σt : Z → R as

µt
h(z) = kth(z)

⊤(Kt
h + λ · I)−1yth,

σt
h(z) = λ−1/2 ·

[
k(z, z)− kth(z)

⊤(Kt
h + λI)−1kth(z)

]1/2
. (8)

The terms µt
h and σt

h have several important connections with other literature. More specifically,
it resembles the posterior mean and standard deviation of a Gaussian process regression problem
(Rasmussen, 2003), with yth as its target. The second term σt

h also reduces to the UCB term used in
linear bandits when the feature map ϕ is finite-dimensional (Lattimore & Szepesvári, 2020). We then
define our estimate of the value functions Qt

h and V t
h as follows:

Qt
h(x, a) := min

{
µt
h(x, a) + β · σt

h(x, a), H − h+ 1
}
, V t

h(x) := max
a∈A

Qt
h(x, a), (9)

where β > 0 is an exploration versus exploitation trade-off parameter.

To get some insights on the algorithm, notice that Eq. (7) implements the one-step Bellman optimality
update in Eq. (4). To see this, let X ′ ∼ Ph(·|xτ

h, a
τ
h) be the random variable representing the next

state. Recall that V t
h+1 is the estimated value function by our algorithm at episode t. Thus, V t

h+1(X
′)

is also a random variable, where the randomness comes from X ′. Here, we can start looking at
ρ(V t

h+1(X
′)), i.e., the risk measure ρ applied on the random variable V t

h+1(X
′). Intuitively, this

can be interpreted as the risk-adjusted value of the next state. The second term in Eq. (7) above,
ρ̂({V t

h+1(x
′
(i))}

m
i=1), is an empirical estimate of ρ(V t

h+1(X
′)).
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The choice of the response vector in Eq. (7) represents the primary novelty in our algorithm design.
This choice enables a new regret decomposition and an upper bound using the concentration inequality
of the risk estimator. More details are presented in Appendix D.1.

4.1 MAIN THEORETICAL RESULTS

This section presents our main theoretical result, i.e., the regret upper bound guarantee of RA-UCB.
We first outline the key assumption that enables the efficient approximation of the value function.
Assumption 1. Let R > 0 be a fixed constant,H be the RKHS, and B(r) = {f ∈ H : ∥f∥H ≤ r} to
be the RKHS-norm ball with radius r. We assume that for any h ∈ [H] and any Q : S ×A → [0, H],
we have T∗

hQ ∈ B(RH), where T∗
h is the Bellman optimality operator defined in Eq. (4).

This assumption postulates that the risk-aware Bellman optimality operator maps any bounded
action-value function to a function in an RKHSH with a bounded norm. This assumption ensures
that for all h ∈ [H], the optimal action-value function Q⋆

h lies inside B(RH). Consequently, there
is no approximation error when using functions from H to approximate Q⋆

h. It can be viewed as
equivalent to the realizability assumption in supervised learning. Similar assumptions are made in Jin
et al. (2020); Yang et al. (2020); Zanette et al. (2020). Please refer to Du et al. (2019) for a discussion
on the necessity of this assumption.

Given this assumption, it is clear that the complexity of H plays a central role in the regret bound
of RA-UCB. Following the seminal work of Srinivas et al. (2009), we characterize the intrinsic
complexity ofH with the notion of maximum information gain defined as

Γk(T, λ) = 1/2 sup
D⊆Z,|D|≤T

{
log det(I +KD/λ)

}
, (10)

where k is the kernel function, λ > 0 is a parameter, and KD is the Gram matrix. The maximum
information gain depends on how fast the eigenvalues ofH decay to zero and can be viewed as a proxy
for the dimension ofH whenH is infinite-dimensional. Note that Γk(T, λ) is a problem-dependent
quantity that depends on the kernel k, state space S, and action space A. Furthermore, let us first
define the action-value function classes Qucb(h,R,B) as

Qucb(h,R,B) = {Q :

Q(z) = min{f(z) + β · λ−1/2[k(z, z)− kD(z)
⊤(KD + λI)−1kD(z)]

1/2, H − h+ 1}+,
f ∈ H, ∥f∥H ≤ R, β ∈ [0, B], |D| ≤ T}. (11)

With the appropriate choice of R and B, the set Qucb(h,R,B) contains every possible Qt
h that can

be constructed by RA-UCB. Therefore, the function class Qucb resembles the concept of hypothesis
space in supervised learning. And as we will see, the complexity of Qucb, in particular, the covering
number of Qucb, plays a crucial role in the regret bound of RA-UCB.
Theorem 1. Let λ = 1 + 1/T , β = BT in RA-UCB, and let Γk(T, λ) be the maximal information
gain defined in Eq. (10). Define a constant BT > 0 that satisfies BT = Θ

(
H(

√
Γk(T, λ) +

maxh∈H

√
logN∞(ϵ, h,BT ))

)
. Suppose that the empirical risk estimate ρ̂ achieves the rate of

Ξ(m, δ), i.e., P
[
|ρ(Z) − ρ̂({Zi}mi=1)| ≤ Ξ(m, δ)

]
≥ 1 − δ. Then, under Assumption 1, with a

probability of at least 1− (T 2H2)−1, the regret of RA-UCB is

RT ≤ 5BTH
√
TΓk(T, λ) + 2TH · Ξ

(
m, (8T 3H3)−1

)
.

The proof of Theorem 1 is in Appendix D.1. The regret upper bound consists of two terms. The
first term resembles risk-neutral regret bound (Yang et al., 2020, Theorem 4.2). Interestingly, our
bound distinguishes itself from the risk-neutral setting with the presence of the second term, which
quantifies how fast one can estimate the risk from observed samples. It originates from the risk-aware
Bellman optimality equation, in which the one-step update requires knowledge of the risk-to-go
starting from the next state (see Eq. (4) for more detail). This risk-to-go quantity is approximated by
its empirical counterpart, and the discrepancies give rise to the second term in regret.

Due to the weak simulator assumption, we have good control over the second term. In the following
result, we derive the number of samples sufficient to achieve the order-optimal regret for the
Conditional Value-at-Risk (CVaR), which is one of the most commonly used coherent risk measures.
More details on CVaR and its properties are given in Appendix C.1.
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Corollary 1. Let ρ be the CVaR measure defined in Eq. (13) and ρ̂ be the CVaR estimator defined in
Eq. (14). Then, under the same conditions in Theorem 1, the algorithm RA-UCB achieves the regret
of RT = O

(
BTH

√
TΓk(T, λ)

)
with

O
(
TH · log

(
T 5H6/B2

TΓk(T, λ)
))

total samples (across all T episodes) from the weak simulator.

The detailed proof of Corollary 1 is in Appendix D.5. As an example, for the commonly used
squared exponential (SE) kernel, we get BT = O

(
H ·

√
log (TH) · (log T )d

)
(Yang et al., 2020,

Corollary 4) and Γk(T, λ) = O
(
(log T )d+1

)
(Srinivas et al., 2009), and thus RA-UCB incurs a regret

of RT = Õ
(
H2
√
T (log T )1.5d+1

)
. This result leads to the first sub-linear regret upper bound of the

risk-aware RL policy with coherent risk measures.

5 EXPERIMENTS

In this section, we empirically demonstrate the effectiveness of RA-UCB. We run different
experiments on synthetic and real-world data with the CVaR as a risk measure, which is a commonly
used coherent risk measure. We analyze the influence of the risk aversion parameter α (or confidence
level for CVaR) on the total reward as well as the behavior of the output policies. The code for these
experiments is available in the supplementary material.

5.1 SYNTHETIC EXPERIMENT: ROBOT NAVIGATION

Figure 1: Illustration of the continuous
version of the cliff walking problem. The
robot starts at (0, 0) and must navigate to
the goal area (in green). The robot gets
negative rewards for being close to the
obstacles and receives a reward of 10 upon
reaching the goal.

The robot navigation environment is a continuous
version of the cliff walking problem considered in
example 6.6 of Sutton & Barto (2018), visualized in
Fig. 1. In this synthetic experiment, a robot must
navigate inside a room full of obstacles to reach its
goal destination. The robot navigates by choosing from
4 actions {up, down, left, right}. Since the floor is
slippery, the direction of movement is perturbed by r ·ϕ,
where ϕ ∼ U(−π, π) and r ∈ [0, 1] represent the angle
and magnitude of the perturbation. The robot receives
a positive reward of 10 for reaching the destination and
a negative reward for being close to obstacles. The
negative reward increases exponentially as the robot
comes close to the obstacle. We set the horizon of
each episode to H = 30. The robot does not know
perturbation parameters (r = 0.3) and the obstacles’
positions, so it has to learn them online via interacting
with the environment. We approximate the state-action
value function using the RBF kernel and the KernelRidge regressor from Scikit-learn.

Figure 2: Estimated distribution of the cumulative reward when following the learned policy for
different risk parameters. For α = 0.9 (leftmost plot), the policy is more risk-tolerant, which causes
the average reward to be higher, but occasionally small. As we decrease α, the policy becomes more
risk-averse, favoring safer paths with smaller average rewards and higher worst-case rewards.
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In Fig. 2, we show the histograms of the robot’s cumulative rewards that it receives in 50 episodes by
following the learned policy with different values of the risk parameter α ∈ [0.9, 0.5, 0.1]. For smaller
values of α, the learned policy successfully mitigates the tail risk in the distribution, illustrated by the
rightmost histogram having the smallest reward of at least 3.0, whereas the reward could go as low
as near 0 for the remaining two policies. As we increase α, the policy becomes more risk-tolerant,
leading to a higher average reward at the expense of occasional bad rewards. In this experiment, we
use m = 100 samples from the weak simulator to estimate the risk in Eq. (7).

5.2 REAL-WORLD EXPERIMENT: TRADING

Figure 3: Estimated distribution of the
normalized terminal wealth following the
learned policy for different risk parameters.
The vertical lines represent the average rewards.
When α = 0.9 (the blue bar), the policy is more
risk-tolerant, which causes the average reward
to be higher at the expense of occasional low
reward. The policy is more risk-averse as we
decrease the value of α, favoring safe paths
with lower average-case rewards and higher
worst-case rewards.

This trading setup is a generalization of the betting
game environment (Bäuerle & Ott, 2011; Rigter
et al., 2021). This experiment considers a simplified
foreign exchange trading environment based on
real historical exchange rates and volumes between
EUR and USD in 12 months of 2017. For simplicity,
we fixed the trade volume for each hour at 10000.
There are two actions in the environment: buy
or sell. The state of the environment includes
the current position, which is either long or short,
and a vector of signal features containing the
historical prices and trading volumes over a short
period of time. We customize this environment
based on the ForexEnv in the python package
gym-anytrading.6

In Fig. 3, we show a histogram of the cumulative
terminal wealth achieved by the agents in 100
episodes with different risk parameters, plotted in
different colors. Similar to the robot experiment,
we demonstrate that for a smaller value of α, the
policy is risk-averse and successfully mitigates the
tail of the distribution. This can be seen that the
worst-case wealth for α = 0.1 (in green) is higher
than for α = 0.5 (in red) or α = 0.9 (in blue). In
this experiment, we use m = 100 samples from the
weak simulator to estimate the risk in Eq. (7). Additional experiments with other risk measures like
VaR and EVaR are given in Appendix E.

Computational complexity of RA-UCB: We need to solve H kernel ridge regression problems in
each episode. In the t-th episode, each regression problem complexity is dominated by two operations:
First, the inversion of the Gram matrix Kt

h of size (t− 1)× (t− 1) in Eq. (8), which has O(t3) time
complexity and O(t2) space complexity. Second, the construction of the response vector in Eq. (7)
has O(mt) time and space complexity. Therefore, the time and space complexity of the t-episode is
O(H(t3 +mt)) and O(H(t2 +mt)) respectively.

6 CONCLUSION

We proposed a risk-aware RL algorithm named RA-UCB that uses coherent risk measures and
non-linear function approximations. We then provided a finite-sample regret upper bound guarantee
for RA-UCB and demonstrated its effectiveness in robot navigation and forex trading environments.

The performance of the proposed algorithm depends profoundly on the quality of the empirical
risk estimator. This paper assumes access to a weak simulator that can sample the next states, thus
effectively alleviating the need to estimate the risk from the observed trajectories. Therefore, a
potential future direction is to relax or weaken this assumption, allowing risk-aware RL algorithms to
be useful in more practical problems. Another interesting direction is to consider the episodic MDPs,
where episodes can have varying lengths horizons or even infinite horizons.

6The package gym-anytrading is available at https://github.com/AminHP/gym-anytrading.
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7 REPRODUCIBILITY STATEMENT

In this paper, we dedicate a substantial effort to improving the reproducibility and comprehensibility
of both our theoretical results and empirical experiments. We formally state and discuss the necessity
and implications of our assumptions (please see Section 3.3 and the paragraph below Assumption 1)
before presenting our theoretical results. We also provide a 3-step proof sketch of our main theoretical
result. For each step, we present the key ideas and high-level directions and refer the reader to more
detailed and complete proofs in the Appendices. For the experiments, we provide details of different
experimental settings in Section 5, and include our code in the supplementary material.
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A CONNECTIONS TO DISTRIBUTIONAL RL

We first give a brief survey on the distributional RL literature and discuss its connection to
risk-sensitive RL. For a policy π in distributional RL, we define the total reward from state x
(or state-action pair (x, a)) and time step h as the sum of rewards of an agent starting in time h, at
state x (or state-action pair (x, a)), and the following policy π as follows

Gπ
h(x) :=

H∑
h′=h

rh′(xh′ , ah′)|xh = x, ah′ ∼ πh′(·|xh′), xh′+1 ∼ Ph′(·|xh′ , ah′),

Jπ
h (x, a) :=

H∑
h′=h

rh′(xh′ , ah′)|xh = x, ah = a, ah′ ∼ πh′(·|xh′), xh′+1 ∼ Ph′(xh′ , ah′).

Both Gπ
h(x) and Jπ

h (x, a) are random variables where the randomness comes from the transition
probability P and the (possibly stochastic) policy π. In standard MDP, the expected value of these
random variables, E

[
Gπ(x)

]
and E

[
Jπ(x, a)

]
, are known as the value function and action-value

function, respectively. Distributional RL (Bellemare et al., 2022) is built upon the overarching idea of
estimating the value distribution, i.e., the distribution of the random variables Gπ

h(x) and Jπ
h (x, a),

rather than just the expected values as in standard RL. The most important component of distributional
RL is the distributional Bellman equation, which is given as follows:

Jπ
h (x, a)

d
= rh(x, a) + Jπ

h

(
x′, argmax

a′∈A
E[Jπ

h (x
′, a′)]

)
,

where ∀h ∈ [H] and d
= denotes equality in distribution, and the next state x′ ∼ Ph(·|x, a). Although

distributional RL models the entire value distribution, notice that the optimal action is greedy with
respect to the expectation of the value of the next state, which resembles that of standard RL.

B COHERENT ONE-STEP CONDITIONAL RISK MEASURE

Recall the formulation of the risk-aware MDP objective function given in Eq. (2):

max
π

Jπ(x1), where Jπ(x1) := r1(x1, a1) + ρ(r2(x2, a2) + ρ(r3(x3, a3) + . . . )),

where ρ is a coherent one-step conditional risk measure, and x1, a1, x2, a2, . . . is a trajectory of
states and actions from the MDP under policy π. Notice that Jπ is defined as a nested and multi-stage
composition of conditional risk measure ρ, which is also referred to as the dynamic risk optimization
problem (Rigter et al., 2021, use CVaR as a risk measure). There are two advantages to this
formulation.

Firstly, one can show that the optimal policy exists, and it is Markovian (Theorem 4 in Ruszczyński
(2010)). Therefore, we can use the Bellman update to learn the risk-aware RL policy. When the
objective function uses a single-stage risk measure on the sum of rewards (i.e., ρ

(∑H
h=1 rh(xh, ah)

)
),

the problem is referred to as the static risk optimization. Under this setting, (Bäuerle & Ott, 2011, also
use CVaR as a risk measure) shows that the optimal policy exists but is non-Markovian. Therefore,
these history-dependent policies must optimally solve the static risk optimization problem, which is
harder than learning a Markovian policy.

Secondly, the above risk-aware objective satisfies the time consistency property. Intuitively, the time
consistency property indicates that the sequence that is better today should continue to be better
tomorrow, i.e., our risk preference stays the same over time. To formally define this concept, let us
consider the problem of measuring the risk of sequences.

Let (Ω,F ,P) denote a probability space with filtration F1 ⊂ F2 ⊂ · · · ⊂ FT ⊂ F . Let Z1, . . . , ZT

denote the adapted sequence of random variables (one may view this as a sequence of random
rewards for the purpose of this paper). Finally, we define Zt = Lp(Ω,Ft,P), p ∈ [1,∞), and
Zt,T = Zt × · · · ×ZT . We define the following notion of conditional risk measure and dynamic risk
measure as follows:
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Definition 1. A conditional risk measure is a mapping ρt,T : Zt,T → Zt that satisfies the following
monotonicity condition:

ρt,T (Z) ≤ ρt,T (W ) for all Z,W ∈ Zt,T such that Z ≤W.

A sequence of conditional risk measures: {ρt,T }t=1,...,T is called a dynamic risk measure.

One can view the conditional risk measure as a non-linear extension of the conditional expectation.
The randomness of the entire sequence t, . . . , T is reduced to the randomness at time t. This is
analogous to conditional expectation in which E[Zt + · · ·+ ZT |Zt] is a random variable where the
randomness comes from Zt.

Intuitively, ρt,T (Zt, . . . , ZT ) represents the amount of reward a player is willing to take in exchange
for a sequence of future random rewards Zt + · · ·+ ZT . For a risk-neutral player, that amount will
equal E[Zt + · · ·+ ZT |Zt].

We are now ready to define the notion of time consistency.
Definition 2. A dynamic risk measure {ρt,T }t=1,...,T is time-consistent if for all τ, θ ∈ [T ] and
τ < θ, we have the following: If for all k = τ, . . . , θ − 1, Zk = Wk and ρθ,T (Zθ, . . . , ZT ) ≤
ρθ,T (Wθ, . . . ,WT ), then we have ρτ,T (Zτ , . . . , ZT ) ≤ ρτ,T (Wτ , . . . ,WT ).

The time-consistency property implies that a dynamic risk measure ensures that given the same
rewards, the sequence that is better today should also be better tomorrow.

Why is time consistency a desirable property? This property ensures that we do not contract ourselves
in our risk evaluation. If we observe the same realization, the sequence that is better today should
continue to be better tomorrow. Our risk preference stays the same over time. Note that this property
is trivially satisfied in standard RL, where the risk measure is replaced with expectation.

In contrast, a single risk measure applied on the cumulative reward ρ
(∑H

h=1 rh(xh, ah)
)

does not
enjoy this time consistency property.

C COHERENT RISK MEASURES

C.1 CONDITIONAL VALUE-AT-RISK

Let Z be a finite mean random variable, i.e., E[|Z|] <∞, with the cumulative distribution function
FZ(z) = P(Z ≤ z) (an example to keep in mind is that Z represents the random total reward of a
learning agent). The value-at-risk at confidence level α ∈ (0, 1) is defined as

VaRα(Z) = min{z : FZ(z) ≥ α}. (12)
The minimum is attained because the cumulative distribution function FZ is a non-decreasing and
right-continuous function in z. When FZ is strictly increasing (and thus bijective), VaRα(Z) =
F−1
Z (α). The conditional value-at-risk (also known as the average value-at-risk) at confidence level

α ∈ (0, 1) is defined as7

CVaRα(Z) :=
1

α

∫ α

0

VaRt(Z)dt. (13)

If Z is a continuous random variable, then CVaRα(Z) = E[Z|Z ≤ VaRα(Z)] (Acerbi & Tasche,
2002). From this expression, CVaRα(Z) can be viewed as the average of the worst-case α-fraction
of Z. It is easy to see that CVaR1(Z) = E[Z], and as α→ 0, CVaRα approaches the worst-case (or
robust) realization. An important result of CVaR (Rockafellar & Uryasev, 2002, Theorem 10) (also
known as the fundamental minimization theorem) is that it can be represented as the solution of a
convex optimization problem.
Lemma 1. (Keramati et al., 2020; Baudry et al., 2021) Let Z be a finite mean random variable, and
let α ∈ (0, 1). Then, it holds that

CVaRα(Z) = max
s∈R

{
s− 1

α
E
[
(s− Z)+

]}
= max

s∈R

{
s+

1

α
E
[
(Z − s)−

]}
,

7Note that the definition of CVaR presented above is different from that in the literature, e.g., in (Rockafellar
et al., 2000). This is because we are treating Z as rewards and thus maximizing Z, whereas existing works
consider Z as costs and consequently minimizing Z.
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where (x)+ = max{x, 0} represents the positive part of x, similarly (x)− = min{0, x} represents
the negative part of x, and the maximum point is given by s∗ = VaRα(Z).

Conditional Value-at-risk is a prominent risk measure with extensive applications in stochastic
optimization (see Rockafellar et al. (2000) for example). By carefully choosing α, CVaR can be
tuned to be sensitive to rare events with exceptionally low rewards, making it attractive as a risk
measure. The CVaR is also known for having favorable mathematical properties such as coherence.

Empirical estimation of the risk. Let Z1, . . . , Zm be m i.i.d. samples drawn from the distribution
FZ , then the empirical estimation of CVaRα(Z) is given by

ĈVaRα({Zi}mi=1) = max
s∈R

{
s+

1

αm

m∑
i=1

(Zi − s)−

}
. (14)

Lemma 2. (Lemma 3 in Yu et al. (2018)) Let Z1, . . . , Zm ∼ FZ be m i.i.d. bounded random
variables, i.e., P[0 ≤ Zi ≤ B] = 1,∀i, then we have

P
[∣∣CVaRα(Z)− ĈVaRα({Zi}mi=1)

∣∣ ≥ ε
]
≤ 2

(
1 +

4

ε(1− α)

)
exp

[
−mε2(1− α)2

2(2− α)2B2

]
.

C.2 COMPARISONS BETWEEN ENTROPIC RISK MEASURE AND CVAR

The closest work to ours is Fei et al. (2021), which considers the risk-aware RL problem in the
function approximation setting. However, they use the entropic risk measure. This section discusses
some key differences between the entropic risk measure and CVaR.

Entropic risk measure. For a finite-mean random variable Z and a parameter β ̸= 0, the entropic
risk measure of Z is defined as

ERβ(Z) :=
1

β
logE[eβZ ].

The entropic risk measure ERβ is the normalized cumulant generating function of Z and is concave
and additive for independent random variables (Föllmer & Knispel, 2011). Using Taylor expansion,
the entropic risk can be expressed as follows:

ERβ(Z) = E[Z] +
β

2
Var[Z] +O(β2).

From the above expression, we observe that β > 0 induces a risk-tolerant objective and β < 0
induces a risk-averse one. As β → 0, ERβ(Z) tends to the risk-neutral expectation E[Z].

However, the additivity property of the entropic risk measure may not be desirable in many practical
scenarios. For example, if ERβ(X1 +X2 + · · ·+Xn) is the total reward of n i.i.d. random variables,
then the reward per random variable is ERβ(X1), no matter how large n is. Thus, the aggregation of
independent risks does not affect ‘diversification reduces risks.’ In contrast, coherent risk measures
like CVaR are super-additive and thus enjoy this property.

C.3 ENTROPIC VALUE-AT-RISK

Let (Ω,F , P ) be a probability space. Let Z be a finite mean random variable, i.e., E[|Z|] < ∞,
whose moment-generating function MZ(z) exists for all z ≥ 0. The Entropic Value-at-Risk (EVaR)
(Ahmadi-Javid, 2011; 2012) at confidence level 1− α is defined as

EVaR1−α(Z) := inf
z>0

{
z−1 ln

(MZ(z)

α

)}
.

The EVaR admits a dual representation as follows:

EVaR1−α(Z) = sup
Q∈Q

[
EQ(Z)

]
,

where Q = {Q ≪ P : dKL(Q||P ) ≤ − lnα} where dKL denotes the Kullback-Leibler (KL)
divergence of Q with respect to P . This dual representation of the EVaR also reveals the reason
behind its name.
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C.4 G-ENTROPIC RISK MEASURE

Inspired by the dual representation of EVaR, Ahmadi-Javid (2012) proposes a large class of
information-theoretic coherent risk measures called g-entropic risk measures. This new class contains
both the CVaR and EVaR.

Let g be a convex proper function with g(1) = 0 and β ≥ 0. The generalized relative entropy
of Q with respect to P , denoted by Hg(P,Q), is an information-type pseudo-distance (also called
divergence measure) from Q to P :

Hg(P,Q) :=

∫
g
(dQ
dP

)
dP.

This quantity is an important divergence measure, initially mentioned in Ali & Silvey (1966); Csiszár
(1967), and discussed in more detail in Liese & Vajda (2006); Ullah (1996). For g(z) = z ln z, we
obtain the Kullback-Leibler divergence from Q to P (Kullback & Leibler, 1951).

Let Z be a finite-mean random variable. Then, the g-entropic risk measure with divergence level β is
defined as

ERg,β := sup
Q∈Q

EQ(Z),

where Q = {Q≪ P : Hg(P,Q) ≤ β}. We can show that the CVaR and EVaR are special cases of
the g-entropic risk measure, with proper choices of g and β. For a more comprehensive discussion of
the properties of the g-entropic risk measure, please refer to Section 5 of Ahmadi-Javid (2012).

C.5 OTHER COHERENT RISK MEASURES

Risk measures like Tail value-at-risk, Proportional Hazard (PH) risk measure, Wang risk measure,
and Superhedging price also belong to the family of coherent risk measures. These risk measures
have many important applications. For example, Proportional Hazard (PH) risk measure is widely
used in healthcare domains such as clinical trials (Rulli et al., 2018) or epidemiology (Moolgavkar
et al., 2018). Wang risk measure and Superhedging price are commonly used in financial applications
such as asset pricing (Wang, 2000) or portfolio optimization (Löhne & Rudloff, 2014).

In the RL context, CVaR is the most well-known and commonly used risk measure among all coherent
risk measures and is relatively well-studied in the literature (Bäuerle & Ott, 2011; Yu et al., 2018).
Some very recent works (Ni & Lai, 2022a;b) have started investigating the use of EVaR in RL. Unlike
our work, the techniques used by Ni & Lai (2022a;b) exploit properties that are unique to EVaR and
thus cannot be generalized to others in the family of coherent risk measures.

D PROOFS

Before presenting the proofs of the supporting lemmas, we review the properties of coherent risk
measures and derive the necessary results needed in our proofs. A coherent risk measure (Föllmer &
Schied, 2010) is defined as follows

Definition 3. Let X,Y be two random variables. A mapping ρ is called a coherent risk measure if ρ
satisfies the following conditions for all X,Y :

• Monotonicity: If X ≤ Y a.s., then ρ(X) ≤ ρ(Y ).

• Translation invariance: If m ∈ R, then ρ(X +m) = ρ(X) +m.

• Positive homogeneity: If α > 0, then ρ(αZ) = αρ(Z).

• Super-additivity: ρ(X + Y ) ≥ ρ(X) + ρ(Y ).

We want to highlight in our paper that we consider maximizing risks of the rewards. It is in direct
contrast to other papers that consider minimizing risks of the costs. Therefore, our properties are
upended compared to the properties presented in Föllmer & Schied (2010). The following result
presents a simple inequality we will use throughout this section.
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Lemma 3. For any two state-action value functions f1, f2 : S ×A → R, we have

(Dρ
hf1)(x, a)− (Dρ

hf2)(x, a) ≤ −
(
Dρ

h

(
− (f1 − f2)

))
(x, a).

Proof. The super-additivity property of ρ implies that

ρ(X) + ρ(Y −X) ≤ ρ(Y ), equivalently, ρ(X)− ρ(Y ) ≤ −ρ(Y −X). (15)

In the inequality given in Eq. (15), we want to highlight the super-additivity properties of ρ. We
emphasize that the statement ρ(X) − ρ(Y ) ≤ ρ(X − Y ) is incorrect since ρ is only positively
homogeneous. This argument concludes our proof of inequality.

Let x′ ∼ Ph(·|x, a) be the random variable represents the next state by following the transition kernel
Ph, by definition of Dρ

h in Eq. (3), we have

(Dρ
hf1)(x, a)− (Dρ

hf2)(x, a) = ρ
(
f1(x

′)
)
− ρ

(
f1(x

′)
)

≤ −ρ
(
− (f1(x

′)− f2(x
′))

)
= −

(
Dρ

h

(
− (f1 − f2)

))
(x, a),

where the first and last equality follows from the definition of Dρ
h from Eq. (3), and the inequality is

due to Eq. (15).

D.1 PROOF OF THEOREM 1

We first define a few notations to simplify the presentation of the proof. First, we define the
temporal-difference (TD) error as

δth(x, a) = (rh +Dρ
hV

t
h+1)(x, a)−Qt

h(x, a), ∀(x, a) ∈ S ×A. (16)

For a trajectory {(xt
h, a

t
h)}h∈[H], we further define the two following quantities

ζ1t,h =
[
V t
h(x

t
h)− V πt

h (xt
h)
]
−

[
Qt

h(x
t
h, a

t
h)−Qπt

h (xt
h, a

t
h)
]
,

ζ2t,h =
[
(Dρ

hV
t
h+1)(x

t
h, a

t
h)− (Dρ

hV
πt

h+1)(x
t
h, a

t
h)
]
−
[
V t
h+1(x

t
h+1)− V πt

h+1(x
t
h+1)

]
. (17)

The random variables ζ1t,h and ζ2t,h capture the deviations of the value function due to two sources of
randomness in the MDP – the randomness of choosing the action ath ∼ πt

h(·|xt
h) and drawing next

state xt
h+1 ∼ Ph(·|xt

h, a
t
h). We establish the upper bound in the following steps.

Step 1: Decomposition of the regret.
Lemma 4. We can upper bound the regret as

R(T ) ≤ −
T∑

t=1

H∑
h=1

( h−1∏
i=1

Jπ⋆
i
Dρ

i

)
Jπ⋆

h
(−δth)(xt

1)−
T∑

t=1

H∑
h=1

δth(x
t
h, a

t
h)︸ ︷︷ ︸

Term I

+

T∑
t=1

H∑
h=1

(ξ1t,h + ξ2t,h)︸ ︷︷ ︸
Term II

,

where δth, ζ1t,h, and ζ2t,h are defined above.

Proof sketch. We decompose the instantaneous regret at the t-th episode into

V ⋆
1 (x

t
1)− V πt

1 (xt
1) =

[
V ⋆
1 (x

t
1)− V t

1 (x
t
1))

]
+

[
V t
1 (x

t
1)− V πt

1 (xt
1)
]
.

To upper bound the first term, we establish an inequality of the form V ⋆
h −V t

h ≤ f(V ⋆
h+1−V t

h+1) for
some function f and apply it recursively. This inequality is established using the Bellman equation
and the super-additivity property of CVaR. Similar techniques can be applied to the upper bound of
the second term. The detailed proof is given in Appendix D.2

Step 2. Upper bounding Term I.
Lemma 5. Let λ = 1 + 1/T and β = BT in Algorithm RA-UCB. Then under Assumption 1, with
probability at least 1− (2T 2H2)−1, we have that for all t ∈ [T ], h ∈ [H], x ∈ S, and a ∈ A:

−2βbth(x, a) ≤ δth(x, a) ≤ 0.
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The proof of Lemma 5 is in Appendix D.3. By Lemma Lemma 5, δth is a negative function, and
thus we could upper bound the first term in (I) by 0. We obtain that, with a probability of at least
1− (2T 2H2)−1,

Term I ≤ −
T∑

t=1

H∑
h=1

δth(x
t
h, a

t
h)

≤ 2β

T∑
t=1

H∑
h=1

bth(x
t
h, a

t
h),

which is an upper bound of the sum of the bonus terms. Recall that we can rewrite the bonus term as

bth(x
t
h, a

t
h) =

[
ϕ(xt

h, a
t
h)

⊤(Λt
h)

−1ϕ(xt
h, a

t
h)
]1/2

,

where Λt
h =

∑t−1
τ=1 ϕ(x

τ
h, a

τ
h)ϕ(x

τ
h, a

τ
h)

⊤ + λ · IH and IH is the identity operator onH. Then,

Term I ≤ 2β ·
√
T

H∑
h=1

[ T∑
t=1

ϕ(xt
h, a

t
h)

⊤(Λt
h)

−1ϕ(xt
h, a

t
h)

]1/2

≤ 2β ·
√
T

H∑
h=1

[2 log det(I +KT
h /λ)]

1/2

= 4βH ·
√
T · Γk(T, λ),

where Γk(T, λ) is the maximal information gain defined in Eq. (10).

Step 3. Upper bounding Term II.
Lemma 6. For ζ1t,h and ζ2t,h defined in Eq. (17). We have that, with probability at least 1− δ,

T∑
t=1

H∑
h=1

(ζ1t,h + ζ2t,h) ≤
√
16TH3 log(2/δ) + 2TH · Ξ(m, δ/(4TH)).

Proof sketch. We show that {ζ1t,h}(t,h)∈[T ]×[H] is a bounded martingale difference sequence and
apply Azuma-Hoeffding concentration inequality. For {ζ2t,h}(t,h)∈[T ]×[H], we use concentration
inequality of the risk estimator. The complete proof is in Appendix D.4

Setting δ = (2T 2H2)−1 gives us

Term II ≤
√
16TH3 log(4T 2H2) + 2TH · Ξ(m, (8T 3H3)−1)

Therefore, combining these above results, with probability at least 1 − (T 2H2)−1, the regret is
bounded by

R(T ) ≤ 4βH
√
TΓk(T, λ) +

√
16TH3 log(4T 2H2) + 2TH · Ξ(m, (8T 3H3)−1)

≤ 5βH
√
TΓk(T, λ) + 2TH · Ξ(m, (8T 3H3)−1).

Substituting β = BT completes the proof of Theorem 1.

D.2 PROOF OF LEMMA 4

We decompose the instantaneous regret at the t-th episode into

V ⋆
1 (x

t
1)− V πt

1 (xt
1) = V ⋆

1 (x
t
1)− V t

1 (x
t
1)︸ ︷︷ ︸

(A)

+V t
1 (x

t
1)− V πt

1 (xt
1)︸ ︷︷ ︸

(B)

.

We proceed to upper bound the two terms separately. For ease of presentation, we first define the
operator Jπ acting on functions f : S × A → R that map a state-action value function to the state
value function by following policy π as follows:

(Jπf)(x) = ⟨f(x, ·), π(·|x)⟩A.
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Since the domain of f(x, ·) and π(·|x) is a finite set A, the inner product above can be interpreted as
an inner product between two Euclidean vectors.

Term (A). By the definitions of the optimal value function, we have V ⋆
h (x) = ⟨Q⋆

h(x, ·), π⋆
h(·|x)⟩A

for all x ∈ S . Similarly, by the definition of V t
h , we get V t

h(x) = ⟨Qt
h(x, ·), πt

h(·|x)⟩A for all x ∈ S .
Thus, for any t ∈ [T ], h ∈ [H], x ∈ S, we have

V ⋆
h (x)− V t

h(x) = ⟨Q⋆
h(x, ·), π⋆

h(·|x)⟩A − ⟨Qt
h(x, ·), πt

h(·|x)⟩A
= ⟨Q⋆

h(x, ·), π⋆
h(·|x)⟩A − ⟨Qt

h(x, ·), π⋆
h(·|x)⟩A+

⟨Qt
h(x, ·), π⋆

h(·|x)⟩A − ⟨Qt
h(x, ·), πt

h(·|x)⟩A
= ⟨Q⋆

h(x, ·)−Qt
h(x, ·), π⋆

h(·|x)⟩A + ⟨Qt
h(x, ·), π⋆

h(·|x)− πt
h(·|x)⟩A.

Since πt
h is the greedy policy with respect to Qt

h, it gives

⟨Qt
h(xh, ·), π⋆

h(·|xh)− πt
h(·|xh)⟩A = ⟨Qt

h(xh, ·), π⋆
h(·|xh)⟩A −max

a∈A
Qt

h(xh, a) ≤ 0,

for all xh ∈ S. As a result, we can upper bound the second term by 0 and have

V ⋆
h (x)− V t

h(x) ≤ ⟨Q⋆
h(x, ·)−Qt

h(x, ·), π⋆
h(·|x)⟩A

= Jπ⋆
h
(Q⋆

h −Qt
h)(x).

From the Bellman optimality equation and the definition of the temporal-difference, we get

Q⋆
h −Qt

h = (rh +Dρ
hV

⋆
h+1)− (rh +Dρ

hV
t
h+1 − δth)

= Dρ
hV

⋆
h+1 −Dρ

hV
t
h+1 + δth

≤ −Dρ
h

(
− (V ⋆

h+1 − V t
h+1)

)
+ δth,

where the last inequality follows from Lemma 3. Substituting this in the previous derivation gives us

V ⋆
h (x)− V t

h(x) ≤ Jπ⋆
h

(
−Dρ

h

(
− (V ⋆

h+1 − V t
h+1)

)
+ δth

)
(x)

= −Jπ⋆
h
Dρ

h

(
− (V ⋆

h+1 − V t
h+1)

)
(x)− Jπ⋆

h
(−δth)(x). (18)

Eq. (18) represents a recursive relation between V ⋆
h − V t

h and V ⋆
h+1 − V t

h+1. Then, recursively
applying Eq. (18) for all h ∈ [H] gives

V ⋆
1 − V t

1 ≤ −Jπ⋆
1
Dρ

1

(
− (V ⋆

2 − V t
2 )
)
− Jπ⋆

1
(−δt1)

≤ −Jπ⋆
1
Dρ

1

(
−
(
−Jπ⋆

2
Dρ

2

(
− (V ⋆

3 − V t
3 )
)
− Jπ⋆

2
(−δt2)

) )
− Jπ⋆

1
(−δt1)

= −Jπ⋆
1
Dρ

1

(
Jπ⋆

2
Dρ

2

(
− (V ⋆

3 − V t
3 )
)
+ Jπ⋆

2
(−δt2)

)
− Jπ⋆

1
(−δt1)

= −
( 2∏

h=1

Jπ⋆
h
Dρ

h

)(
− (V ⋆

3 − V t
3 )
)
−

2∑
h=1

( h−1∏
i=1

Jπ⋆
i
Dρ

i

)
Jπ⋆

h
(−δth)

...

≤ −
( H∏

h=1

Jπ⋆
h
Dρ

h

)(
− (V ⋆

H+1 − V t
H+1)

)
−

H∑
h=1

( h−1∏
i=1

Jπ⋆
i
Dρ

i

)
Jπ⋆

h
(−δth)

= −
H∑

h=1

( h−1∏
i=1

Jπ⋆
i
Dρ

i

)
Jπ⋆

h
(−δth), (19)

where the last equality follows due to the fact that V ⋆
H+1(x) = V t

H+1(x) = 0 for all x ∈ S.

Term (B). By definitions of δth, ζ
1
t,h and ζ2t,h defined in Eq. (16) and Eq. (17), we have

V t
h(x

t
h)− V πt

h (xt
h) = V t

h(x
t
h)− V πt

h (xt
h) + δth(x

t
h, a

t
h)− δth(x

t
h, a

t
h)

= V t
h(x

t
h)− V πt

h (xt
h) +Dρ

hV
t
h+1(x

t
h, a

t
h)−Dρ

hV
πt

h (xt
h, a

t
h)
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+ (Qπt

h −Qt
h)(x

t
h, a

t
h)− δth(x

t
h, a

t
h)

= (V t
h − V πt

h )(xt
h)− (Qt

h −Qπt

h )(xt
h, a

t
h) +Dρ

hV
t
h+1(x

t
h, a

t
h) −

Dρ
hV

πt

h (xt
h, a

t
h)− (V t

h+1 − V πt

h+1)(x
t
h+1) +

(V t
h+1 − V πt

h+1)(x
t
h+1)− δth(x

t
h, a

t
h)

= (V t
h+1 − V πt

h+1)(x
t
h+1) + ξ1t,h + ξ2t,h − δth(x

t
h, a

t
h).

Recursively applying the above gives:

V t
1 (x

t
1)− V πt

1 (xt
1) = (V t

2 − V πt

2 )(xt
2) + ξ1t,1 + ξ2t,1 − δt1(x

t
1, a

t
1)

=
(
(V t

3 − V πt

3 )(xt
3) + ξ1t,2 + ξ2t,2 − δt2(x

t
2, a

t
2)
)
+ ξ1t,1 + ξ2t,1 − δt1(x

t
1, a

t
1)

= (V t
3 − V πt

3 )(xt
3) +

2∑
h=1

(ξ1t,h + ξ2t,h)−
2∑

h=1

δth(x
t
h, a

t
h)

...

= (V t
H+1 − V πt

H+1)(x
t
H+1) +

H∑
h=1

(ξ1t,h + ξ2t,h)−
H∑

h=1

δth(x
t
h, a

t
h)

=

H∑
h=1

(ξ1t,h + ξ2t,h)−
H∑

h=1

δth(x
t
h, a

t
h), (20)

where the last equality follows due to the fact that V t
H+1(xH+1) = V πt

H+1(xH+1) = 0.

Combining Eq. (19) and Eq. (20) gives

RT =

T∑
t=1

[V ⋆
1 (x

t
1)− V πt

1 (xt
1)]

≤ −
H∑

h=1

( h−1∏
i=1

Jπ⋆
i
Dρ

i

)
Jπ⋆

h
(−δth) +

H∑
h=1

(ξ1t,h + ξ2t,h)−
H∑

h=1

δth(x
t
h, a

t
h),

which concludes the proof of this lemma.

D.3 PROOF OF LEMMA 5

Let ϕ : Z → H denote the feature representation induced by the kernel k, i.e., k(z, z′) =
⟨ϕ(z), ϕ(z′)⟩H. For ease of representation, we view ϕ(z) as a vector and write ϕ(z)⊤ϕ(z′) =
⟨ϕ(z), ϕ(z′)⟩H to denote the inner product. The kernel regression problem in Eq. (9) becomes

θ̂ ← min
θ∈H

L(θ) =

t−1∑
τ=1

[
rh(x

τ
h, a

τ
h) + ρ̂(V t

h+1({x′
(i)}

m
i=1))− θ⊤ϕ(xτ

h, a
τ
h)
]2

+ λ · ∥θ∥2H. (21)

We define the feature matrix Φt
h : H → Rt−1 and the covariance matrix Λt

h : H → H as

Φt
h =

[
ϕ(z1h)

⊤, . . . , ϕ(zt−1
h )⊤

]⊤
and Λt

h =

t−1∑
τ=1

ϕ(zτh)ϕ(z
τ
h)

⊤ + λIH = (Φt
h)

⊤Φt
h + λIH,

where IH is the identity mapping on H. The Gram matrix Kt
h in Eq. (6) can be expressed as

Kt
h = Φt

h(Φ
t
h)

⊤, and kth(z) = Φϕ(z). With these definitions, we can rewrite Eq. (21) as

min
θ∈H

L(θ) = ∥yth − Φt
hθ∥22 + λθ⊤θ.

The solution to the optimization problem above is given by θ̂th = (Λt
h)

−1(Φt
h)

⊤yth. As a result, Q̂t
h

in Eq. (9) can be expressed as Q̂t
h(z) = ϕ(z)⊤θ̂th. In the rest of this section, to further simplify the
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notation, we denote Φt
h as simply Φ when the context is clear. Since (ΦΦ⊤ + λI) and (Φ⊤Φ+ λIH)

are positive definite, and thus invertible, and Φ⊤(ΦΦ⊤ + λI) = (Φ⊤Φ+ λIH)Φ⊤, we have

(Φt
h)

−1Φ⊤ = (Φ⊤Φ+ λIH)−1Φ⊤ = Φ⊤(ΦΦ⊤ + λI)−1 = Φ⊤(Kt
h + λI)−1.

Consequently, we can write θ̂th as

θ̂th = (Λt
h)

−1Φ⊤yth = Φ⊤(Kt
h + λI)−1yth.

In the sequel, we will bound the temporal-difference error δth defined in Eq. (16). Since V t
h(x) =

maxa Q
t
h(x, a), we have

δth = rh +Dρ
hV

t
h+1 −Qt

h = T⋆
hQ

t
h+1 −Qt

h,

where T⋆
h is the Bellman optimality operator. By Assumption Assumption 1, since for any t, h,

Qt
h+1 ∈ [0, H], therefore we have T⋆

hQ
t
h+1 ∈ B(RH). Consequently, there exists θth ∈ H such that

for any z ∈ Z , T⋆
hQ

t
h+1(z) = ϕ(z)⊤θth. We can write ϕ(z) as

ϕ(z) = (Λt
h)

−1Λt
hϕ(z)

= (Λt
h)

−1(Φ⊤Φ+ λIH)ϕ(z)

= (Λt
h)

−1(Φ⊤Φ)ϕ(z) + λ(Λt
h)

−1ϕ(z)

= Φ⊤(Kt
h + λI)−1kth(z) + λ(Λt

h)
−1ϕ(z).

Using the above, we can write ϕ(z)⊤θth as

ϕ(z)⊤θth = kth(z)
⊤(Kt

h + λI)−1Φθth + λϕ(z)⊤(Λt
h)

−1θth.

We have:

ϕ(z)⊤θ̂th − ϕ(z)⊤θth (22)

= ϕ(z)⊤Φ⊤(Kt
h + λI)−1yth − kth(z)

⊤(Kt
h + λI)−1Φθth − λϕ(z)⊤(Λt

h)
−1θth

= kth(z)
⊤(Kt

h + λI)−1(yth − Φθth)︸ ︷︷ ︸
(i)

−λϕ(z)⊤(Λt
h)

−1θth︸ ︷︷ ︸
(ii)

.

We proceed by bounding Term (i) and Term (ii) separately. For Term (ii), by Cauchy-Schwarz
inequality:

|Term (ii)| = |λϕ(z)⊤(Λt
h)

−1θth|
≤ ∥λ(Λt

h)
−1ϕ(z)∥H · ∥θth∥H ≤ RH∥λ(Λt

h)
−1ϕ(z)∥H

= RH
√

λϕ(z)⊤(Λt
h)

−1 · λIH · (Λt
h)

−1ϕ(z)

≤ RH
√

λϕ(z)⊤(Λt
h)

−1 · (Λt
h) · (Λt

h)
−1ϕ(z)

=
√
λRH · bth(z), (23)

where the second last inequality follows from the fact that (Λt
h − λIH) is a positive-semidefinite

operator, which implies for any f ∈ H, we have f⊤(Λt
h − λIH)f ≥ 0.

We continue to bound Term (i) in the rest of this section. For τ ∈ [0, t− 1], the τ -entry of the vector
(yth − Φθth) can be expressed as

[yth]τ − [Φθth]τ = rh(x
τ
h, a

τ
h) + ρ̂({V t

h+1(x
′
(i))}

m
i=1)− ϕ(xτ

h, a
τ
h)

⊤θth

= rh(x
τ
h, a

τ
h) + ρ̂({V t

h+1(x
′
(i))}

m
i=1)− (T⋆

hQ
t
h+1)(x

τ
h, a

τ
h)

= ρ̂({V t
h+1(x

′
(i))}

m
i=1)− (Dρ

hV
t
h+1)(x

τ
h, a

τ
h).

Combining these above results, we have

|Term (i)| = |kth(z)⊤(Kt
h + λI)−1(yth − Φθth)|

= |ϕ(z)⊤Φ⊤(Kt
h + λI)−1(yth − Φθth)|
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= |ϕ(z)⊤(Λt
h)

−1Φ⊤(yth − Φθth)|

=

∣∣∣∣ϕ(z)⊤(Λt
h)

−1

{ t−1∑
τ=1

ϕ(xτ
h, a

τ
h) ·

[
ρ̂({V t

h+1(x
′
(i))}

m
i=1)− (Dρ

hV
t
h+1)(x

τ
h, a

τ
h)
]}∣∣∣∣

≤ ∥ϕ(z)∥(Λt
h)

−1 ·
∥∥∥∥ t−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

[
ρ̂({V t

h+1(x
′
(i))}

m
i=1)−

(Dρ
hV

t
h+1)(x

τ
h, a

τ
h)
]∥∥∥∥

(Λt
h)

−1

, (24)

where the last inequality follows from the Cauchy-Schwarz inequality. To bound the RKHS norm in
the second term, we apply techniques similar to (Yang et al., 2020) by combining concentration of
self-normalized processes and uniform convergence over the function classes that contain V t

h+1. To
achieve this, let us first define the action-value function classes Qucb(h,R,B) as

Qucb(h,R,B) = {Q :

Q(z) = min{Q0(z) + β · λ1/2[k(z, z)− kD(z)
⊤(KD + λI)−1kD(z)]

1/2, H − h+ 1}+,
∥Q0∥H ≤ R, β ∈ [0, B], |D| ≤ T}.

Let us further define the state-value function classes Vucb(h,R,B) as

Vucb(h,R,B) = {V : V (x) = max
a∈A

Q(x, a) for Q ∈ Qucb(h,R,B)}.

By (Yang et al., 2020, Lemma C.1), if we set RT = 2HΓk(T, λ), then we have for all t ∈ [T ], h ∈
[H], V t

h as defined in Eq. (9) satisfies that V t
h ∈ Vucb(h,RT , BT ) where BT is defined in Theorem 1.

We now bound Term (i) by a covering number argument over the function classes Vucb(h,RT , BT ) for
h ∈ [H]. For any two state-value functions V, V ′ : S → R, we consider the maximum metric (also
known as the Chebyshev metric) d(V, V ′) = supx∈S |V (x)− V ′(x)|. For ϵ, B > 0, let Nd(ϵ, h,B)
be the ϵ-covering number of Vucb(h,RT , B) with respect to the metric d, and N∞(ϵ, h,B) as the
ϵ-covering number of Qucb(h,RT , B) with respect to the maximum metric. Applying (Yang et al.,
2020, Lemma E.2) with δ = (2T 2H3)−1 and taking a union bound over h ∈ [H] gives∥∥∥∥ t−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

[
ρ̂({V t

h+1(x
′
(i))}

m
i=1)− (Dρ

hV
t
h+1)(x

τ
h, a

τ
h)
]∥∥∥∥2

(Λt
h)

−1

≤ sup
V ∈Vucb(h+1,RT ,BT )

∥∥∥∥ t−1∑
τ=1

ϕ(xτ
h, a

τ
h) ·

[
ρ̂({V (x′

(i))}
m
i=1)− (Dρ

hV )(xτ
h, a

τ
h)
]∥∥∥∥2

(Λt
h)

−1

≤ 2H2 log det(I +Kt
h/λ) + 2H2t(λ− 1)

+ 4H2
[
logN∞(ϵ, h+ 1, BT ) + log (2T 2H3)

]
+ 8t2ϵ2/λ,

uniformly over all t ∈ [T ], h ∈ [H] with probability 1− (2T 2H2)−1. The first inequality is due to
the fact that V t

h+1 ∈ Vucb(h + 1, RT , BT ). According to the algorithm, we set λ = 1 + 1/T . We
further set ϵ∗ = H/T , the above simplifies to∥∥∥∥ t−1∑

τ=1

ϕ(xτ
h, a

τ
h) ·

[
ρ̂({V t

h+1(x
′
(i))}

m
i=1)− (Dρ

hV
t
h+1)(x

τ
h, a

τ
h)
]∥∥∥∥2

(Λt
h)

−1

≤ 4H2Γk(T, λ) + 10H2 + 4H2 logN∞(ϵ∗, h+ 1, BT ) + 12H2 log (TH).

Combining the above result with Eq. (22), Eq. (23), and Eq. (24), gives

|ϕ(z)⊤(θ̂th − θth)|

≤ Hbth(z) ·
{
[4Γk(T, λ) + 10 + 4 logN∞(ϵ∗, h+ 1, B) + 8 log (TH)]1/2 +

√
λR

}
≤ Hbth(z)

[
8Γk(T, λ) + 20 + 8 logN∞(ϵ∗, h+ 1, B) + 16 log (TH) + 2λR2

]1/2
≤ BT · bth(z) = β · bth(z), (25)
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holds uniformly for all t ∈ [T ], h ∈ [H] with probability 1 − (2T 2H2)−1. The second inequality
follows from the fact that

√
a +
√
b ≤

√
2(a2 + b2), and the last inequality follows from the

assumption on BT .

Finally, by the definition of the temporal difference error δth and Eq. (25), we have:

−δth(z) = Qt
h(z)− T⋆

hQ
t
h+1 ≤ ϕ(z)⊤(θ̂th − θth) + βbth(z) ≤ 2βbth(z)

which proves the left inequality of Lemma 5. For the right inequality, note that since Qt
h+1(z) ≤

H − h for all z ∈ Z , we have (T⋆
hQ

t
h+1) ≤ H − h+ 1. Therefore, we have

δth(z) = T⋆
hQ

t
h+1 −Qt

h(z)

= ϕ(z)⊤θth −min{ϕ(z)⊤θ̂th + β · bth(z), H − h+ 1}+

≤ max{ϕ(z)⊤θth − ϕ(z)⊤θ̂th − β · bth(z), ϕ(z)⊤θth − (H − h+ 1)}
≤ 0,

where the first term is negative due to Eq. (25), and the second term is negative due to the fact that
(T⋆

hQ
t
h+1) ≤ H − h+ 1. This completes the proof of Lemma 5.

D.4 PROOF OF LEMMA 6

This section follows Yang et al. (2020) to show {ζ1t,h, ζ2t,h}(t,h)∈[T ]×[H] is a bounded martingale
difference sequence. We construct the filtration as follows. For any t ∈ [T ], h ∈ [H], we define the
following σ-algebras

Ft,h,1 = σ
(
{(xτ

i , a
τ
i )}(τ,i)∈[t−1]×[H] ∪ {(xt

i, a
t
i)}i∈[h]

)
,

Ft,h,2 = σ
(
{(xτ

i , a
τ
i )}(τ,i)∈[t−1]×[H] ∪ {(xt

i, a
t
i)}i∈[h] ∪ {xt

h+1}
)
,

where σ(·) denotes the σ-algebra generated by a finite set. Since V t
h and Qt

h are computed based on
trajectories of the first t− 1 episodes, they are measurable with respect to Ft,1,1. Since the action ath
are sampled from πt(·|xt

h), we have
E
[
ζ1t,h|Ft,h−1,2

]
= 0.

Thus, applying Azuma-Hoeffding inequality (Azuma, 1967), we obtain that for all t > 0:

P
(∣∣ T∑

t=1

H∑
h=1

ζ1t,h
∣∣ > t

)
≤ 2 exp

( −t2

16TH3

)
. (26)

We let the right hand side equal to δ/2, yielding t =
√

16TH3 · log (4/δ).

Next, we bound ζ2t,h using the risk estimator concentration inequality. Recall that the empirical risk
estimate ρ̂ achieves the rate of Ξ(m, δ), i.e.,

P
(
|ρ(Z)− ρ̂({Zi}mi=1)| ≤ Ξ(m, δ)

)
≥ 1− δ.

By definition, Dρ
hV

t
h+1(x

t
h, a

t
h) = ρ(x′) where x′ ∼ Ph(·|xt

h, a
t
h). Note that xt

h+1 is also sampled
from Ph(·|xt

h, a
t
h). Applying the above inequality, for all t ∈ [T ], h ∈ [H], we have

P
(∣∣Dρ

hV
t
h+1(x

t
h, a

t
h)− V t

h+1(x
t
h+1)

∣∣ ≤ Ξ(m, δ/(4TH))
)
≥ 1− δ/(4TH). (27)

Taking a union bound over all t ∈ [T ] and h ∈ [H] yields

P
( T∑

t=1

H∑
h=1

∣∣Dρ
hV

t
h+1(x

t
h, a

t
h)− V t

h+1(x
t
h+1)

∣∣ ≤ TH · Ξ(m, δ/(4TH))
)
≥ 1− δ/4. (28)

Following similar arguments, we have

P
( T∑

t=1

H∑
h=1

∣∣Dρ
hV

πt

h+1(x
t
h, a

t
h)− V πt

h+1(x
t
h+1)

∣∣ ≤ TH · Ξ(m, δ/(4TH))
)
≥ 1− δ/4. (29)

Finally, performing a union bound over 26, 28, and 29 gives us with probability at least 1− δ, we
have

T∑
t=1

H∑
h=1

(ζ1t,h + ζ2t,h) ≤
√
16TH3 log(2/δ) + 2TH · Ξ(m, δ/(4TH)),

which concludes the proof of Lemma 6.
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D.5 PROOF OF COROLLARY 1

We first restate CVaR empirical risk estimator and its concentration result.
Lemma 7. (Lemma 3 in Yu et al. (2018)) Let Z1, . . . , Zm ∼ FZ be m i.i.d. bounded random
variables, i.e., P[0 ≤ Zi ≤ B] = 1,∀i, then we have

P
[∣∣CVaRα(Z)− ĈVaRα({Zi}mi=1)

∣∣ ≥ ε
]
≤ 2

(
1 +

4

ε(1− α)

)
exp

[
−mε2(1− α)2

2(2− α)2B2

]
,

where

ĈVaRα({Zi}mi=1) = max
s∈R

{
s+

1

αm

m∑
i=1

(Zi − s)−

}
.

Setting the RHS to δ, we have

δ = 2

(
1 +

4

ε(1− α)

)
exp

[
−mε2(1− α)2

2(2− α)2B2

]
,

or equivalently,

m = log
(4TH(ϵ(1− α) + 4)

δϵ(1− α)

2H2(2− α)2

ϵ2(1− α)2

)
.

For the regret to be order-optimal, we need

ϵ = O
(BT

√
Γk(T, λ)√
T

)
and δ = (8T 3H3)−1.

That gives us

m = O
(
log

( T 5H6

B2
TΓk(T, λ)

))
,

which concludes the proof of Corollary 1.

E ADDITIONAL EXPERIMENTS

This section provides additional empirical results to demonstrate the effectiveness of RA-UCB. We
study the proposed algorithm under various risk measures, namely VaR, CVaR, and EVaR. Refer to
Appendix C for a formal introduction and discussion of these risk measures.

The robot navigation environment is similar to the setting in Section 5.1. The robot receives a
positive reward of 10 for reaching the destination and a negative reward for being close to obstacles.
The negative reward increases exponentially as the robot comes close to the obstacles. We set the
horizon of each episode to H = 30 and use m = 100 samples from the weak simulator to estimate
the risk in Eq. (7). We approximate the state-action value function using the RBF kernel and the
KernelRidge regressor from Scikit-learn.

We run RA-UCB for 50 episodes and report the performance of the learned policy with three
different risk measures, namely Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR), and Entropic
Value-at-Risk (EVaR). Each risk measure is evaluated against different values of the risk parameter
α ∈ [0.1, 0.5, 0.9]. We note that VaR is not a coherent risk measure; therefore, our regret upper bound
does not apply to VaR. Regardless, VaR is still an important risk measure with many real-world
applications and has important connections with CVaR and EVaR.

Fig. 4 shows the robot’s cumulative rewards following the learned policies after 50 episodes. Each
column represents a different risk measure, and each row represents a different risk parameter. We
observe that the reward distribution changes when we vary the risk parameters. For α = 0.1 (top
row), the policies are more risk-averse, favoring safer paths with higher worst-case rewards but having
smaller average rewards. As we increase the value of α, α = 0.5 (middle row), and α = 0.9 (bottom
row), the learned policies become more risk-tolerant, which causes the average rewards to be higher
but occasionally small.

We also observe that, for the same risk parameter, CVaR outperforms VaR marginally in terms of
average rewards. This gain is because VaR does not control rewards below its value (for instance, you
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can significantly reduce the smallest rewards below VaR, but the Value-at-Risk will not change). In
other words, VaR disregards some parts of the distribution. This property can be both good and bad,
depending upon the applications. For example, VaR estimates are statistically more stable than CVaR
estimates. However, in our case, we use a sufficiently high number of samples to estimate the risk
values; thus, risk measures that consider the complete distribution, like CVaR or EVaR, are slightly
more effective.

Furthermore, it can be shown that for the same risk parameter α, EVaR is more risk-averse than both
VaR and CVaR (Ahmadi-Javid, 2012). Our results show that the reward distribution using EVaR
(plots the rightmost columns) tends to have lower average rewards but better worst-case rewards.
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Figure 4: Histograms show the distribution of the cumulative reward when following the learned
policy. The solid lines represent the estimated densities using Gaussian kernels, and the vertical lines
represent the mean of the distribution. For α = 0.1 (top row), the policy is more risk-averse, favoring
safer paths with higher worst-case rewards but having smaller average rewards. As we increase α,
α = 0.5 (middle row), and α = 0.9 (bottom row), the learned policy becomes more risk-tolerant,
which causes the average rewards to be higher but occasionally small. Furthermore, for the same risk
parameters, e.g., α = 0.1, EVaR usually has the smallest average but better worst-case rewards. This
result also confirms that EVaR is more risk-averse than VaR and CVaR for the same risk parameter
(Ahmadi-Javid, 2012).
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