
Online Learning with a Hint

Ofer Dekel
Microsoft Research

oferd@microsoft.com

Arthur Flajolet
Operations Research Center

Massachusetts Institute of Technology
flajolet@mit.edu

Nika Haghtalab
Computer Science Department

Carnegie Mellon University
nika@cmu.edu

Patrick Jaillet
EECS, LIDS, ORC

Massachusetts Institute of Technology
jaillet@mit.edu

Abstract

We study a variant of online linear optimization where the player receives a hint
about the loss function at the beginning of each round. The hint is given in the
form of a vector that is weakly correlated with the loss vector on that round. We
show that the player can benefit from such a hint if the set of feasible actions is
sufficiently round. Specifically, if the set is strongly convex, the hint can be used to
guarantee a regret of O(log(T )), and if the set is q-uniformly convex for q ∈ (2, 3),
the hint can be used to guarantee a regret of o(

√
T ). In contrast, we establish

Ω(
√
T ) lower bounds on regret when the set of feasible actions is a polyhedron.

1 Introduction

Online linear optimization is a canonical problem in online learning. In this setting, a player attempts
to minimize an online adversarial sequence of loss functions while incurring a small regret, compared
to the best offline solution. Many online algorithms exist that are designed to have a regret of O(

√
T )

in the worst case and it has been known that one cannot avoid a regret of Ω(
√
T ) in the worst case.

While this worst-case perspective on online linear optimization has lead to elegant algorithms and
deep connections to other fields, such as boosting [9, 10] and game theory [4, 2], it can be overly
pessimistic. In particular, it does not account for the fact that the player may have side-information
that allows him to anticipate the upcoming loss functions and evade the Ω(

√
T ) regret. In this

work, we go beyond this worst case analysis and consider online linear optimization when additional
information in the form of a function that is correlated with the loss is presented to the player.

More formally, online convex optimization [24, 11] is a T -round repeated game between a player and
an adversary. On each round, the player chooses an action xt from a convex set of feasible actions
K ⊆ Rd and the adversary chooses a convex bounded loss function ft. Both choices are revealed and
the player incurs a loss of ft(xt). The player then uses its knowledge of ft to adjust its strategy for
the subsequent rounds. The player’s goal is to accumulate a small loss compared to the best fixed
action in hindsight. This value is called regret and is a measure of success of the player’s algorithm.

When the adversary is restricted to Lipschitz loss functions, several algorithms are known to guarantee
O(
√
T ) regret [24, 16, 11]. If we further restrict the adversary to strongly convex loss functions, the

regret bound improves to O(log(T )) [14]. However, when the loss functions are linear, no online
algorithm can have a regret of o(

√
T ) [5]. In this sense, linear loss functions are the most difficult

convex loss functions to handle [24].
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In this paper, we focus on the case where the adversary is restricted to linear Lipschitz loss functions.
More specifically, we assume that the loss function ft(x) takes the form cTtx, where ct is a bounded
loss vector in C ⊆ Rd. We further assume that the player receives a hint before choosing the action
on each round. The hint in our setting is a vector that is guaranteed to be weakly correlated with the
loss vector. Namely, at the beginning of round t, the player observes a unit-length vector vt ∈ Rd
such that vT

t ct ≥ α‖ct‖2, and where α is a small positive constant. So long as this requirement is met,
the hint could be chosen maliciously, possibly by an adversary who knows how the player’s algorithm
uses the hint. Our goal is to develop a player strategy that takes these hints into account, and to
understand when hints of this type make the problem provably easier and lead to smaller regret.

We show that the player’s ability to benefit from the hints depends on the geometry of the player’s
action set K. Specifically, we characterize the roundness of the set K using the notion of (C, q)-
uniform convexity for convex sets. In Section 3, we show that if K is a (C, 2)-uniformly convex
set (or in other words, if K is a C-strongly convex set), then we can use the hint to design a player
strategy that improves the regret guarantee to O

(
(Cα)−1 log(T )

)
, where our O(·) notation hides

a polynomial dependence on the dimension d and other constants. Furthermore, as we show in
Section 4, if K is a (C, q)-uniformly convex set for q ∈ (2, 3), we can use the hint to improve the
regret to O

(
(Cα)

1
1−q T

2−q
1−q

)
, when the hint belongs to a small set of possible hints at every step.

In Section 5, we prove lower bounds on the regret of any online algorithm in this model. We first
show that when K is a polyhedron, such as a L1 ball, even a stronger form of hint cannot guarantee a
regret of o(

√
T ). Next, we prove a lower bound of Ω(log(T )) regret when K is strongly convex.

1.1 Comparison with Other Notions of Hints

The notion of hint that we introduce in this work generalizes some of the notions of predictabil-
ity on online learning. Hazan and Megiddo [13] considered as an example a setting where
the player knows the first coordinate of the loss vector at all rounds, and showed that when
|ct1| ≥ α and when the set of feasible actions is the Euclidean ball, one can achieve a regret
of O(1/α · log(T )). Our work directly improves over this result, as in our setting a hint vt = ±e1
also achieves O(1/α · log(T )) regret, but we can deal with hints in different directions at differ-
ent rounds and we allow for general uniformly convex action sets. Rakhlin and Sridharan [20]
considered online learning with predictable sequences, with a notion of predictability that is con-
cerned with the gradient of the convex loss functions. They show that if the player receives a

hint Mt at round t, then the regret of the algorithm is at most O(
√∑T

t=1 ‖∇ft(xt)−Mt‖2∗).
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ĉ(z)
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Figure 1: Comparison
between notions of hint.

In the case of linear loss functions, this implies that having an estimate vector
c′t of the loss vector within distance σ of the true loss vector ct results in
an improved regret bound of O(σ

√
T ). In contrast, we consider a notion of

hint that pertains to the direction of the loss vector rather than its location.
Our work shows that merely knowing whether the loss vector positively or
negatively correlates with another vector is sufficient to achieve improved
regret bound, when the set is uniformly convex. That is, rather than having
access to an approximate value of ct, we only need to have access to a
halfspace that classifies ct correctly with a margin. This notion of hint is
weaker that the notion of hint in the work of Rakhlin and Sridharan [20]
when the approximation error satisfies ‖ct − c′t‖2 ≤ σ · ‖ct‖2 for σ ∈ [0, 1). In this case one can
use c′t/ ‖c′t‖2 as the direction of the hint in our setting and achieve a regret of O( 1

1−σ log T ) when
the set is strongly convex. This shows that when the set of feasible actions is strongly convex, a
directional hint can improve the regret bound beyond what has been known to be achievable by an
approximation hint. However, we note that our results require the hints to be always valid, whereas
the algorithm of Rakhlin and Sridharan [19] can adapt to the quality of the hints.

We discuss these works and other related works, such as [15], in more details in Appendix A.

2 Preliminaries

We begin with a more formal definition of online linear optimization (without hints). LetA denote the
player’s algorithm for choosing its actions. On round t the player uses A and all of the information
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it has observed so far to choose an action xt in a convex compact set K ⊆ Rd. Subsequently, the
adversary chooses a loss vector ct in a compact set C ⊆ Rd. The player and the adversary reveal their
actions and the player incurs the loss cTtxt. The player’s regret is defined as

R(A, c1:T ) =

T∑
t=1

cTtxt −min
x∈K

T∑
t=1

cTtx.

In online linear optimization with hints, the player observes vt ∈ Rd with ‖vt‖2 = 1, before choosing
xt, with the guarantee that vT

t ct ≥ α‖ct‖2, for some α > 0.

We use uniform convexity to characterize the degree of convexity of the player’s action set K.
Informally, uniform convexity requires that the convex combination of any two points x and y on the
boundary of K be sufficiently far from the boundary. A formal definition is given below.
Definition 2.1 (Pisier [18]). Let K be a convex set that is symmetric around the origin. K and the
Banach space defined by K are said to be uniformly convex if for any 0 < ε < 2 there exists a
δ > 0 such that for any pair of points x, y ∈ K with ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε, we have∥∥x+y

2

∥∥
K ≤ 1− δ. The modulus of uniform-convexity δK(ε) is the best possible δ for that ε, i.e.,

δK(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥
K

: ‖x‖K ≤ 1, ‖y‖K ≤ 1, ‖x− y‖K ≥ ε
}
.

For brevity, we say that K is (C, q)-uniformly convex when δK(ε) = Cεq and we omit C when it is
clear from the context.

Examples of uniformly convex sets include Lp balls for any 1 < p <∞ with modulus of convexity
δLp

(ε) = Cpε
p for p ≥ 2 and a constant Cp and δLp

(ε) = (p − 1)ε2 for 1 < p ≤ 2. On the other
hand, L1 and L∞ units balls are not uniformly convex. When δK(ε) ∈ Θ(ε2), we say that K is
strongly convex.

Another notion of convexity we use in this work is called exp-concavity. A function f : K → R is
exp-concave with parameter β > 0, if exp(−βf(x)) is a concave function of x ∈ K. This is a weaker
requirement than strong convexity when the gradient of f is uniformly bounded [14]. The next
proposition shows that we can obtain regret bounds of order Θ(log(T )) in online convex optimization
when the loss functions are exp-concave with parameter β.
Proposition 2.2 ([14]). Consider online convex optimization on a sequence of loss functions
f1, . . . , fT over a feasible set K ⊆ Rd, such that all t, ft : K → R is exp-concave with pa-
rameter β > 0. There is an algorithm, with runtime polynomial in d, which we call AEXP, with a
regret that is at most dβ (1 + log(T + 1)).

Throughout this work, we draw intuition from basic orthogonal geometry. Given any vector x and a
hint v, we define x v = (xTv)v and x

T

v = x−(xTv)v, as the parallel and the orthogonal components
of x with respect to v. When the hint v is clear from the context we simply use x and x

T

to denote
these vectors.

Naturally, our regret bounds involve a number of geometric parameters. Since the set of actions of the
adversary C is compact, we can find G ≥ 0 such that ‖c‖2 ≤ G for all c ∈ C. When K is uniformly
convex, we denote K = {w ∈ Rd | ‖w‖K ≤ 1}. In this case, since all norms are equivalent in finite
dimension, there exist R > 0 and r > 0 such that Br ⊆ K ⊆ BR, where Br (resp. BR) denote the
L2 unit ball centered at 0 with radius r (resp. R). This implies that 1

R ‖·‖2 ≤ ‖·‖K ≤ 1
r ‖·‖2.

3 Improved Regret Bounds for Strongly Convex K
At first sight, it is not immediately clear how one should use the hint. Since vt is guaranteed to satisfy
cTtvt ≥ α‖ct‖2, moving the action x in the direction −vt always decreases the loss. One could hope
to get the most benefit out of the hint by choosing xt to be the extremal point in K in the direction
−vt. However, this naïve strategy could lead to a linear regret in the worst case. For example, say
that ct = (1, 12 ) and vt = (0, 1) for all t and let K be the Euclidean unit ball. Choosing xt = −vt
would incur a loss of −T2 , while the best fixed action in hindsight, the point (−2√

5
, −1√

5
), would incur a

loss of −
√
5

2 T . The player’s regret would therefore be
√
5−1
2 T .
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Intuitively, the flaw of this naïve strategy is that the hint does not give the player any information
about the (d − 1)-dimensional subspace orthogonal to vt. Our solution is to use standard online
learning machinery to learn how to act in this orthogonal subspace. Specifically, on round t, we use
vt to define the following virtual loss function:

ĉt(x) = min
w∈K

cTtw s.t. w

T

vt = x

T

vt .
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Figure 2: Virtual function ĉ(·).

In words, we consider the 1-dimensional subspace spanned by vt
and its (d− 1)-dimensional orthogonal subspace separately. For any
action x ∈ K, we find another point, w ∈ K, that equals x in the
(d − 1)-dimensional orthogonal subspace, but otherwise incurs the
optimal loss. The value of the virtual loss ĉt(x) is defined to be the
value of the original loss function ct at w. The virtual loss simulates
the process of moving x as far as possible in the direction−vt without
changing its value in any other direction (see Figure 2). This can be
more formally seen by the following equation.

arg min
w∈K:w

T

=x̂

Tc
T

tw = arg min
w∈K:w

T

=x̂

T

(
(c

T

t )Tx̂

T

+ (ct )Tw
)

= arg min
w∈K:w

T

=x̂

Tv
T

tw, (1)

where the last transition holds by the fact that ct =
∥∥ct ∥∥2 vt since the hint is valid.
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Figure 3: Uniform-convexity of the
feasible set affects the convexity the
virtual loss function.

This provides an intuitive understanding of a measure of convexity
of our virtual loss functions. WhenK is uniformly convex then the
function ĉt(·) demonstrates convexity in the subspace orthogonal
to vt. To see that, note that for any x and y that lie in the space
orthogonal to vt, their mid point x+y2 transforms to a point that
is farther away in the direction of −vt than the midpoint of the
transformations of x and y. As shown in Figure 3, the modulus
of uniform convexity of K affects the degree of convexity of
ĉt(·). We note, however, that ĉt(·) is not strongly convex in
all directions. In fact, ĉt(·) is constant in the direction of vt.
Nevertheless, the properties shown here allude to the fact that
ĉt(·) demonstrates some notion of convexity. As we show in the
next lemma, this notion is indeed exp-concavity:
Lemma 3.1. If K is (C, 2)-uniformly convex, then ĉt(·) is 8α·C·rG·R2 -exp-concave.

Proof. Let γ = 8α·C·rG·R2 . Without loss of generality, we assume that ct 6= 0, otherwise ĉt(·) = 0 is a
constant function and the proof follows immediately. Based on the above discussion, it is not hard to
see that ĉt(·) is continuous (we prove this in more detail in the Appendix D.1. So, to prove that ĉt(·)
is exp-concave, it is sufficient to show that

exp

(
−γ · ĉt

(
x+ y

2

))
≥ 1

2
exp (−γ · ĉt(x)) +

1

2
exp (−γ · ĉt(y)) ∀(x, y) ∈ K.

Consider (x, y) ∈ K and choose corresponding (x̂, ŷ) ∈ K such that ĉt(x) = cTt x̂ and ĉt(y) = cTt ŷ.
Without loss of generality, we have ‖x̂‖K = ‖ŷ‖K = 1, as we can always choose corresponding x̂, ŷ
that are extreme points of K. Since exp(−γĉt(·)) is decreasing in ĉt(·), we have

exp

(
−γ · ĉt

(
x+ y

2

))
= max

‖w‖K≤1
w

T

vt=( x+y
2 )

T

vt

exp(−γ · cTtw). (2)

Note that w = x̂+ŷ
2 − δK(‖x̂− ŷ‖K) vt

‖vt‖K
satisfies ‖w‖K ≤ 1, since ‖w‖K ≤

∥∥∥ x̂+ŷ2 ∥∥∥K +

δK(‖x̂− ŷ‖K) ≤ 1 (see also Figure 3). Moreover, w

T

vt = (x+y2 )

T

vt . So, by using this w in
Equation (2), we have

exp

(
−γ · ĉt

(
x+ y

2

))
≥ exp

(
−γ

2
· (cTt x̂+ cTt ŷ) + γ · c

T
tvt
‖vt‖K

· δK(‖x̂− ŷ‖K)

)
. (3)
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On the other hand, since ‖vt‖K ≤ 1
r‖vt‖2 = 1

r and ‖x̂− ŷ‖K ≥ 1
R‖x̂− ŷ‖2, we have

exp

(
γ · c

T
tvt
‖vt‖K

· δK(‖x̂− ŷ‖K)

)
≥ exp

(
γ · r · α · ‖ct‖2 · C ·

1

R2
· ‖x̂− ŷ‖22

)
≥ exp

(
γ · α · C · r

R2
· ‖ct‖2 ·

(
cTt x̂

‖ct‖2
− cTt ŷ

‖ct‖2

)2
)

≥ exp

(
(γ/2)2 · (cTt x̂− cTt ŷ)2

2

)
≥ 1

2
· exp

(γ
2
· (cTt x̂− cTt ŷ)

)
+

1

2
· exp

(γ
2
· (cTt ŷ − cTt x̂)

)
,

where the penultimate inequality follows by the definition of γ and the last inequality is a consequence
of the inequality exp(z2/2) ≥ 1

2 exp(z) + 1
2 exp(−z),∀z ∈ R. Plugging the last inequality into (3)

yields

exp

(
−γĉt(

x+y

2
)

)
≥ 1

2
exp

(
−γ

2
(cTt x̂+ cTt ŷ)

)
·
{

exp
(γ

2
(cTt x̂− cTt ŷ)

)
+ exp

(γ
2

(cTt ŷ − cTt x̂)
)}

=
1

2
exp (−γ · cTt ŷ) +

1

2
exp (−γ · cTt x̂)

=
1

2
exp (−γ · ĉt(y)) +

1

2
exp (−γ · ĉt(x)) ,

which concludes the proof.

Now, we use the sequence of virtual loss functions to reduce our problem to a standard online convex
optimization problem (without hints). Namely, the player applies AEXP (from Proposition 2.2),
which is an online convex optimization algorithm known to have O(log(T )) regret with respect to
exp-concave functions, to the sequence of virtual loss functions. Then our algorithm takes the action
x̂t ∈ K that is prescribed by AEXP and moves it as far as possible in the direction of −vt. This
process is formalized in Algorithm 1.

Algorithm 1 Ahint FOR STRONGLY CONVEX K
For t = 1, . . . , T ,

1. Use Algorithm AEXP with the history ĉτ (·) for τ < t, and let x̂t be the chosen action.

2. Let xt = arg minw∈K(vT
tw) s.t. w

T

vt = x̂

T

vt
t . Play xt and receive ct as feedback.

Next, we show that the regret of algorithmAEXP on the sequence of virtual loss functions is an upper
bound on the regret of Algorithm 1.
Lemma 3.2. For any sequence of loss functions c1, . . . , cT , let R(Ahint, c1:T ) be the regret of
algorithm Ahint on the sequence c1, . . . , cT , and R(AEXP, ĉ1:T ) be the regret of algorithm AEXP

on the sequence of virtual loss functions ĉ1, . . . , ĉT . Then, R(Ahint, c1:T ) ≤ R(AEXP, ĉ1:T ).

Proof. Equation (1) provides an equivalent definition xt = arg minw∈K(cTtw) s.t. w

T

vt = x̂

T

vt
t .

Using this, we show that the loss of algorithm Ahint on the sequence c1:T is the same as the loss of
algorithm AEXP on the sequence ĉ1:T .

T∑
t=1

ĉt(x̂t) =

T∑
t=1

min
w∈K:w

T

=x̂

T

t

cTtw =

T∑
t=1

cTt( arg min
w∈K:w

T

=x̂

T

t

cTtw) =

T∑
t=1

cTtxt.

Next, we show that the offline optimal on the sequence ĉ1:T is more competitive that the offline
optimal on the sequence c1:T . First note that for any x and t, ĉt(x) = minw∈K:w

T

=x

TcTtw ≤ cTtx.
Therefore, minx∈K

∑T
t=1 ĉt(x) ≤ minx∈K

∑T
t=1 c

T
tx. The proof concludes by

R(Ahint, c1:T ) =

T∑
t=1

cTtxt −min
x∈K

T∑
t=1

cTtx ≤
T∑
t=1

ĉt(x̂t)−min
x∈K

T∑
t=1

ĉt(x) = R(AEXP, ĉ1:T ).
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Our main result follows from the application of Lemmas 3.1 and 3.2.
Theorem 3.3. Suppose that K ⊆ Rd is a (C, 2)-uniformly convex set that is symmetric around the
origin, and Br ⊆ K ⊆ BR for some r and R. Consider online linear optimization with hints where
the cost function at round t is ‖ct‖2 ≤ G and the hint vt is such that cTtvt ≥ α‖ct‖2, while ‖vt‖2 = 1.
Algorithm 1 in combination with AEXP has a worst-case regret of

R(Ahint, c1:T ) ≤ d ·G ·R2

8α · C · r · (1 + log(T + 1)).

Since AEXP requires the coefficient of exp-concavity to be given as an input, α needs to be known
a priori to be able to use Algorithm 1. However, we can use a standard doubling trick to relax this
requirement and derive the same asymptotic regret bound. We defer the presentation of this argument
to Appendix B.

4 Improved Regret Bounds for (C, q)-Uniformly Convex K
In this section, we consider any feasible set K that is (C, q)-uniformly convex for q ≥ 2. Our results
differ from the previous section in two aspects. First, our algorithm can be used with (C, q)-uniformly
convex feasible sets for any q ≥ 2 compared to the results of the previous section that only hold for
strongly convex sets (q = 2). On the other hand, the approach in this section requires the hints to be
restricted to a finite set of vectors V . We show that when K is (C, q)-uniformly convex for q > 2,
our regret is O(T

2−q
1−q ). If q ∈ (2, 3), this is an improvement over the worst case regret of O(

√
T )

guaranteed in the absence of hints.

We first consider the scenario where the hint is always pointing in the same direction, i.e. vt = v for
some v and all t ∈ [T ]. In this case, we show how one can use a simple algorithm that picks the best
performing action so far (a.k.a the Follow-The-Leader algorithm) to obtain improved regret bounds.
We then consider the case where the hint belongs to a finite set V . In this case, we instantiate one
copy of the Follow-The-Leader algorithm for each v ∈ V and combine their outcomes in order to
obtain improved regret bounds that depend on the cardinality of V , which we denote by |V|.
Lemma 4.1. Suppose that vt = v for all t = 1, · · · , T and that K is (C, q)-uniformly convex that is
symmetric around the origin, and Br ⊆ K ⊆ BR for some r and R. Consider the algorithm, called
Follow-The-Leader (FTL), that at every round t, plays xt ∈ arg minx∈K

∑
τ<t c

T
τx. If

∑t
τ=1 c

T
τv ≥ 0

for all t = 1, · · · , T , then the regret is bounded as follows,

R(AFTL, c1:T ) ≤
(‖v‖K ·Rq

2C

)1/(q−1)
·
T∑
t=1

(
‖ct‖q2∑t
τ=1 c

T
τv

)1/(q−1)

.

Furthermore, when v is a valid hint with margin α, i.e., cTtv ≥ α · ‖ct‖2 for all t = 1, · · · , T , the
right-hand side can be further simplified to obtain the regret bound:

R(AFTL, c1:T ) ≤ 1

2γ
·G · (ln(T ) + 1) if q = 2

and
R(AFTL, c1:T ) ≤ 1

(2γ)1/(q−1)
·G · q − 1

q − 2
· T q−2

q−1 if q > 2,

where γ = C·α
‖v‖K·Rq .

Proof. We use a well-known inequality, known as FT(R)L Lemma (see e.g., [12, 17]), on the regret
incurred by the FTL algorithm:

R(AFTL, c1:T ) ≤
T∑
t=1

cTt(xt − xt+1).

Without loss of generality, we can assume that ‖xt‖K = ‖xt+1‖K = 1 since the maximum of a linear
function is attained at a boundary point. Since K is (C, q)-uniformly convex, we have∥∥∥∥xt + xt+1

2

∥∥∥∥
K
≤ 1− δK(‖xt − xt+1‖K).
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This implies that ∥∥∥∥xt + xt+1

2
− δK(‖xt − xt+1‖K)

v

‖v‖K

∥∥∥∥
K
≤ 1.

Moreover, xt+1 ∈ arg minx∈K x
T
∑t
τ=1 cτ . So, we have(

t∑
τ=1

cτ

)T(
xt + xt+1

2
− δK(‖xt − xt+1‖K)

v

‖v‖K

)
≥ inf
x∈K

xT

t∑
τ=1

cτ = xT

t+1

t∑
τ=1

cτ .

Rearranging this last inequality and using the fact that
∑t
τ=1 v

Tcτ ≥ 0, we obtain:(
t∑

τ=1

cτ

)T(
xt − xt+1

2

)
≥ δK(‖xt − xt+1‖K) ·

∑t
τ=1 v

Tcτ
‖v‖K

≥ C · ‖xt − xt+1‖q2
‖v‖K ·Rq

·
(

t∑
τ=1

vTcτ

)
.

By definition of FTL, we have xt ∈ arg minx∈K x
T
∑t−1
τ=1 cτ , which implies:(

t−1∑
τ=1

cτ

)T

xt+1 − xt
2

≥ 0.

Summing up the last two inequalities and setting γ = C·α
‖v‖K·Rq , we derive:

cTt

(
xt − xt+1

2

)
≥ γ

α
·
(

t∑
τ=1

vTcτ

)
· ‖xt − xt+1‖q2 ≥

γ

α
·
(

t∑
τ=1

vTcτ

)
· (cTt(xt − xt+1))q

‖ct‖q2
.

Rearranging this last inequality and using the fact that
∑t
τ=1 v

Tcτ ≥ 0, we obtain:

|cTt(xt − xt+1)| ≤ 1

(2γ/α)1/(q−1)
·
(

‖ct‖q2∑t
τ=1 v

Tcτ

)1/(q−1)

. (4)

Summing (4) over all t completes the proof of the first claim. The regret bounds for when vTct ≥
α · ‖ct‖2 for all t = 1, · · · , T follow from the first regret bound. We defer this part of the proof to
Appendix D.2.

Note that the regret bounds become O(T ) when q → ∞. This is expected because Lq balls are
q-uniformly convex for q ≥ 2 and converge to L∞ balls as q → ∞ and it is well-known that
Follow-The-Leader yields Θ(T ) regret in online linear optimization when K is a L∞ ball.

Using the above lemma, we introduce an algorithm for online linear optimization with hints that
belong to a set V . In this algorithm, we instantiate one copy of the FTL algorithm for each possible
direction of the hint. On round t, we invoke the copy of the algorithm that corresponds to the direction
of the hint vt, using the history of the game for rounds with hints in that direction. We show that the
overall regret of this algorithm is no larger than the sum of the regrets of the individual copies.

Algorithm 2 Aset: SET-OF-HINTS

For all v ∈ V , let Tv = ∅.
For t = 1, . . . , T ,

1. Play xt ∈ arg minx∈K
∑
τ∈Tvt

cTτx and receive ct as feedback.

2. Update Tvt ← Tvt ∪ {t}.

Theorem 4.2. Suppose that K ⊆ Rd is a (C, q)-uniformly convex set that is symmetric around the
origin, and Br ⊆ K ⊆ BR for some r and R. Consider online linear optimization with hints where
the cost function at round t is ‖ct‖2 ≤ G and the hint vt comes from a finite set V and is such that
cTtvt ≥ α‖ct‖2, while ‖vt‖2 = 1. Algorithm 2 has a worst-case regret of

R(Aset, c1:T ) ≤ |V| · R2

2C · α · r ·G · (ln(T ) + 1), if q = 2,

and

R(Aset, c1:T ) ≤ |V| ·
(

Rq

2C · α · r

)1/(q−1)
·G · q − 1

q − 2
· T q−2

q−1 if q > 2.
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Proof. We decompose the regret as follows:

R(Aset, c1:T ) =

T∑
t=1

cTtxt − inf
x∈K

T∑
t=1

cTtx ≤
∑
v∈V

{∑
t∈Tv

cTtxt − inf
x∈K

∑
t∈Tv

cTtx

}
≤ |V| ·max

v∈V
R(AFTL, cTv

).

The proof follows by applying Lemma 4.1 and by using ‖vt‖K ≤ (1/r) · ‖vt‖2 = 1/r.

Note thatAset does not require α or V to be known a priori, as it can compile the set of hint directions
as it sees new ones. Moreover, if the hints are not limited to finite set V a priori, then the algorithm
can first discretize the L2 unit ball with an α/2-net and approximate any given hint with one of the
hints in the discretized set. Using this discretization technique, Theorem 4.2 can be extended to the
setting where the hints are not constrained to a finite set while having a regret that is linear in the size
of the α/2-net (exponential in the dimension d.) Extensions of Theorem 4.2 are discussed in more
details in the Appendix C.

5 Lower Bounds

The regret bounds derived in Sections 3 and 4 suggest that the curvature of K can make up for the
lack of curvature of the loss function to get rates faster than O(

√
T ) in online convex optimization,

provided we receive additional information about the next move of the adversary in the form of a
hint. In this section, we show that the curvature of the player’s decision set K is necessary to get rates
better than O(

√
T ), even in the presence of a hint.

As an example, consider the unit cube, i.e. K = {x | ‖x‖∞ ≤ 1}. Note that this set is not uniformly
convex. Since, the ith coordinate of points in such a set, namely xi, has no effect on the range of
acceptable values for the other coordinates, revealing one coordinate does not give us any information
about the other coordinates xj for j 6= i. For example, suppose that ct has each of its first two
coordinates set to +1 or −1 with equal probability and all other coordinates set to 1. In this case,
even after observing the last d− 2 coordinates of the loss vector, the problem is reduced to a standard
online linear optimization problem in the 2-dimensional unit cube. This choice of ct is known to
incur a regret of Ω(

√
T ) [1]. Therefore, online linear optimization with the set K = {x | ‖x‖∞ ≤ 1},

even in the presence of hints, has a worst-case regret of Ω(
√
T ). As it turns out, this result holds for

any polyhedral set of actions. We prove this by means of a reduction to the lower bounds established
in [8] that apply to the online convex optimization framework (without hint). We defer the proof to
the Appendix D.4.
Theorem 5.1. If the set of feasible actions is a polyhedron then, depending on the set C, either there
exists a trivial algorithm that achieves zero regret or every online algorithm has worst-case regret
Ω(
√
T ). This is true even if the adversary is restricted to pick a fixed hint vt = v for all t = 1, · · · , T .

At first sight, this result may come as a surprise. After all, since any Lp ball with 1 < p ≤ 2 is
strongly convex, one can hope to use a L1+ν unit ball K′ to approximate K when K is a L1 ball
(which is a polyhedron) and apply the results of Section 3 to achieve better regret bounds. The
problem with this approach is that the constant in the modulus of convexity of K′ deteriorates when
p→ 1 since δLp

(ε) = (p− 1) · ε2, see [3]. As a result, the regret bound established in Theorem 3.3
becomes O( 1

p−1 · log T ). Since the best approximation of a L1 unit ball using a Lp ball is of the

form {x ∈ Rd | d1− 1
p ‖x‖p ≤ 1}, the distance between the offline benchmark in the definition

of regret when using K′ instead of K can be as large as (1 − d 1
p−1) · T , which translates into an

additive term of order (1− d 1
p−1) · T in the regret bound when using K′ as a proxy for K. Due to

the inverse dependence of the regret bound obtained in Theorem 3.3 on p− 1, the optimal choice of
p = 1 + Õ( 1√

T
) leads to a regret of order Õ(

√
T ).

Finally, we conclude with a result that suggests that O(log(T )) is, in fact, the optimal achievable
regret when K is strongly convex in online linear optimization with a hint. We defer the proof to the
Appendix D.4.

8



Theorem 5.2. If K is a L2 ball then, depending on the set C, either there exists a trivial algorithm
that achieves zero regret or every online algorithm has worst-case regret Ω(log(T )). This is true
even if the adversary is restricted to pick a fixed hint vt = v for all t = 1, · · · , T .

6 Directions for Future Research

We conjecture that the dependence of our regret bounds with respect to T is suboptimal when K is
(C, q)-uniformly convex for q > 2. We expect the optimal rate to converge to

√
T when q →∞ as

Lq balls converge to L∞ balls and it is well known that the minimax regret scales as
√
T in online

linear optimization without hints when the decision set is a L∞ ball. However, this calls for the
development of an algorithm that is not based on a reduction to the Follow-The-Leader algorithm, as
discussed after Lemma 4.1.

We also conjecture that it is possible to relax the assumption that there are finitely many hints when
K is (C, q)-uniformly convex with q > 2 without incurring an exponential dependence of the regret
bounds (and the runtime) on the dimension d, see Appendix C. Again, this calls for the development
of an algorithm that is not based on a reduction to the Follow-The-Leader algorithm.

A solution that would alleviate the two aforementioned shortcomings would likely be derived through
a reduction to online convex optimization with convex functions that are (C, q)-uniformly convex,
for q ≥ 2, in all but one direction and constant in the other, in a similar fashion as done in Section
3 when q = 2. There has been progress in this direction in the literature, but, to the best of our
knowledge, no conclusive result yet. For instance, Vovk [23] studies a related problem but restricts
the study to the squared loss function. It is not clear if the setting studied in this paper can be reduced
to the setting of square loss function. Another example is given by [21], where the authors consider
online convex optimization with general (C, q)-uniformly convex functions in Banach spaces (with
no hint) achieving a regret of order O(T (q−2)/(q−1)). Note that this rate matches the one derived in
Theorem 4.2. However, as noted above, our setting cannot be reduced to theirs because our virtual
loss functions are not uniformly convex in every direction.
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