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a b s t r a c t 

This paper addresses the optimization problem of managing the research effort s of a set of sensors in 

order to minimize the probability of non-detection of a target. A novel formulation of the problem taking 

into account the traveling costs between the searched areas is proposed; it is more realistic and extends 

some previous problems addressed in the literature. A greedy heuristic algorithm is devised, it builds 

a solution gradually, using a linear approximation of the objective function refined at each step. The 

heuristic algorithm is complemented by a lower bound based on a piecewise linear approximation of the 

objective function with a parametric error, and extended to the case where the target is moving. Finally, 

a set of numerical experiments is performed to analyze and evaluate the proposed contributions. 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Search theory is a branch of the operations research field, and is 

evoted to the problem of optimally searching for a missing object 

r person. It is an important scientific research field that was first 

ddressed during World War II ( Koopman, 1980 ) for submarines 

earch and is still relevant today for search and rescue missions 

 Otto, Agatz, Campbell, Golden, & Pesch, 2018 ). In such missions, 

n object is missing in a restricted area and multiple agents are 

ent to locate it with a given limited search capacity. Usually, in 

he literature of search theory, a distribution of the probabilities 

or the object to be in various locations is given. The objective is 

ften an exponential function representing the probability of non- 

etection Benkoski, Monticino, and Weisinger (1991) . 

One of the problems addressed in this paper is to obtain an op- 

imal distribution of the total search budget (time, energy, etc.) in 

rder to minimize the probability of not detecting a static target. 

he problem is similar to the one addressed in Le Thi, Nguyen, and 

inh (2014) and Simonin, Le Cadre, and Dambreville (2009) where 

he searched area is partitioned into cells. The search resource of 

 set of sensors, typically time, is optimally distributed between 

he cells. The resulting objective function is computed by summing 
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he probabilities of non-detection in the cells. These probabilities 

epend on the conditional non-detection probabilities, computed 

sing the search effort s and the visibilities of the cells ( i.e. , cell-

pecific coefficients representing how relatively efficient the search 

ffort is in the cells). In Le Thi et al. (2014) ; Simonin et al. (2009) ,

he authors are dividing the searched area into zones, which are 

isjoint sets of cells. Each sensor is allocated to exactly one zone 

nd thus can only search inside the cells of this zone. This results 

n a hierarchical problem with two levels: find the best allotment 

f sensors to zones, then find the best resources sharing over the 

llotted zones. Such a model allows a sensor to freely navigate in- 

ide its zone, without restraining, nor penalizing, its movements. In 

his paper, we address a more realistic and more general aspect of 

he problem with resources distribution where the sensors move- 

ents are penalized. Another questionable consequence of the def- 

nition of zones in Le Thi et al. (2014) ; Simonin et al. (2009) is

hat it is impossible for a sensor to move between two cells that 

re close neighbors without any physical frontier, if they are not in 

he same zone. 

In the problem addressed in this paper, no zones are consid- 

red. In addition, the sensors now consume resources to move 

rom a searched cell to another one. Feasible solutions then corre- 

pond to an allocation of the total effort available between search 

ctivities in the cells and movements needed to travel between 

hem. 

The proposed formulation of the static target problem is then 

xtended to the moving target case. In this problem, the activities 
g a multi-sensors search for a moving target considering traveling 
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f the sensors are still the same ( i.e. , searching cells and traveling

etween them). However, the target can move over a given time 

orizon and thus its probability to be in a particular cell is evolv- 

ng over time. In this problem, the movements of the targets are 

iscretized over the time horizon into time periods. During each 

ime period, the probability of presence of the target in a cell is 

onstant, i.e. , we consider that the target is not moving from a 

ell within a period but only between two consecutive periods. For 

ach period, each sensor has a resource budget to search the target 

nd move. The continuous nature of the sensors activities and the 

iscretization make the problem challenging. Our formulation is a 

eneralization of the previous works with zones as in Le Thi et al. 

2014) , Le Thi, Nguyen, and Dinh (2015) , Simonin et al. (2009) with

tatic or moving targets. 

The contributions of this paper are as follows. First, we intro- 

uce a formulation of a new problem, generalizing the static and 

oving target multi-sensor multi-zone problems to a multi-sensor 

roblem with moving costs. Second, we propose an algorithm to 

olve the problem that, contrary to previous works in the literature 

 e.g. , Brown, 1980; Le Thi et al., 2015; Simonin et al., 2009 ), does

ot rely on a forward-backward method. The solution method uses 

n approximation of the objective function to compute an utility 

or each decision variable and constructs a solution step by step. 

he efficiency of this algorithm is tested and compared to a lower 

ound also proposed in this work. 

This paper is organized as follows. In the very next section, 

e present the literature and related works in more details. Next, 

n Section 3 we present the formal definition of our problem. 

n Section 4 we introduce the linear approximation used in our 

lgorithm, then we present the algorithm itself in Section 6 . In 

ection 7 , we report numerical experiments to assess the efficiency 

f the proposed method. Finally, in the last section, we conclude 

he paper and draw some perspectives. 

. Related work 

The first work on search theory dates back to 1946, see 

oopman (1980) as an extended version published in 1980. Since 

hen, the subject of search theory has drawn a lot of attention from 

he scientific community as reported by the many surveys pub- 

ished every decades ( e.g. , Benkoski et al., 1991; Dobbie, 1968; Gal, 

010; Hohzaki, 2016 ). In this section, we give a quick overview of 

he literature on target search followed by more recent works on 

earch games. Finally, we highlight previous works on resources al- 

ocation for target search, for both static and moving targets. 

Unmanned Aerial Vehicles (UAVs) are becoming more and more 

ccessible for applications like target search. Many such applica- 

ions aim at dynamically coordinate a swarm of UAVs to search 

or one or more targets, possibly followed by a task assignment 

 Curtis & Murphey, 2003 ) ( e.g. , destroy the targets as in George,

ujit, & Sousa, 2011 ). In contrast to our problem, there is no plan-

ing ahead of the search activities nor resources allocation. The 

aths followed by the UAVs are dynamically computed and de- 

ection probabilities are directly related to the positions of the 

argets. For example, in Lanillos, Gan, Besada-Portas, Pajares, and 

ukkarieh (2014) , the objective is to minimize time when real-time 

ynamic decisions are made. These decisions are actions (turn, ac- 

elerate, etc) that generate the trajectories followed by the UAVs. 

he likelihood of a target detection by a UAV is represented by a 

egative exponential of the distance between the sensor and the 

rior on the target positions. The priors are assumed known be- 

ore the mission. In search theory, a prior is a probability of pres- 

nce of the target on a position. They can be obtained from previ- 

us searches, operational considerations, estimations deduced from 

ast position, etc. We will see also (see Section 3.1 ) how it can

e relaxed. In Lanillos et al. (2014) , the authors have proposed a 
2 
ovel approach, based on a heuristic future expected reward to re- 

uce the short-sighted aspect of the decision making. The coordi- 

ation of UAVs for target search has also been based on biologi- 

ally inspired metaheuristics that mimic swarm or flock behaviors, 

s shown in Senanayake et al. (2016) . For example, Alfeo, Cimino, 

nd Vaglini (2019) shows a logic emulating biological behavior ex- 

cuted by every UAV. The UAVs are releasing pheromones to loca- 

ions characterized by some interesting evidences Kuyucu, Tanev, 

nd Shimohara (2015) . The movements of the UAVs are impacted 

y the pheromones near them and their UAV neighbors, similarly 

o a flock. This strategy provides first a quick survey of the area 

ollowed by a better exploration of the interesting areas. 

Search games Hohzaki (2016) are applications of game the- 

ry Von Neumann, Morgenstern, and Kuhn (2007) to search the- 

ry. In this setting, the target does not want to be found by 

he searchers and will react accordingly. Thus, it is hiding while 

he searchers are looking for it. Search games on networks and 

wo dimensional region are presented in Gal (1979) . As shown 

n this work, the hider ( i.e. , the target) can be either immobile, 

r mobile. When immobile, the hider selects an arbitrary loca- 

ion (a node in the network) and hides there. The objective of 

he searcher is often to arrive quickly in the same location, or 

ode, than the hider. Many works have been done on the sub- 

ect and it still interests the scientific community. For example, 

arrec and Scarsini (2020) recently proposed the immobile hider 

earch game with a stochastic network. i.e. , at any given time, each 

dge of the graph can be inactive or active, depending on a known 

robability law. The authors study the values and strategies avail- 

ble for specific networks, using the knowledge on the determin- 

stic game. Another recent work, ( Alpern, 2019 ), treats the prob- 

em with an immobile hider, located in a known subset of the 

etwork. 

The problem of the optimum distribution of a search effort 

o detect a static target originates from Koopman (1980) . It has 

een addressed a few years ago in Le Thi et al. (2014) ; Simonin

t al. (2009) , with multi-zone considerations. In this problem, the 

earched area is divided into a set of disjoint zones, themselves 

ivided in disjoint cells. The search problem is hierarchical. At an 

pper level, a best allotment of sensors to zones is sought. Each 

ensor is allocated to a unique zone, and afterwards is only able 

o search for the target inside its zone. Note that multiple sensors 

ight be allocated to the same zone, and the authors in Simonin 

t al. (2009) consider that an (1:1) injective allotment is easier to 

olve. At the lower level of the hierarchical problem, the authors 

re searching for the optimal resources distribution for every sen- 

or. Other characteristics of the problem (the objective function, 

he target distribution, etc.) are similar to the ones used in our 

ork (see Section 3 ). In Simonin et al. (2009) , the authors pro-

osed a hierarchical algorithm. The lower level is solved using an 

terative method. At each iteration, based on De Guenin (1961) , 

hey optimize the resource allocation for one sensor, while the oth- 

rs have their allocation fixed. It iterates until it converges. The up- 

er level is solved using a cross-entropy (CE) method ( Rubinstein 

 Kroese, 2013 ). At each iteration, their CE method draws particu- 

ar allotments of sensors to zones, then evaluates and selects them 

sing the lower level of their algorithm. Afterwards, their method 

pdates the drawing distribution law and starts the next iteration 

ntil convergence. Le Thi et al. (2014) came a few years later than 

imonin et al. (2009) and solves the same problem with a different 

pproach. First, they present a new mathematical formulation of 

he problem, which eventually leads to a reformulation into a DC 

Difference of Convex function) program ( Tao & An, 1997 ) using an 

xact penalty technique. Then, they solve it using a DC algorithm 

DCA) ( Tao & An, 1997 ). Numerical experiments are presented on 

 similar instance than in Simonin et al. (2009) and better results 

re obtained. 
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b

o

The optimum distribution of the search effort is much more 

omplex for a moving target. We consider here the discrete-time 

roblem, where the horizon of time is divided into periods. Brown 

1980) presents a forward-backward algorithm to solve this prob- 

em. It has become the basis of many algorithms in the literature. 

heoretically, with a single sensor, the necessary and sufficient 

onditions for an optimal search has been solved in Stone (1979) . 

t has latter been extended to double-layer constraints ( i.e. , a re- 

ource constraint for the whole horizon and resource constraints 

or each period) in Hohzaki and Iida (20 0 0) . This problem, with

 moving target, has also been tackled in Simonin et al. (2009) , 

hereas the authors of Le Thi et al. (2014) have extended their 

ork to this case in Le Thi et al. (2015) . In these works, the authors

re searching for an allotment of sensors to zones for each pe- 

iod. Both works are adapting their own methods to the forward- 

ackward split introduced by Brown (1980) . The idea is to do many 

asses through the horizon of time, and at each pass to compute a 

esource allocation for each period. The algorithm finds the alloca- 

ions while considering the target’s location distribution obtained 

fter all previous periods, and while considering the distribution 

xpected of the next periods, computed in the previous passes. Ev- 

ry pass updates these distributions. When the number of passes 

s large enough, the algorithm converges to solutions that are close 

o the optimal one. 

The work of Bourque (2019) addresses a similar problem, with 

 set of cells and searches for a planning of the search effort ahead

f the mission. However, the search plan produced ( i.e. , the solu- 

ion sought) is not a distribution of the resources in the cells. It 

s a planning of the position of the searchers over a discretized 

ime. That kind of problem has similar characteristics to the UAV 

earches, where the positions of the searchers are used to compute 

he probability of detection. However, there is no need to compute 

he exact path of each individual searcher since they are consid- 

red indistinguishable and only the number of searchers in a cell 

uring a time t is useful. Clearly, this assumption makes the prob- 

em easier to solve. We can consider this problem as a combina- 

ion of the optimum distribution of a search effort problem, the 

AV search problem, and the problem presented and solved in this 

aper. 

. Problem definition 

In this section, we introduce the problem definition using mul- 

iple subsections to introduce the different components. Table 1 

ummarizes all the notations that are used in this section. Then, 

e discuss the relation between the work of Le Thi et al. (2014) ,

imonin et al. (2009) and the present problem. Finally, a last sub- 

ection introduces an example of application for this problem. 

.1. The area and its discretization 

The searched area is denoted by E, it can have heterogeneous 

earch characteristics. For example, some parts of the searched 

rea have landscapes that are harder to search than others, or have 

ub-zones where the probability to find the target is null (a lake 

or instance). The area is discretized in such a way that it is divided

n a set C of disjoint cells. All the search parameters are constant 

nside a cell, i.e. , cells are homogeneous. The partition is made such 

hat: 

 = 

⋃ 

c∈ C 
c and c 1 ∩ c 2 = ∅ ∀ c 1 , c 2 ∈ C 

ach pair of cells (c, c ′ ) ∈ C 2 induces a traveling cost to join them,

enoted by t cc ′ . For simplification, the traveling costs are constant 

nd are not dependent on the order in which the cells will be vis- 

ted. 
3 
.2. The target 

A target is moving through an horizon of time [0 , H] . This hori-

on is divided into a set of n time periods T = { 1 , 2 , . . . , n } . In each

eriod t, the target is hidden in one cell and we consider that 

t does not leave the cell during the period. When changing pe- 

iod, the target can either move to any other cell or stay in the 

ame cell. To capture this, a set of trajectories, �, and their pri- 

rs ( i.e. , the probabilities that the target follows these trajectories) 

re given. A trajectory, � ω ∈ �, is a vector of n cells (one cell per

eriod) with a probability (prior) α( � ω ) that the target follows it. 

ence the following equality holds: ∑ 

�
  ∈ �

α( � ω ) = 1 

Note that this implies that the target is necessarily in the 

earched space. � ω (t) is the cell where the target is at period t

f it follows the trajectory � ω . The trajectories are not constrained, 

.e. the targets can move between far distanced cells between two 

uccessive periods. This makes the problem difficult, with a huge 

umber of possible trajectories ( | C| n ). However, it is unlikely that 

ll the trajectories are considered relevant and typical realistic in- 

tances will have targets moving to neighboring cells between two 

onsecutive periods. 

.3. The sensor search 

For the search mission, a set I of m mobile sensors is provided. 

his set is heterogeneous and the sensors may not have the same 

haracteristics. A sensor i ∈ I has for each period t a given amount 
t 
i 

of available resource, typically time. Additionally, it has also a 

isibility coefficient in each cell c, denoted by w 

i 
c . This coefficient 

epresents the efficiency (or reward) of the search effort put in the 

ell. Typically, a high visibility means that searching the cell is re- 

lly efficient and thus the probability to miss the target, if it is in 

he cell, is quickly approaching zero when increasing the search 

ffort inside it. By contrast, a low visibility sensor-cell means that 

n important effort ( e.g. , time spent) inside the cell is needed from 

his sensor to approach the same value. 

The sensor search activities are represented by ϕ 

t 
ic 
, the re- 

ources put by the sensor i in the cell c during the period t, 

nd R t 
i 

the route visiting all the cells searched by i during pe- 

iod t . For a given t and i, R t 
i 
= { c ti 

1 
, . . . , c ti 

| R t 
i 
| } represents a route

here i will move from cell c ti 
p to cell c ti 

p+1 
during the period 

, ∀ p ∈ { 1 , . . . , | R t 
i 
| − 1 } . It is also important to remember that the

oute of a sensor over the entire time horizon is continuous. Con- 

equently, a sensor must move from the last cell searched in a 

eriod, to the next cell visited in another period. This trip has a 

ost that should be spread over several periods. Thus, a sensor i 

ill also pass from c ti 
| R t 

i 
| to c 

t 2 i 

1 
, ∀ t ∈ T , t < | T | where t < t 2 ≤ | T |

nd such that there is no cell searched for all t 3 > t, t 3 < t 2 . These

ovements, between the last cell visited in a period, to the first 

ell visited in another period, are called inter-period movements. 

he remaining movements are intra-period ones. Note that in this 

roblem, some moving costs may exceed the resources available 

uring a period. Therefore, such moves may be spread on multi- 

le periods, and the sensor will then travel without sensing on all 

eriods except possibly the first and last ones. 

.4. The objective function 

A target is undetected if it has not been detected at any period 

y any sensor of the search. The aim is to minimize the probability 

f such an event. We resort to the usual conditional non-detection 
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Table 1 

Summary of the notations. 

Constants 

E Searched area 

C Set of cells 

t cc ′ Traveling cost between c and c ′ 
H Time horizon 

T = { 1 , . . . , n } Set of periods 

� Set of trajectories 

α( � ω ) Prior on the trajectory � ω 

I = { 1 , . . . , m } Set of sensors 

�t 
i 

Resources available at period t for sensor i 

w 

i 
c Coefficient that characterizes the efficiency 

of the search of sensor i inside cell c

P i c (x ) Conditional non-detection probability for sensor i in cell c

depending on the resources x allocated 

Indexes 

i Sensor index 

c Cell index 

t Period index 

d Depot 

�
 ω Trajectory index 

Decision variables 

R t 
i 

The route of sensor i during period t

c ti 
p The p-th cell visited during period t by sensor i 

ϕ t 
ic 

Resources allocated to cell c at period t by sensor i 

y ti 
cc ′ Is set to 1 if sensor i at t is traveling from c to c ′ 

h t 
ic 

Is set to 1 if sensor i at t is visiting c

g ti Is set to 1 if sensor i is visiting any cell at period t

u t 
ic 

Dummy variables used for sensor i to avoid sub-tours at t

q ti Resources used by sensor i for a travel leaving (and not entering) period t

r ti Resources used by sensor i for a travel entering period t

p

i

t  

T

P

e

a

s

o  

s

a∏

m

i

a

t∏

w

d

M

s

s

i

t

a

t

h

3

s

f

t

c

e

i

N

c

m

c

t

 

 

robability ( Koopman, 1980; Simonin et al., 2009 ), that is a non- 

ncreasing and convex function. It represents the effectiveness of 

he search at the cell level, it is denoted by P i c (ϕ 

t 
ic 
) , ∀ i ∈ I, c ∈ C, t ∈

 and is defined by: 

 

i 
c (ϕ 

t 
ic ) = e −w 

i 
c ϕ 

t 
ic 

The sensors act independently at the cell level and on differ- 

nt periods. It means that the search effort put in a cell c by 

 sensor i at period t is not affecting nor affected by any other 

earch activity. The value returned by P i c (ϕ 

t 
ic 
) is not depending 

n ϕ 

t ′ 
i ′ c ′ , ∀ i ′ ∈ I, ∀ t ′ ∈ T , ∀ c ′ ∈ C| (i, t, c) 	 = (i ′ , t ′ , c ′ ) . Since the sensor

earches are independent, the probability to detect a target inside 

 cell c at time t is equal to: 
 

i ∈ I 
P i c (ϕ 

t 
ic ) 

The search effort s along a trajectory are also independent, 

eaning that the effectiveness of a search effort during a period 

s not impacted by the effort s done on the other periods. Thus, for 

 given trajectory � ω ∈ �, the probability of non-detection of the 

arget on this trajectory is equal to: 
 

i ∈ I 

∏ 

t∈ T 
P i c (ϕ 

t 
i � ω (t) ) 

The objective function, f (X ) , X = { ϕ 

t 
ic 
} ∀ t∈ T,i ∈ I,c∈ C , is the 

eighted sum for all trajectories of their probabilities of non- 

etection. Therefore, 

inimize f (X ) = 

∑ 

�
 ω ∈ �

α( � ω ) 
∏ 

i ∈ I 

∏ 

t∈ T 
P i c (ϕ 

t 
i � ω (t) ) (1) 

It is a non-linear objective function. This objective function 

hows that using the notion of trajectory is important to produce 

olutions with a coherent search between periods. Clearly, search- 

ng the target along a trajectory in some periods makes this trajec- 

ory less interesting to be searched in the others. Indeed, the prob- 

bility that the target is following the trajectory � ω ∈ � is equal to 

he initial probability α( � ω ) times the probability that the target 

as not been detected along this trajectory. 
4 
.5. The mathematical model 

The mathematical model of the problem is presented in this 

ection. It has linear constraints only and a non-linear objective 

unction. Many decision variables are needed to fully represent 

he routes and allocations of the sensors and every possible spe- 

ial case ( e.g. , no movement, or only moving, during a period). For 

ach sensor and each period, the route R t 
i 

is represented using sim- 

lar elements as in the Traveling Salesman Problem ( Bellmore & 

emhauser, 1968 ) by adding a virtual node, the depot d, with null 

ost to travel to or from. The complexity of our problem and for- 

ulation is significant since for each sensor, its route has to be 

omputed between the set of visited cells, that which itself needs 

o be determined. 

The types of decision variables are the following: 

• ϕ 

t 
ic 

the resources allocated to cell c by sensor i at period t as 

shown before. It is a continuous nonnegative variable. 
• y ti 

cc ′ , a binary variable, equal to 1 if the sensor i travels from c

to c ′ during the time period t, 0 otherwise. 
• y ti 

cd 
(respectively y ti 

dc 
), a binary variable, equal to 1 if the cell c

is the last cell (respectively, first cell) visited by i during period 

t, 0 otherwise. 
• h t 

ic 
, a binary variable, equal to 1 if the cell c is visited by sensor

i at period t, 0 otherwise. 
• g ti , a binary variable, equal to 1 if the sensor i visits at least

one cell at period t, 0 otherwise. 
• q ti , a continuous nonnegative variable, the resource effort used 

during period t by sensor i for the travel that started in period 

t but finished in another. 
• r ti , a nonnegative continuous variable, the resource effort used 

during period t by sensor i for the travel that started in a period 

preceding t . 
• u t 

ic 
, an integer dummy variable used for the sub-tour elimina- 

tion constraints as in Miller, Tucker, and Zemlin (1960) . 

The model for the moving target problem is given in Model 1 . 
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Model 1. Mathematical formulation of the problem. 

 

 

 

 

 

 

 

Model 2. Mathematical formulation of the problem variant. 

Model 3. Linearized mathematical formulation of the problem variant. 
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More details about the constraints: 

• (1) is the objective function as introduced before. 
• (2) limit the resources available in each period for each sensor. 
• (3) are the constraints sharing the cost of a travel inter-periods 

between the concerned periods. When moving from a cell c to 

a cell c ′ starting at period t and finishing at period t ′ , the cost 

( t cc ′ ) is shared between t , t ′ and all the empty periods in be-

tween (without any cell searched). The constraint is not always 

active ( c is not the last cell visited, there are non-empty periods 

in between, etc.). Thus, an important part of these constraints 

is just used to deactivate them if the conditions are not met. 

e.g. , the right-hand side of one constraint is just equal to t cc ′ 
when active otherwise it is less or equal to 0. More precisely, 

the right side of the constraint contains the term 

y ti 
cd 

+ y t ′ i 
dc ′ 

2 which 

is equal to 1 if c is the last visited cell of period t and c ′ is

the first visited cell of period t ′ , otherwise it is lower than 1;∑ t ′′ <t ′ 
t ′′ = t+1 g t ′′ i which is equal to 0 if there is no cell searched in 

the periods between t and t ′ , i.e. , the sensor starts its move- 

ment in period t and finishes it in period t ′ , otherwise, it is 

equal to the number of periods with a search activity between 

t and t ′ , so it is greater than or equal to 1. The left-hand side is

q ti + 

∑ t ′′ ≤t ′ 
t ′′ = t+1 

r t ′′ i with q ti the part of the movement done dur- 

ing period t . 
∑ t ′′ ≤t ′ 

t ′′ = t+1 
r t ′′ i is the resources spent by the sensor 

i in the periods between t and t ′ , t ′ included. Thus, with this 

constraint, the cost of the inter-period movement is distributed 

between the period when it starts ( t with the variable q ti ), the 

period when it ends ( t ′ with the variable r t ′ i ) and all the peri-

ods between these two ( t ′′ , ∀ t ′′ such that t + 1 ≤ t ′′ < t ′ , repre-

sented with 

∑ t ′′ <t ′ 
t ′′ = t+1 r t ′′ i ). 

• (4) are fixing g ti to 1 if at least one cell is visited. 
• (5) are fixing h t 

ic 
to 1 if resources are allocated. 

• (6) & (7) state that only one cell is the last cell visited and only

one the first visited. 
5 
• (8) & (9) are the flow constraints, i.e. , if the cell is visited, the

sensor only enters and leaves it once, otherwise it does not en- 

ter nor leave it. 
• (10) are the usual sub-tour elimination constraints as intro- 

duced in Miller et al. (1960) . 
• All others constraints are domain constraints. 

The non linear objective function of this problem is not the only 

spect that makes the problem very challenging. Indeed, the large 

umbers of constraints, decision variables and the problem struc- 

ure also contribute to the problem difficulty. To check this point, 

e introduce a variant of the problem, where the objective func- 

ion is to minimize the maximum risk of not detecting the target 

ver all its possible trajectories. This variant is stated in Model 2 . 

ince its objective function can be linearized, it can be stated as 

 mixed integer linear program (see Model 3 ) whose constraints 

re the same as in the original problem. Hence, the variant and 

he original problem have the same set of feasible solutions. How- 

ver, it will be shown in Section 7 that no optimal solution to 

odel 3 can be obtained in a reasonable amount of time even for 

odest-size problem instances, which suggests that problem dif- 
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Model 4. Mathematical formulation of the relaxed problem. 
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culty does not uniquely originates from the non-linear objective 

unction. While this problem variant is also relevant, this paper fo- 

uses on the original problem version only. 

.6. Multi-zone – a special case 

In this section, we show how the problem treated in the previ- 

us works on multi-zone Le Thi et al. (2014, 2015) ; Simonin et al.

2009) can be seen as a particular case of the present problem. 

As mentioned before, the multi-zone problem has each sensor 

llocated to a zone. Once allocated, a sensor can only search the 

ells associated to this zone with free moves between these cells. 

he rest of the problem (objective function, visibilities, etc.) is sim- 

lar to the problem introduced in the paper (see Le Thi et al., 2014;

e Thi et al., 2015; Simonin et al., 2009 ). The traveling costs are im-

ortant to represent the zone allocations in our formulation. The 

osts between cells of different zones have to be infinite and thus 

rohibitive for any of these moves. Also, the movements between 

ny two cells of the same zone are allowed, thus with null costs. 

ith z(c) , ∀ c ∈ C, the function returning the zone associated to the

ell c, we obtain: 

 (c, c ′ ) ∈ C 2 , t cc ′ = 

{+ ∞ if z(c) 	 = z(c ′ ) 
0 otherwise. 

However, in the works on multi-zone, a sensor can be reallo- 

ated to a different zone when changing period. To represent this, 

e divide each sensor of the instance into n sensors. Let us call 

hem sub-sensors. Each one of these sub-sensors is assigned to 

ne period, and has a non-null amount of resources only in this 

eriod, i.e. , it is only doing its search during one period. There- 

ore, there is no traveling inter-periods, each sub-sensor is repre- 

enting the search during one period of its corresponding sensor. 

ince the costs between two cells of different zones is still infinite, 

 sub-sensor is also allocated to one zone during its period. Hence, 

he search of one sensor is represented in each period by one sub- 

ensor, which is allocated to one zone. 

These costs and divisions into sub-sensors make our problem 

 generalization of the previous works done on multi-zone ad- 

ressed in Le Thi et al. (2014, 2015) , Simonin et al. (2009) . 

. Linear approximation 

In this section, we present the linear approximation of the ob- 

ective function that will be used in the algorithm presented in 

ection 6 , and in the lower bound computation of Section 5 . The

im is to get rid of the exponential in the objective function and 

btain a linear function that will lead to an easier problem to 

olve. The closer the linear approximation is, the better the algo- 

ithm precision will be. The initial idea is to use the approxima- 

ion e x ≈ 1 + x of the exponential function. This approximates well 

hen x is close to 0, whereas it gets worst when x increases. A 

olution to this problem is to refine the approximation using given 

alues, e.g. , e x ≈ e y (1 + (x − y )) is a better approximation when the

alue of x is close to the constant y . 

We split the decision variables ϕ 

t 
ic 
, ∀ i ∈ I, ∀ c ∈ C, ∀ t ∈ T in two

erms: ϕ 

at 
ic 

and ϕ 

bt 
ic 

. The former is the resources already allocated 

o cell c by the sensor i at period t . It is a decision already made,

o it is a constant. The latter is the decision that remains to 

e made, i.e. , how much resources should be added from i to c

t t . Hence, ϕ 

t 
ic 

= ϕ 

at 
ic 

+ ϕ 

bt 
ic 

, ∀ i ∈ I, ∀ c ∈ C, ∀ t ∈ T . The new objective

unction, for a current solution with a given set of already made 

llocation 

�
 X = { ϕ 

at 
ic 

} i ∈ I,t∈ T,c∈ C , is: 

inimize 
∑ 

�
 ω ∈ �

α( � ω ) 
∏ 

i ∈ I 

∏ 

t∈ T 

(
e −w 

i 
�
 ω (t) 

ϕ at 
i � ω (t) × e −w 

i 
�
 ω (t) 

ϕ bt 
i � ω (t) 

)

6 
r: 

inimize 
∑ 

�
 ω ∈ �

α( � ω ) 

(
e 

∑ 

i ∈ I 

∑ 

t∈ T 
−w 

i 
�
 ω (t) 

ϕ at 
i � ω (t) × e 

∑ 

i ∈ I 

∑ 

t∈ T 
−w 

i 
�
 ω (t) 

ϕ bt 
i � ω (t) 

)
If we apply the approximation: 

inimize 
∑ 

�
 ω ∈ �

α( � ω ) e 

∑ 

i ∈ I 

∑ 

t∈ T 
−w 

i 
�
 ω (t) 

ϕ at 
i � ω (t) 

(1 −
∑ 

i ∈ I 

∑ 

t∈ T 
w 

i 
�
 ω (t) ϕ 

bt 
i � ω (t) ) 

hus: 

inimize K −
∑ 

�
 ω ∈ �

∑ 

i ∈ I 

∑ 

t∈ T 
α( � ω ) w 

i 
�
 ω (t) e 

∑ 

i ′ ∈ I 
∑ 

t ′ ∈ T 
−w 

i ′ 
�
 ω (t ′ ) ϕ 

at ′ 
i ′ � ω (t ′ ) 

ϕ 

bt 
i � ω (t) (AP) 

ith K a constant equal to 
∑ 

�
 ω ∈ �

α( � ω ) e 

∑ 

i ∈ I 
∑ 

t∈ T 
−w 

i 
�
 ω (t) 

ϕ at 
i � ω (t) 

. 

Undoubtedly, the greater the decision variables ϕ 

bt 
ic 

are, the fur- 

her the approximation is from the objective function. 

. Lower bound 

We now introduce a method to compute a lower bound to our 

roblem. The idea is to solve a relaxed version of the problem, us- 

ng the approximation (AP). The objective function of the relaxed 

roblem is a piece-wise linear approximation with a bounded er- 

or. It uses many times the approximation (AP), applied to differ- 

nt points � X . The complexity of the problem is highly due to the 

omputation of the routes. We propose to solve a relaxed version 

f the problem, without the routes but only a computation of a 

ower bound on the traveling costs. The idea is to consider that 

ith x cells visited during a period, there are x − 1 intra-period 

ravels between them. Each travel is at least greater than the min- 

mal distance between two cells, i.e. , t min = min 

(c,c ′ ) ∈ C 2 | c 	 = c ′ 
t cc ′ . 

The proposed relaxed problem is solved using Gurobi ( Gurobi 

ptimization, LLC (2020) ). 

.1. Relaxed problem model 

The relaxed problem has the constraints (4), (6)-(10) re- 

oved. Constraints (2) are slightly modified into new constraints 

amed (2’). The new objective function, is presented in more de- 

ails later and is referred to as g(X ) for now. This objective func- 

ion, for a given resource allocation, is always less than or equal to 

f (X ) . 

In the relaxed model, we add a new set of variables k ti , ∀ t ∈
 , ∀ i ∈ I. It represents the number of intra-period travels needed 

or sensor i to visit all the cells searched at period t . It is equal to

he number of cells visited minus one if there is at least one vis- 

ted cell, zero otherwise. i.e. , k ti = max (0 , 
∑ 

c∈ C 
h t 

ic 
− 1) , ∀ t ∈ T , ∀ i ∈ I.

n the model, the k ti are linearized by introducing constraints (17) 

nd (18). The model of the relaxed problem is the Model 4 . 

Lemma: Model 4 is a relaxation of the original problem 

 Model 1 ). 
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roof. The constraints of the relaxed problem originate from the 

nitial problem, except for (2’), (17) and (18). (17) and (18) are two 

ypes of constraints used to fix the newly introduced variables k ti 

nd do not enforce new constraints to the solution. (2’) is a modi- 

cation of (2). Thus, to prove that we have a relaxed problem, we 

eed to prove that the constraints (2) are stronger than (2’). It is 

rue if the following inequality holds: 
 

c∈ C 
ϕ 

t 
ic + k ti t min ≤

∑ 

c∈ C 
ϕ 

t 
ic + 

∑ 

c∈ C 

∑ 

c ′ ∈ C 
y ti 

cc ′ t cc ′ + q ti + r ti , ∀ i ∈ I, ∀ t ∈ T 

t min ≤ t cc ′ , ∀ c, c ′ ∈ C is straightforward. Then, we need to prove

hat: 

 ti ≤
∑ 

c∈ C 

∑ 

c ′ ∈ C 
y ti 

cc ′ , ∀ i ∈ I, ∀ t ∈ T 

Considering now that: 

 ti = max 

( 

0 , ( 
∑ 

c∈ C 
h 

t 
ic ) − 1 

) 

, ∀ i ∈ I, ∀ t ∈ T 

Hence, there are two cases for any given i ∈ I, t ∈ T . Either k ti =
 , which is obviously satisfying the inequality. Either k ti > 0 , for

hich we need to prove that: 
 

c∈ C 
h 

t 
ic − 1 ≤

∑ 

c∈ C 

∑ 

c ′ ∈ C 
y ti 

cc ′ 

Using the constraints (4) and (6), we know that, in this case, ∑ 

∈ C 
y ti 

cd 
= 1 . Thus, we have: 

 

c∈ C 
h 

t 
ic − 1 ≤

∑ 

c∈ C 

∑ 

c ′ ∈ C 
y ti 

cc ′ − 1 + 

∑ 

c∈ C 
y ti 

cd 

 

c∈ C 
h 

t 
ic − 1 ≤

∑ 

c∈ C 

∑ 

c ′ ∈ C∪{ d} 
y ti 

cc ′ − 1 

However, with constraints (8), we know that 
∑ 

c ′ ∈ C∪{ d} 
y ti 

cc ′ = h t 
ic 

. 

ence, the inequality is: 
 

c∈ C 

∑ 

c ′ ∈ C∪{ d} 
y ti 

cc ′ − 1 ≤
∑ 

c∈ C 

∑ 

c ′ ∈ C∪{ d} 
y ti 

cc ′ − 1 

nd this proves our point about (2) and (2’). �

.2. The piece-wise linear approximation with bounded error 

The objective function used in the relaxed model, g(X ) , is a 

iece-wise linear approximation. Its error is ε-bounded, where ε
s a strictly positive parameter, i.e. , the maximum gap between the 

alues of g(X ) and f (X ) is ε. The lower ε is, the closer the approx- 

mation and the closer the optimal value of the relaxed model will 

e to the actual optimal value. However, small ε is also increas- 

ng the complexity (more pieces in the piece-wise linear function). 

ence, a good trade-off between the quality and the complexity is 

equired. The piece-wise linear objective function used in the re- 

axed problem is based on the approximation (AP) (presented in 

ection 4 ) applied to different points. Note that the approximation 

unction is always lower than the actual objective function. 

Let’s consider, for each trajectory �
 ω , the function A �

 ω (x ) = 

( � ω ) e −x on the interval [0 , L �
 ω ] such that L �

 ω = 

∑ 

i ∈ I 

∑ 

t∈ T 
�t 

i 
w 

i 
�
 ω (t) 

. The

nitial objective function can be formulated as f (X ) = 

∑ 

�
 ω ∈ �

A �
 ω (x ) . 

o if we find a ε-bounded approximation of A �
 ω , ∀ 

�
 ω ∈ �, such that

t is greater than (1 − ε) A �
 ω (x ) , then we obtain an ε-bounded ap-

roximation by summing these functions. 

Let us now work on A �
 ω for any given 

�
 ω . We seek to obtain

he piece-wise linear approximation of A �
 ω , called A 

′ 
�
 ω . To obtain our 

-bounded error, we divide the interval [0 , L �
 ω ] into sub-intervals 
7 
tarting at 0, where A 

′ 
�
 ω is linear in each sub-interval. The line in 

ach sub-intervals joins two points of (1 − ε) A �
 ω and is tangent to 

 �
 ω . The last sub-interval may not consist of a tangent to A �

 ω , and

ll the sub-intervals (expect possibly the last one) are shown to 

ave the same width. 

Knowing x 0 , the lower bound of the current sub-interval, the 

rst step is to find the abscissa x 1 ≥ x 0 where the line is tangent

o A �
 ω . If x 1 is found to be larger than L �

 ω , then the sub-interval is

 x 0 , L � ω ] and the algorithm terminates. The second step is to deter-

ine the abscissa x 2 ≥ x 1 such that the line intersects (1 − ε) A �
 ω 

n x 2 . Again, if x 2 is found to be larger than L �
 ω , it is set to L �

 ω and

he algorithm terminates. These two steps are performed by solv- 

ng an equation of the form αe X + βX + γ = 0 using the function

 of Lambert ( Corless, Gonnet, Hare, Jeffrey, & Knuth, 1996 ). 

We search for the equation of a line l, knowing that it crosses 

he point (x 0 , (1 − ε) A �
 ω (x 0 )) . l is tangent to A �

 ω in x = x 1 . Using

AP) and l(x ) = ax + b, the slope is: 

 = −α( � ω ) e −x 1 

nd b is such that: 

1 − ε) A �
 ω (x 0 ) = ax 0 + b 

 = (1 − ε) α( � ω ) e −x 0 − ax 0 

We replace a with −α( � ω ) e −x 1 and find 

 = (1 − ε) α( � ω ) e −x 0 + x 0 α( � ω ) e −x 1 

Since the line l is tangent to A �
 ω in x 1 , it satisfies A �

 ω (x 1 ) = ax 1 +
, hence we have 

( � ω ) e −x 1 = −x 1 α( � ω ) e −x 1 + (1 − ε) α( � ω ) e −x 0 + x 0 α( � ω ) e −x 1 

 1 = −x 1 + (1 − ε) e −x 0 e x 1 + x 0 

 (1 − ε) e −x 0 e x 1 − x 1 + x 0 − 1 = 0 

By setting X = x 1 , we have 

1 − ε) e −x 0 e X − X + x 0 − 1 = 0 

o the equation can be written as αe X + βX + γ = 0 with 

α = (1 − ε) e −x 0 

β = −1 

γ = x 0 − 1 

The number of solutions to this equation is determined 

y the discriminant 
 = 

α
β

e 
− γ

β = −(1 − ε) e −x 0 e x 0 −1 = − 1 
e (1 − ε) .

ince 
 ∈ (− 1 
e , 0) , this equation has two solutions. We are inter- 

sted in the largest one, as the smallest one is less than x 0 , hence 

 1 = 

(
−W −1 (
) − γ

β

)
= 

(
−W −1 (−1 

e 
(1 − ε)) + x 0 − 1 

)

 x 1 = x 0 −
(

W −1 (−1 

e 
(1 − ε)) + 1 

)
If x 1 ≥ L �

 ω , then set x 1 = L �
 ω and terminate. 

Knowing x 1 , we search for x 2 ≥ x 1 such that the tangent to 

 �
 ω in x 1 intersects the point (x 2 , (1 − ε) A �

 ω (x 2 )) . This tangent has

quation l(x ) = ax + b with 

 = −α( � ω ) e −x 1 

nd 

 = ( 1 + x 1 ) α( � ω ) e −x 1 

This line also crosses the point (x 2 , (1 − ε) A �
 ω (x 2 )) , so 

1 − ε) A �
 ω (x 2 ) = ax 2 + b = (1 − ε) α( � ω ) e −x 2 
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fl

o

r

d  
 −x 2 e 
−x 1 + (1 + x 1 ) e 

−x 1 = (1 − ε) e −x 2 

We set X = −x 2 , so 

e −x 1 + (1 + x 1 ) e 
−x 1 = (1 − ε) e X 

 (1 − ε) e X − Xe −x 1 − (1 + x 1 ) e 
−x 1 = 0 

 αe X + βX + γ = 0 

α = (1 − ε) 
β = −e −x 1 

γ = −(1 + x 1 ) e 
−x 1 

By the W Lambert function, the number of solutions to this 

quation is determined by the discriminant 
 = 

α
β

e 
− γ

β = −(1 −

) e x 1 e 
−(1+ x 1 ) e 

−x 1 

e 
−x 1 = −(1 − ε) e x 1 e −(1+ x 1 ) = − 1 

e (1 − ε) . 

Since 
 ∈ (− 1 
e , 0) , αe X + βX + γ = 0 has two solutions. The

mallest one is x 0 , the other one is x 2 = (W 0 (
) + 

γ
β

) =
W 0 (− 1 

e (1 − ε)) + (1 + x 1 )) = x 1 + (W 0 (− 1 
e (1 − ε)) + 1) . 

We have built a line on the interval [ x 0 , x 2 ] that is tangent to

 �
 ω in x 1 , with: 

 1 = x 0 −
(

W −1 

(
−1 

e 
(1 − ε) 

)
+ 1 

)
 2 = x 1 + 

(
W 0 

(
−1 

e 
(1 − ε) 

)
+ 1 

)
Since x 2 − x 0 = (W 0 (− 1 

e (1 − ε)) − W −1 (− 1 
e (1 − ε))) only de- 

ends on ε, an ε-piece-wise linear lower bounding function A 

′ 
�
 ω 

f A �
 ω on [0 , L �

 ω ] can be built by splitting this interval into p g =
 

L �
 ω 

x 2 −x 0 
� intervals that all have width x 2 − x 0 (expect possibly the 

ast one, whose width is less than x 2 − x 0 ). Hence, for all i ∈
 1 , . . . , p g } , we define χi = (i − 1)(x 2 − x 0 ) as the lower bound

f the i -th sub-interval of [0 , L �
 ω ] and χp g +1 = L �

 ω , so for all i ∈
 1 , . . . , p g − 1 } , the i -th piece of g is the line joining the points

χi , (1 − ε) A �
 ω (χi )) and (χi +1 , (1 − ε) A �

 ω (χi +1 )) . The last piece of

is the line that joins the point (χp g , (1 − ε) A �
 ω (χp g )) to the point

L �
 ω , A �

 ω (L �
 ω )) if L �

 ω − χp g < 

x 2 −x 0 
2 , and to the point (L �

 ω , aL �
 ω + b)

therwise, where y = ax + b is the equation of the tangent to A �
 ω 

n x 1 = χp g + 

x 2 −x 0 
2 . 

We know that for all z ∈ (− 1 
e , 0) , ez ≤ W 0 (z) ≤ z, and −1 ≥

 −1 (z) ≥ 1 
z , so ε ≤ x 2 − x 0 . 

So 

1 

x 2 − x 0 
≤ 1 

ε 
⇒ p g ≤

⌈ 

L �
 ω 

ε 

⌉ 

emma 1. For all A < B, if there exists d, an ε-linear lower bounding

unction of A �
 ω on [ A, B ] , then d A,B 

min 
, the line that crosses the points

A, (1 − ε) A �
 ω (A )) and (B, (1 − ε) A �

 ω (B )) is also an ε-linear lower

ounding function of A �
 ω on [ A, B ] , and it satisfies d A,B 

min 
(x ) ≤ d(x ) for

ll x ∈ [ A, B ] . 

roof. Proof of Lemma 1 If there exists d, an ε-linear lower 

ounding function of A �
 ω on [ A, B ] , then d(A ) ≥ (1 − ε) A �

 ω (A ) ,

nd d(B ) ≥ (1 − ε) A �
 ω (B ) , hence d A,B 

min 
(x ) ≤ d(x ) ≤ A �

 ω (x ) for all x ∈
 A, B ] . Moreover, by construction, the line d A,B 

min 
satisfies (1 −

) A �
 ω (x ) ≤ d A,B 

min 
(x ) for all x ∈ [ A, B ] , so d A,B 

min 
is an ε-linear lower

ounding function of A �
 ω on [ A, B ] . �

emma 2. For all A and B such that 0 ≤ A < B ≤ L �
 ω with B − A =

 2 − x 0 , d A,B 
min 

is the unique ε-linear lower bounding function of A �
 ω 

ver [ A, B ] . 
8 
roof. Proof of Lemma 2 (by contradiction) Let d 	 = d A,B 
min 

be an

-linear lower bounding function of A �
 ω over [ A, B ] . Then, (1 −

) A �
 ω (A ) < d(A ) or (1 − ε) A �

 ω (B ) < d(B ) , so for all x ∈ (A, B ) , d(x ) >

 

A,B 
min 

(x ) , in particular, d(x 1 ) > d A,B 
min 

(x 1 ) = A �
 ω (x 1 ) , so d is not an ε-

inear lower bounding function of A �
 ω over [ A, B ] . �

heorem 1. p A ′ �
 ω 
, the number of pieces of A 

′ 
�
 ω , the ε-piece-wise linear 

ower bounding function of A �
 ω over [0 , L �

 ω ] , is minimum. 

roof. Proof of Theorem 1(by contradiction) Let h be an ε-piece- 

ise linear lower bounding function of A �
 ω over [0 , L �

 ω ] , with p h <

p A ′ �
 ω 
. Then (by the pigeonhole principle), h has at least one piece 

hich is an ε-linear lower bounding function of A �
 ω over [ A, C] ,

ith C − A > x 2 − x 0 . Let B = A + x 2 − x 0 < C. By Lemma 2 , d A,B 
min 

is

he unique ε-piece-wise linear lower bounding function of A �
 ω over 

 A, B ] . By construction, d A,B 
min 

(x ) < (1 − ε) A �
 ω (x ) , for all x ∈ (B, C] so

here is no ε-piece-wise linear lower bounding function of A �
 ω over 

 A, C] . �

. Algorithm 

In this section, we present an algorithm to solve our problem. 

he complexity of a standard instance is such that using an exact 

ethod to produce optimal solutions is not possible in an accept- 

ble amount of time. Our method is a greedy heuristic and it is 

uilding one solution, step by step, with heuristic estimation of the 

volution of the objective function. To build the solution, the algo- 

ithm runs many times the three stages presented in this section, 

hat allocate and compute the routes using greedy utilities. Once a 

olution is produced, a quick and easier version of the algorithm is 

un to improve the solution locally (without modifying the routes). 

In this section, we first present the building of a solution, before 

ntroducing the components of the method in more detail. 

.1. The building of a solution 

A solution is built by iterating many times on the following 

tages until no resource is available: 

1. Compute the utilities of the decision variables 

2. Take a step in a direction, i.e. , increase the resources allocated 

in one cell by one sensor at a period 

3. Insert this cell in the route of the sensor if it is not already part

of it 

The algorithm starts with an empty solution, i.e. , without any 

esource allocated to any cell, nor route. This solution is evolving 

hrough these three stages, by greedily increasing the allocated re- 

ources, until no more resource is available for each sensor. The 

rst stage is computing a greedy utility for each decision vari- 

bles ϕ 

bt 
ic 

, t ∈ , i ∈ I, c ∈ C. Details on the utilities are presented in

ection 6.2 . In the second stage, the algorithm performs a step 

n one direction and increases a decision variable, i.e. , it allocates 

ore resources in a cell c at a period t from a sensor i . The way to

elect the decision variable and to determine the amount of added 

esources is presented in Section 6.3 . The last stage ( Section 6.4 )

dds the cell c in the route of sensor i at period t, with c, i, t cor-

esponding to the decision variable, picked for a step, during the 

revious stage. 

.2. Utility 

The utility is an important part of our algorithm. It has to re- 

ect, for each decision variable ϕ 

bt 
ic 

, its immediate impact in the 

bjective function but also consider the impact on the available 

esources. Indeed, allocating resources to a cell c from a sensor i 

uring a period t, means that c has to be added to the route of i
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t t if it is not already part of it. However, the actual impact of a

tep is difficult to assess ( Section 6.3 ). 

The approximation of the objective function, (AP) presented in 

ection 4 , has the following shape: 

inimize −
∑ 

�
 ω ∈ �

∑ 

i ∈ I 

∑ 

t∈ T 
D 

t 
i � ω ϕ 

bt 
i � ω (t) 

Where D 

t 
i � ω 

= α( � ω ) w 

i 
�
 ω (t) 

e 

∑ 

i ′ ∈ I 
∑ 

t ′ ∈ T 
−w 

i ′ 
�
 ω (t ′ ) ϕ 

at 
i � ω (t) 

, is a constant. It can 

e reformulated as: 

inimize −
∑ 

c∈ C 

∑ 

i ∈ I 

∑ 

t∈ T 

( 

ϕ 

bt 
i � ω (t) 

∑ 

�
 ω ∈ �| � ω (t)= c 

D 

t 
i � ω 

) 

This approximation of the objective function is re-computed at 

ach iteration of the algorithm, considering therefore the actual re- 

ources allocated of the current solution after the last step. In such 

 way, the approximation and utilities will fit as best as possible 

he actual objective function. When computing the utilities, the 

 

t 
i � ω 

, ∀ t ∈ T , i ∈ I, � ω ∈ � are constant. Thus, a straightforward utility,

ithout considering the traveling costs, is clearly to use: 

U 

tic 
1 ) = 

∑ 

�
 ω ∈ �| � ω (t)= c 

D 

t 
i � ω , ∀ i ∈ I, ∀ t ∈ T , ∀ c ∈ C 

This quantity is the sum of D 

t 
i � ω 

, for all trajectories such that 

he target is in c at t . It can naturally serve as a utility since it

valuates the direct impact of every decision variables on the lin- 

ar approximation ( i.e. , the steep of its derivative). The greater it 

s, the better. 

Now, we need to penalize the U 

tic 
1 

in order to take into account 

he traveling costs. We propose to multiply this utility by the dif- 

erence between the available resources and a heuristic estimation 

f the adding cost, i.e. , ρt 
i 
− add 

t 
i (c) where add 

t 
i (c) returns an esti- 

ation of the cost induced by adding c in the route of i at period

. ρt 
i 

is the remaining resources at period t for i . We obtain: 

 

tic 
2 = 

( ∑ 

�
 ω ∈ �| � ω (t)= c 

D 

t 
i � ω 

) 

×
(
ρt 

i − add 

t 
i (c) 

)
, ∀ i ∈ I, ∀ t ∈ T , ∀ c ∈ C 

The estimation of an extra cost has to be larger than the actual 

xtra cost obtained in Section 6.4 . In our algorithm, these estima- 

ions are obtained with a best-insertion method. More details are 

rovided in Section 6.4 . 

This utility will be negative only when the estimation of the 

xtra cost is greater than the available resources. U 

tic 
2 

is also an 

stimation of the impact on the current linear approximation if all 

he resources of i available at t are put in c. 

.3. Setting the step 

In this sub-section, we discuss the setting of the step in the 

rocess of building a solution. A step corresponds to the increase 

f the resources already allocated in a cell c, by a sensor i at period

. The triplet picked (c, i, t) , c ∈ C, i ∈ I, t ∈ T , corresponds to a deci-

ion variable ϕ 

bt 
ic 

. It means that the current solution is modified in 

uch a way that ϕ 

at 
ic 

← ϕ 

at 
ic 

+ ϕ 

bt 
ic 

, where ϕ 

bt 
ic 

is equal to the mini-

um between the remaining resources available and the amount z

f the step. 

In our algorithm, the triplet (c, i, t) is picked randomly between 

ll the triplets with a utility U 

tic 
2 

equal to the best utility, and 

reater than 0. In other words, we pick randomly one of the triplet 

c, i, t) , c ∈ C, i ∈ I, t ∈ T that satisfies: 

 

tic 
2 = 

(
max 

t ′ ∈ T,i ′ ∈ I,c ′ ∈ C 
U 

t ′ i ′ c ′ 
2 

)
 

tic 
2 > 0 
9 
If no utility can be selected, i.e. , when max 
t∈ T,i ∈ I,c∈ C 

U 

tic 
2 

≤ 0 , the al-

orithm stops. This corresponds to a solution where all the sensors 

ave all their resources used in all periods. 

The size of the steps, z, is an important parameter. A large step 

s putting a lot of resources in the cell, and this is a decision that

ur algorithm will never revoke. However, this decision is based 

n a greedy utility of the approximation function. When the al- 

ocated resources is increasing, the utilities are changing and the 

ecision may no longer be appropriate. Indeed, we have seen in 

ection 4 that when the decision variables are too large, the linear 

pproximation is far from the real objective function. Thus, large 

teps are not recommended since this leads to allocating too much 

esources in a cell at a time, which may be detrimental to the so- 

ution quality. 

On the other hand, small steps are offering much more careful 

nd precise decisions. Since the approximation and the utilities are 

pdated after each step, each decision is taken considering more 

nformation. However, it affects much more the computation time 

ince it means more iterations for the algorithm to fully allocate 

ll the available resources. 

In our algorithm, the step size z is a parameter. It is recom- 

ended to keep z low compared to the available resources, while 

ontrolling the number of iterations. By default, we fix the step 

ize to 1% of the minimum of the available resources ( i.e. , z =
 . 01 × min 

t∈ T,i ∈ I 
�t 

i 
). 

.4. Addition of cells to the route 

In this subsection, we present the last stage of each iteration of 

he algorithm. In the previous stage, a triplet (c, i, t) was selected 

or a step. Now, we need to insure that the cell c is in the route of

ensor i during period t . 

A best insertion method is used. The new cell c is inserted di- 

ectly in the route of sensor i at period t where its insertion min- 

mizes the additional traveling cost: if c shall be inserted in the 

oute between a and b, then we replace arc (a, b) with (a, c) and

c, b) . This induces an insertion cost of t ac + t cb − t ab . This cost is

emoved from the resources available in all the impacted periods. 

ence, the insertion cost is removed for all periods where the sen- 

or is traveling along (a, c) and (c, b) . For intra-period travels, it 

nly removes resources in this period. For inter-period travels, it 

emoves resources in all the corresponding periods. Such a method 

roduces a final solution where all the periods impacted by some 

nter-periods moves have enough spare resources to endorse the 

dditional cost. A last reparation algorithm then dispatches the 

xtra-spared resources between the concerned periods. 

.5. The local optimization 

This subsection presents the method run to locally optimize a 

olution produced by the previous algorithm. It is a local optimiza- 

ion since the routes computed are not modified, and only a real- 

ocation of the resources is performed. In this method, the reallo- 

ation is done for each pair of periods (t 1 , t 2 ) , ∀ (t 1 , t 2 ) ∈ T 2 with a

ommon inter-period move starting at t 1 and finishing at t 2 . All the 

esources already allocated between these two periods are reallo- 

ated ( i.e. , 
∑ 

i ∈ I,c∈ C 
ϕ 

t 1 
ic 

+ ϕ 

t 2 
ic 

). In addition, the cost of the inter-periods

oves is also reallocated (since this cost has been spared twice, 

nce in each period). The reallocation method consists in: 

1. Computing the utilities U 

tic 
1 

× ρ′ t 
i 

of the decision variables 

2. Performing a step in the direction of the best utility greater 

than 0 

This is a light version of the previous algorithm, without any 

onsideration to traveling costs since the routes are already fixed. 
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Fig. 1. Transition probabilities. 

Table 2 

Default values used to generate an instance. 

n r × n c The number of cells 12 × 10 

m The number of sensors 3 

n The number of periods 4 

� The amount of resources per period 5 

Table 3 

Objective value and CPU time when the number of cells varies. 

#cells Probability of non-detection CPU time (seconds) 

5 × 5 0.2061 0.20 

8 × 8 0.4699 0.39 

10 × 10 0.5699 0.73 

15 × 15 0.6962 2.83 

20 × 20 0.7534 7.31 
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t re-affects the available resources, while satisfying resources lim- 

tation and maintaining feasibility of existing routes. 

. Numerical experiments 

In this section, we study the efficiency of our method, in terms 

f solution quality and computational effort. We designed several 

xperiments, in order to test the impact of many parameters. These 

mportant parameters are the numbers of cells, sensors, trajecto- 

ies and periods, which are all expected to increase the running 

ime of our algorithm but with different impact on objective val- 

es. We are not considering a comparison with the results of the 

revious papers ( Le Thi et al., 2015; Simonin et al., 2009 ). Indeed,

s stated before, their problem is a special case of ours and the 

omplexity is much less. For example, once a sensor is allotted to 

 zone, their method only needs to allocate the resources between 

he cells. Whereas, our method also computes a route between the 

llocated cells, even if the route always has a null cost. In the case 

f a mobile target, in order to generalize their instances, we also 

eed to multiply the number of sensors by the number of periods, 

ence producing much more complex problems to solve. In the in- 

tance used in Le Thi et al. (2015) , we would need 24 sensors in-

tead of 6 to represent the same instance. Therefore, we consider 

hat a comparison between their results and our method would be 

eaningless, as the addressed problems differ a lot. 

All CPU running times are expressed in seconds. All values are 

verage values between the corresponding set of instances. The 

oftware is coded in C++ and all the experiments were run on 

 computer with Ubuntu 16.04 and Intel Core i7-6700HQ CPU @ 

.60GHz × 8 cores and 16 GBytes of RAM. 

.1. Description of the instances generator 

In order to test our method on a large set of instances, we 

esigned an instance generator. The generator takes different pa- 

ameters as inputs and creates a discretized instance as output. 

he area E is represented as several rows of cells, each row hav- 

ng the same number of cells. It takes the form of a grid as pre-

ented in the example of Fig. A.1 . This is obtained by the first two

arameters: n r is the number of rows and n c is the number of 

olumns. Thus, the number of cells is equal to n c × n r . The travel-

ng cost between two cells is the Euclidean distance such that the 

wo farthest cells have a distance equal to min 

t∈ T,i ∈ I 
�t 

i 
. We consider 

uch costs to impact the solutions without restricting the sensors 

o only a few cells. The numbers of sensors m and periods n are

lso parameters. For each sensor, a random visibility between 0 

nd 1 is assigned to each cell. The quantity of available resources 

or each period, for each sensor, is equal to �, a parameter. 

The generation of the trajectories is an important part of our 

enerator. First, we want to be able to generate a given number 

f trajectories. It will allow our experiments to freely study other 

arameters without any concern on the impact of the number of 

rajectories. Second, we want to generate realistic trajectories, as 

n Le Thi et al. (2015) , Simonin et al. (2009) , that represents an

ncertain movement in a direction between each period. For that 

urpose, we proposed two ways of generating the trajectories. The 

rst way has a fix number of trajectories, set to 500. These trajec- 

ories are computed by first picking a random starting cell, and 

hen picking random transitions between each period, following 

he probabilities of Fig. 1 . If one transition is not possible ( e.g. ,

he target is in a corner), its probability is equally distributed be- 

ween the other transitions with non null probability, i.e. , we keep 

n equal distribution of the probability between the possible tran- 

itions. The probabilities of the trajectories are uniformly randomly 

icked such that their sum is equal to 1. The second way to gen-

rate trajectories is done by selecting v random starting cells. v is 
10 
 parameter. All the possible trajectories starting from these cells, 

ollowing the transition probabilities of Fig. 1 , are generated. e.g. , 

ith two periods from one cell, there are four trajectories with 

qual probabilities, one move to the top, one to the left, one to 

he right and one to the bottom cell. We do not control the num- 

er of generated trajectories since there are less possible transi- 

ions when the cell is adjacent to the limit of the search space. 

The default parameters are given in Table 2 . 

.2. Experiment 1 – Cells 

In this experiment, we measure the impact of the number 

f cells. With more cells, the division of the area is more pre- 

ise and so is the search. However, adding more cells makes the 

roblem more difficult to solve. The instances of this experiment 

re generated with all the default parameters and only the num- 

er of cells is varying. The considered numbers of cells | C| are 

 5 × 5 , 8 × 8 , 10 × 10 , 15 × 15 , 20 × 20 } . This set covers a wide va-

iety of instances with simple ( 5 × 5 and 8 × 8 ), medium ( 10 × 10

nd 15 × 15 ) and hard ( 20 × 20 ) instances. For each number of

ested cells, a set of one hundred instances is generated. The small 

nstances have a high search density, i.e. a few cells for a lot of pos-

ible trajectories. With more cells, the trajectories have much less 

arts in common. It means that there are less associations cells- 

eriods that are common to multiple trajectories, where the search 

ffort is much more efficient. Hence, it increases the number of de- 

ision variables and the number of utilities to compute. Increasing 

he number of cells is therefore expected to increase the number 

f utilities to compute, thus to impact greatly the running time. 

he average results are presented in Table 3 . 

These results show the importance of the number of cells in the 

PU time. Indeed, the solution time increases quickly, especially for 

arge instances. However, even for these large instances, with up 

o 400 cells, the solution time remains acceptable. It shows that 

ur method scales well with the number of cells. Nonetheless, it 



F. Delavernhe, P. Jaillet, A. Rossi et al. European Journal of Operational Research xxx (xxxx) xxx 

ARTICLE IN PRESS 

JID: EOR [m5G; November 30, 2020;11:14 ] 

Table 4 

Objective value and CPU time when the number of sensors varies. 

#sensors Probability of non-detection CPU time (seconds) 

1 0.8427 0.11 

2 0.7099 0.43 

3 0.5979 0.99 

4 0.5028 1.78 

5 0.4219 2.81 

6 0.3531 4.10 
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Table 5 

Objective value and CPU time when the number of periods varies. 

#periods Probability of non-detection CPU time (seconds) 

1 0.8605 0.02 

2 0.8516 0.14 

3 0.8474 0.42 

4 0.8452 0.97 

5 0.8443 1.86 

6 0.8462 3.30 
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n  
tays irremediably an important parameter on the solving time, 

hat should not be neglected when discretizing the instances. i.e. , 

hen dividing the search area E into cells, the number of cells has 

o consider the budget of CPU time allowed. 

Since the trajectories have the same size, but use more cells to 

epresent the searched area, we can deduce that the common parts 

etween trajectories explain why the objective value is worsening 

 lot when the number of cells increases. However, those large in- 

tances may better represent actual search contexts. 

To conclude, our method is scaling well to high numbers of 

ells, which is an important point as this allows to address real- 

stic problems. 

.3. Experiment 2 – Sensors 

This second experiment focuses on the number of sensors. It is 

xpected that more sensors is improving the value of the objective 

ut obviously slowing the solution process. An initial set of one 

undred instances with 6 sensors is generated and solved. After- 

ards, we remove a sensor and solve again, and iterate in such a 

ay that each number of sensors m ∈ { 1 , 2 , 3 , 4 , 5 , 6 } is tested for

ach instance. Thus, the trajectories, priors and cells are the same 

or a given instance through each number of tested sensors. This 

llows the results obtained to show only the impact of the num- 

er of sensors. The averaged results are presented in Table 4 . 

These results show that, as expected, the problem is more and 

ore difficult to solve but provides better objective values when 

ore sensors are used. First, the CPU time increases continuously 

long with the number of sensors. More precisely, there is an in- 

rease of the solution time whenever a sensor is added to the 

roblem. The increase gets larger when there are more sensors 

 e.g. , an increase of ≈ 0 . 32 s between 1 and 2 sensors, and ≈ 1 . 29 s

etween 5 and 6). However, considering the values as percentage 

f the CPU time, the increase is lower with more sensors ( e.g. , an

ncrease of ≈ 397 % of the CPU time between 1 and 2 sensors, and

146 % between 5 and 6). This behavior is observed for all num- 

ers of sensors. On that part, we conclude that adding one sensor 

o an instance increases the solution time, with an increase de- 

ending on the number of sensors (in our results, m − 1 times a 

oefficient close to 0.5). The solution time with few sensors is very 

odest, and is acceptable with many. 

Secondly, the objective value is obviously decreasing (hence im- 

roving) when more sensors are used. In this set of instances, the 

ecrease seems to be continuous but non linear. Indeed, whenever 

 sensor is added, the objective value is approximately dropping by 

6%. 

This experiment shows the impact of the number of sensors, 

aking the problem more complex to solve but providing a better 

earch. However, our solution is still scaling well with the increase 

f sensors, with more than acceptable CPU times when six sensors 

re used. 

.4. Experiment 3 – Periods 

In this experiment, we focus on the number of periods. As in 

he previous experiments, we want to test our algorithm on the 
11 
umber of periods varying n ∈ { 1 , 2 , 3 , 4 , 5 , 6 } . We generate a set

f one hundred instances for each value of n, with the other pa- 

ameters fixed to their default values except for the available re- 

ources. Indeed, we aim at measuring the impact on the objective 

unction of more precise trajectories, i.e. , more periods used to rep- 

esent the target moves. Thus, we need to make sure that the over- 

ll search budget for each sensor remains the same. With the val- 

es of n ∈ { 1 , 2 , 3 , 4 , 5 , 6 } , the amount of resources in each period

or all the sensors is respectively equal to { 6 , 3 , 2 , 1 . 5 , 1 . 2 , 1 } . The

veraged results are presented in Table 5 . 

These results show that the number of periods has an impact 

n the solution time. With low value, it is solved very fast, espe- 

ially in the static case, i.e. , with a single period. Whereas, with 

 lot of periods, it requires more time, with six periods needing 

46 times more CPU time than one period, which is a huge ra- 

io. The evolution of the CPU time is similar to Section 7.3 (bigger 

ime increase in seconds with more periods but smaller percent- 

ge). These results show that the number of periods has an impor- 

ant impact on the solution time and really marks the difference 

etween easy instances (one or two periods) and medium to hard 

nstances. 

On the objective value side, there are small decreases along 

ith the increase of the number of periods, except for six periods. 

t is due to the fact that with more periods, there is a higher prob-

bility of trajectory intersections, i.e. , trajectories are more likely to 

ave common cells. Thus, making a search effort in these cells is 

ore efficient. 

To conclude, the number of periods has only a slight effect on 

he value of the objective value, however it impacts negatively the 

olution time. Our method is scaling pretty well and has low com- 

utational times even when considering six periods. 

.5. Experiment 4 – Trajectories 

In this last experiment, we study the impact of the number of 

rajectories. Simonin et al. (2009) consider that this number has a 

ignificant impact on the combinatorial complexity of their prob- 

em, which is a special case of ours. We can easily expect the same 

mpact on the combinatorial complexity of our problem. Here, we 

im to measure its impact on the solution time of our method and 

n solution quality. For that purpose, we consider two sets of in- 

tances, each one with a different process to generate the trajecto- 

ies (see Section 7.1 ). The first set has all the possible trajectories 

following the transition probabilities) made from a given number 

f starting cells. This produces realistic cases, with trajectories that 

ave a lot of similarities. The parameter for this generation is the 

umber of starting cells. The second set has the target trajectories 

rawn similarly to the previous experiments, where each trajec- 

ory is obtained by picking a random starting cell and a random 

ransition between each period. It takes the number of trajectories 

o draw as a parameter. These instances are likely to have disjoint 

rajectories, with just a few similarities between them. In order 

o keep around the same number of trajectories, the first set of 

nstances is generated first, with one hundred instances for each 

umber of starting cells in { 5 , 10 , 20 , 30 , 40 , 50 } . Afterwards, the
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Table 6 

Objective value and CPU time for the first set of instances when the number of starting 

cells varie. 

#starting cells #trajectories Probability of non-detection CPU time (seconds) 

5 256.25 0.0313 0.48 

10 498.07 0.1290 0.73 

20 954.94 0.2483 1.01 

30 1385.12 0.3058 1.18 

40 1793.81 0.3274 1.30 

50 2166.32 0.3285 1.39 

Table 7 

Objective value and CPU time for the second set of instances when the 

number of starting cells varies. 

#trajectories Probability of non-detection CPU time (seconds) 

256 0.5235 0.88 

498 0.5968 0.99 

955 0.6457 1.10 

1385 0.6651 1.21 

1794 0.6774 1.31 

2166 0.6847 1.40 
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econd set is generated using the average number of trajectories 

ounded as parameter on each set of a hundred instances. The re- 

ults on the first set are reported in Table 6 and the second set in

able 7 . 

This experiment shows that the number of trajectories has a 

elatively modest impact on the running time of our method. In- 

eed, in both sets, the running time increases, but it remains small 

nd even with the highest number of trajectories, the running time 

s under 1.5 seconds. One trajectory is not necessarily adding de- 

ision variables thus not adding more utilities to compute. That is 

hy our method is not impacted a lot by the number of trajecto- 

ies, since there are already a lot of trajectories compared to the 

ize of the searched area. Clearly, the running time of the first set 

s the most impacted. Indeed, the generation of the trajectories in 

his set is such that it adds a lot more decision variables than in

he second set. 

The evolution of the objective function shows that, as expected 

ith more trajectories, the objective function decreases. Also, we 

an see with Table 6 compared to Table 7 , that the non-detection 

robability is easier to minimize when the trajectories have a lot 

f similar elements. However, it is easier for our method to solve 

nstances where the trajectories are all randomly generated, thus 

aving less parts in common. 

To conclude, the number of trajectories does not impact a lot 

he solution time of our method, but it impacts negatively solution 

uality. 

.6. Overall results 

We report in this last subsection an overall result on all our in- 

tances. It is the average gap with the lower bound. For each gen- 

rated instance, we compute the lower bound with an epsilon er- 

or as a parameter equal to 0.001. The average gap ( i.e. , f 
 

− 1 with

f the result of our algorithm and  the lower bound) is equal to 

5% of the lower bound. The only exception is for the first set of 

rajectories, where the lower bounds are very close to 0. Consid- 

ring that the traveling costs have an impact on the solution (just 

nough energy to travel between the two more extreme cells), the 

ower bound is expected to be loose. Hence, we conclude from that 

verage gap with the lower bound on this many instances, that our 

lgorithm has acceptable solutions. 

Finally, we try to solve the instances of our experiments us- 

ng the variant problem introduced in Section 3.5 . This problem 
12 
as a different objective function, but the same constraints as the 

riginal problem, plus one new constraint to linearize the objective 

unction. Therefore, a solution obtained with this problem variant 

s feasible for the original problem. We have used Gurobi to solve 

odel 3 on the easiest instances from each of our previous ex- 

eriments: instances with 5 × 5 cells from Section 7.2 , instances 

ith one sensor from Section 7.3 , etc. We set a time limit of 14

ours for Gurobi to return a solution, but it turns out that none 

f these instances could be solved to optimality. Additionally, the 

est solution returned by the solver when time limit is reached 

s never a good solution for our problem ( i.e. , when the solution 

s applied to our problem, its objective function is worst that the 

ne found heuristically by our algorithm). Therefore, the two prob- 

ems are distinct and solving the variant problem is both hard and 

oes not help to produce good solution for our main problem. We 

onclude that the complexity of our problem is not only related to 

he non-linear objective function but is also highly depending on 

he constraints and decision variables. The production of an opti- 

al solution using a solver is not possible in an acceptable running 

ime of several hours. On a side note, using a solver like Gurobi on 

he variant problem with a given budget time is also not returning 

n interesting solution, that can be exploited for our problem. 

. Conclusions 

In this paper, we proposed a new formulation of the problem of 

lanning a multisensor search for a moving target. We generalized 

he previous works on the literature by adding traveling costs 

or the sensors between the searched cells. This generalization 

akes the problem much more difficult to solve since the route 

f each sensor has to be determined, between a set of searched 

ells to select. We presented the mathematical formulation of the 

roblem, and a method to compute an efficient lower bound. After- 

ards, we presented a novel algorithm to solve our problem that 

s not relying on a forward-and-backward method as in previous 

orks. We analyzed the efficiency of our algorithm with thou- 

ands of instances, and concluded that the running time is scaling 

ell with various parameters. Many extension can be considered 

or this problem. One is to deal with multiple targets, where 

he problem could be even more generalized but needs many 

onsiderations especially on the objective function and the priors. 

ppendix A. Application example 

In this appendix, we introduce a problem example for the sake 

f illustration, taken from naval applications ( Koopman, 1980 ). In 

he present case, the goal is to find an object lost in the sea. For

xample, a plane has lost contact with the control tower while fly- 

ng over the sea, and is presumed to have crashed. The objective is 

o locate the wreck in a given time limit, before it is too late to res-

ue potential survivors or before an item, like the black box of the 

lane, is definitively considered lost. Many trajectories, alongside 

heir probabilities, are drawn from the known sea currents and 

he different possible locations where the plane may have crashed. 
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Fig. A.1. Search of a lost object in the sea. 
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Table A.1 

A possible plan of search for the boat. 

Activity Time window Corresponding Periods 

Searching Area 1 [24,30] Period 3 

Moving from Area 1 to Area 2 [30,40] Periods 3 and 4 

Searching Area 2 [40,55] Periods 4 and 5 

Moving from Area 2 to Area 3 [55,65] Periods 5 and 6 

Searching Area 3 [65,76] Periods 6 and 7 

Moving from Area 3 to Area 4 [76,86] Periods 7 and 8 

Searching Area 4 [86,96] Period 8 

l  

h  

m

i  

y

h

q

a

R

A  

A  

B

B  

B

B  

C  

C  

D

D  

G

G

G  

G  

G

H

H  

K

K  

L  

L  

L  

M  

O  
s mentioned earlier, the search is done over a given time hori- 

on ( e.g. , four days to find the target) and thus the trajectories

an clearly be discretized into periods ( e.g. , periods of 12 hours). 

n such an application, the searchers ( i.e. , the sensors) can be of 

ifferent types. In this example, we consider that the searchers are 

oats, equipped for a week of search. The search carried out by a 

oat is performed by deploying a device in the sea to search un- 

erwater ( e.g. , a small submarine or a sonar). The boat is station-

ry while the device is searching around it and thus, we clearly 

ee the discretization of the search into cells. Therefore, the entire 

roblem is discretized into cells. In each searched cell, a boat stops 

nd deploys its sensing device to search for the target. The differ- 

nt visibilities may depend on the various devices used and the 

opology and weather conditions in the searched zone. 

A visual illustration is given in Fig. A.1 . The mission is 4 days

ong, discretized into periods of 12 hours, and the searched area is 

ecomposed into square cells that form a 2D-mesh. The two pos- 

ible locations of the crash site are the black dots and they are 

oth given a probability. They represent the possible locations of 

he target at period 1. The possible transitions (target movement) 

etween time periods are illustrated with the black arrows cen- 

ered on one of the initial possible location, and each transition has 

 given probability, i.e. between each period, the sea currents are 

oving the target in one of the adjacent cell in the south, south- 

ast or east. All the possible trajectories can therefore be deduced 

rom the initial positions, the transitions, the number of periods 

nd the given probabilities. A boat is used to locate the target. It 

s not available during the first two time periods (the limits on the 

esources of these periods are equal to 0) to model the amount of 

ime required to reach the searched area. A possible search plan 

or the boat is to search four cells represented in gray. Table A.1 

rovides more details about the time spent searching these cells, 

nd the travels between them. Area x is the gray cell with label x .

eriod 1 is the time interval [0,12] hours, Period 2 is time interval 

12,24] and so on. 

The searching activities of Table A.1 are all deduced from ϕ 

t 
ic 

ecision variables. For example, the search of Area 2 is represented 

y two nonzero decision variables as it is searched during two pe- 

iods. These variables are ϕ 

4 
ix 

= 8 and ϕ 

5 
ix 

= 7 , with x the cell with
13 
abel 2 and i the sensor. It means that the cell is searched during 8

ours in period 4 and 7 hours in period 5. Since there is no move-

ent between these two periods, we have a single search activity 

n this area. The moves of the sensor are deduced from q ti , r ti and

 

ti 
cc ′ variables. For instance, moving from Area 3 to Area 4 takes 10 

ours, and spans over two periods, which can be deduced from 

 7 i = 8 (8 hours of this inter-period move is done during period 7) 

nd r 8 i = 2 (2 hours done during period 8). 
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