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Abstract. A fundamental issue in active learning of Gaussian processes is that
of the exploration-exploitation trade-off. This paper presents a novel nonmyopic
ε-Bayes-optimal active learning (ε-BAL) approach [4] that jointly optimizes the
trade-off. In contrast, existing works have primarily developed greedy algorithms
or performed exploration and exploitation separately. To perform active learning
in real time, we then propose an anytime algorithm [4] based on ε-BAL with
performance guarantee and empirically demonstrate using a real-world dataset
that, with limited budget, it outperforms the state-of-the-art algorithms.

1 Introduction
Active learning/sensing has become an increasingly important focal theme in environ-
mental sensing and monitoring applications (e.g., precision agriculture [7], monitoring
of ocean and freshwater phenomena). Its objective is to derive an optimal sequential
policy that plans the most informative locations to be observed for minimizing the pre-
dictive uncertainty of the unobserved areas of a spatially varying environmental phe-
nomenon given a sampling budget (e.g., number of deployed sensors, energy consump-
tion). To achieve this, many existing active sensing algorithms [1, 2, 3, 6, 7, 8] have
modeled the phenomenon as a Gaussian process (GP), which allows its spatial correla-
tion structure to be formally characterized and its predictive uncertainty to be formally
quantified (e.g., based on entropy, or mutual information criterion). However, they have
assumed the spatial correlation structure (specifically, the parameters defining it) to be
known, which is often violated in real-world applications. The predictive performance
of the GP model in fact depends on how informative the gathered observations are for
both parameter estimation and spatial prediction given the true parameters.

Interestingly, as revealed in [9], policies that are efficient for parameter estimation
are not necessarily efficient for spatial prediction with respect to the true model param-
eters. Thus, active learning/sensing involves a potential trade-off between sampling the
most informative locations for spatial prediction given the current, possibly incomplete
knowledge of the parameters (i.e., exploitation) vs. observing locations that gain more
information about the parameters (i.e., exploration). To address this trade-off, one prin-
cipled approach is to frame active sensing as a sequential decision problem that jointly
optimizes the above exploration-exploitation trade-off while maintaining a Bayesian
belief over the model parameters. Solving this problem then results in an induced pol-
icy that is guaranteed to be optimal in the expected active sensing performance [4].
Unfortunately, such a nonmyopic Bayes-optimal active learning (BAL) policy cannot
be derived exactly due to an uncountable set of candidate observations and unknown
model parameters. As a result, existing works advocate using greedy policies [10] or



performing exploration and exploitation separately [5] to sidestep the difficulty of solv-
ing for the exact BAL policy. But, these algorithms are sub-optimal in the presence of
budget constraints due to their imbalance between exploration and exploitation [4].

This paper presents a novel nonmyopic active learning algorithm [4] that can still
preserve and exploit the principled Bayesian sequential decision problem framework for
jointly optimizing the exploration-exploitation trade-off (Section 2.2) and consequently
does not incur the limitations of existing works. In particular, although the exact BAL
policy cannot be derived, we show that it is in fact possible to solve for a nonmyopic
ε-Bayes-optimal active learning (ε-BAL) policy (Section 2.3) given an arbitrary loss
bound ε. To meet real-time requirement in time-critical applications, we then propose
an asymptotically ε-optimal anytime algorithm based on ε-BAL with performance guar-
antee (Section 2.4). We empirically demonstrate using a real-world dataset that, with
limited budget, our approach outperforms state-of-the-art algorithms (Section 3).

2 Nonmyopic ε-Bayes-Optimal Active Learning
2.1 Modeling Spatial Phenomena with Gaussian Processes
Let X denote a set of sampling locations representing the domain of the phenomenon
such that each location x ∈ X is associated with a realized (random) measurement zx
(Zx) if x is observed (unobserved). Let ZX , {Zx}x∈X denote a GP [4]. The GP is
fully specified by its prior mean µx , E[Zx] and covariance σxx′|λ , cov[Zx, Zx′ |λ]
for all locations x, x′ ∈ X ; its model parameters are denoted by λ. When λ is known
and a set zD of realized measurements is observed for D ⊂ X , the GP prediction for
any unobserved location x ∈ X \D is given by p(zx|zD, λ) = N (µx|D,λ, σxx|D,λ) [4].
However, since λ is not known, a probabilistic belief bD(λ) , p(λ|zD) is maintained
over all possible λ and updated using Bayes’ rule to the posterior belief bD∪{x}(λ) ∝
p(zx|zD, λ) bD(λ) given a new measurement zx. Then, using belief bD, the predictive
distribution is obtained by marginalizing out λ: p(zx|zD) =

∑
λ∈Λ p(zx|zD, λ) bD(λ).

2.2 Problem Formulation
To cast active sensing as a Bayesian sequential decision problem, we define a sequential
active sensing policy π , {πn}Nn=1 that is structured to sequentially decide the next lo-
cation πn(zD) ∈ X \D to be observed at each stage n based on the current observations
zD over a finite planning horizon of N stages (i.e., sampling budget). To measure the
predictive uncertainty over unobserved areas of the phenomenon, we use the entropy
criterion and define the value under a policy π to be the joint entropy of its selected
observations when starting with some prior observations zD0

and following π there-
after [4]. The work of [7] has established that minimizing the posterior joint entropy
(i.e., predictive uncertainty) remaining in unobserved locations of the phenomenon is
equivalent to maximizing the joint entropy of π. Thus, solving the active sensing prob-
lem entails choosing a sequential BAL policy π∗n(zD) = argmaxx∈X\D Q

∗
n(zD, x)

induced from the following N -stage Bellman equations, as formally derived in [4]:
V ∗n (zD) , max

x∈X\D
Q∗n(zD, x)

Q∗n(zD, x) , E [− log p(Zx|zD)] + E
[
V ∗n+1(zD ∪ {Zx}) |zD

] (1)

for stage n = 1, . . . , N where p(zx|zD) is defined in Section 2.1 and the second expec-
tation term is omitted from right-hand side expression ofQ∗N at stageN . Unfortunately,



since the BAL policy π∗ cannot be derived exactly, we instead consider solving for an
ε-BAL policy πε whose joint entropy approximates that of π∗ within ε > 0.

2.3 ε-BAL Policy
The key idea of our proposed nonmyopic ε-BAL policy πε is to approximate the expec-
tation terms in (1) at every stage using truncated sampling. Specifically, given realized
measurements zD, a finite set of τ -truncated, i.i.d. observations {zix}Si=1 [4] is gener-
ated and exploited for approximating V ∗n (1) through the following Bellman equations:

V εn(zD) , max
x∈X\D

Qεn(zD, x)

Qεn(zD, x) ,
1

S

S∑
i=1

− log p
(
zix|zD

)
+ V εn+1

(
zD ∪

{
zix
}) (2)

for stage n = 1, . . . , N . The use of truncation is motivated by a technical necessity
for theoretically guaranteeing the expected active sensing performance (specifically, ε-
Bayes-optimality) of πε relative to that of π∗ [4].

2.4 Anytime ε-BAL (〈α, ε〉-BAL) Algorithm
Although πε can be derived exactly, the cost of deriving it is exponential in the lengthN
of planning horizon since it has to compute the values V εn(zD) (2) for all (S|X |)N possi-
ble states (n, zD). To ease this computational burden, we propose an anytime algorithm
based on ε-BAL that can produce a good policy fast and improve its approximation
quality over time. The key intuition behind our anytime ε-BAL algorithm (〈α, ε〉-BAL)
is to focus the simulation of greedy exploration paths through the most uncertain re-
gions of the state space (i.e., in terms of the values V εn(zD)) instead of evaluating the
entire state space like πε. Interested readers are referred to [4] for more details.

3 Experiments and Discussion
This section evaluates the active sensing performance and time efficiency of our 〈α, ε〉-
BAL policy π〈α,ε〉 empirically under using a real-world dataset of a large-scale traffic
phenomenon (i.e., speeds of road segments) over an urban road network; refer to [4]
for additional experimental results on a simulated spatial phenomenon. Fig. 1a shows
the urban road network X comprising 775 road segments in Tampines area, Singapore
during lunch hours on June 20, 2011. Each road segment x ∈ X is specified by a
4-dimensional vector of features: length, number of lanes, speed limit, and direction.
More details of our experimental setup can be found in [4]. The performance of our
〈α, ε〉-BAL policies with planning horizon length N ′ = 3, 4, 5 are compared to that of
APGD and IE policies [5] by running each of them on a mobile robotic probe to direct
its active sensing along a path of adjacent road segments according to the road network
topology. Fig. 1 shows results of the tested policies averaged over 5 independent runs:
It can be observed from Fig. 1b that our 〈α, ε〉-BAL policies outperform APGD and
IE policies due to their nonmyopic exploration behavior. Fig. 1c shows that 〈α, ε〉-
BAL incurs < 4.5 hours given a budget of N = 240 road segments, which can be
afforded by modern computing power. To illustrate the behavior of each policy, Figs. 1d-
f show, respectively, the road segments observed (shaded in black) by the mobile probe
running APGD, IE, and 〈α, ε〉-BAL policies with N ′ = 5 given a budget of N = 60.
Interestingly, Figs. 1d-e show that both APGD and IE cause the probe to move away
from the slip roads and highways to low-speed segments whose measurements vary
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(d) (e) (f)
Fig. 1. (a) Traffic phenomenon (i.e., speeds (km/h) of road segments) over an urban road network,
graphs of (b) root mean squared prediction error of APGD, IE, and 〈α, ε〉-BAL policies with
horizon length N ′ = 3, 4, 5 and (c) total online processing cost of 〈α, ε〉-BAL policies with
N ′ = 3, 4, 5 vs. budget of N segments, and (d-f) road segments observed (shaded in black) by
respective APGD, IE, and 〈α, ε〉-BAL policies (N ′ = 5) with N = 60.

much more smoothly; this is expected due to their myopic exploration behavior. In
contrast, 〈α, ε〉-BAL nonmyopically plans the probe’s path and direct it to observe the
more informative slip roads and highways with highly varying traffic measurements
(Fig. 1f) to achieve better performance.
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