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Abstract— This paper investigates the dynamic disclosure of
information in non-stationary environments. In particular, a
planner iteratively discloses information about the efficacy of
an immunizing booster shot that stochastically evolves over
time amid the long-run spread of an infectious disease whose
severity also varies over time. Each time period, a heterogeneous
population of agents uses the disclosed information to determine
whether they should obtain the booster shot, and then whether
to remain isolated or active. The central planner’s objective is
to ensure that the active population remains above a minimum
threshold each period. We characterize a Markov decision
process over the state of beliefs and how signalling mechanisms
act on them. We highlight the “greedy” disclosure rule which
provides the least amount of information possible subject
to the planner maximizing the likelihood of achieving the
active population threshold in the current period. Our results
demonstrate that the greedy disclosure rule becomes optimal
in finite time. We show this for settings where the population’s
belief over the booster’s efficacy becomes more pessimistic than
the belief required in the long-run.

I. INTRODUCTION

A. Motivation
Repetitively administering multiple vaccine doses or “boost-
ers” is a potent tool in mitigating long-run disease spread
in order to enable in-person activities. However, as diseases
mutate, boosters may require dynamic updates and could
become unsafe or less effective [1]. This makes it difficult
to persuade individuals to make use of boosters, especially
if the previous information they have collected suggests
that boosters are flawed. The COVID-19 outbreak renewed
interest in how information affects serial immunization and
social activity [2], [3], This paper investigates the use of
strategic dynamic information disclosure to shape public
beliefs and maintain desired activity levels over time. Each
time period, a central planner carefully designs stochastic
“experiments” that depend on the true uncertain booster
efficacy at that time. The experiments’ outcomes (i.e. signals)
are used by the population to update their existing beliefs
over the true booster efficacy in that time period. Planners
can thereby influence the population towards more desirable
beliefs and consequently desirable outcomes. Examples of
these experiments may include choosing to fund specific
types of studies that measure vaccine effectiveness or es-
tablishing rules that censor particular data sources.
B. Our work
In this paper, we consider a model where, each period, a unit
mass of strategic agents has the choice to be active or remain
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isolated amid disease spread. The active agents can choose to
take a booster shot at a cost to receive an additional level of
protection against the disease. The planner aims to ensure the
active population size remains above a specified threshold.
The disease’s infectiousness changes over time according to
finite Markov chain. Independent of this, the booster shot’s
efficacy also evolves according to a finite Markov chain. The
planner can provide information about the booster’s efficacy
in each period, but disclosing precise information in one
period limits the planner’s ability to shape agents’ beliefs in
future periods. Each period in our model practically could
correspond to the time length between the emergence of
new disease variants or booster technologies. We investigate
the optimal dynamic disclosure rule and identify which
signalling mechanisms the planner should optimally choose
in each period by solving a non-stationary Markov decision
process. Our work contributes to the literature by providing
new insights into the optimal design of dynamic information
for heterogenous agents in non-stationary environments such
as long-run disease transmission. Our technical contribution
includes a new strategy to identify the optimal dynamic
disclosure rule when the set of beliefs the planner seeks to
induce is non-stationary.

C. Literature Review

Information disclosure is the key tool we motivate as an
effective disease mitigation tool [4], [5]. Several works have
demonstrated the value of information disclosure as a means
to disrupt disease spread [6], [7]. The authors of [8] consider
a model of hybrid workers that we adapt by making dynamic
and by allowing agents to immunize with boosters.
Critically, in contrast to existing work on information disclo-
sure to mitigate disease spread, our model discloses informa-
tion about booster efficacy each period. Our work falls under
the subdomain of dynamic information disclosure which
requires planners to account for both the latent evolution
in uncertainty and the implications of information disclosed
in the present on future beliefs.
Several works provide insightful models into dynamic infor-
mation disclosure [9], [10], [11]. Most notably, [12] solves
for the optimal dynamic information disclosure rule for
forward-looking agents that choose when to halt a stochastic
process to match a switch in the uncertain binary state. By
contrast, agents in our setting continuously make decisions
and we consider Markovian dynamics on the uncertain pa-
rameter which has direct modelling applications for disease
evolution. Their results suggest that planners can delay in-
formation transmission to entice the agent to wait longer. We



recover a similar insight about keeping agents less informed
in our model as we show that planners defer information
disclosure when the current period reward is maximized.
Most closely related to our work, [13] presents a model with
a myopic receiver where the uncertain parameter also evolves
according to a Markov chain. Our work specifically im-
proves upon their results and this subdomain by considering
multiple heterogeneous agents and non-stationary objectives.
Our model has two sources of non-stationary uncertainty
– booster efficacy and disease infectiousness. Since beliefs
on both uncertain quantities impact agents’ actions, the
time-varying disease infectiousness creates a non-stationary
environment that cannot be captured in their setting. Using
distinct technical tools, our results analogously show the
robustness and optimality of the “greedy” mechanism that
minimizes information disclosure subject to maximizing the
current period reward.
More practically, various works studying disease severity
over time have shown that diseases mutate in favor of
continued survival which leads diseases to become easier
to transmit, but less deadly with time [14], [15]. Moreover,
the dynamic mutation of disease has empirically resulted in
changes to the efficacy of pharmaceuticals such as boosters
and vaccines [16]. Our model captures these features by
allowing the uncertain parameters and beliefs to drift latently
according to the Markov chain. Furthermore, the utility of
information disclosure has been practically motivated as [17]
and [18] have shown that communicating information about
the efficacy or safety of vaccines significantly influences the
adaptation of boosters and vaccines.
D. Outline
We outline the technical contributions of our work. In
Section II, we describe the model of our agents and the
evolution of both the disease infectiousness and the uncertain
booster efficacy. We formalize the signalling mechanisms
that the planner uses to disclose information to the agents
and describe the planner’s utility model.
In Section III, we compute a cutoff for the private benefit
from activity. At equilibrium, agents with values below the
cutoff isolate and agents with values above the cutoff are
active – either all with a booster or all without a booster
(Prop. 1). This enables us to compute the isolated mass in
terms of the beliefs over the effectiveness of the booster and
the infectiousness in the current period. We show that the
map between beliefs and the isolated mass and vice versa
are monotone and continuous (Lemmas 1, 2, 3).
Next, in Section IV, we characterize the value functions
mapping current beliefs to the total discounted sum of future
rewards. We show that the functions are concave (Prop. 2)
and that identifying the segments where the value function
is linear is sufficient to determine the optimal disclosure
rule (Lemma 4). We define the “greedy” disclosure rule
which discloses the minimal amount of information subject
to maximizing the current period reward. We show that,
after finite time, this disclosure rule becomes optimal for
perpetuity (Theorem 1 and Prop. 7).
Finally, in Section V, we provide a brief numerical compar-

ison of the greedy disclosure rule against fully-informative
and non-informative disclosure rules.
Due to space limitation, proofs are deferred to [19].

II. PROBLEM FORMULATION

A. Agent Model and Disease Evolution
We consider a dynamic model of agents’ decision-making
subject to information disclosure in the presence of an
infectious disease. The time horizon is discrete, indexed by
t = 1, . . . ,∞. In each period t, a unit-mass of myopic, risk-
neutral individuals (agents) face a choice between remaining
isolated (ℓR) or participating in a public activity with (ℓB)
or without (ℓS) taking a period-specific booster shot that
provides an uncertain level of added immunity to the disease
for that period only. The public location and activity are
general to a variety of practical settings such as working
in office spaces or stadium attendance for larger events.
The agents are supervised by a strategic, long-run central
planner that aims to manage the public activity level over
the entire time horizon. The myopicity of agents is justified
by the renewal of the population as in the case of stadium
attendance or the agents’ having shorter-term objectives than
that of the planner as in the case of work.
As is common in the literature, we model the infectious-
ness of the disease θt ∈ {θL, θH} using a two-state,
irreducible, homogeneous Markov chain with a commonly-
known transition matrix MΘ. In practice, new disease
variants periodically emerge with stochastically generated
mutations. The corresponding dynamics of the disease’s
infectiousness have been well-approximated by Markov
chains [20]. In an abuse of notation, denote the probabil-
ity of transitioning from θt = θj to θt+1 = θk by
(MΘ)jk := P[θt+1 = θk|θt = θj ]. The initial distribution
m◦

Θ =
[
P[θ1 = θL], P[θ1 = θH ]

]
is common knowledge

at the start of period t = 1. We denote ζΘ := (MΘ)HL,
νΘ := (MΘ)LH

(MΘ)HL
, and the stationary distribution of {θt}t≥1

by mΘ. We assume neither the agents nor the planner can
directly observe the initial value θ1 or any future states θt,
so the infectiousness is uncertain across time.
Agents receive a private benefit v from participating in the
activity (ℓB or ℓS), which is drawn from a commonly-known
distribution denoted by G supported on [0,M ] which we
assume for convenience is continuous with bounded, non-
zero density 0 < g

¯
≤ dG

dv ≤ ḡ. Agents that participate
in the activity incur a stochastic cost that depends on the
infectiousness of the disease in that time period θt and the
size of the isolated population yt (i.e. active population is
1 − yt). We model the infectious risk as being independent
of the fraction of the active population that is boosted, as
boosted agents may be partially immunized but are still
capable of disease transmission which poses a risk to others.
This stochastic cost incurred without a booster is denoted by
β(yt; θt).
Agents that receive the booster have their cost subsequently
dampened, in proportion to the efficacy of the booster in
that period, denoted by γt. The booster administered in this
period only provides the agent with protection in the current



period, as immunity is not carried over across periods.
Specifically, the cost incurred by agents who receive the
booster is (1−γt)β(yt; θt), however, they incur an additional
cost κ to acquire the booster. The utility of agents who
choose to remain isolated (ℓR) is zero. When indifferent
between any two choices, we assume that agents choose ℓB
over ℓS and ℓR, and choose ℓS over ℓR. Consequently, the
utilities of agents can be expressed as follows.

uv(ℓR, y
t; θt, γt) = 0 (1)

uv(ℓS , y
t; θt, γt) = v − β(yt; θt) (2)

uv(ℓB , y
t; θt, γt) = v − κ− (1− γt)β(yt; θt) (3)

Motivated by a simple epidemiological model of community
transmission (see [8]), we assume that this cost is linear in the
true state θt and decreasing in the mass of agents choosing
to remain isolated yt, and can be expressed as:

β(yt; θt) := θtc1(y
t) + c2(y

t), (4)

where c1, c2 : [0, 1] → R are publicly known functions with
following properties: (i) c1(1) = c2(1) = 0, c1(0) = C1,
c2(0) = C2; (ii) c1 is strictly decreasing and continuous;
and (iii) c2 is weakly decreasing and continuous.
We assume that the booster’s current efficacy γt ∈ {0, E}
for some commonly-known scalar 0 < E < 1 and that
the efficacy evolves over time according to a Markov chain
parameterized by a known stochastic transition matrix MΓ.
We denote the initial distribution by m◦

Γ and the stationary
distribution by mΓ. Moreover, denote ζΓ := (MΓ)E0 and
νΓ = (MΓ)0E

(MΓ)E0
.

In our model, the two stochastic processes {γt}t≥1 and
{θt}t≥1 are independent, i.e. {γt}t≥1 ⊥ {θt}t≥1. We
believe this to be a practical assumption when considering
settings where the technology used to develop boosters itself
changes across time periods or the genetic characteristics of
the disease change significantly from period to period.

B. Signalling
The central planner is a strategic entity and each period
implements a signaling mechanism to publicly disclose in-
formation only about the current efficacy of the booster γt

through a mechanism πt = ⟨It, {ztγ}γ∈{0,E}⟩. The set It is
an alphabet of signals, and ztγ are probability distributions
over It. Denote the set of all such signalling mechanisms
πt by the set Π. The disclosure of information in period t
occurs as follows. First, the planner commits to and discloses
a signaling mechanism πt ∈ Π. Next, the true state γt is
realized using the Markovian dynamics from the previous
state γt−1 with both states not directly observed by the agents
or planner. The corresponding probability distribution ztγt is
used to disclose a signal to all the agents; that is, it ∈ It

is publicly signaled with probability ztγt(it). Finally, agents
use the received signal to update their belief over the state γt

and make simultaneous choices about their choice of action
in {ℓR, ℓB , ℓS}.
We believe it practical for the planner to only convey infor-
mation about the booster efficacy and not the infectiousness

of the disease in any given period due to the comparative cost
in estimating both quantities dynamically. The infectiousness
of the disease is a parameter that both encapsulates the cost
of illness and the likelihood of transmission – both of these
quantities have high variance and are costly to estimate via
experiment. However, randomized control trials and studies
requiring limited samples can provide accurate estimates of
the efficacy of pharmaceutical interventions like boosters
[21].
Notationally, we distinguish between the public belief just
before and after the information it is disclosed in period
t. We express the agents’ beliefs prior to the revelation
of it by p

¯
t := P[γt = E | {ij}j≤t−1] Then, on re-

ceiving signal it ∈ It, the agents update their belief
p̄t := P[γt = E | {ij}j≤t] according to Bayes’ rule:

p̄t = P[γt = E | {ij}j≤t]

=
p
¯
tztE(i

t)

p
¯
tztE(i

t) + (1− p
¯
t)zt0(i

t)
(5)

To keep quantities notationally consistent, let peq := (mΓ)E .
Between periods, observe that the states evolve according to
known linear Markovian dynamics, so in each period t:

p
¯
t := ϕΓ(p̄

t−1)

= p̄t−1(MΓ)EE + (1− p̄t−1)(MΓ)0E

= peq + (1− νΓζΓ − ζΓ)(p̄
t−1 − peq) (6)

Analogously, we can express the beliefs over θt at any given
time by rt = P[θt = θH ] with req := (mΘ)H . Since
the manipulation of beliefs with respect to the disclosed
information does not affect rt, this is a known sequence over
time with rt → req . Precisely, independent of the chosen
{πt}:

rt := ϕΘ(r
t−1)

= req + (1− νΘζΘ − ζΘ)(r
t−1 − req) (7)

In this paper, we restrict to settings where
0 < νΘζΘ + ζΘ < 1 and 0 < νΓζΓ + ζΓ < 1
to study scenarios where the Markov chains update beliefs
in infectiousness and booster efficacy monotonically. Here,
r1 > req (resp. r1 < req) corresponds to settings when the
infectiousness is believed to be progressively getting weaker
(resp. stronger) on average over time. That is, rt is either
strictly decreasing or increasing in t.
The mechanism πt establishes a set of posterior distributions
for each signal with each posterior distribution incident with
a particular probability. We thus can equivalently represent
πt by a set of tuples {(qti , µt

i)i∈It} of the probability that
each signal i ∈ It is realized (qti ) and the posterior belief
on observing that signal (µt

i). Formally, for all i ∈ It:

qti := p
¯
t(0)zt0(i) + p

¯
t(E)ztE(i) [signal probability] (8)

µt
i :=

p
¯
t(E)ztE(i)

p
¯
t(0)zt0(i) + p

¯
t(E)ztE(i)

[posterior belief] (9)

The intuition of the representation is that the mechanism



equivalently sets p̄t = µt
i with probability qti . Since, µt

i

establishes a probability over a binary set, appealing to
the results of [22], all mechanisms in Π can be bijectively
mapped to the set of all tuples {(qi, µi)i∈I} such that
qi, µi ∈ [0, 1],

∑
i∈I qiµi = p

¯
t and

∑
i∈I qi = 1. As is

customary in the literature, we will refer to these as splittings
of the prior belief p

¯
t into posterior beliefs p̄t = µi with

weights qi [22].
C. Planner Objective
The planner’s aim is to manage the mass of the active pop-
ulation each period over the entire time horizon. Precisely,
the planner receives unit reward each period if and only if
the active population mass (ℓB and ℓS) lies in a compact
interval Y := [0, x] where 0 < x < 11. Practically, this can
be considered a capacity floor on the active population that is
externally mandated or estimated based on the needs of the
public location and activity. If the isolated population mass
lies outside this interval, the planner receives zero reward.
The planner discounts future periods by a factor δ so their
total utility is a discounted sum of all future rewards. This
utility is a function of the masses yt which represent the
aggregate choices agents make in response to the induced
beliefs p̄t in each period. These are generated as a function
of the planner’s choices {πt}t≥1 and the randomness in the
Markovian dynamics of {γt}t≥1. The planner’s utility is
evaluated on expectation over both sources of randomness.
For any initial belief r1 and p

¯
1, the planner utility equals:

Vδ,Y({πt}t≥1; r
1, p

¯
1) = E

[ ∞∑
t=1

(1− δ)δt−1I{yt ∈ Y}
]

To determine the planner’s optimal signalling mechanism
πt in period t, we recursively define value functions for
the forward utility starting from period t. We express the
current period reward using vY(p̄

t) := I{yt ∈ Y} since the
posterior belief in period t is used by agents to determine
their actions and the isolated mass in aggregate. The posterior
belief is a function of the planner’s mechanism πt since the
distribution over the beliefs p̄t that can be induced from p

¯
t

is specified by πt as in (9). Thus, in each period t, given the
current belief p

¯
t, the planner’s design problem is to maximize

value and determine the optimal signalling mechanism for
the given belief. We refer to the optimal mapping of beliefs
p
¯
t to signalling mechanisms as the optimal disclosure rule

πt
∗ ∈ Π:2

V t
δ,Y(p

¯
t) = max

πt∈Π
E[(1− δ)vY(p̄

t) + δV t+1
δ,Y (p

¯
t+1)] (10)

πt
∗(p

¯
t) ∈ argmax

πt∈Π
E[(1− δ)vY(p̄

t) + δV t+1
δ,Y (p

¯
t+1)] (11)

Observe that the setting we have described is a non-stationary

1Note that our design approach can be extended to more general sets
of desired isolated masses. We can, with mild adjustment, address unions
of intervals but for the sake of exposition we restrict to this family of
preferences.

2We can use max because V t
δ,Y is Lipschitz over p

¯
t, the expression in

braces of (10) is upper hemi-continuous w.r.t. p
¯
t in the weak-* topology

on Π, and Π is compact in that topology. We omit the details as they are
standard [13], [5].

Markov decision process where the planner’s state is repre-
sented by the tuple (t, p

¯
t). The action set can be represented

by the set of mechanisms Π, with rewards vY(µ
t
i) with

probability qti as dictated by the chosen mechanism πt ∈ Π,
and transitions from states (t, p

¯
t) to states (t + 1, ϕΓ(µ

t
i))

with probability qti .

III. EQUILIBRIUM CHARACTERIZATION

We use the solution concept of Bayes-Nash equilibrium to
characterize the outcome of agents’ choices in period t upon
receiving signal it as generated by the signaling mechanism
πt = {(qti , µt

i)i∈It}. We represent the equilibrium mass of
isolated agents in period t by y∗πt(it) which results from all
the myopic agents simultaneously making their choices under
the posterior belief p̄t = µt

it corresponding to it. We can rep-
resent the expected infectious cost faced by agents choosing
ℓS with the posterior belief rt and an active population of
1−w by β̃(w; rt) = c1(w)(r

t(θH − θL)+ θL)+ c2(w). The
following result shows that we can exactly characterize the
equilibrium in terms of these two quantities. At equilibrium,
the agents that choose to be active (ℓS and ℓB) will be those
that have the largest private benefits from G. Moreover, those
that will choose to be active will either all choose to take
booster (ℓB) or all elect to not do so (ℓS).

Proposition 1: For any signal it ∈ It realized by mech-
anism πt setting p̄t = µt

i, the equilibrium mass of isolated
agents y∗(it) = m(p̄t; rt) is given by the unique solution
w∗ ∈ [0, 1] to the following equation:

G−1(w) = min{β̃(w; rt), κ+ (1− p̄tE)β̃(w; rt)} (12)

Furthermore, at equilibrium, agents with private value
from being active v choose ℓB if v ≥ G−1(m(p̄t; rt))
and β̃(m(p̄t; rt); rt) ≥ κ + (1 − p̄tE)β̃(m(p̄t; rt); rt),
choose ℓS if v ≥ G−1(m(p̄t; rt)) and β̃(m(p̄t; rt); rt) <
κ + (1 − p̄tE)β̃(m(p̄t; rt); rt), and choose ℓR otherwise.

■
Leveraging Proposition 1, we can further identify the func-
tional relationship of how the parameters and beliefs gov-
erning the model affect the outcome. The following lemmas
show that the isolated mass in equilibrium is well-behaved
in response to the beliefs over the booster efficacy and the
infectiousness of the disease.

Lemma 1: For any rt ∈ [0, 1], the map m(p̄t; rt) is
continuous, bounded and weakly decreasing in p̄t. Moreover,
m(p̄t; rt) is Lipschitz continuous in p̄t.

Lemma 2: For any p̄t ∈ [0, 1], the map m(p̄t; rt) is
continuous, bounded and weakly increasing in rt. Moreover,
m(p̄t; rt) is Lipschitz continuous in rt.
These lemmas establish that the mapping between the belief
on the θt and γt and the isolated mass are continuous, mono-
tone mappings. We depict an example of such a function m in
Figure 1. The continuity of m implies that we can invert from
isolated agent masses y∗t to beliefs. Namely, observe that we
can define W(rt) = {p : m(p, rt) ∈ Y}. Since Y = [0, x]
and m is weakly decreasing in p, either m(1, rt) > x and
W(rt) = ∅, or there exists some W (rt) := inf{W(rt)} in
[0, 1] such that W(rt) = [W (rt), 1]. For convenience, we let



W (rt) = ∞ if W(rt) = ∅. The following lemma establishes
that W (·) also is weakly increasing.

Lemma 3: W (r) is weakly increasing in r and lo-
cally Lipschitz continuous over the interior domain
dom(W ) := {r : 0 < W (r) < 1}.
The previous lemma shows that the relationship between the
beliefs about the infectiousness of a disease and the set of
beliefs we need to induce on the booster efficacy for the
planner to achieve reward is monotone.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

p̄t

m(p̄t; r1)
m(p̄t; rt)
m(p̄t; req)

Fig. 1: m(p̄t; r) for different values of rt. G =
Unif [0, 10], E = 99

100 , θL = 4, θH = 16, r1 = 1
6 , r

t =
1
2 , r

eq = 2
3 , β(yt; θt) = θt(yt)2.

Moreover, Lemma 3 ensures that as the severity of the
disease increases, our ability to induce beliefs on the booster
to achieve a desirable outcome becomes more limited since
W(r) shrinks as r increases. This is evident in Figure 1, as
the domain of p̄t that map to any isolated mass m(p̄t; rt) in
[0, x] contracts as rt increases.
The local Lipschitz continuity of W (r) guarantees that the
set of beliefs in period t, W(rt) = [W (rt), 1] that we
need to induce in the booster effectiveness p̄t to achieve an
isolated mass y∗πt(it) in Y converges over time. If W(rt)
becomes ∅ eventually, we will not have this closure and
hence the planner can never induce beliefs that map to
the required active population in the long-run. Likewise,
if W (rt) converges to 0 or 1, trivial mechanisms become
necessary in the long-run and W will not be locally Lipschitz
at these limit points. Hence, in this paper we will ignore
these edge cases where W (req) = 0, 1, or ∞. With this
assumption, we can show that W preserves the convergence
we know we will observe in the belief rt.

Assumption 1: 0 < W (req) < 1
Corollary 1: Under Assumption 1, limt→∞ W (rt) →

W (req).

IV. OPTIMAL DISCLOSURE RULE
A. Structure of Value Functions
In order to characterize the optimal mechanism, we first
identify structural properties of the value functions specified
in (10) that are maximized when using πt

∗. In particular, the
shape of the value function V t

δ,Y provides insight into the
structure of πt

∗
We first show the following proposition which establishes the
concavity of the value function of the planner with respect
to the population’s belief over the booster’s efficacy.

Proposition 2: For all t ≥ 1, V t
δ,Y(p

¯
t) is concave in p

¯
t.

This result establishes a critical trade-off between the planner
disclosing information (i.e. splitting across multiple posterior
beliefs p̄t) to enhance their current stage reward vY(p̄

t) and
the cost of this information disclosure on the future value
functions V t+1

δ,Y . It suggests that if the planner is already
maximizing their current stage reward with the population’s
current belief p

¯
t, there is no need to divulge additional infor-

mation since it could lead to worse continuation payoffs in
future periods due to the concavity of future value functions.
To this end, we motivate the non-informative mechanism,
πNI(p

¯
t) = {(1, p

¯
t)}, which conveys no information and thus

does not affect the belief.
We consequently show in the following proposition that
πt
∗(p

¯
t) = πNI(p

¯
t) whenever vY(p

¯
t) = 1. The non-

informative mechanism πNI(p
¯
t) can be constructed by

choosing It = 1 as no information is conveyed on seeing
the only possible signal and on employing this mechanism
in period t, p̄t = p

¯
t with probability one. Similarly, if the

set of beliefs the planner seeks to induce with the signalling
mechanism W(rt) = ∅ (i.e. W (rt) = ∞), then regardless of
the initial belief p

¯
t ∈ [0, 1], the non-informative mechanism

maximizes the stage reward as no reward is possible. There-
fore, πt

∗(p
¯
t) = πNI(p

¯
t) as the non-informative mechanism

is optimal.
Proposition 3: For all t ≥ 1, if p

¯
t ≥ W (rt) or if

W (rt) = ∞, then πt
∗(p

¯
t) = πNI(p

¯
t).

Next, we further extend this insight by highlighting that
the current stage reward vY(p̄

t) is binary and consequently
necessitates only two signals at optimality. Namely, the
optimal signalling mechanism should generate two posterior
beliefs by using only two signals I = {a, b} – one that will
yield an outcome that maximizes the current period reward
(i.e. µt

a ≥ W (rt)), and one that yields an outcome that does
not achieve a current period reward (µt

b < W (rt)). Any ad-
ditional information revelation is suboptimal by Proposition
4. We standardize the posteriors so that for all t, It = {a, b}
and µt

b < W (rt), µt
a ≥ W (rt).

Proposition 4: For all t ≥ 1, if p
¯
t < W (rt), πt

∗(p
¯
t)

is based on It = {a, b} with µt
b ≤ p

¯
t < W (rt) and

µt
a ≥ W (rt).

Since the optimal disclosure rule specifies that a mechanism
need split into only two posteriors when p

¯
t < W (rt), we

need only specify the two posterior means µt
b and µt

a in
any period t for any given p

¯
t. Observe that qtb and qta

are implicitly defined as a result since qtb + qta = 1 and
qtbµ

t
b + qtaµ

t
a = p

¯
t.

We next analyze the recursive relationship between value
functions. We define the posterior value function in period t
to be V̄ t

δ,Y(p̄
t) := (1− δ)vY(p̄

t) + δV t+1
δ,Y (ϕΓ(p̄

t)). Observe
that these functions represent the value-to-go once the signal
it has already been realized. By the known Markovian update
between p

¯
t+1 = ϕΓ(p̄

t):

V t
δ,Y(p

¯
t) = max

πt∈Π
E[(1− δ)vY(p̄

t) + δV t+1
δ,Y (ϕΓ(p̄

t))]

= max
πt∈Π

E[V̄ t
δ,Y(p̄

t)] (13)



Thus, each point on the value function V t
δ,Y(p

¯
t) is equal

to largest possible linear average of points on the poste-
rior value function. Hence, V t

δ,Y(p
¯
t) must be the concave

envelope of the posterior value function V̄ t
δ,Y . Following

[23], we denote k(p) as the concave envelope of V t
δ,Y(p)

if k(p) ≥ V t
δ,Y(p) for all p ∈ [0, 1] satisfying the condition

that max { V t
δ,Y(p) − k(p) , k′′(p) } = 0 for all p.

Proposition 5: V t
δ,Y = conc(V̄ t

δ,Y) where conc(·) denotes
the concave envelope.
The previous proposition provides us with another formu-
lation to compute V t

δ,Y . We observe that this additional
formulation allows us to characterize the optimal disclosure
rule based on the shape of the value function V t

δ,Y , as on
intervals where V t

δ,Y is linear, the optimal disclosure rule
prescribes a mechanism πt

∗ that splits over the two posterior
beliefs at the endpoints of this linear interval.

Lemma 4: For all t ≥ 1, p < W (rt), suppose that πt
∗(p)

splits on µt
b ≤ p < W (rt) and µt

a ≥ W (rt), then V t
δ,Y(p

¯
t) is

linear on [µt
b, µ

t
a]. Furthermore, for all µt

a ≤ p ≤ µt
b, πt

∗(p)
splits on µt

b and µt
a.

This lemma provides us with a powerful insight into the
optimal disclosure rule. Under the optimal disclosure rule
πt
∗(p

¯
t), the posteriors µt

b and µt
a are fixed across different

values of p
¯
t < W (p

¯
t) since V t

δ,Y will have intervals where
V t
δ,Y is concave and coincides with V̄ t

δ,Y – here, the non-
informative mechanism is optimal. Otherwise, V t

δ,Y will have
intervals where it is linear and the posteriors chosen by
the optimal mechanism πt

∗ (µt
b and µt

a) are identical across
all p

¯
t in that interval. There can only be one such linear

segment since to the left of and to the right of W (rt), V̄ t
δ,Y

is already concave so no linear segment is added wholly
within [0,W (rt)) or [W (rt), 1]. Two such segments cannot
exist since they would necessarily coincide which leads to a
contradiction. Hence, the one set of posteriors µt

b and µt
a is

sufficient to describe πt
∗.

To see this more concretely, observe that for the non-
informative mechanism must be optimal for all p

¯
t ≥ W (rt),

conc(V̄ t
δ,Y) must coincide with V̄ t

δ,Y on that interval. How-
ever, as depicted in Fig. 2 and in Equation (13), there
is a sudden jump in the posterior value function V̄ t

δ,Y
at p

¯
t = W (rt). Therefore, by definition of the concave

envelope V t
δ,Y = conc(V̄ t

δ,Y), it must incorporate a non-
trivial, maximal interval where it is linear and strictly above
the posterior value function V̄ t

δ,Y – in fact, by Proposition
4 and Lemma 4, one end of the linear segment must lie
in W(rt) and the other end below it in order to cross this
discontinuity jump and concavify V̄ t

δ,Y . Thus, in order for the
posterior value function to coincide with its concave envelope
for p

¯
t ≥ W (rt), the linear segment of conc(V̄ t

δ,Y) must end
precisely at the posterior belief W (rt). However, by Lemma
4, this right endpoint of the interval where V t

δ,Y is linear is
the second posterior µt

a.
Proposition 6: If W (rt) ≤ 1 and p

¯
t < W (rt), there exists

an optimal mechanism πt
∗(p

¯
t) with µt

a = W (rt) for all t.
To summarize the insights on the optimal disclosure rule
thus far: (i) if p

¯
t ≥ W (rt) or W (rt) = ∞, we can choose

the optimal signalling mechanism πt
∗(p

¯
t) = πNI(p

¯
t); (ii)

p
¯
t

ϕ−1
Γ (0) ϕ−1

Γ (1) 1

V t+1
δ,Y

p̄t
W (rt) 1

V̄ t
δ,Y (V t

δ,Y)

Fig. 2: V t+1
δ,Y (red, on left), V̄ t

δ,Y (red, on right), and
V t
δ,Y = conc(V̄ t

δ,Y) (blue, on right).

if p
¯
t < W (rt), we need to only specify the posterior belief

µt
b < p

¯
t as an optimal signalling mechanism exists that has at

most two posteriors with one of them being µt
a = W (rt). In

fact, µt
b is fixed across the disclosure rule πt

∗ since by Lemma
4, if p

¯
t ≤ µt

b or if p
¯
t ≥ W (rt), then πt

∗(p
¯
t) = πNI , and

otherwise if µt
b < p

¯
t < W (rt), the disclosure policy chooses

πt
∗(p

¯
t) = {(W (rt)−p

¯
t

W (rt)−µt
b
, µt

b), (
p
¯
t−µt

b

W (rt)−µt
b
,W (rt)}. Hence, all

that remains to determine the optimal disclosure rule across
time is to solve for the optimal sequence {µt

b}t≥1.
B. Optimality of Greedy Disclosure Rule
Our results in Section IV-A establish that the planner seeks to
disclose as little information as they can due to the concavity
of their value functions. We now formalize the greedy
disclosure rule at time t which simultaneously provides as
little information as possible and maximizes the current
period reward. Observe that this is achieved by splitting into
posterior beliefs µt

b = 0 and µt
a = W (rt), as intuitively

W (rt) is the closest belief we can induce to achieve the
current period reward. Moreover, by pushing µt

b to 0, we
maximize the probability qta that we induce a posterior belief
leading to a reward. 3

Definition 1: The greedy disclosure rule πt
†(p

¯
t) is such

that if p
¯
t ≥ W (rt) or W (rt) = ∞ then πt

†(p
¯
t) = πNI(p

¯
t).

If p
¯
t < W (rt), πt

†(p
¯
t) = {( p

¯
t

W (rt) ,W (rt)), (
W (rt)−p

¯
t

W (rt) , 0)}.
We seek to show that the greedy disclosure rule will

become optimal after some finite amount of time. We can
directly comment on the quality of the greedy disclosure
rule against the optimal disclosure rule as specified by
the optimal sequence {µt

b}t≥1. Observe the greedy disclo-
sure rule chooses posterior beliefs 0 and W (rt) whenever
p
¯
t < W (rt) ≤ 1.

Here, we only focus on the most interesting case where
peq < W (req). Observe that, if peq > W (req), the
Markovian drift on the beliefs under no information will
translate p

¯
1 to p

¯
t = ϕ

(n−1)
Γ (p

¯
1) and, that for some finite

n, p
¯
t′ ≥ W (req) for all t′ ≥ n. Hence, without any

3This mechanism is unique and exists strictly because the state space of
the uncertainty set is of size two.



Fig. 3: Diagram of the two cases described in Theorem 1.

intervention, the planner will eventually begin using no infor-
mation and collecting the period rewards for perpetuity. The
planner’s problem when peq < W (req) is consequently of
more direct interest, and we show that the greedy disclosure
rule eventually becomes optimal in finite time. In fact, we
can show that the greedy disclosure rule eventually becomes
optimal once the planner cannot guarantee a reward in the
next period by providing no information when he does not
earn a reward in the current period by doing so (i.e. we
require ϕΓ(W (rt)) ≤ W (rt+1)).

Theorem 1: If peq < W (req), subject to Assumption 1,
the following holds:
(a) If rt is increasing, then πt

∗ = πt
† for all t > t† where

t† = sup { t : W (rt) < peq} < ∞.
(b) If rt is decreasing, then πt

∗ = πt
† for all t > t† where

t† = sup { t : ϕΓ(W (rt)) > W (rt+1)} < ∞.
We depict both cases graphically in Fig. 3. The theorem
affirms that the optimal disclosure rule for a planner even-
tually becomes the greedy disclosure rule, which seeks to
minimize information sharing while maximizing the current
period reward. Specifically, this property holds when the
beliefs p

¯
t move away from the equilibrium belief set W (req).

In practice, when individuals grow more pessimistic about
the booster’s efficacy over time and converge to a belief that
is more pessimistic than required for the desired outcome,
the planner best maximizes their utility by greedily inducing
the belief with maximum probability that achieves the easiest
outcome in Y (i.e. achieving the threshold y∗t = x).
The intuition of the optimality of the greedy mechanism is
as follows. If a posterior µt

b slightly larger than 0 is chosen,
the advantage is that if signal b is drawn by the mechanism,
the planner starts the next period at p

¯
t+1 = ϕΓ(µ

t
b) where

ϕΓ(0) < ϕΓ(µ
t
b) < W (rt). However, because beliefs further

away from peq converge to peq faster under Markovian
dynamics, |ϕΓ(µ

t
b)−ϕΓ(0)| ≤ |µt

b−0|, so the positive effect
is counteracted by the more rapid mixing of the Markov
chain. The key disadvantage of choosing µt

b > 0 is that we
are limited to smaller weights qta on beliefs µt

a that induce
current period rewards. Therefore, intuition suggests that we

should maximize the current period reward since not doing
so comes at a minimal cost.
Observe that the greedy disclosure rule will only pro-
vide informative signals when p

¯
t < W (rt) and since

peq ≤ W (req), eventually the beliefs ϕΓ(W (rt)) will
always shift out of the beliefs necessary in the next period
W(rt+1). If p

¯
t < W (rt), the greedy disclosure rule will

optimistically generate posterior beliefs p̄t = W (rt) in any
period t, and then the Markov chain updates the next period’s
initial belief to p

¯
t+1 = ϕΓ(W (rt)) /∈ W(rt+1). Thus, every

period for perpetuity, the planner must provide informative
signalling. This mimics something closer to practical settings
where planners cannot abstain from providing information
for perpetuity.
The previous theorem does not provide guidance on the
optimal strategy πt

∗ in the interim when t ≤ t†. Generally,
as we discuss in more detail in the proof of Theorem 1,
since t† is finite, this can be solved efficiently using dynamic
programming since the value functions V

t†
δ,Y can be easily

computed and backtracking at each point in time t ≤ t†, we
need only consider a finite number of possible µt

b.
The main technical challenge preventing stronger guarantees
on the optimality of greedy disclosure is that W is only
locally Lipschitz without added structure imposed on G
(which simplifies m and consequently W ). Therefore, the
relationship between the beliefs required in the next period
compared to the current period is monotone, but lacking
further insight. However, the following proposition shows
that under some mild regularity on δ and the mixing rate
imposed by ϕΓ, we can guarantee that the greedy disclosure
rule is optimal even in the interim periods t ≤ t†.

Proposition 7: If δ ≤ minj≤t≤t†
ϕ−1
Γ (W (rt+1))

W (rt) , then
πt
∗ = πt

† for all t ≥ j.
Specifically, this proposition states that if the planner is
sufficiently impatient and discounts significantly, then the
greedy disclosure rule is optimal. This is intuitive as the
planner should be more willing to take a gamble of only
securing a current period reward with the maximal prob-
ability qta rather than ensuring a reward next period by
choosing non-informative signalling. Likewise, suppose that
rt is decreasing, then observe that if ϕΓ mixes faster (i.e.
1− νΓζΓ− ζΓ is small) then ϕ−1

Γ (W (rt+1)) becomes larger.
Therefore, when ϕΓ mixes fast, the possibility of the planner
guaranteeing rewards in the next period dissipates since
the population belief on the booster quickly moves close
to peq which is outside W(rt). Therefore, in practice, the
viability of the greedy disclosure rule is most robust when
the population beliefs quickly converge to stationary beliefs
and planners are also operating on shorter time horizons.

V. NUMERICAL STUDY
We present a brief numerical comparison of the total dis-
counted reward sum Ṽ (p

¯
1;π) :=

∑∞
t=1 δ

t−1(1 − δ)vY(p̄
t)

that the planner accrues under the greedy disclosure rule
π = π† as opposed to under the non-informative dis-
closure rule (πt = πNI for all t) and under the fully
informative disclosure rule (πt = πFI for all t where



πFI = {(p
¯
t, 1), (1 − p

¯
t, 0)}). Fully-informative disclosure

directly reveals the state of γt in each period t. In Figure
4, we plot the numerical estimates of Ṽ (p

¯
1;π) under each

of the three disclosure rules. Appealing to Proposition 7, the
optimal disclosure rule coincides with the greedy disclosure
rule in both these settings for t ≥ 1, so Ṽ (p

¯
1;π†) is equal

to the value function V 1(p
¯
1). In both settings presented

peq < W (req), but in case (i) rt is increasing and
in case (ii) rt is decreasing. The greedy disclosure rule
strictly dominates both benchmarks for all initial beliefs p

¯
1.

Moreover, we can demonstrate that the greedy disclosure rule
not only outperforms the benchmarks on expectation but can
also do so on an instance level [19]. By design, the greedy
disclosure rule is minimizing information sharing subject
to maximizing the current period reward, so the greedy
disclosure rule also outperforms these two mechanisms by
achieving weakly higher period rewards in every period.
Observe that the greedy value function is piecewise linear in
the initial belief p

¯
t, as the strategy involves splitting across

µ1
b = 0 and µ1

a = W (r1). The dominance of the greedy
disclosure rule across both settings in Fig. 4 affirm the value
of greedy information disclosure.

(i)

p
¯
1

1

0.2

0.4

0.6

0.8

1

π†
πFI
πNI

(ii)

p
¯
1

1

0.2

0.4

0.6

0.8

1

Fig. 4: Discounted sum of rewards, Ṽ (p
¯
1;π), under the same

parameters as Fig. 1 with δ = 0.8, peq = 0.2, x = 0.35 and
(1 − νΘζΘ − ζΘ) = (1 − νΓζΓ − ζΓ) = 0.8. For case (i),
r1 = 0.5; and for case (ii), r1 = 0.8.

VI. CONCLUDING REMARKS

In this paper, we introduced a model to study optimal
dynamic information disclosure over booster efficacy amid
non-stationary disease infectiousness. Our model captures
two novel features: (a) heterogeneous agents making strategic
decisions to trade-off activity against the infectious risks
with or without a booster; (b) a non-stationary environment
where the planner’s value from inducing certain beliefs over
booster efficacy varies as the infectiousness changes over
time. We provided a complete description of the strategic
equilibrium as a function of beliefs over booster efficacy.
We also show that greedy disclosure eventually coincides
with the optimal disclosure rule. Future work should examine
how the optimal disclosure rule changes when the changes in
disease infectiousness and booster efficacy are correlated.
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