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We provide algorithms for regression with adversarial responses under
large classes of non-i.i.d. instance sequences, on general separable metric
spaces, with provably minimal assumptions. We also give characterizations
of learnability in this regression context. We consider universal consistency
which asks for strong consistency of a learner without restrictions on the
value responses. Our analysis shows that such an objective is achievable for
a significantly larger class of instance sequences than stationary processes,
and unveils a fundamental dichotomy between value spaces: whether finite-
horizon mean estimation is achievable or not. We further provide optimisti-
cally universal learning rules, i.e., such that if they fail to achieve universal
consistency, any other algorithms will fail as well. For unbounded losses, we
propose a mild integrability condition under which there exist algorithms for
adversarial regression under large classes of non-i.i.d. instance sequences. In
addition, our analysis also provides a learning rule for mean estimation in
general metric spaces that is consistent under adversarial responses without
any moment conditions on the sequence, a result of independent interest.

1. Introduction.

1.1. Motivation and background. We study the classical statistical problem of metric-
valued regression. Given an instance metric space (X', px) and a value metric space (Y, py)
with a loss ¢, one observes instances in X’ and aims to predict the corresponding values in ).
The learning procedure follows an iterative process where successively, the learner is given
an instance X; and predicts the value Y; based on the historical samples and the new in-
stance. The learner’s goal is to minimize the loss of its predictions Y, compared to the true
value Y;. In particular, Y = {0, 1} (resp. Y = {0, ..., k}) with 0-1 loss corresponds to binary
(resp. multiclass) classification while ) = R corresponds to the classical regression setting.
Motivated by the increase of new types of data in numerous data analysis applications—
e.g., data lying on spherical spaces [8, 29], manifolds [34, 10, 14], Hilbert spaces [38],
Hadamard spaces [26]—we will study the case where both instances and value spaces are
general separable metric spaces. This general setting adopted in the recent literature on uni-
versal learning [21, 9, 2] includes and extends the specific classification and regression set-
tings mentioned above. In this context, we model the stream of data as a general stochastic
process (X,Y) := (X¢,Y;)r>1, and are interested in consistent predictions that have vanish-
ing average excess loss compared to any fixed measurable predictor functions f: X — ),
e, 75,4 U(Y3,Y;) — 0(f(Xy),Ys) — 0 (a.s.). Naturally, one would hope that the algo-
rithm converges for a large class of value functions. Thus, we are interested in universally
consistent learning rules that are consistent irrespective of the value process Y.

The i.i.d. version of this problem where one assumes that the sequence (X,Y) is i.i.d.
has been extensively studied. A classical result is that for binary classification in Euclidean
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spaces, k—nearest neighbor (KNN) with k/InT" — oo and k/T — 0 is universally consistent
under mild assumptions on the distribution of (X1,Y7) [37, 11, 12]. These results were then
extended to a broader class of spaces [12, 17] and more recently, [24, 20, 9] provided univer-
sally consistent algorithms for any essentially separable metric space X which are precisely
those for which universal consistency is achievable for i.i.d. pairs (X¢,Y;):>1 of instances
and responses. In parallel, a significant line of work aimed to obtain such results in non-i.i.d.
settings, notably relaxations of the i.i.d. assumptions such as stationary ergodic processes
[31, 18, 17] or processes satisfying the law of large numbers [30, 16, 36].

1.2. Optimistic universal learning. In this work, we aim to understand which are the
minimal assumptions on the data sequences for which universal consistency is still achiev-
able. As such, we follow the optimistic decision theory [22] which formalizes the paradigm
of “learning whenever learning is possible". Precisely, the provably minimal assumption for a
given objective is that this task is achievable, or in other words that learning is possible. The
goal then becomes to 1. characterize for which settings this objective is achievable and 2. if
possible, provide learning rules that achieve this objective whenever it is achievable. These
are called optimistically universal learning rules and enjoy the convenient property that if
they failed the objective, any other algorithms would fail as well.

1.3. Related works in universal learning. This paradigm was recently used to study min-
imal assumptions for the noiseless (realizable) case where there exists an unknown underly-
ing function f*: X — ) such that Y; = f*(X;) [22]. In this setting, the two questions de-
scribed above were recently settled. For bounded losses, a simple variant of the nearest neigh-
bor algorithm is optimistically universal [3, 2] and learnable processes are significantly larger
than stationary processes. On the other hand, for unbounded losses, universal regression is
extremely restrictive since the only learnable processes are those which visit a finite number
of points almost surely [4]. Yet, the general non-realizable setting was not characterized. As
an initial result, for bounded losses, [23] proposed an algorithm that achieves universal con-
sistency for a large class of processes X, which intuitively asks that the sub-measure induced
by empirical visits of the input sequence be continuous. There is however a significant gap
between the proposed condition and the learnable processes in the bounded noiseless setting.
[23] then left open the question of identifying the precise provably-minimal conditions to
achieve consistency, and whether there exists an optimistically universal learning rule.

1.4. Adversarial responses and related works in learning with experts. The consistency
results in [23] hold for arbitrary value processes Y, arbitrarily correlated to the instance pro-
cess X. We consider the slightly more general adversarial responses and show that we can ob-
tain the same results as for adversarial processes, without any generalizability cost. Formally,
adversarial responses can not only arbitrarily depend on the instance sequence X, but may
also depend on past predictions and past randomness used by the learner. This is a non-trivial
generalization for randomized algorithms—note that randomization is necessary to obtain
guarantees for general online learning problems [5, 35]. There is a rich theory for arbitrary
or adversarial responses ) when the reference functions f* : X — ) are restricted to specific
function classes F. As a classical example, for the noiseless binary classification setting,
there exist learning rules which guarantee a finite number of mistakes for arbitrary sequences
X, if and only if the class F has finite Littlestone dimension [27]. Other restrictions on the
function class have been considered [7, 1, 32]. Universal learning diverges from this line of
work by imposing no restrictions on function classes—namely all measurable functions—but
instead restricting instance processes X to the optimistic set where universal consistency is
achievable. Nevertheless, the algorithms we introduce for adversarial responses use as sub-
routine the traditional exponentially weighted forecaster for learning with expert advice from
the online learning literature, also known as the Hedge algorithm [28, 6, 15].
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1.5. Contributions. In this paper, we provide answers to two fundamental questions in
universal regression. First, we exactly characterize the set of processes we call learnable.
These are instance processes X for which universal learning is possible, i.e., consistency is
achieved for every process (X¢, Y:):>1 with covariate sequence X. Second, we provide opti-
mistically universal learning rules, i.e., a unique algorithm that achieves universal consistency
for all processes X for which this is achievable by some learning rule. The specific answers
to these questions depend on the value space and loss (), ¢) as detailed below.

1.5.1. Universal learning with empirically integrable responses. We introduce a mild
moment-type assumption on the responses Y, namely empirical integrability, that roughly
asks that one can bound the tails of the empirical first moment of Y. We then proceed to
analyze the processes for which learning adversarial responses guaranteed to satisfy this as-
sumption, is achievable. The answer depends on a property of the value space and loss (), ¢)
which we denote F-TiME.

o If every ball By(y,r) of (V,¢) satisfies the F-TiME property, the class of processes X
for which universal consistency under adversarial empirically integrable responses may be
achieved is the so-called Sublinear Measurable Visits (SMV) class. This coincides with the
class of processes that admits universal learning for bounded losses in the realizable setting
(noiseless responses) [2]. In particular, this shows that for value spaces with bounded losses
satisfying F-TiME, one can extend consistency results from the realizable setting to the
adversarial one at no generalizability cost.

* Otherwise, the classes of processes X for which one can achieve universal consistency for
empirically integrable responses is a smaller class called Continuous Submeasure (CS).
This is a condition that was already considered by [23], which showed that for bounded
metric losses, one can achieve universal learning under CS processes. Our results show that
whenever the F-TiME condition is not satisfied for bounded losses, CS is also a necessary
condition for universal learning.

Also, in both cases, we give an optimistically universal learning rule, that is implicit for the
first case—it uses as subroutine the learning rule for mean-estimation—and explicit for the
second. These results resolve an open question from [23].

Intuitively, the property F-TiME asks that, for any fixed tolerance € > 0, there is a learning
rule that solves the analogous prediction problem without covariates X—mean-estimation—
in finite time within the tolerance e. This property is satisfied for “reasonable” value spaces,
e.g., totally-bounded spaces or countably-many-classes classification (N, £y;), but we also
provide an explicit example of bounded metric space that does not satisfy this condition.

To motivate the introduction of the empirical integrability condition we show that a weaker
moment-type assumption on responses—that lim supy_, . % Zthl L(yo,Y:) < ¢ (a.s.) for
some yo € Y—is not sufficient to extend the results from the bounded loss case to unbounded
losses, resolving an open question from [4]. Further, empirical integrability is essentially
necessary to obtain consistency results: it is automatically satisfied if the loss is bounded and
for the i.i.d. setting it exactly asks that responses Y have finite first moment.

As a direct implication of this work, finite second moment E[Y?] is sufficient to achieve
consistency for stationary ergodic processes. This result relaxes the conditions of all past
works to the best of our knowledge, which required finite fourth moment E[Y4] [19].

1.5.2. Universal learning with unrestricted responses. For completeness, we also char-
acterize the set of learnable processes without assuming empirical integrability on responses.
Since the two notions coincide for bounded losses, we focus on unbounded losses. While
there always exists an optimistically universal learning rule, the precise class of universally
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learnable processes depends on an alternative involving the mean-estimation problem. Either
mean-estimation on (), ¢) is impossible and universal learning is never achievable, or uni-
versal learning is achievable for processes that only visit a finite number of distinct points,
a property called Finite Support (FS). Along the way, we show that mean-estimation with
adversarial responses is always possible for metric losses, a result of independent interest.

1.6. Organization of the paper. After presenting the learning framework and definitions
in Section 2, we describe in Section 3 our main results. Although these are stated for general
value spaces under the empirical integrability constraint, the proofs build upon the bounded
loss case. We follow this proof structure: in Section 4 we consider totally-bounded value
spaces for which we can give explicit optimistically universal learning rules, in Section 5 we
consider general bounded loss spaces. We then turn to unbounded and mean estimation in
Section 6. Last, in Section 7 we introduce the empirical integrability and prove our general
results for unbounded losses. We discuss open directions in Section 8.

2. Formal setup. We provide the necessary definitions, concepts and conditions.

2.1. Instance and value spaces. Consider a separable metric instance space (X, px)
equipped with its Borel oc—algebra BB, and a separable metric value space (Y, py) given
with a loss £. We recall that a metric space is separable if it contains a dense countable set.
Unless mentioned otherwise, we suppose that the loss is a power of a metric, i.e., there ex-
ists a > 1 such that the loss is £ = (py)®. As a remark, all of the results in this work can
be generalized to essentially separable metric instance spaces, a condition introduced by
[24] which was shown to be the largest class of metric spaces for which learning possible.
However, for the sake of exposition, we restrict ourselves to separable metric spaces. We
denote ¢ := SUDPy, 4oy 2(y1,y2). In the first Sections 4 and 5 of this work, we suppose that
the loss ¢ is bounded, i.e., ¢ < co. The case of unbounded losses is addressed in the next sec-
tions 6 and 7. We also introduce the notion of near-metrics for which we will provide some
results. We say that £ is a near-metric on ) if it is symmetric, satisfies ¢(y,y) = 0 for all
y € ), forany y' #y €Y we have £(y,y’) > 0, and it satisfies a relaxed triangle inequality
y1,y2) < ce(€(yr,ys3) + €(y2,y3)) where ¢y is a finite constant.

2.2. Online learning on adversarial responses. We consider the online learning frame-
work where at step ¢ > 1, one observes a new instance X; € X and predicts a value fﬁg ey
based on the past history (X, Y, )u<¢—1 and the new instance X; only. The learning rule may
be randomized, where the private randomness used at each iteration ¢ is drawn from a fixed
probability space R and independent of the data generation process used to generate Y.

DEFINITION 2.1.  An online learning rule is a sequence f. := { fi, R }+>1 of measurable
functions f; : R x X1 x Y-l x x¥ =Y together with a distribution R; on R.

The prediction at time ¢ of f. is fi(r; (Xu)<t—1, (Yu)<t—1, X¢) where ry ~ Ry is indepen-
dent of the new value X; and the past history (X,,Y,)<:. For simplicity, we may omit the
internal randomness 7; and write directly f; : X t=1 s yt=1 « X — ). We are interested in
general data-generating processes. To this means, a possible very general choice of instances
and values are general stochastic processes (X,Y) := {(X¢,Y;)}+>1 on the product space
X x Y. This corresponds to the arbitrarily dependent responses under instance processes X
[23]. In this work, we consider the slightly more general adversarial responses where the
value Y; is also allowed to depend on the past private randomness (7,),<¢—1 used by the
learning rule f..
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DEFINITION 2.2. Let X = (X}):>1 be a stochastic process on X. An adversarial re-
sponse mechanism on X is a stochastic process {(X;,Y¢)}¢>1 where X, € X, Y, =Y (- | )
is a Markov kernel from R*~! to ), and (X¢t)¢>1 has same distribution as X.

For a given learning rule f., having observed the sampled randomness 71,...,7.—1 € R
used by the learning rule before time ¢, the target value at time ¢ is Y; = Y(r1,...,7—1).
Again, for simplicity, we will refer to the adversarial response mechanism as Y, which allows
us to view the data generating process as a usual stochastic process on X' x ). Of course, if
the learning rule is deterministic, adversarial responses are equivalent to arbitrary dependent
responses as in [23], but this is not necessarily the case for general randomized algorithms.

2.3. Empirically integrable responses. We introduce a novel assumption on the re-
sponses, namely empirical integrability.

DEFINITION 2.3. A process (Y;):>1 is empirically integrable if there exists yg € ) such
that for any € > 0, almost surely there exists M > 0 for which

T
limsup — 25 (Y0, Ye) Lo(yo,vi) > < €

T—oo t 1

Unless mentioned otherwise, we will focus on the case where responses satisfy this prop-
erty. This is a mild assumption on the responses. Indeed, it is worth noting that this condition
is always satisfied if the loss ¢ is bounded. Further, if for some yo € Y, ¢(yo,Y:) admits
moments of order p > 1, the empirical integrability condition is also satisfied.

2.4. Universal consistency. In this general setting, we are interested in online learning
rules which achieve low long-run average loss compared to any fixed prediction function for
general adversarial mechanisms. Given a learning rule f. and an adversarial process (X,Y),
for any measurable function f*: X — ), we denote the long-run average excess loss as

Lx,yy(f., f*) = limsup Z (fr(Xpm1, Y1, Xy), Ye) — (5 (X4), V7)) -

T—o0

We can then define the notion of consistency which asks that the excess loss compared to any
measurable function vanishes to zero.

DEFINITION 2.4. Let (X,Y) be an adversarial process and f. a learning rule. f. is con-
sistent under (X, Y) if for any measurable function f*: X — ), we have L(x vy(f., f*) <
0, (a.s.).

For example, if (X,Y) is an i.i.d. process on X x ) following a distribution p where p
has a finite first-order moment, achieving consistency is equivalent to reaching the optimal
risk R* := inf - E(x y)~p [0(f*(X),Y)], where the infimum is taken over all measurable
functions f*: X — y As introduced in [22, 23], consistency against all measurable function
is the natural extension of consistency for i.i.d. processes (X,Y) to non-i.i.d. settings. The
goal of universal learning is to design learning rules that are consistent for any adversarial
process Y that is empirically integrable.

DEFINITION 2.5. Let X be a stochastic process on X’ and f. a learning rule. f. is univer-
sally consistent under X for empirically integrable adversarial responses if for any adversarial
process (X,Y) with X ~ X and such that Y is empirically integrable, f. is consistent.



2.5. Optimistic universal learning. Given this regression setup, we define SOLAR
(Strong universal Online Learning with Adversarial Responses) as the set of processes X
for which universal consistency with adversarial responses is achievable,

SOLAR = {X: 3. universally consistent learning rule under X
for empirically integrable adversarial responses}.

Note that this learning rule is allowed to depend on the process X. Similarly, in the realiz-
able (noiseless) setting, one can define the set SOUL (Strong Online Universal Learning) of
processes for which there exists a learning rule that is universally consistent for realizable re-
sponses when the loss is bounded (and hence, the empirical integrability condition is always
satisfied). Of course, SOLAR C SOUL. We are then interested in learning rules that would
achieve universal consistency whenever possible.

DEFINITION 2.6. A learning rule f. is optimistically universal for adversarial regression
with empirically integrable responses if it is universally consistent under all X € SOLAR for
adversarial empirically integrable responses.

Similarly, we say that a learning rule is optimistically universal for noiseless regression
if it is universally consistent under all X € SOUL for noiseless responses when the loss is
bounded. In this general framework, the main interests of optimistic learning are 1. identify-
ing the set of learnable processes with adversarial responses SOLAR, 2. determining whether
there exists an optimistically universal learning rule, and 3. constructing one if it exists.

REMARK 2.7. Except for Section 6.1 in which we assume that the loss is a metric a = 1,
one can generalize our results to any symmetric and discernible losses ¢ such that for any 0 <
e < 1, there exists a constant ¢, such that for all y1,y2,y3 € Y, £(y1,92) < (1 +€)l(y1,y3) +
cel(y2,y3). Without loss of generality, we can further assume that c, is non-increasing in
e. This is a stronger assumption than having a near-metric ¢, for which we also give some
results in Section 4 and 7.

3. Main results. We introduce some conditions on stochastic processes. For any process
X on X, given any measurable set A € B of X, let jix(A) := limsupy_,q, 7 23:1 1a4(Xy).
We consider the condition CS (Continuous Sub-measure) defined as follows.

Condition CS: For every decreasing sequence {Ay}7° | of measurable sets in X with
Ar 10, E[ix(Ag)] — 0.

k—o0
It is known that this condition is equivalent to E[/ix(-)] being a continuous sub-measure

[22], hence the adopted name CS. Importantly, CS processes contain in particular i.i.d.,
stationary ergodic or stationary processes. We now introduce a second condition SMV (Sub-
linear Measurable Visits) which asks that for any partition, the process X visits a sublinear
number of sets of the partition.

Condition SMV: For every disjoint sequence {Ay}7° | of measurable sets of X with
Ury Ax = X, (every countable measurable partition),

Hk>1: 4, NXcr #0} =0(T), (a.s.).

This condition is significantly weaker and allows to consider a larger family of processes
CS C SMV, with CS C SMV whenever & is infinite [22]. Note that these sets depend on
the instance space (X, py). This dependence is omitted for simplicity. We first consider
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bounded losses. In the noiseless case, where there exists some unknown measurable func-
tion f*: X — ) such that the stochastic process Y is given as Y; = f*(X;) for all £ > 1,
[2] showed that learnable processes are exactly SOUL = SMV for bounded losses. [2] also
introduced a learning rule 2-Capped-1-Nearest-Neighbor (2C1NN), variant of the classical
INN algorithm, which is optimistically universal in the noiseless case for bounded losses.
Interestingly, we show that this same learning rule is universally consistent for unbounded
losses in the noiseless setting with empirically integrable responses.

THEOREM 3.1. Let (Y,¢) be a separable near-metric space. Then, 2CINN is optimisti-
cally universal in the noiseless setting with empirically integrable responses, i.e., for all pro-
cesses X € SMV and for all measurable target functions f*: X — Y such that (f*(X))e>1
is empirically integrable, Lx (+(x,)),,)(2C1INN, f*) =0 (a.s.).

In general, one has SOLAR C SMV. It was posed as a question whether we could recover
the complete set SMV for learning under adversarial—or arbitrary—processes [23].

Question [23]: For bounded losses, does there exist an online learning rule that is univer-
sally consistent for arbitrary responses under all processes X € SMV (= SOUL)?

We answer this question with an alternative. Depending on the bounded value space (), £),
either SOLAR = SMV or SOLAR = CS, but in both cases there exists an optimistically uni-
versal learning rule. We now introduce the property F-TiME (Finite-Time Mean Estimation)
on the value space (), ) which characterizes this alternative.

Property F-TiME: For any 1 > 0, there exists a horizon time T, > 1, an online learning
rule g<r, such that for any y := (yt)ZL of values in ) and any value y € ), we have

T,

E Zg(gt(’ygt—l)vyt)—f(yayt) <.
t=1

1
T

We are now ready to state our main results for bounded value spaces. The first result
shows that if the value space satisfies the above property locally, we can universally learn all
the processes in SOUL even under adversarial responses.

THEOREM 3.2. Suppose that any ball of (V,¢), By(y,r) satisfies F-TiME. Then,
SOLAR = SMV and there exists an optimistically universal learning rule f. for adversarial
regression with empirically integrable responses., i.e., such that for any stochastic process
(X,Y) on X x Y with X € SMV and Y empirically integrable, for any measurable function
[ X =Y wehave Lixv)(f,f*) <0, (as.).

F-TiME defines a non-trivial alternative, and an explicit construction of a non-F-TiME
bounded metric space (), py) is given in Section 5.1 with ) = N. Nevertheless, F-TIME
is satisfied by a large class of spaces, e.g., any totally-bounded metric space and countable
classification (), ¢) = (N, ¢p;) satisfy F-TIME. Hence, we can universally learn all SOUL
processes with adversarial responses, for countable classification (the empirical integrability
condition is automatically satisfied because the loss is bounded). If F-TiME is not satisfied
locally, we have the following result which shows that learning under CS is still possible but
universal learning beyond CS processes cannot be achieved.



THEOREM 3.3. Suppose that there exists a ball By(y,r) of (V,{) that does not sat-
isfy F-TiME. Then, SOLAR = CS and there exists an optimistically universal learning rule
f. for adversarial regression with empirically integrable responses., i.e., such that for any
stochastic process (X,Y) on (X,)) with X € CS and Y empirically integrable, then, for any
measurable function f : X — Y we have Lx v)(f., f*) <0, (a.s.).

For metric losses £ = py, it was already known [23] that universal learning under adversar-
ial responses under all processes in CS is achievable by some learning rule. Hence, Theorem
3.3 implies that this learning rule is automatically optimistically universal for adversarial re-
gression for all metric value spaces with bounded loss which do not satisty F-TiME. However,
our result is stronger in that consistency holds for any power of a metric loss £ = pS,, a > 1
and unbounded value spaces.

REMARK 3.4. As a direct consequence of Theorems 3.2 and 3.3, for stationary ergodic
processes, finite second moment of the values E[Y?] < oo suffices for consistency, in agree-
ment with the known results for the i.i.d. setting. This relaxes the fourth-moment conditions
E[Y*4] < oo proposed in the literature [19].

We now consider removing the empirical integrability assumption. As mentioned above,
for bounded losses this assumption is automatically satisfied, hence Theorem 3.2 and 3.3
apply directly, with a simplified alternative: whether (), ¢) satisfies F-TiME.

COROLLARY 3.5. Suppose that { is bounded.

o If (V,0) satisfies F-TiME. Then, SOLAR = SMV(= SOUL).
o If (V,0) does not satisfy F-TiME. Then, SOLAR = CS.

Further, an optimistically universal learning rule for adversarial regression always exists,
i.e., achieving universal consistency with adversarial responses under any X € SOLAR.

It remains to analyze the case of unbounded losses without empirical integrability assump-
tion on the responses. To avoid confusions, we denote by SOLAR-U the set of processes that
admit universal learning with adversarial (unrestricted) responses. Unfortunately, even in the
noiseless setting, universal learning is extremely restrictive in that case. Specifically, the set
of universally learnable processes SOUL for noiseless responses is reduced to the set FS
(Finite Support) of processes that visit a finite number of different points almost surely [4].

Condition FS: The process X satisfies [{z € X : {z} NX#£ 0} <oo (a.s.).

We show that in the adversarial setting we still have SOLAR-U = FS when / is a metric:
we can solve the fundamental problem of mean estimation where one sequentially makes
predictions of a sequence Y of values in (), ¢) and aims to have a better long-run average
loss than any fixed value. If responses Y are i.i.d. this is the Fréchet means estimation problem
[13, 33, 25]. Our main result on mean estimation holds in general spaces and is of independent
interest.

THEOREM 3.6. Let (), /) be a separable metric space. There exists an online learning
rule f. that is universally consistent for adversarial mean estimation, i.e., for any adversarial
process Y on Y, almost surely, for allye),

lim sup — Z (ft(Y<i—1),Ys) —€(y,Y2)) <0.

T—o0
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TABLE 1
Characterization of learnable instance processes in universal consistency (ME = Mean Estimation).

Learnin Unbounded loss with
settin & Bounded loss Unbounded loss empirically integrable
’ € responses
Noiseless Identical to .
responses SOUL = SMV [2] SOUL =FS [4] bounded loss [This paper]
SOLAR D CS (metric loss) [23] .
Adversarial - —— Is ME achievable?
o Does (), ¢) satisfy F-TIME? Yes SOLAR.U—FS Identical to Thi
: : es U=
(or arbitrary) Yes SOLAR=SMV __ . [This paper] | bounded loss [This paper]
responses [This paper] No SOLAR-U=0
No SOLAR=CS

TABLE 2
Proposed learning rules for universal consistency (ME = Mean Estimation and EI = Empirical Integrability).1
Learning Guarantees Optimist.
. Loss (and response/setting constraints) | Learning rule for which - Reference
setting universal?
processes X7
Li.d. Finite or countable class., 01-loss OptiNet i.i.d. No [24]
responses Real-valued regression + integrable Proto-NN iid. No [20]
Metric loss + integrable MedNet iid. No [9]
Noiseless Bounded loss 2CINN SMV Yes [2]
responses Unbounded loss Memorization FS Yes [4]
(realizable) Unbounded + EI 2CINN SMV Yes [This paper]
Bounded loss + metric loss Hedge-variant CS Not always [23]
Bounded loss + F-TIME (14 9)CINN-hedged SMV Yes [This paper]
Adversarial | Bounded loss + not F-TiME Hedge-variant 2 CS Yes [This paper]
(or arbitrary) | Unbounded loss + ME ME-algorithm FS Yes [This paper]
responses Unbounded loss + not ME N/A 0 N/A [This paper]
Unbounded + EI + local F-TiME EI-(1 4 §)C1NN-hedged SMV Yes [This paper]
Unbounded + EI + not local F-TiME EI-Hedge-variant CS Yes [This paper]

Further, we show that for powers of metric we may have SOLAR-U = (). Specifically, for
real-valued regression with Euclidean norm and loss | - |* and « > 1, adversarial regression
or mean estimation are not achievable. We then show that we have an alternative: either mean
estimation with adversarial responses is achievable, SOLAR-U = FS and we have an opti-
mistically universal learning rule; or mean estimation is not achievable and SOLAR-U = ().
Thus, even in the best case scenario for unbounded losses, SOLAR-U = FS, which is al-
ready extremely restrictive. [4] asked whether imposing moment conditions on the responses
would allow recovering the large set SMV as learnable processes instead. Specifically, they
formulated the following question.

Question [4]: For unbounded losses ¢, does there exist an online learning rule f. which is
consistent under every X € SMV, for every measurable function f*: X — ) such that there
exists yo € Y with limsupy_, ., =+ Zthl L(yo, f*(Xy)) < oo (as.), i.e., such that we have
Lx(f f*) =0 (as)?

We answer negatively to this question. Under this first-moment condition, universal learn-
ing under all SMV processes is not achievable even in this noiseless case. We show the
stronger statement that noiseless universal learning under all processes having pointwise con-
vergent relative frequencies—which are included in CS—is not achievable. However, under
the empirical integrability condition introduced above we are able to recover all positive re-
sults from bounded losses.

In our paper, an algorithm is optimistically universal if it is universally consistent for all processes under
which universal learning is possible in the considered setting. OptiNet, Proto-NN, and MedNet are optimistically
universal in another sense, their guarantees hold in all metric spaces for which universal learning with i.i.d. pairs
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Table 1 and 2 summarize known results in the literature and our contributions. As a re-
minder, FS C CS C SMV in general, and FS C CS C SMV whenever X is infinite [22].

4. An optimistically universal learning rule for totally-bounded value spaces. We
start our analysis of universal learning under adversarial responses with fotally-bounded
value spaces, for which we can give simple and explicit algorithms. Hence, we suppose in
this section that the value space (), ¢) is totally-bounded, i.e., for any € > 0 there exists a
finite e—net ). of ) such that for any y € ), there exists 3y’ € ), with £(y,y’) < e. In partic-
ular, a totally-bounded space is necessarily bounded and separable. The goal of this section
is to show that for such value spaces, adversarial universal regression is achievable for all
processes in SMV as in the noiseless setting (the empirical integrability assumption is auto-
matically satisfied in this context). Further, we explicitly construct an optimistically universal
learning rule for adversarial responses.

We recall that in the noiseless setting, the 2CINN learning rule achieves universal consis-
tency for all SMV processes [2]. At each iteration ¢, This rule performs the nearest neighbor
rule over a restricted dataset instead of the complete history X<;_;. The dataset is updated by
keeping track of the number of times each point X, was used as nearest neighbor. This num-
ber is then capped at 2 by deleting from the current dataset any point which has been used
twice as representative. Unfortunately, this learning rule is not optimistically universal for
adversarial responses. More generally, [9] noted that any learning rule which only outputs
observed historical values cannot be consistent, even in the simplest case of X = {0} and
i.i.d. responses Y. For instance, take J) = B(0, 1) the closed ball of radius 1 in the plane R?
with the euclidean loss, consider the points A, B, C € ) representing the equilateral triangle
e?*7/3 for k = 0,1,2, and let Y be an i.i.d. process following the distribution which visits
A, B or C with probability % Predictions within observed values, i.e., A, B or C, incur an
average loss of %\/3 > 1 where 1 is the loss obtained with the fixed value (0,0).

To construct an optimistically universal learning rule for adversarial responses, we first
generalize a result from [2]. Instead of the 2C1NN learning rule, we use (1 + §)CINN rules
for § > 0 arbitrarily small. Similarly as in 2CINN, each new input X; is associated to a
representative ¢(t) used for the prediction Y; = Yy(1)- In the (1 + 6)CINN rule, each point
is used as a representative at most twice with probability 4 and at most once with probability
1 — 4. In order to have this behavior irrespective of the process X, which can be thought of
been chosen by a (limited) adversary within the SOUL processes, the information of whether
a point can allow for 1 or 2 children is only revealed when necessary. Specifically, at any step
t > 1, the algorithm initiates a search for a representative ¢(t). It successively tries to use the
nearest neighbor of X; within the current dataset and uses it as a representative if allowed by
the maximum number of children that this point can have. However, the information whether
a potential representative v can have at most 1 or 2 children is revealed only when u already
has one child.

o If w allows for 2 children, it will be used as final representative ¢(t).
* Otherwise, u is deleted from the dataset and the search for a representative continues.

The rule is formally described in Algorithm 1, where § € Y is an arbitrary value, and the
maximum number of children that a point X; can have is represented by 1 + U;. In this
formulation, all Bernouilli B(4) samples are drawn independently of the past history. Note
that if § = 1, the (1 + §)CINN learning rule coincides with the 2C1NN rule of [2].

of instances and responses is achievable: essentially separable spaces (X, p ) [24]. Our learning rules also enjoy
this second optimistic property.
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Input: Historical samples (X¢, ;)7 and new input point X
Output: Predictions Y; = (14 8)CINNy(X <4, Y <4, Xy) fort <T
Yl =y // Arbitrary prediction at t=1
Do+ {1};nq1 < 0; // Initialisation
fort=2,...,Tdo
if exists u < t such that Xy = X; then

‘ f/t =Yy
else
continue < True // Begin search for available representative ¢(t)
while continue do
¢(t) < min {I € argminy, e p, px (X¢, Xu) }
if Ng(t) = 0 then // Candidate representative has no children
Dt+1 — Dt @] {t}
continue < False
else // Candidate representative has one child
Up(r) ~ B()
if U(j)(t) =0 then

| Di e D\ {6(0)}
else

Dit1 + (D \{o(t)}) U{t}

continue < False

end
end
Yei=Yy()

ng(t) < Mgty T1
n¢ <—

end

Algorithm 1: The (1 4 0)CINN learning rule

THEOREM 4.1. Fix § > 0. For any separable Borel space (X,B) and any separable
near-metric output setting (), £) with bounded loss, in the noiseless setting, (1 + 6)CINN is
optimistically universal.

We now construct our algorithm. This learning rule uses a collection of algorithms f¢

which each yield an asymptotic error at most a constant factor from e=i1. Now fix e > 0 and
let ), be a finite e—net of ) for £. Recall that we denote by £ the supremum loss. We pose

Zn|Y.| €
TE = ’7262 and 56 = 2T€

The quantity 7 will be the horizon window used by our learning rule to make its prediction
using the (1 + 6.)CINN learning rule. Precisely, let ¢ be the representative function from the
(1 4+ 6¢)CINN learning rule. Note that this representative function ¢(¢) is defined only for
times ¢ where a new instance X, is revealed, otherwise (1 + d.)CINN uses simple memo-
rization Y; = Y,,. For simplicity, we will denote by V' = {t : Vu < t, X, # X;} these times of
new instances. For ¢ € A/, we denote by d(t) the depth of time ¢ within the graph constructed
by (1 + 0.)CINN, and define the horizon L; = d(t) mod T.. Intuitively, the learning rule
f€ performs the classical Hedge algorithm [7] on clusters of times that are close within the
graph ¢. Precisely, we define the equivalence relation between times as follows:

T (uy) = plez (ug)  and [{u <t;: X, = Xy, }
t 2752 < or
X, =Xy, and |[{u<t;: X, =X, }| > L, i=1,2,

<L ji=1,2
€
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Input: Historical samples (X¢, Y;);7 and new input point X,

Representatives ¢¢(-) and depths de(-) constructed iteratively within (1 + ¢) CINN.
Output: Predictions Yy (€) = f{ (X «¢,Y <4, Xg) fort <T
Ve an e—net of Y

£21n| Ve . 81In|Ye
Te = ’V 26‘2 I—‘ ) Ne = 52|T’6 |
fort=1,...,Tdo

t
Ly=3

o ¢€t€(Yu,y), Y€ Ve // Losses on the cluster given by ¢e
u un

_ exp(—neLl)
ey, exp(—nell)
vy ~pt
end

pt(y) ’ yeyé

Algorithm 2: The f€ learning rule

where u; = min{u : X,, = Xy, } is the first occurrence of the considered instance point X, .
Hence, multiple occurrences of the same instance value fall in the same cluster and for new
instance points times ¢ € A/, all times of a given cluster share the same ancestor up to gen-
eration at most 7, — 1. Additionally, a cluster is dedicated to instance points that have a
significant number of duplicates. To make its prediction at time ¢, f€ performs the Hedge

algorithm based on values observed on its current cluster {u <t¢:u 2 t}. Letn. := 8in| .|

2T,
and define the losses L} = Zu<t:u£t ¢(Yy,y). The learning rule ff(X<;—1,Y<;—1,X¢) out-

puts a random value in ), independently from the past history with
P(FH(6) =) = e
€)=Y == 1
Zze)is el

where, for simplicity, we denoted Y}(e) the prediction given by the learning rule f€ at time ¢.

Having constructed the learning rules f€, we are now ready to define our final learning rule
f.. Let ¢; = 27" for all 5 > 0. Intuitively, it aims to select the best prediction within the rules
f&. If there were a finite number of such predictors, we could directly use the algorithms
for learning with experts from the literature [7]. Instead, we introduce these predictors one
at a time: at step ¢ > 1 we only consider the indices I; := {i <Int}. We then compute an
estimate I:t_u of the loss incurred by each predictor f¢ for ¢ € I; and select a random index
iy independent from the past history from an exponentially-weighted distribution based on the
estimates I:t_l,i. The final output of our learning rule is Yt = Yt (Ei)' The complete algorithm
is formally described in Algorithm 3. The following lemma quantifies the loss of the rule f.
compared to the best rule f¢.

yGya

LEMMA 4.2. Almost surely, there exists t > 0 such that

t t
VtEViel, > 0(Y,Y) <> ((Vi(e),Yy) + (24 L+ P)Viint.

S:ti S:ti
We are now ready to show that Algorithm 3 is universally consistent under SMV processes.

THEOREM 4.3.  Suppose that (Y,{) is totally-bounded. There exists an online learn-
ing rule f. which is universally consistent for adversarial responses under any process X €
SMV(= SOUL), i.e., for any process (X,Y) on (X,Y) with adversarial response, such that
X € SMV, then for any measurable function f : X — Y, we have Lx v)(f., f) <0, (a.s.).
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Input: Historical samples (X¢, Y;);7 and new input point X,
Predictions Y. (¢;) from the learning rules f.

Output: Predictions Y} fort <T

wo,0 =1,%; = [e'], i>0

Li={i<Int}, g =1/1Bt t>1

fort=1,...,T do

t—1 O 7 t—1 5 .
Lyqi=2 gy, 0(Ys(€),Ys), Ly—1:=2 4. ls, 1€1y
w1, = Mt (Lt—1,i—Lt—14)
. Wt—1,5

p(l) = =——"—

2jer, Wi
it ~pe(-) // model selection
Yy =Yi(€;) )
i Pier, we—1,:(Yi(e),Yr)
t= Zie[t Wt—1,i ’

end

Algorithm 3: An optimistically universal learning rule for totally bounded spaces

Proof sketch. First observe that Lemma 4.2 allows us to combine predictors f€: if indi-
vidually they perform well, Algorithm 3 achieves the best long-term average excess loss
among them. We then proceed to show that f€ has low average error in the long run. First,
(1 + d¢)CINN is universally consistent on SMV processes in the noiseless setting by Theo-
rem 4.1. This intuitively shows that for noiseless functions, the value at time ¢.(¢) provides a
good representative for the value at time ¢. Extrapolating this argument, we show that if two
times are close (for the graph metric) within the graph formed by ¢., they will have close val-

ues for any fixed function in the long run. As a result, times in the same cluster defined by 2
share similar values in the long run. The f¢ rule precisely aims to learn the best predictor by
cluster using the classical Hedge algorithm. Because it can only ensure low regret compared
to a finite number of options, we use e-nets of the value space ). The reason why we need
to have (1 + d.)CINN instead of the known 2C1NN algorithm is that for a given time 7', we
need to ensure low excess error even though some clusters might not be completed. Because
the tree formed by ¢, resembles a (1 + d.)-branching process, the fraction of times which
belong to unfinished clusters is only a small fraction €7 of the 7' times, hence does not affect

the average long-term excess error significantly. Altogether, we show that f€ has O(e=~+1)
long-term average excess error compared to any fixed function for any SMV process, which
ends the proof.

As aresult, SMV C SOLAR for totally-bounded value spaces. Recalling that for bounded
values SMV = SOUL [2], i.e., processes X ¢ SMV are not universally learnable even in the
noiseless setting, we have SOLAR C SMV. Thus we obtain a complete characterization of
the processes which admit universal learning with adversarial responses: SOLAR = SMV.
Further, the proposed learning rule is optimistically universal for adversarial regression.

COROLLARY 4.4. Suppose that (Y,{) is totally-bounded. Then, SOLAR = SMV, and
there exists an optimistically universal learning rule for adversarial regression, i.e., which
achieves universal consistency with adversarial responses under any process X € SOLAR.

This is a first step towards the more general Corollary 5.5. Indeed, one can note that
F-TiME is satisfied by any totally-bounded value space: given a fixed error tolerance n > 0,
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consider a finite g—net Yy /2 of ). Because this is a finite set, we can perform the classi-
cal Hedge algorithm [7] to have ©(4/T'In |}, /»|) regret compared to the best fixed value of

V2. For example, if o = 1, posing T;, = @(% In|Y),/2|) enables to have a regret at most

4T, compared to any fixed value of )/, /2, hence regret at most 17;, compared to any value of
Y. This achieves F-TiME, taking a deterministic time 7, := T,.

5. Characterization of learnable processes for bounded losses. While Section 4 fo-
cused on totally-bounded value spaces, the goal of this section is to give a full character-
ization of the set SOLAR of processes for which adversarial regression is achievable and
provide optimistically universal algorithms, for any bounded value space.

5.1. Negative result for non-totally-bounded spaces. Although for all bounded value
spaces (), /), noiseless universal learning is achievable on all SMV (= SOUL) processes,
this is not the case for adversarial regression in non-totally-bounded spaces. We show in this
section that extending Corollary 4.4 to any bounded value space is impossible: the set of
learnable processes for adversarial regression may be reduced to CS only, instead of SMV.

THEOREM 5.1. Let (X, B) a separable Borel metrizable space. There exists a separable
metric value space (Y, {) with bounded loss such that the following holds: for any process
X & CS, universal learning under X for arbitrary responses is not achievable. Precisely, for
any learning rule f., there exists a process Y on Y, a measurable function f*: X — Y and
€ > 0 such that with non-zero probability Lx v)(f., f*) > €.

In the proof, we explicitly construct a bounded metric space that does not satisfy F-TiME.
More precisely, we choose ) = N = {i > 0} and a specific metric loss ¢ with values in
{0,1,1}. For any k > 1, we pose ny := 2k(k — 1) 4+ 2¥ — 1 and define the sets

Iy :={ng,nxg +1,....,np +4k —1} and Jy:={nx +4k,ni+4k+1,...,np1 —1}.

These sets are constructed so that |I;| = 4k, |Ji,| = 2¥ for all k > 1, and together with {0},
they form a partition of N. We now construct the loss £. We pose £(i, j) = 1,—; forall 4,5 € N
unless there is k& > 1 such that (i, 7) € I x Ji or (j,i) € I, X J. It now remains to define
the loss £(i, 7) for all ¢ € I}, and j € Ji. Note that for any j € Jj, we have that j — n, — 4k €

{0,...,2% —1}. Hence we will use their binary representation which we write as j — 1y, —
Ak = {bE7" b0}y = Y h 0 bU2¢ where b9, b, ..., b¥! € {0, 1} are binary digits. Finally,
we pose

) N st

| L2

forallu e {0,1,...,k — 1} and j € Ji.

Proof sketch. This value space does not belong to F-TiME because for any algorithm and
horizon time k, there is a sequence of length k of elements in [ with y, = ng + 4(u —
1) + 2by + ¢, for 1 <u < k and by, ¢, € {0,1}, such that the algorithm incurs an average
excess loss i per iteration compared to some fixed element of J;. To find such a sequence,
we sample randomly and independently Bernoulli variables b,,, ¢,, ~ B (%) In hindsight, the
best predictor of the sequence is ng + 4k + j, where j = by - - - by, in binary representation.
However, the algorithm only observes these bits in an online fashion: at time ¢ it incurs an
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excess loss cost if it guesses an element of [; because it has probability at most % of finding
y¢. And if it predicts an element of J, it cannot know in advance the correct ¢-th bit to choose
in their binary representation.

We then proceed to show that for this space SOLAR = CS C SOUL. To do so, we show
that for processes X ¢ CS there exists a sequence of disjoint measurable sets {Bj,},>1 and
increasing times (¢,),>1 and € > 0 such that with non-zero probability,

t
\V/p > ]., th}Fl N Bp = @ and Eltpfl <t< tp : % Z :H-Bp(Xt’) > €.

t'=1
On this event, an online algorithm does not receive any information for instances in B,, be-
fore time ¢,,_;. We then construct responses by (¢,—1,t,]. During this period and for contexts
in B), we choose the same difficult-to-predict sequence of values as above for k =t, —t,_1.
On the other hand, because the sets B, are disjoint, there exists a measurable function f*
that selects the best action in hindsight for each set 5,,. Intuitively, within horizon t,, the
algorithm cannot gather enough information to achieve lower average excess error than §
compared to f*, which shows that it is not universally consistent.

Although learning beyond CS is impossible in this case, there still exists an optimistically
universal learning rule for adversarial responses. Indeed, the main result of [23] shows that
for any bounded value space, there exists a learning rule which is consistent under all CS
processes for arbitrary responses (when / is a metric, i.e., o« = 1).

THEOREM 5.2 ([23]). Suppose that (), {) is metric and { is bounded. Then, there exists
an online learning rule f. which is universally consistent for arbitrary responses under any
process X € CS, i.e., such that for any stochastic process (X,Y) on (X ,)) with X € CS, then
for any measurable function f : X — Y, we have L(x vy(f., f) <0, (a.s.).

The proof of this theorem given in [23] extends to adversarial responses. However, we
defer the argument because we will later prove Theorem 3.3 which also holds for any loss
¢ = p5; for a > 1 and unbounded losses in Section 7. This shows that for any separable metric
space (X, px), there exists a metric value space for which the learning rule proposed in [23]
was already optimistically universal.

5.2. Adversarial regression for classification with a countable number of classes. Al-
though we showed in the last section that adversarial regression under all SMV processes
is not achievable for some non-totally-bounded spaces, we will show that there exist non-
totally-bounded value spaces for which we can recover SOLAR = SMV. Precisely, we con-
sider the case of classification with countable number of classes (N, ¢p;1), with 0 — 1 loss
Lo1(i,j) = 1;2;. The goal of this section is to prove that in this case, we can learn arbitrary
responses under any SOUL process. The main difficulty with non-totally-bounded classifica-
tion is that we cannot apply traditional online learning tools because e—nets may be infinite.
Hence, we first show a result that allows us to perform online learning with an infinite number
of experts in the context of countable classification.

LEMMA 5.3. Let tg > 1. There exists an online learning rule f. such that for any se-
quence Yy := (yl)szl of values in N, we have that for T > t

T T
. to Intg
E[¢ < 14 1+1In2 to+T
tz:; o1 (ft(Y<i—1),yt)] _151611{]1; 01(y,y:) +1+1n \/QInto +\/2t0 (to+ 1),
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and with probability 1 — 6,

£l T t Int 1
E[1 1> 1,, —1—1In2 o _ O(to+T) = +/2TIn=~.
t; [ ft(ygt,l)—yt]_glggt: v=y. n \/thto \/2to (to+T) — /2T In 5

1

Proof sketch. We adapt the classical Hedge algorithm, which in its standard form can only
ensure sublinear regret compared to a fixed set of values. Instead, we only consider a small
subset of candidate values that is enlarged occasionally with previously observed values
y € Y<¢. This formalizes the intuition that even though there are a priori an infinite num-
ber of candidate values (N), it is reasonable to only focus on values with high frequency
in the observed sequence Y <;: if the next value y;,1 is not in this set, the algorithm incurs
aloss 1, which would also be incurred by the best fixed predictor until time ¢ + 1 in hindsight.

We can therefore adapt the learning rules f¢ from Section 4 by replacing the Hedge algo-
rithm with the algorithm from Lemma 5.3. Further adapting parameters, we obtain our main
result for countable classification.

THEOREM 5.4. Let (X,B) be a separable Borel metrizable space. There exists an on-
line learning rule f. which is universally consistent for adversarial responses under any

process X € SMV for countable classification, i.e., such that for any adversarial process
(X,Y) on (X,N) with X € SMV, for any measurable function f* : X — N, we have that

Ly (f,f) <0, (as.).

5.3. A complete characterization of universal regression on bounded spaces. The last
two Sections 5.1 and 5.2 gave examples of non-totally-bounded value spaces for which we
obtain respectively SOLAR = CS or SOLAR = SMV. In this section, we prove that there is
an underlying alternative, defined by F-TiME, which enables us to precisely characterize the
set SOLAR of learnable processes for adversarial regression.

When F-TiME is satisfied by the value space, similarly to the case of countable classi-
fication, we recover SOLAR = SMV and there exists an optimistically universal rule. The
corresponding algorithm follows the same general structure as the learning rule provided in
Section 4 for totally-bounded-spaces, however, the learning rules f€ need to be significantly
modified. First, the Hedge algorithm should be replaced by the learning rule g<; provided
by the F-TiME property. Second, as the horizon time ¢, of this learning rule is bounded, the
clusters of points on which it is applied have to be adapted: we cannot simply use clusters by
distance in the graph defined by the (1 + §.)C'1N N algorithm. Instead, we construct clusters
of smaller size t. among these larger graph-based clusters.

More precisely, we take the horizon time ¢ and the learning rule g<, satisfying the con-

dition imposed by the assumption on (), ). Then, let T, = [%]. Similarly as before, we then
define Jc := 57— and let ¢ be the representative function from the (1 + 6. )CINN learning rule.

Then, we introduce the same equivalence relation between times ,‘i{’ which induces clusters
of times. We define a sequence of i.i.d. copies g.e’t of the learning rule ¢¢ for all ¢ > 1. This
means that the randomness used within these learning rules is i.i.d, and the copy g.e’lt should
be sampled only at time ¢, independently of the past history. Predictions are then made by
blocks of size ¢ within the same cluster: at time ¢, let u; < ... <wuy, <t be the elements of
the current block. If the block does not contain ¢, elements yet, we use gi’ﬁl for the predic-

tion at time ¢. Otherwise, we start a new block and use ¢¢**. Hence, letting 1 (t) = maxC(t)
be the last time in the same cluster as ¢ (as defined by ¢.) and L, the size of the current block
of ¢ without counting ¢, we now define the learning rule f¢ such that for any sequence x, y,

et (t L,
ff(mgt—l,ygtﬂaf’%) = QL:ZJH( ) ({yszt*l*u(t)}u:l) .
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Input: Historical samples (X¢, Y;);7 and new input point X,
Learning rule for finite-time mean estimation 9€<te’ Te = ]—%1, de := Q—i

Representatives ¢6(~)Aconstructed iteratively within (1 + d¢)CINN.
Output: Predictions Y;(€) = f{ (X «¢,Y «¢, X¢) fort <T
fort=1,...,Tdo
C(t):{u<t:u?\ft}
if C(t) = 0 then Ly =0 and initialize learner g.e’t ;
else

P(t) = maxC(t)

if Lw(t) <te—1then L; = Llﬁ(t) +1;

else L; =0 and initialize learner g.E’t ;
end

3 Wk (t Ly
=970 ({wprm—p ity

end

Algorithm 4: The modified f€ learning rule for value spaces (), /) satisfying F-TiME.
When initializing a learner g ' for finite-time mean estimation, its internal randomness is
sampled independently from the past.

The complete learning rule is given in Algorithm 4. The learning rules f¢ are then combined
into a single learning rule as in the original algorithm for totally-bounded spaces, following
the same procedure given in Algorithm 3. We then show that it is universally consistent under
SMYV processes using same arguments as for Theorem 4.3.

THEOREM 5.5.  Suppose that { is bounded and (), () satisfies F-TiME. Then, SOLAR =
SMV(= SOUL) and there exists an optimistically universal learning rule for adversarial

regression, i.e., which achieves universal consistency with adversarial responses under any
process X € SMV.

We are now interested in value spaces (), ) which do not satisfy F-TiME. We will show
that in this case, SOLAR is reduced to the processes CS. We first introduce a second property
on value spaces as follows.

Property 2: For any n > 0, there exists a horizon time T;, > 1 and an online learning rule
g<r where 7 is a random time with 1 < 7 < T}, such that for any y := (yt);i’l of values in Y
and any value y € Y, we have

T

E |13 (Uatwear)w) - ) | <o

t=1

REMARK 5.6. The random time 7 may depend on the possible randomness of the learn-
ing rule g., but it does not depend on any of the values y1,y2, ... on which the learning rule
g. may be tested. Intuitively, the learning rule uses some randomness which is first privately
sampled and may be used by 7. This randomness is never explicitly revealed to the adversary
choosing the values vy, but only implicitly through the realizations of the predictions.

LEMMA 5.7. Property F-TiME is equivalent to Property 2.

Using this second property, we can then show that when F-TiME is not satisfied, universal
consistency outside CS under adversarial responses is not achievable. In the proof, we only
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use stochastic processes (X, Y), hence the same result holds if we only considered universal
consistency under arbitrary responses.

THEOREM 5.8.  Suppose that { is bounded and (Y,?) does not satisfy F-TiME. Then,
SOLAR = CS and there exists an optimistically universal learning rule for adversarial re-
gression, i.e., which achieves universal consistency with adversarial responses under any
process X € CS.

Proof sketch. First, from Theorem 5.2 we already have CS C SOLAR. The main difficulty is
to prove that one cannot universally learn any process X ¢ CS. To do so, we re-use the prop-
erty derived in the proof of Theorem 5.1 that for non-CS processes, one can find a disjoint
sequence of sets {B)},>1, an increasing times (t,),>1 and € > 0 such that with non-zero
probability for all p > 1, the process X never visits B), before time ¢,_; and at some point
between times ¢,_; + 1 and £,, the set B), has been visited a proportion € of times. Now (), ¢)
does not satisfy F-TiME, hence does not satisfy Property 2 by Lemma 5.7 for some constant
n > 0. Then, for p > 1, during period (¢,1,,], we define the values Y; ,..<; when the
instance process visits By as a sequence Yy, , ..<; such that the algorithm has average ex-
cess loss at least  whenever X visits By, compared to a fixed value y,, € J. We note that the
randomized version of F-TiME given by Lemma 5.7 is important because we do not know
in advance when, between ¢, and t,,, B}, has been visited a fraction € of times: potentially,
this time is random and there is a huge gap (exponential or more) between ¢,_1 and ?,,. On
the constructed stochastic process Y, the algorithm does not have vanishing average excess
loss compared to the function equal to y; on B),. This proves that no algorithm is universally
consistent on X.

This completes the proof of Corollary 3.5 and closes our study of universal learning with
adversarial responses for bounded value spaces. Notably, there always exists an optimistically
universal learning rule, however, this rule highly depends on the value space.

o If (), ¢) satisfies F-TiME, we can learn all SMV = SOUL processes. The proposed learn-
ing rule of Theorem 5.5 is implicit in general. Indeed, to construct it one first needs to find
an online learning rule for mean estimation with finite horizon as described by property
F-TiME, which is then used as a subroutine in the optimistically universal learning rule
for adversarial regression. We showed however that for totally-bounded value spaces, this
learning rule can be explicited using e—nets.

* If the value space does not satisfy F-TiME, we can only learn CS processes and there is an
inherent gap between noiseless online learning and regression. We propose a learning rule
in Section 7 which is optimistically universal—see Theorem 3.3. This rule is inspired by
the proposed algorithm of [23] which is optimistically universal for metric losses o = 1.

These two classes of learning rules use very different techniques. Specifically, under pro-
cesses X € CS, [22] showed that there exists a countable set F of measurable functions
f: X — Y which is “dense” within the space of all measurable functions along the realiza-
tions f(X;). We refer to Section 7 for a precise description of this density notion. Hence,
under process X, we can approximate f* by functions in F with arbitrary long-run average
precision. However, such property is impossible to obtain for any process X € SMV \ CS: no
process X ¢ CS admits a “dense” countable sequence of measurable functions. Thus, to learn
processes SMV for value spaces satisfying F-TiME, a fundamentally different learning rule
than that proposed by [22] or [23] was needed.
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Input: Historical samples (Y); 7
Output: Predictions Y, fort <T
(yz)izo dense sequence in )

I :={i <Int: o0, yh) < Int},nm = 1; t= fmax(ei,eg(yo’yi))],i >0

4\[,t>
wop,0 =1, ¥y =Y // Initialisation
fort=2,...,T do

Lyo1,i= 00 (W' Ye), Li1i=Y0tls, i€l

wy_q ;i =exp(n(Le_1;—Li—1,)), i€l

. W1 ,
V)= """ (2 I
pe (1) S winy €l

Y%Npt(’) // Prediction
Yjer, wi-1,34y7,Y)
Zjelt Wt—1,5

0=

end

Algorithm 5: The mean estimation algorithm.

6. Adversarial universal learning for unbounded losses. We now turn to the case of
unbounded losses, i.e., value spaces (), ¢) with ¢ = 0. In this section, we consider univer-
sal learning without empirical integrability constraints, for which we introduced the notation
SOLAR-U as the set of processes that admit universal learning (we recall that for bounded
losses such distinction was unnecessary). In this case, and for more general near-metrics,
[4] showed that SOUL = FS. In other terms, for unbounded losses, the learnable processes
in the noiseless setting necessarily visit a finite number of distinct instance points of X al-
most surely. Thus, universal learning on unbounded value spaces is very restrictive and in
particular, SOLAR-U C FS. We will show that either SOLAR-U = FS or SOLAR-U = ).

6.1. Adversarial regression for metric losses. In this section, we focus on metric losses
l,i.e., o = 1. In this case, we show that we always have the equality SOLAR-U = FS and
that we can provide an optimistically universal learning rule. To do so, we first consider the
fundamental estimation problem where one observes values Y from a general separable met-
ric value space and aims to sequentially predict a value Y; in order to minimize the long-run
average loss. We refer to this problem as the mean estimation problem, which is equivalent to
regression for the instance space X = {0}. For instance, in the specific case of i.i.d. processes
Y, mean estimation is exactly the problem of Fréchet mean estimation for distributions on ).
We show that even for adversarial processes Y, we can achieve sublinear regret compared to
the best single value prediction, even for unbounded value spaces (), ¢).

If the space were finite, then we could use traditional Hedge algorithms [7]. Instead, given
a separable value space, we have access to a dense countable sequence of values. We then se-
lect the best prediction among this dense sequence by introducing the values of the sequence
one at a time, similarly to the argument we used in Lemma 4.2. The learning rule for mean
estimation is described in Algorithm 5.

THEOREM 3.6. Let (), {) be a separable metric space. There exists an online learning
rule f. that is universally consistent for adversarial mean estimation, i.e., for any adversarial
process Y on Y, almost surely, for all y € Y,

lim sup — Z (ft(Y<i—1),Yy) —€(y,Y2)) <0.

T—oo
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REMARK 6.1. The above result guarantees that on the same event of probability one,
the proposed learning rule achieves sublinear regret compared to any fixed value prediction.
This was not the case for universal regression where, instead, for every fixed measurable
function f : X — ), with probability one our learning rules achieved sublinear regret. This
stems essentially from the fact that there exists a dense countable set of values )/, but in
general, there does not exist a countable set of measurable functions which are dense within
all measurable functions in infinity norm.

We now return to the general regression problem on unbounded spaces. A simple learning
rule would be to run in parallel the learning rule g, for mean estimation on each distinct
observed = € X, i.e., on the sub-process Y. y,—,1. As a consequence of Theorem 3.6 we
can show that this learning rule is universally consistent on FS processes.

COROLLARY 6.2. Suppose that (Y, () is an unbounded metric space. Then, SOLAR-U =
FS(= SOUL) and there exists an optimistically universal learning rule for adversarial regres-
sion, i.e., which achieves universal consistency with adversarial responses under any process
X eFs.

6.2. Negative result for real-valued adversarial regression with loss { = | - |“ with o >
1. Unfortunately, one cannot extend Corollary 6.2 to losses that are powers of metrics in
general. Even in the classical setting of real-valued regression ) = R with Euclidean norm,

we show that adversarial regression with any loss ¢ = | - |* for & > 1 is not achievable, i.e.,
SOLAR-U = ).
THEOREM 6.3. Let o > 1. For the Euclidean value space (R, |-|) and loss { = | - |* we

obtain SOLAR-U = (). In particular, there does not exist a consistent learning rule for mean
estimation on R with squared loss for adversarial responses.

Proof sketch. The reason why mean estimation with adversarial responses is impossible for
a > 1 but possible for o =1 is that for o > 1, predicting a value off by 1 unit of the best
value in hindsight can yield unbounded excess loss for that specific prediction. In particular,
we consider a sequence of values of the form Y;b = M;b; where (M;):>1 is a fixed sequence
growing super-exponentially in ¢, and b = (b;) is an i.i.d. Rademacher random variables
in {#1}. The sequence (M;);>1 is constructed so that if the prediction Y; and true value
Y; have different signs Y, - Y; <0, the excess loss of the algorithm compared to the value
sign(Y,2) = sign(b;) is (super-)linear in ¢. Because the algorithm cannot know in advance
the sign of by, there is a realization in which it makes an infinite number of mistakes and as a
result has non-zero long-term excess loss compared to the value 1 or —1.

The above of this result also shows that the same negative result holds more generally
for unbounded metric value spaces which have some “symmetry”. The main ingredients for
this negative result were having a point from which there exist arbitrary far values from
symmetric directions. In particular, this holds for a discretized value space (N, |- |) with
Euclidean metric, and any Euclidean space R¢ with d > 1.

6.3. An alternative for adversarial regression with unbounded losses. In the two pre-
vious sections, we gave examples of losses for which SOLAR-U = () or SOLAR-U = FS.
The following simple result is that this is the only alternative and that SOLAR-U = FS is
equivalent to achieving consistency for mean estimation with adversarial responses.
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PROPOSITION 6.4. Let (Y, py) be a separable metric value space. Suppose that there
exists an online learning rule g. which is consistent for mean estimation with adversarial
responses for the loss { = p$,, where o > 1, i.e., for any adversarial process Y on (V,0), we
have for any y* € Y,

limsup — Z (C(fe(Y<e-1),Ye) = L(y", 11)) <0, (a.s),

then SOLAR-U = FS and there exists an optimistically universal learning rule for adversarial
regression. Otherwise, SOLAR-U = ().

REMARK 6.5. There exists separable metric value spaces (), py) for which powers
of metrics losses still yield SOLAR-U = FS. For instance, consider (), py) = (R, /| |2),
where |- |2 denotes the Euclidean metric. One can check that this defines a metric on ) and for
any loss £ = p§, with o < 2, we have SOLAR-U = FS. However, for a > 2, SOLAR-U = ().

7. Adversarial universal learning with moment constraint. In the previous section,
we showed that learnable processes for adversarial regression are only in FS, i.e., visit a
finite number of instance points. This shows that universal learning without restrictions on
the adversarial responses Y is extremely restrictive. For instance, it does not contain i.i.d.
processes. A natural question is whether adding mild constraints on the process Y would
allow recovering the same results for unbounded losses as for bounded losses from Section
4 and 5. This question also arises in noiseless regression since the set of learnable processes
is reduced from SOUL = SMV for bounded losses to SOUL = FS for unbounded losses.
Hence, [4] posed as question whether having finite long-run empirical first-order moments
would be sufficient to recover learnability in SMV. Precisely, they introduced the following
constraint on noiseless processes Y = f*(X): there exists yo € ) with

limsup — Zﬁ (yo, [F(Xy)) < oo (a.s.).
T—o0
The question now becomes whether there exists an online learning rule which would be
consistent under all X € SMV processes for any noiseless responses Y = f*(X) with f* sat-
isfying the above first-moment condition. We show that such an objective is not achievable
whenever X is infinite—if X is finite, any process X on X is automatically FS and hence
learnable in a noiseless or adversarial setting. In fact, under this first-order moment condition,
we show the stronger statement that learning under all processes X which admit pointwise
convergent relative frequencies (CRF) is impossible even in this noiseless setting.

Condition CRF: For any measurable set A € B, limy_, % Zthl 14(X}) exists almost
surely.

[22] showed that CRF C CS. In particular, CRF C SMV. We show the following negative
result on learning under CRF processes for noiseless regression under first-order moment
constraint, which holds for unbounded near-metric spaces (), /).

THEOREM 7.1. Suppose that X is infinite and that (Y,{) is an unbounded separable
near-metric space. There does not exist an online learning rule which would be consistent
under all processes X € CRF for all measurable target functions f* : X — Y such that there
exists yo € Y with

limsup — ZE yo, [F(Xy)) <o (a.s.).

T—o00
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Proof sketch. We consider a sequence of values (yx)r>0 such that £(yo,ys) diverges as
k — oo, then let (t4)r>1 be a sequence of times such that ¢, ~ >, -, £(yo,yx). Next, let
(xk)k>0 be a sequence of distinct points. We construct a process X such that X; = x( ex-
cept at sparse times (¢;)x>1 for which X;, = z. Because t;, has a super-linear growth, X
visits a sublinear number of distinct points and we can show that it satisfies the CRF prop-
erty. Now for a random binary sequence b = (by)xx>1 we consider the function f; which is
equal to yo except at points xy, for k& > 1 where f;(x) = yol[br = 0] + y1[by = 1]. With
these classes of functions, the algorithm cannot know in advance at time ¢;, whether to pre-
dict yo or yx and incurs a loss O(£(yo, yx)) in average as a result. Therefore, at time ¢, a
total loss O(> /<1 £(yo,yx)) = O(tx) is incurred compared to f;. On the other hand, by

the construction of the sequence (tx)r>1, %Zthl Uyo, f(X1)) < % >t <1 (Yo, yi) stays
bounded. Thus the learning rule is not consistent under all target functions satisfying the
specified moment constraint.

Theorem 7.1 answers negatively to the question posed in [4]. A natural question is whether
another meaningful constraint on responses can be applied to obtain positive results under
large classes of processes on X. To this means, we introduced the slightly stronger empirical
integrability condition. We recall that an (adversarial) process Y is empirically integrable if
and only if there exists yg € ) such that for any € > 0, almost surely there exists M > 0 with

T
limsup % Zﬁ(yg, Y) Logye vi)>m < €
T—o0 —1

Note that the threshold M may be dependent on the adversarial process Y, but the guaran-
tee should hold for any choice of predictions (in the case of adaptive adversaries). This is
essentially the mildest condition on the sequence Y for which we can still obtain results.
For example, if the loss is bounded, this constraint is automatically satisfied using M > /.
More importantly, note that any process Y which has bounded higher-than-first moments,
i.e., such that there exists p > 1 and yo € V' such that limsupy_,.. =37, P(yo,Y:) <
oo, (a.s.), is empirically integrable. Further, for stationary processes Y, having bounded
first moment E[/(yp,Y1)] < oo is exactly being empirically integrable. Indeed, by the
strong law of large numbers, almost surely limsup;_, %Zle (Yo, Ye) Logyo,viy> M =
E[¢(y0, Y1) Ly(y,,v;)>m]- Therefore, empirical integrability is a direct consequence of the
dominated convergence theorem.

LEMMA 7.2. Let Y an stationary process on ) which has bounded first moment, i.e.,
there exists yo € Y such that E[¢(yo,Y1)] < co. Then, Y is empirically integrable.

PROOF. Let Y an stationary process and yo € YV with E[{(yo,Y1)] < oo. Then, by
the dominated convergence theorem we have E[l(yo,Y1)1y(y, vi)>m] — 0 as M — oo.
Hence, for € > 0, there exists M. such that E[¢(yo, Y1)1(y, v;)>m] < €. Then, the sequence
(€(yo, Y2) Ly(yo,v,)>n )t 1s still stationary. hence, by the law of large numbers, almost surely,

T
. 1
Tlglgo T ;5(%, Y) Logye,viy>m. = E[(yo, Y1) Loy viy>m.] < €

This ends the proof that Y is empirically integrable. 0

The goal of this section is to show that under this moment constraint, we can recover all
results from [2], [23] and this work in Sections 4 and 5, even for unbounded value spaces,
leading up to Theorems 3.2 and 3.3. We will use the following simple equivalent formulation
for empirical integrability.
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LEMMA 7.3. A process Y is empirically integrable if and only if there exists yoy € Y such
that almost surely, for any € > O there exists M > 0 with

T
. 1
lim sup T Zﬁ(yg, Yi) Lo(yo,vi)>m S €

T—oo =1

General strategy. First, the empirical integrability condition holds for some yo € Y if
and only if it holds for all yg € Y. Thus, we can fix yg € ) independently of the in-
stance or value process. Next, we define the restriction function ¢,; : J — ) such that
om(y) =y if L(yo,y) < M and ¢pr(y) = yo otherwise. This function has values in the
bounded set By(yo, M ). Thus, we can apply our learning rules for the bounded loss
case to learn the restricted values YM = (¢3/(Y;))i>1. If we use these predictions to
learn Y, the excess loss compared to a fixed function mostly results from the restric-
tion Kmsupy_, o, 3 Y iy £(Yi, 600 (V1)) = limsupy_,o 7 31—y (40, Y1) Ly, ;)= This
excess can then be bounded with the empirical integrability condition at yg. We then com-
bine the resulting predictors for M > 1 using Lemma 4.2. While this general strategy allows
to use learning rules for the bounded loss case as subroutine to solve the unbounded loss case
with empirical integrability constraint, we can adapt it to each case to simplify the algorithms.

7.1. Noiseless universal learning with moment condition. We first apply this strategy to
the noiseless case. The main result from [2] showed that the 2C1NN learning rule achieves
universal consistency on all SMV processes for bounded value spaces. Instead of using the
2CINN learning rule as subroutine as described in the strategy above, we show that we can
readily use 2C1NN for empirically integrable noiseless responses in unbounded value spaces,
as stated in Theorem 3.1.

To prove this result, we first observe that 2CINN trained on the responses Y =
(f*(X¢t))e>1 or the restricted responses (¢ o f*(X¢))i>1 gives the same prediction at time
t provided that the representative ¢(t) satisfied £(yo, Yy()) < M. By construction of the
2CINN learning rule, points can be used as representatives at most twice. Hence, up to a
factor 2, times when the predictions on unrestricted and restricted responses differ, can be
associated with times when ¢(yo,Y;) > M. As a result, we show that the empirical integra-
bility condition can be applied to bound the excess loss resulting from the difference between
unrestricted and restricted responses.

7.2. Adversarial regression with moment condition under CS processes. We now turn
to adversarial regression under CS processes. [23] showed that regression for arbitrary re-
sponses under all CS processes is achievable in bounded value spaces. We generalize this re-
sult to unbounded losses and to adversarial responses with empirical integrability constraint
using the general strategy. In particular, our learning rule is also optimistically universal for
adversarial regression for all bounded value spaces which do not satisfy F-TiME. Now con-
sider the general case and suppose that there exists a ball By(y,r) which does not satisfy
F-TiME, Theorem 5.8 shows that universal learning for values falling in By(y, ) cannot be
achieved for processes X ¢ CS. Now because By(y,r) is bounded, responses restricted to
this set satisfy the empirical integrability constraint. In particular, this shows that the con-
dition CS is also necessary for universal learning with adversarial responses with empirical
integrability. Altogether, this proves Theorem 3.3.

This generalizes the main results from [23] to unbounded non-metric losses and from [9]
to non-metric losses, arbitrary responses and CS instance processes X. Indeed, they consider
bounded first moment conditions on i.i.d. responses, which are empirically integrable by
Lemma 7.2. Further, as a direct consequence of Theorem 3.3 and Lemma 7.2, we can signif-
icantly relax the conditions for universal consistency on stationary ergodic processes found
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in the literature. Precisely, [19] showed that for regression with squared loss, under the as-
sumption E[Yf‘] < 00, consistency on stationary ergodic processes is possible. We can relax
this result to bounded second moments, matching the standard results for i.i.d. processes.

COROLLARY 7.4. Let (¥,0) = (R, |- |?). The learning rule of Theorem 3.3 is consistent
on any stationary ergodic process (Xy,Y;)>1 with E[Y?] < oo,

7.3. Adversarial regression with moment condition under SMV processes. Last, we gen-
eralize our result Theorem 5.5 for value spaces satisfying F-TiME, to unbounded value
spaces, with the same moment condition on responses using the general strategy. In order
to apply Theorem 5.5 to bounded balls of the value space, we now ask that all balls By(y, )
in the value space (), /) satisfy F-TiME. This proves Theorem 3.2.

Theorems 3.3 and 3.2 completely characterize learnability for adversarial regression with
moment condition. Namely, if the value space (), ) is such that any bounded ball satisfies
F-TiME (resp. there exists a ball By(y,r) that disproves F-TiME), Theorem 3.2 (resp. 3.3)
gives an optimistic learning rule which achieves consistency under all processes in SMV
(resp. CS). This ends our analysis of adversarial regression for unbounded value spaces.

8. Open research directions. In this work, we provided a characterization of learnabil-
ity for universal learning in the regression setting, for a class of losses satisfying specific
relaxed triangle inequality identities, which contains powers of metrics £ = pS, for a > 1. A
natural question would be whether one can generalize these results to larger classes of losses,
e.g. non-symmetric losses which may appear in classical machine learning problems.

The present work could also have some implications for adversarial contextual bandits.
Specifically, one may consider the case of a learner who receives partial information on the
rewards/losses as opposed to the traditional regression setting where the response is com-
pletely revealed at each iteration. In the latter case, the learner can for instance compute the
loss of all values with respect to the response realization. On the other hand, in the contextual
bandits framework, the reward/loss is revealed only for the pulled arm—or equivalently the
prediction of the learner. In these partial information settings, exploration then becomes nec-
essary. The authors are investigating whether the results presented in this work could have
consequences in these related domains.
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