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Abstract—With advancements in sensor technologies,
intelligent transportation systems (ITS) can collect traffic data
with high spatial and temporal resolution. However, the size of
the networks combined with the huge volume of the data puts
serious constraints on the system resources. Low-dimensional
models can help ease these constraints by providing compressed
representations for the networks. In this study, we analyze the
reconstruction efficiency of several low-dimensional models for
large and diverse networks. The compression performed by
low-dimensional models is lossy in nature. To address this issue,
we propose a near-lossless compression method for traffic data
by applying the principle of lossy plus residual coding. To this
end, we first develop low-dimensional model of the network. We
then apply Huffman coding in the residual layer. The resultant
algorithm guarantees that the maximum reconstruction error
will remain below a desired tolerance limit. For analysis, we
consider a large and heterogeneous test network comprising
of more than 18000 road segments. The results show that the
proposed method can efficiently compress data obtained from a
large and diverse road network, while maintaining the upper
bound on the reconstruction error.

Index Terms—Low-dimensional models, near-lossless
compression.

I. INTRODUCTION

Advancements in sensor technologies have enabled

intelligent transportation systems (ITS) to collect traffic

information with high spatial and temporal resolution [1]–[3].

This has led to the development of data driven algorithms

for many traffic related applications such as sensing, traffic

prediction, estimation, and control [4]–[14]. However, the

huge size of collected data poses another set of challenges.

These challenges include storage and transmission of these

large data sets in an efficient manner. Moreover, nowadays

many ITS applications need to transfer information to remote

mobile devices [15], [16]. These devices usually have limited

storage capacity and may also have limited bandwidth. In such

scenarios, efficient data compression can be considered as a

major requirement for optimal system operation.

We propose to utilize spatial and temporal patterns for

efficient compression of traffic data sets. Traffic parameters
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tend to exhibit strong spatial and temporal correlations [7],

[17]. These spatial and temporal relationships can help to

obtain a low-dimensional representation for a given network.

The low-dimensional models have been previously considered

for applications related to feature selection [7], [17], [18],

missing data imputation [4], [12] and estimation [3], [14].

Low-dimensional models provide compressed state for a given

network. Hence, they are naturally suited for data compression.

Previous studies related to traffic data compression have

mostly focused on data from a single road or small

subnetworks [19]–[22]. Yang et al. compressed flow data

obtained from individual links using 2D wavelet transform

[19]. They did not provide any numerical analysis regarding

the compression efficiency of the method. Shi et al. performed

compression of data obtained from a single loop detector using

wavelets [21]. Qu et al. applied principal component analysis

(PCA) to compress data obtained from a small road network.

They analyzed the compression efficiency of PCA for traffic

flow data [20]. However, they did not provide any comparison

with other low-rank approximation techniques. Hofleitner et al.

proposed non-negative matrix factorization (NMF) to obtain

low-dimensional representation of a large network consisting

of around 2626 road segments [3]. They used NMF to extract

spatial and global patterns in the network. However, no

analysis in terms of reconstruction efficiency of NMF was

provided. In a related study, we compared the reconstruction

efficiency of different low-dimensional models which were

obtained from matrix and tensor based subspace methods for

a network comprising of around 6000 road segments [23].

The previous studies related to low-dimensional models

such as in [3], [13], [19], [20], [22]–[26] only consider lossy

compression. In lossy compression, there is no bound on the

maximum absolute error (MAE). In terms of traffic data sets,

lossy compression does not provide any bound on the loss

of information during individual time instances. For instance,

consider x(t) to be the traffic speed on a certain road at time t.

Let us denote the reconstructed speed value, as a result of lossy

compression, by x̂(t). Lossy compression schemes provide no

guarantee that the absolute reconstruction error | x(t)− x̂(t) |
will remain below a certain threshold δ .

In summary, we can state that previous studies related to

traffic data compression have focused on data collected from

either individual roads or small networks [19]–[22]. These

studies do not typically compare the reconstruction efficiency

of various low-dimensional models for a given road network

[3], [13], [19], [20]. Furthermore, the proposed methods do not

provide any upper bound on the maximum loss of information.



Fig. 1: Test network consisting of 18101 road segments from

the country wide road network of Singapore.

CATA CATB CATC Slip Roads Other

2167 8674 2078 1832 3350

TABLE I: Categories of road segments. The test network

comprises of 18101 road segments.

In this study, we compress speed data obtained from a large

test network comprising of around 18000 road segments in

Singapore. The network consists of a diverse set of roads

such as expressways, region around the Changi Airport,

industrial, residential, arterial roads etc. We consider different

subspace methods such as singular value decomposition

(SVD), discrete cosine transform (DCT), wavelet transform

and NMF for low-dimensional representation. We compare

their reconstruction efficiency for a large and diverse road

network. To limit the maximum reconstruction error below

a certain threshold δ , we propose a two-step compression

algorithm. We first perform lossy compression by developing

low-dimensional model for the network. Then we encode

the residuals by applying Huffman coding and keeping

quantization error of residuals below the specified tolerance

limit. The resulting compression algorithm guarantees that

the maximum loss of information at any time instance and

for any road segment will remain below a certain tolerance

level. We analyze the performance of the proposed algorithm

for different road categories as well as during weekdays and

weekends.

The rest of the paper is structured as follows. In section II,

we explain the data set and different performance measures.

In section III, we discuss several low-dimensional models for

traffic data compression. In section IV, we explain the idea of

two-step encoding for traffic data sets. We discuss the results

in section V. In section VI, we summarize the contributions

and conclude the paper.

II. DATA SET AND PERFORMANCE MEASURES

In this section, we explain the data set used in this study.

We also provide different performance measures that we will

use for analysis in later sections.

A. Data set

We represent the road network shown in Fig. 1 by a directed

graph G= (N,E), where the set E consists of p road segments

such that E = {si}p
i=1. Here si represents a road segment. The

set N contains the list of nodes in the graph. For this study, we

consider average speed data. Let z(si, t j) represent the average

speed on the road segment si during the time interval (t j −
∆t, t j) where ∆t = 5 minutes. For each road si, we create speed

profile ai ∈ Rn where ai = [z(si, t1)...z(si, tn)]
T . These speed

profiles are stacked together to obtain the network profile

A ∈ Rn×p where A = [a1...ap]. Fig. 2 shows the example

of a low-dimensional representation Â of the network profile

matrix A. For the analysis, we consider continuous speed data

from the month of August, 2011. The data was provided by

Land Transportation Authority (LTA) of Singapore.

The test network is composed of a diverse set of road

segments belonging to roads from different categories as well

as different regions (residential, industrial, downtown, around

the airport etc.). Table I shows the number of roads belonging

to each category as defined by LTA. Expressways are assigned

to category A (CATA), where as major and minor arterial roads

belong to CATB and CATC, respectively. The primary access

and local access roads are referred as other in Table I.

B. Performance measures

Now, let us consider different performance measures. We

calculate the relative error between the actual network profile

A and the estimated network profile Â as:

Relative Error =
‖A− Â‖F

‖A‖F

, (1)

where ‖A‖F is the Frobenius norm of matrix A and calculated

as:

‖A‖F =

(

n

∑
i=1

p

∑
j=1

a2
i j

)1/2

. (2)

The relative error provides a measure of loss of signal energy

A− Â as compared to the original network profile A. We also

calculate mean absolute percentage error (MAPE) as follows:

MAPE =
1

np

n

∑
i=1

p

∑
j=1

∣

∣

∣

∣

ai j − âi j

ai j

∣

∣

∣

∣

× 100%, (3)

where âi j is the reconstructed speed value ẑ(s j , ti) for link

s j at time ti. We will use these measures to compare the

reconstruction efficiency of different subspace methods.

We consider the following measures to analyze the

efficiency of the proposed near-lossless compression

algorithm. We calculate the maximum absolute error (MAE)

for the reconstructed network profile Â as:

MAE(A, Â) = max
i, j

|ai j − âi j|. (4)

We also calculate the peak signal-to-noise ratio (PSNR) as:

PSNR = 20 · log10

(

2B − 1√
MSE

)

, (5)

where B is the resolution of the data set in bits. The mean

square error (MSE) is calculated as:

MSE =
1

np
‖A− Â‖2

F . (6)

PSNR is commonly used in the domain of image processing

to evaluate the performance of compression algorithms [27].



Fig. 2: Actual and reconstructed speed profiles of a subset of

road segments from AT and ÂT , respectively. The colorbars

represent the colors corresponding to different speed values.

A row in the image represents the speed values (actual aT
i and

reconstructed âT
i ) of an individual link for 1st and 2nd August,

2011.

III. LOW-DIMENSIONAL MODELS

In this section, we briefly discuss various subspace methods

to obtain low-dimensional representations for large road

networks. To this end, we will consider the following methods:

singular value decomposition (SVD), 2D discrete cosine

transform (DCT), 2D wavelet transform and non-negative

matrix factorization (NMF). We compare their reconstruction

efficiency in terms of the number of elements Θ required to

reconstruct a particular low-dimensional representation Â. We

define the element ratio as:

Element Ratio(ER) =
np

Θ
, (7)

where np represents the total number of elements in the

network profile matrix A.

A. Singular Value Decomposition

Singular value decomposition based methods have found

applications in many ITS applications including missing data

imputation [4], [12] and estimation [13]. By applying SVD,

network profile matrix A can be represented as A = USVT ,

where the columns of matrix U ∈Rn×n and matrix V ∈Rp×p

are called the left singular vectors and the right singular

vectors of A respectively. The matrix S ∈Rn×p is a diagonal

matrix containing min(n, p) singular values of the network

profile matrix A.

The left singular vectors can be obtained by performing

eigenvalue decomposition of AAT such that AAT = UΛUT .

The matrix Λ contains eigenvalues of AAT where UT U =
I. Similarly the right singular vectors can be obtained by

performing eigenvalue decomposition of AT A such that

AT A = VΛVT . The singular values {σi}min(n,p)
i=1 are calculated

as {σi =
√

λi}min(n,p)
i=1 , where λi is the ith diagonal entry of

Λ. Furthermore, we can obtain the rank-r (r ≤ min(n, p))
approximation of A as:

Â =
r

∑
i=1

σi ui ⊗ vi, (8)

where ui ⊗ vi = uiv
T
i and σi is the ith diagonal entry of S.

The vectors ui and vi are the columns of matrices U and V

respectively.

For traffic related applications, the matrix AT A can be

interpreted as the covariance matrix for the road segments

{si}p
i in the network G. Consequently, if the traffic patterns

{ai}p
i=1 between the road segments {si}p

i=1 are highly

correlated then the network profile A can be compressed with

high efficiency. We perform lossy compression, by storing an

appropriate low-rank approximation obtained from (8). To this

end, we need to store r columns each from the matrices U and

V and r elements from the matrix S. Hence, the total number

of stored elements will be Θ = (n+ p+ 1)r.

B. 2D Discrete Cosine Transform

In SVD based decomposition, we obtain the basis vectors

{vi}p
i=1 from the covariance matrix AT A of road segments

in the network. Consequently, we need to store the matrices

U and V along with the singular values {σi}r
i=1 for

decompression. In 2D DCT, we consider the cosine family

as the basis set and use these basis functions to transform the

network profile A into the so called frequency domain with

matrix Y ∈ Rn×p containing the frequency coefficients. For

the transformation, let us represent the speed z(s j+1, ti+1) for

link s j+1 at time ti+1 as mi j such that mi j = z(s j+1, ti+1). We

can then calculate the transformed coefficients yk1k2
as:

yk1k2
=αk1

αk2

n−1

∑
i=0

p−1

∑
j=0

mi j cos
(k1(2i+ 1)π

2n

)

cos
(k2(2 j+ 1)π

2p

)

,

(9)

where 0 ≤ k1 < n , 0 ≤ k2 < p. The factors αk1
and αk2

are

defined as:

αk1
=







√

1
n

k1 = 0
√

2
n

k1 = 1, ...n− 1,
(10)

αk2
=







√

1
p

k2 = 0
√

2
p

k2 = 1, ...p− 1.
(11)



As the basis functions are orthonormal, the inverse transform

can be easily calculated as:

m̂i j =
n−1

∑
k1=0

p−1

∑
k2=0

αk1
αk2

yk1k2
cos

(k1(2i+ 1)π

2n

)

cos
(k2(2 j+ 1)π

2p

)

,

(12)

where m̂i j is the estimated speed value ẑ(s j+1, ti+1) for link

s j+1 at time ti+1. Traffic parameters such as speed and flow

tend to be highly correlated across the network [12], [28].

Therefore, we expect that most of the information contained

in the network profile A can be represented by considering a

small number of frequency components Θ and we can discard

the rest of the frequency components {yk1k2
= 0}k1k2 6∈Ω. Here

Ω is the set of the indices of the frequency components used

for reconstruction of traffic data [23]. As the basis functions

are pre-specified, we only need to store the elements belonging

to the set Ω to reconstruct the network profile Â.

C. Wavelets

Wavelet transforms have been widely used in compression

related applications including images [29], [30] and medical

data sets such as electroencephalogram (EEG) [31], [32].

Similar to DCT, wavelets also perform compression using a

pre-specified basis set. Wavelet based methods have also been

applied for compression of traffic related data sets [19], [21],

[22], [25]. However, these studies only analyze data obtained

from either individual links or small networks [19], [22].

Moreover, these studies have not compared the performance of

wavelets with other subspace methods for traffic data sets. In

this study, we apply 2D wavelet transform to compress speed

data obtained from a large road network.

To choose an appropriate wavelet type, we consider 5

commonly used wavelets and compare their reconstruction

efficiency for a large road network. The different wavelet types

we consider are Near Symmetric, Bi-orthogonal 3/5, Discrete

Meyer Daubechies and Coiflets wavelets. We calculate the

element ratio for the wavelet transform by taking the ratio

of the total number of elements np in the network profile

A and the number of wavelet coefficients Θ used for the

reconstruction.

Fig. 3 shows the reconstruction performance of different

wavelet types. For our analysis we will consider Near

Symmetric wavelet as it provides the best reconstruction

efficiency.

D. Non-negative matrix factorization

The non-negative matrix factorization (NMF) provides

low-rank approximation of a given matrix by constraining the

factors to be non-negative. It has found applications in many

fields including text mining [33] and transportation systems

[3], [17]. In the field of transportation systems, NMF has

been applied to applications related to estimation as well

as prediction [3], [17]. In this study, we will focus on the

reconstruction efficiency of NMF for large-scale networks.

For the network profile A, the NMF optimization problem is
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Fig. 3: Reconstruction efficiency of different wavelet types.

defined as:

min f (W,H) =
1

2
‖A−WH‖2

F ,

s.t : wi j ≥ 0 ∀ i, j ,

hi j ≥ 0 ∀ i, j ,

(13)

where wi j and hi j are the elements of matrices W ∈Rn×r and

H ∈Rr×p respectively. Furthermore, matrices H and W both

have rank r, where r ≤ min(n, p). Since traffic parameters

such as speed, flow and travel time take on non-negative

values, NMF may prove suitable for obtaining row-rank

approximations for traffic data sets. The non-negative nature of

factors W and H can potentially provide better interpretability

for the underlying model Â = WH [3], [34]. The optimization

problem in (13) is typically solved using the multiplicative

update algorithm [3]. To reconstruct a given compressed state,

we need to store Θ = (n+ p)r elements.

E. Performance Comparison

In this section, we compare the reconstruction efficiency

of the four low-dimensional models presented in the

previous section. Fig. 4 shows the performance of these

low-dimensional models for different element ratios (ER).

DCT and wavelets have comparable performance in terms of

both relative error and MAPE. For DCT and wavelets, we only

need to store the transformed coefficients for reconstruction.

For SVD, we need to store matrices U, V as well as singular

values. Hence, SVD has a lower element ratio for a particular

threshold of relative error.

To visualize the reconstruction patterns for these

low-dimensional models, we show the data from a typical

link in Fig. 5. The figure shows around two days of actual

speed data from the link along with the reconstructed speed

profile. The ER for this particular representation Â is around

9.5 for the four methods.

NMF provides an interesting case. The low-dimensional

model obtained from NMF was able to capture the dominant

trend in the speed profile. However, the model failed to

incorporate localized variations in the speed profile (see Fig.

5d). Moreover, the curve representing the reconstruction error

of NMF remains flat for different element ratios (see Fig.

4). We observe that although, NMF can provide reasonable
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Fig. 4: Comparison of the reconstruction efficiency of different low-dimensional models.
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Fig. 5: Reconstructed speed profile of a typical road segment using different low-dimensional models. The units for speed

values are km/h. The speed data in this figure is taken from 1st and 2nd August, 2011.

reconstruction performance with a small number of factors, it

cannot model the local variations efficiently.

Lossy reconstruction does not provide any guarantee that the

maximum loss of information |z(si, t j)− ẑ(si, t j)| will remain

below a certain tolerance limit δ . For instance, although it

may seem from the example that the maximum error for DCT,

wavelets and SVD should be small. However, all four methods

reported MAE in excess of 60 km/h for the reconstructed

network profile Â. In the next section, we propose a two-step

compression algorithm to mitigate this issue by performing

near-lossless compression for traffic data sets.

IV. NEAR-LOSSLESS DATA COMPRESSION

In this section, we discuss a two-step algorithm for

near-lossless compression of traffic data obtained from large

networks. Fig. 6 shows the steps involved during the encoding

and decoding phases. We now briefly discuss the design of

encoder and decoder for near-lossless compression of traffic

data sets.

A. Encoder

The encoder consists of two stages: (1) lossy compression

and (2) residual coding to keep the maximum reconstruction

error below the tolerance limit δ . We start by creating the



Fig. 6: Schematic block diagram of the near-lossless compression of traffic data obtained from large road networks. Q(·)
refers to the quantization scheme used for residuals (see (15)).

network profile A for traffic speed data obtained from the

set of links {si|si ∈ E}. In the first step, we perform lossy

compression by means of different subspace methods such as

DCT, SVD, wavelets, and NMF. The bitstream χen represents

the compressed representation obtained from these methods.

For SVD the factors {(ui,σi,vi)}r
i=1 can be encoded in straight

forward manner. The same goes for factors (W,H) obtained

from NMF. For DCT and wavelets, techniques such as run

length encoding or sparse representation can be used to store

the appropriate set of coefficients and their positions Ω. Many

ITS applications such as feature selection, estimation and

prediction only require transformed set of variables instead

of the complete data set [13], [17], [18], [35]–[38]. These

applications can directly use the compressed state χen instead

of actual network profile A or the decompressed representation

Â. However, by only storing χen, we cannot control the

maximum loss of information |z(s j, ti)− ẑ(s j , ti)|. In the second

step, we encode the residual error so that the maximum

reconstruction error remains below the tolerance limit δ . The

elements ei j of the residual matrix E are calculated as:

ei j = z(s j , ti)− ẑ(s j , ti), (14)

where ẑ(s j, ti) = âi j represents the speed value obtained from

the low-dimensional representation Â. We then obtain the

quantized residuals êi j = Q(ei j,δ ) as follows:

êi j =

{

0 |ei j| ≤ δ
⌊ei j⌉ otherwise.

(15)

where ⌊·⌉ rounds the argument to the nearest integer value. In

this quantization scheme, we discard the residuals ei j whose

absolute value is equal to or less than the tolerance limit. For

the rest of the residuals {ei j}|ei j |>δ , we round them to the

nearest integer value. We apply Huffman coding to encode the

quantized residuals êi j in a lossless manner [39]. We represent

the resultant bitstream by εqen. Let us now briefly discuss the

decoder design.

Low-Dim model DCT NMF SVD Wavelets HC

CR 1.66 1.57 1.65 1.62 1.2

TABLE II: Compression ratios of different methods for δ =

0. HC refers to the case, in which Huffman coding is directly

applied to perform lossless compression.

B. Decoder

At the decoder end, we decompress the streams χen and εqen

to obtain the matrices Â and Ê respectively. Decompressing

the bitstream χen will yield the low-dimensional representation

Â. Decompressing εqen will provide the quantized residuals

stored in matrix Ê. Consequently, the reconstructed network

profile will be D = Â+ Ê. The decompressed speed value di j

for a link s j at time instance ti will be:

di j = ẑ(s j , ti)+ êi j. (16)

The maximum absolute error (MAE) between the network

profile A and the reconstructed profile D can be calculated

as:

MAE(A,D) = max
i, j

|ai j − di j|,

= max
i, j

|(ai j − âi j)− (di j − âi j)|,

= max
i, j

|ei j − êi j|,

≤ δ . (17)

Selecting different tolerance limits will result in different

compression ratios. We calculate the compression ratio (CR)

as:

CR =
Lorg

Lcomp
, (18)

where Lorg and Lcomp represent the bitstream lengths of the

original and compressed sources respectively. For calculating

CR, we set the resolution of speed data to be B = 8 bits.



TABLE III: Near-lossless compression performance of low-dimensional models for different tolerance levels δ ∈
{1km/h, ...,15km/h}.

Low-dimensional Model
δ = 1 δ = 2 δ = 3 δ = 4 δ = 5

CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR

DCT 1.82 54.23 2.05 48.93 2.40 45.20 2.80 42.55 3.22 40.59

SVD 1.83 53.95 2.10 48.69 2.46 45.07 2.86 42.53 3.26 40.66

NMF 1.69 54.56 1.87 49.29 2.14 45.46 2.46 42.69 2.81 40.61

Wavelets 1.75 54.64 1.93 49.37 2.21 45.52 2.56 42.72 2.94 40.62

Low-dimensional Model
δ = 6 δ = 7 δ = 8 δ = 9 δ = 10

CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR

DCT 3.64 39.10 4.05 37.95 4.43 37.05 4.77 36.34 5.07 35.76

SVD 3.64 39.26 4.00 38.18 4.32 37.34 4.60 36.67 4.84 36.14

NMF 3.16 39.01 3.51 37.77 3.84 36.80 4.14 36.02 4.42 35.39

Wavelets 3.34 39.01 3.74 37.74 4.14 36.74 4.51 35.94 4.85 35.30

Low-dimensional Model
δ = 11 δ = 12 δ = 13 δ = 14 δ = 15

CR PSNR CR PSNR CR PSNR CR PSNR CR PSNR

DCT 5.33 35.30 5.55 34.91 5.74 34.59 5.90 34.32 6.04 34.09

SVD 5.04 35.71 5.21 35.35 5.35 35.05 5.47 34.79 5.57 34.57

NMF 4.65 34.88 4.86 34.45 5.04 34.10 5.19 33.80 5.32 33.55

Wavelets 5.15 34.78 5.42 34.35 5.65 33.98 5.85 33.68 6.03 33.41

TABLE IV: PSNR for different road categories.

Low-dimensional Model CR Tol. δ CATA CATB CATC Slip Roads Other

DCT 3.22

5

41.09 40.41 40.42 40.81 40.77

SVD 3.26 41.59 40.45 40.41 40.84 40.75

NMF 2.81 40.80 40.45 40.47 40.88 40.84

Wavelets 2.94 40.60 40.49 40.50 40.89 40.90

Low-dimensional Model CR Tol. δ CATA CATB CATC Slip Roads Other

DCT 5.07

10

37.20 35.70 35.47 35.50 35.47

SVD 4.84 37.95 36.12 35.77 35.78 35.72

NMF 4.42 35.54 35.41 35.32 35.22 35.36

Wavelets 4.85 35.62 35.31 35.22 35.11 35.24
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Fig. 7: Performance of near-lossless compression methods based on different low-dimensional models

(SVD/DCT/wavelets/NMF).



In the next section, we analyze the performance of

the proposed near-lossless compression method for different

tolerance limits.

V. RESULTS AND DISCUSSION

In this section, we analyze the performance of the proposed

algorithms for the test network. We also compare the

compression efficiency of these algorithms for different road

categories, weekdays, and weekends. All the compression

ratios are calculated by keeping the resolution of field data

to B = 8 bits. Considering higher resolution for field data

will automatically result in higher albeit inflated CR. Table II

shows the compression ratios for different subspace methods

by setting δ = 0. If we ignore the rounding off error due to

(15), then this scenario can be considered as the lossless case.

If we directly apply Huffman coding (HC) on the network

profile A, we obtain a CR of 1.2. Hence, the two step

compression method straight away provides around 30 % to

38 % (CR: 1.57− 1.66) improvement in CR. Table III shows

the CR and PSNR achieved by the four low-dimensional

models for different tolerance levels. For tolerance level of

5 km/h, the algorithms yield a CR of around 3. In this case,

the SVD based method provides the highest compression ratio

and PSNR. The other three methods also report similar PSNR.

DCT has comparable CR to that of SVD. The other two

methods (wavelets and NMF) report slightly smaller CR for

this particular tolerance level. For tolerance level of 15 km/h,

DCT and wavelets achieve CR of more than 6 (see Table

III). While SVD has the best PSNR for this tolerance level, it

reports slightly smaller CR (5.57) as compared to DCT (6.04)

and wavelets (6.03).

To observe these trends in more detail, we plot the

compression ratios achieved by these algorithms against

different tolerance levels in Fig. 7a. All the algorithms report

similar CR for tolerance levels close to zero. For higher

tolerance levels, DCT and wavelets achieve higher CR as

compared to matrix decomposition methods (SVD, NMF). For

low tolerance levels, residual coding can easily compensate

for the inefficiency of a particular low-dimensional model.

For higher CR, such inefficiencies become prominent. The

tolerance level (MAE) alone does not provide all the

information about the overall reconstruction error. Two

methods with the same MAE can still have different mean

square error. To this end, we plot PSNR against the

compression ratios for these methods. PSNR values for

different compression ratios are shown in Fig. 7b. The plot

shows that SVD provides similar PSNR to DCT for a given

CR. However, SVD yields higher maximum error as compared

to DCT (see Fig. 7a).

Table IV shows the category wise analysis of different

near-lossless compression methods for tolerance levels of 5

km/h and 10 km/h. Expressways (CATA roads) achieve higher

PSNR as compared to roads from CATB and CATC for all

four algorithms. This difference in PSNR is more visible for

δ = 10 as opposed to δ = 5. For δ = 10 , expressways have the

highest PSNR in comparison with CATB, CATC, slip roads

and other categories for each algorithm. Nonetheles, the PSNR

TABLE V: PSNR for different methods during weekdays and

weekends for the month of August, 2011.

Low-dimensional Model CR Tol. δ Weekdays Weekends

DCT 3.22

5

40.60 40.57

SVD 3.26 40.66 40.66

NMF 2.81 40.63 40.54

Wavelets 2.94 40.65 40.54

Low-dimensional Model CR Tol. δ Weekdays Weekends

DCT 5.07

10

35.73 35.86

SVD 4.84 36.12 36.21

NMF 4.42 35.38 35.43

Wavelets 4.85 35.28 35.38

gain for CATA as compared to other categories varies from one

algorithm to another. These values have some intuitive sense

as well. Normally, traffic on expressways behaves much more

smoothly in comparison with other roads. Therefore, subspace

methods can model traffic conditions on expressways with

high accuracy.

Table V shows the PSNR values for weekdays and

weekends for different algorithms. We observe that

reconstructed data for both weekdays and weekends

has similar PSNR. This trend is observed for all the

compression algorithms. Weekdays and weekends tend to

have distinct traffic patterns. However, the similar compression

performance indicates that traffic patterns across different

time periods (from one week to another) remain quite similar.

Consequently, traffic data sets can be easily compressed (see

Tables III and V).

Various studies [40]–[42] have identified management and

storage of traffic data as one of the major big data problems

currently faced by ITS. The proposed compression methods

may prove to be useful for efficient storage and management

of traffic data for systems dealing with large-scale networks.

Furthermore, many ITS applications such as feature selection,

estimation and prediction only require information related

to transformed variables instead of the actual data. These

applications can directly utilize the compressed data streams

obtained from the first step.

VI. CONCLUSION

In this paper, we proposed a near-lossless compression

algorithm to compress traffic data obtained from a large

and diverse network. In the first step, we developed

low-dimensional model of the network. Then, we encoded

the residuals by applying Huffman coding. The resulting

algorithm guarantees that the loss of information, for any link

at any given time, will remain below a pre-specified threshold.

To develop the low-dimensional model, we considered

different subspace methods including 2D wavelets, 2D

DCT transform, SVD and NMF. These methods have been

previously applied to many transportation related problems

such as prediction, estimation and feature selection. However,

these studies typically do not compare the reconstruction

performance of different methods for a given network.



In this study, we analyzed the reconstruction efficiency

of different subspace methods for a large and diverse

network which consisted of more than 18000 road segments.

We then applied these methods to perform near-lossless

compression of the speed data. We also analyzed the

performance of the proposed algorithm for different road

categories, weekdays and weekends by considering different

low-dimensional methods. We conclude that low-dimensional

based near-lossless compression methods can efficiently

compress traffic data sets obtained from large and diverse road

networks.
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LIST OF ABBREVIATIONS

CR Compression ratio

DCT Discrete cosine transform

EEG Electroencephalogram

ER Element ratios

HC Huffman coding

ITS Intelligent transportation systems

LTA Land transportation authority

MAE Maximum absolute error

MAPE Mean absolute percentage error

MSE Mean square error

NMF Non-negative matrix factorization

PCA Principal component analysis

PSNR Peak signal-to-noise ratio

SVD Singular value decomposition
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