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Abstract—Intelligent transportation systems (ITS) gather
information about the traffic conditions by collecting data
from a wide range of on-ground sensors. The collected data
usually suffers from irregular spatial and temporal resolution.
Consequently, missing data is a common problem faced by
ITS. In this study, we consider the problem of missing data
in large and diverse road networks. We propose various matrix
and tensor based methods to estimate these missing values by
extracting common traffic patterns in large road networks. To
obtain these traffic patterns in the presence of missing data, we
apply fixed point continuation with approximate singular value
decomposition (FPCA), canonical polyadic (CP) decomposition,
least squares and variational bayesian principal component
analysis (VBPCA). For analysis, we consider different road
networks each comprising of around 1500 road segments. We
evaluate the performance of these methods in terms of estimation
accuracy, variance of the data set as well as the bias imparted
by these methods.

Index Terms—Missing data estimation, low-dimensional
models.

I. INTRODUCTION

With advancements in sensor technologies, intelligent

transportation systems (ITS) can now collect traffic data from a

wide range of stationary and mobile sensors [1]–[8]. Stationary

sensors such as loop detectors and road side cameras tend to

have limited spatial coverage, whereas mobile sensors such

as GPS probes collect data with highly erratic spatial and

temporal resolution. These issues make the problem of missing

data unavoidable in traffic data sets. Furthermore, failures such

as detector malfunction and lossy communication systems may

also result in incomplete traffic information [4], [9]. This can

result in situations, where a high percentage of data is missing.

Consequently, missing data is a commonly reported problem

in traffic data sets [9]–[14]. Different studies in this regard

have reported that missing data percentages can be as high as
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90% [13]. For traffic management systems, this is a critical

issue [15], [16].

The methods proposed to solve the problem of missing data

can be broadly divided into two categories: function estimation

and matrix/tensor completion. In the first case, it is typically

assumed that the problem of missing data is localized to

certain links and time intervals. In this way, the historical

data can be used to obtain the relationship function between

the target road and its neighbors or past states of that road.

For instance, Chen et. al. [9] developed relationship models

between neighboring loop detectors using historical data. This

relationship function was then used to impute missing values

for faulty detectors. Ming et al. [14] trained neural networks

and used temporal features to estimate missing values. Yang

et al. [17] also used a similar approach and applied least

squares support vector machines to estimate missing values.

The function estimation techniques require complete historical

data to learn the relationship models. Hence, these methods

will not work if historical data has missing values. In practical

scenarios, uncorrupted historical data may not be available. On

the other hand, matrix and tensor completion methods do not

require training data to perform imputation [4]. Consequently,

these methods have garnered considerable interest in the field

of transportation studies [4], [13], [18]–[22].

Traffic states across neighboring roads tend to be strongly

correlated [23], [24]. These relationships imply that road

networks can be represented by low-dimensional models.

Matrix and tensor completion methods utilize these patterns to

estimate the missing values by obtaining a suitable low-rank

approximation of the incomplete tensor/matrix. However,

previous studies involving matrix/tensor completion methods

for traffic data sets have mostly focused on data obtained from

a few roads or intersections. For instance, Li Qu et al. [4],

[18] used bayesian principal component analysis (BPCA) to

perform imputation for traffic flow data. They analyzed a small

network consisting of around 50 road segments. Li Li et al.

[19] used data from four detectors for analysis. Gang and

Tongmin [20] compared the performance of various matrix

completion methods on a test network of around 50 links.

Huachun et al. [13] performed missing data imputation by

tensor decomposition methods. For analysis, they considered

four road segments and represented their data obtained from

each road as a 3-way tensor.

Traffic conditions across city-scale networks also tend to

have certain common global patterns [25]–[29]. Some studies

[21], [22] have considered the problem of missing data in

large networks, albeit in a limited manner. These studies did



not analyze the performance of imputation algorithms for

different road types (expressways, arterial roads, access roads)

and during different days of the week. Furthermore, they did

not analyze the bias and variance of the imputed traffic data.

In summary, function estimation methods for imputation

have limited application for large networks due to their

dependency on uncorrupted historical data [9], [14], [17],

[30]. The previous studies which applied matrix and tensor

completion methods mostly considered data from a single

link or a few intersections [4], [13], [18]–[20]. These studies

typically do not analyze the performance of imputation

methods for different road types and during different days of

the week [4], [18], [21]. Furthermore, analysis in terms of

variance, bias, and the impact of the rank of the estimated

low-dimensional model on the imputation performance also

needs to be considered.

In this paper, we address the aforementioned limitations

in previous studies by performing missing data imputation

for large road networks comprising of expressways, arterial

roads, access roads as well as slip roads. We propose various

matrix and tensor based methods that can extract global traffic

patterns from incomplete data. Our main contributions are as

follows:

In transportation systems, the problem of missing data is

typically handled by applying variants of the un-constrained

weighted least square approach [20]. We propose the nuclear

norm minimization based approach to solve the problem

of missing data in large-scale transportation systems. We

apply fixed point continuation with approximate singular

value decomposition (FPCA) [31] to obtain a low-rank

representation for large-scale road networks in presence of

missing data. The results show that its performance is less

sensitive to daily variations in traffic data. Furthermore, the

method also provides better or similar performance (in terms

of weighted relative error (WRE), root mean squared error

(RMSE), variance and bias) in comparison to the other

algorithms for different road categories.

Probabilistic PCA based methods have been previously used

to estimate missing traffic information from incomplete data

sets [4], [19]. However, these studies only considered small

networks and did not evaluate the performance of probabilistic

methods for different road categories and during different

days of the week. Furthermore, analysis in terms of induced

bias and variance in the recovered speed data also needs to

be considered. Moreover, BPCA formulations used in these

studies [4] do not scale well for large-scale systems. In this

study, we consider a variant of variational bayesian principal

component analysis (VBPCA) [32], which is suitable for

large-scale road networks.

We compare the performance of the above mentioned

methods with baseline matrix and tensor decomposition

methods such as weighted least squares and canonical polyadic

(CP) decomposition. We analyze the performance of these

methods for different road categories and for days of the week.

We analyze the variance and bias induced by these methods in

the imputed speed data. Furthermore, we discuss the impact

of rank selection on the performance of different methods.

The rest of the paper is structured as follows. In section II,

we explain the data and different performance measures. In

section III, we review several matrix and tensor completion

methods to estimate missing data in road networks. In section

IV, we analyze the performance of the proposed methods

for different test networks. In section V, we summarize our

contributions and conclude the paper.

II. TRAFFIC DATA SET AND PERFORMANCE MEASURES

A. Data set

We represent the test road network of size p by a set E

of road segments si , such that E = {si}
p
i=1. In this study, we

consider average speed data. The average speed on a link si

during the interval (t j −∆t, t j) is represented by z(si, t j). The

sampling interval ∆t is 5 minutes. For each link si, we create

a speed profile ai ∈R
n such that ai = [ z(si, t1) ... z(si, tn) ]T .

The speed profiles contain one day of speed data for each link.

We stack these speed profiles to obtain the network profile

matrix A ∈Rn×p such that A = [ a1 ... ap ]. Let D ∈Rn×p

be the corresponding incomplete observed data matrix. The set

Ω contains the location of the entries in D for which speed

data is available and the set Θ = Ωc represents the location

of the missing speed values in D. To generate the incomplete

observed data matrix, we follow the procedure outlined in [13],

[33].

For the tensor completion method, we create the network

profile tensor A∈Rn×p×q by stacking together network profile

matrices {A1,A2, ... ,Aq} from different days to form a 3-way

tensor. To this end, we use q = 7 days of data. In this case,

the incomplete tensor is represented by D ∈Rn×p×q.

For the analysis, we consider 5 test networks. The roads

in each network belong to the city-state road network of

Singapore for which sufficient data was available. The first

test network consists of expressways (CATA). The second and

third networks are composed of major and minor arterial roads

respectively. We refer to major arterial roads as CATB and

minor arterial roads as CATC. The fourth network contains

slip roads, while the fifth network contains primary access

and local access roads. Table I shows the size of each test

network. The network consisting of primary/local access roads

is referred as other roads in the table. The speed data was

provided courtesy of Singapore’s land transportation authority

(LTA). In this study, we consider speed data from August 1,

2011 to August 7, 2011.

B. Performance measures

In this section, we briefly describe different performance

measures to assess the proposed methods. For matrices, we

define the weighted relative error (WRE) between actual A

and estimated network profile Â as:

WRE =
‖W◦ (A− Â)‖F

‖W◦A‖F

, (1)

where the symbol ◦ represents the element wise multiplication

between the two matrices. The matrix W ∈Rn×p is the weight

matrix with values:

wi j =

{
0 (i, j) ∈ Ω

1 (i, j) ∈ Θ.
(2)



TABLE I: Size of different test networks. Each test network

is composed of roads from a specific category. Primary and

local access roads are referred as “other roads” in the table.

CATA CATB CATC Slip Roads Other Roads

2175 2500 1428 1572 2221

The Frobenius Norm ‖A‖F of a matrix A ∈Rn×p is defined

as:

‖A‖F =

√√√√
n

∑
i=1

p

∑
j=1

a2
i j . (3)

Similarly, we define WRE for tensors as follows:

WRE =
‖W◦ (A− Â)‖F

‖W◦A‖F

, (4)

where the symbol ◦ represents the element wise multiplication

between the two tensors. The tensor W∈Rn×p×q is the weight

tensor with values:

wi jk =

{
0 (i, j,k) ∈ Ω

1 (i, j,k) ∈ Θ.
(5)

The Frobenius Norm ‖A‖F of a tensor A ∈Rn×p×q is defined

as:

‖A‖F =

√√√√
n

∑
i=1

p

∑
j=1

q

∑
k=1

a2
i jk . (6)

Weighted relative error is commonly used to evaluate the

performance of matrix and tensor completion algorithms [31],

[33]. We also compute root mean squared error (RMSE) of

estimation algorithms as follows:

RMSEmat =

√√√√ 1

|Θ| ∑
(i, j)∈Θ

(ai j − âi j)2, (7)

RMSEten =

√√√√ 1

|Θ| ∑
(i, j,k)∈Θ

(ai jk − âi jk)2, (8)

where |Θ| represents the size of the set Θ. We calculate the

bias induced in the imputed speed data as follows:

Biasmat =
1

|Θ| ∑
(i, j)∈Θ

(ai j − âi j), (9)

Biasten =
1

|Θ| ∑
(i, j,k)∈Θ

(ai jk − âi jk). (10)

Furthermore, we calculate the variance of the imputed values

as follows:

Variancemat =
1

|Θ| ∑
(i, j)∈Θ

(âi j − āΘ)
2
, (11)

Varianceten =
1

|Θ| ∑
(i, j,k)∈Θ

(âi jk − āΘ)
2
, (12)

where āΘ represents the mean values of {âi j}(i, j)∈Θ and

{âi jk}(i, j,k)∈Θ in (11) and (12) respectively.

III. MISSING DATA ESTIMATION

In this section, we briefly discuss various matrix and

tensor completion algorithms for estimation of missing data

in matrices and tensors. We apply LS, FPCA and VBPCA

to recover missing speed information in the incomplete

matrices. For tensor completion, we apply canonical polyadic

weighted optimization (CP-WOPT) to recover the missing

traffic information.

A. Least squares method (LS)

Traffic parameters such as speed tend to behave similarly

across an interconnected network [23], [27]. We aim to utilize

these latent patterns to recover the missing speed information

in the incomplete matrix D. To this end, let us first consider

the complete network profile matrix A. By applying principal

component analysis (PCA), we can obtain a low rank (with

rank-r) approximation Â = WX+M of the network profile

matrix A, where W ∈ Rn×r and X ∈ Rr×p are two low-rank

matrices and M ∈ Rn×p contains the row wise mean values

of A. This decomposition can be obtained by solving the

following least squares optimization problem:

min
Â

n

∑
i=1

p

∑
j=1

(ai j − âi j)
2
,

âi j = wT
i x j +mi j,

(13)

with the constraint that the vectors {wi}
r
i=1 remain

orthonormal [34]. In the case of incomplete matrix D, we

can reformulate the problem by minimizing the reconstruction

error for observed speed data {di j}(i, j)∈Ω only, where di j

represents the speed value for road s j at time ti. Hence, the

optimization problem will become [35]:

min
Â

∑
(i, j)∈Ω

(di j − âi j)
2
,

âi j = wT
i x j +mi j.

(14)

In this study, we solve the optimization problem in (14) by

the means of commonly applied gradient descent algorithm.

B. Variational bayesian principal component analysis

(VBPCA)

In the previous section, we discussed the least squares

method to obtain the low-rank approximation Â of matrix

A from the incomplete network profile matrix D. However,

the least squares approach is prone to over-fitting [32]. The

problem of over-fitting can be avoided by using probabilistic

methods to perform PCA on incomplete matrices.

We apply VBPCA to estimate missing speed data in the

incomplete network profile matrix D. VBPCA is more resilient

to over-fitting in comparison with other probabilistic methods

such as probabilistic principal component analysis (PPCA)

and maximum a posteriori PCA (MAPPCA) [32]. In this

study, we apply a variant of VBPCA proposed by Ilin and

Raiko [32], which they termed as VBPCAd. This approach

has faster convergence rates as opposed to traditional VBPCA

implementation [32].



VBPCA avoids the problem of overfitting by penalizing

complex representation of data. Thus it has a built-in

mechanism for rank regularization. However, this rank

selection approach can sometimes lead to suboptimal solutions

(local minima) [32]. Secondly, the network profile matrix A

(or the incomplete profile matrix D) is not a low-rank matrix

in the strict sense. In section IV-A, we will discuss the effect

of the number of latent factors on the imputation performance

of the algorithm.

C. Fixed point continuation with approximate singular value

decomposition (FPCA)

In this section, we discuss an alternative way to estimate the

missing traffic information. We aim to recover these missing

speed values in the incomplete data matrix D by utilizing the

common traffic behavior across different roads {si}
p
i=1. To this

end, we need to obtain a suitable low-rank approximation Â

from the incomplete speed data {di j}(i, j)∈Ω. Furthermore, the

estimated network profile Â should also conserve the speed

information already available in the incomplete data matrix

D within a certain tolerance limit ε , such that {|âi j − di j| <
ε}(i, j)∈Ω. Hence, we can setup the optimization problem as

follows:

min rank(Â),

s.t. |âi j − di j|< ε, ∀ (i, j) ∈ Ω.
(15)

The above mentioned optimization problem tries to recover

the missing speed data with the smallest number of latent

components while preserving the speed information provided

by the observed data {di j}(i, j)∈Ω. However, this is a

non-convex and NP-hard problem [36], [37]. To make the

problem tractable, we can replace rank(Â) by its convex

envelope, which turns out to be the nuclear norm ‖Â‖∗ of

the estimated matrix Â [36]. This way, the problem in (15)

can be reformulated as:

min ‖Â‖∗,

s.t. |âi j − di j|< ε, ∀ (i, j) ∈ Ω,
(16)

where the nuclear norm of the matrix Â of rank r is defined

as ‖Â‖∗ =
r

∑
i=1

σi, and σi is the ith singular value of the matrix

Â. We consider fixed point continuation with approximate

singular value decomposition (FPCA) to solve the optimization

problem defined in (16) [31].

D. Tensor Decomposition

So far, we have discussed different matrix completion

methods to extract the underlying traffic patterns in road

networks. However, these methods cannot efficiently utilize

multi-way dependencies in traffic data sets. For instance,

consider the behavior of road traffic during different days of

the week. Naturally, traffic parameters such as speed tend to

follow similar daily patterns [38]. These temporal relationships

can be extracted in a more efficient manner by creating a

multi-way structure for traffic data. To this end, we represent

the speed data in the form of a 3-way tensor A ∈ Rn×p×q.

This tensor profile is obtained by stacking together the

network profile matrices {A1,A2, ... ,Aq} from different days.

Canonical polyadic (CP) decomposition is commonly used

to obtain low-rank approximations for tensors [39]. For the

incomplete tensor profile D, we can obtain a suitable low-rank

approximation Â by minimizing the reconstruction error for

the observed speed data in the following manner:

min
Â

1

2
‖W◦ (D− Â)‖2

F ,

Â =

r

∑
i=1

b
(1)
i ⊗ b

(2)
i ⊗ b

(3)
i ,

(17)

where b
(m)
i is the ith column vector of mode-m factor matrix

B(m) [33], [39]. In (17), the symbol ⊗ denotes the vector

outer product, whereas the symbol ◦ represents element wise

multiplication between two tensors [39]. The factor matrices

B(1), B(2) and B(3) contain the common traffic patterns across

different modes of the tensor. These patterns include common

traffic behavior across different days and between different

roads. We apply CP weighted optimization (CP-WOPT) to

obtain a suitable estimation Â from the incomplete network

profile tensor D. We refer to this technique as CP (3D).

We also apply CP-WOPT on the unfolded tensor to study

the impact of multi-way representation on the imputation

performance. To this end, we create another network profile

matrix U ∈ Rn×pq | U = [A1 ... Aq] by combining speed

data from multiple days. This network profile matrix U is

essentially an unfolded representation of the network profile

tensor A. In this case, the corresponding incomplete data

matrix is represented by Du. Similar to CP (3D), the low-rank

approximation Û of the matrix U from the incomplete speed

data Du is obtained by minimizing the reconstruction error for

the observed speed data:

min
Û

1

2
‖W◦ (Du − Û)‖2

F ,

Û =

r

∑
i=1

b
(1)
i ⊗ b

(2)
i .

(18)

We apply CP-WOPT to obtain the estimated network profile

matrix Û. This formulation will be referred to as CP (unfold).

IV. RESULTS AND DISCUSSION

A. Latent factors

In this section, we discuss the impact of the choice of

rank (number of latent factors) on the imputation performance

of the proposed algorithms. Fig. 1 shows the variations in

reconstruction performance of different algorithms caused by

the choice of rank for speed data obtained from expressways.

Fig. 2 shows these variations for speed data obtained from

major arterial roads. Let us first discuss the performance of

LS, CP (3D) and CP (Unfold). These three methods try to

extract common patterns in data by minimizing the mean

squared error for the observed speed information. For large

percentages of missing data, the reconstruction error of these

algorithms can vary significantly, depending upon the choice

of rank. Furthermore, the imputation performance of these
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(c) LS.

L
a
te

n
t 
fa

c
to

rs
 (

ra
n
k
)

Missing Data (%age)

 

 

50 60 70 80 90

1

5

10

15

20

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

0

0.1

0.2

(d) FPCA.
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(e) VBPCA.

Fig. 1: Weighted relative error by considering different number of latent factors (rank) for different percentages of missing

data. The test network is composed of expressways (CATA).

L
a
te

n
t 
fa

c
to

rs
 (

ra
n
k
)

Missing Data (%age)

 

 

50 60 70 80 90

1

3

5

7

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

0.05

0.15

0.25

(a) CP (3D).

L
a

te
n

t 
fa

c
to

rs
 (

ra
n

k
)

Missing Data (%age)

 

 

50 60 70 80 90

1

5

10

15

20

W
e

ig
h

te
d

 R
e

la
ti
v
e

 E
rr

o
r

0.05

0.15

0.25

(b) CP (Unfold).
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(e) VBPCA.

Fig. 2: Weighted relative error by considering different number of latent factors (rank) for different percentages of missing

data. The test network is composed of major arterial roads (CATB).
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Fig. 3: Impact of restricting the maximum number of factors

on the imputation accuracy of VBPCA. The WRE is calculated

for the case when 90% of speed data is missing.

algorithms fluctuates more in the case of arterial roads as

compared to expressways (see Fig. 1 and 2). On the other

hand, the reconstruction error for FPCA and VBPCA does not

vary significantly for different rank values. The rank values

for VBPCA in Fig. 1e and 2e represent the limit on the

maximum number of factors that can be used to reconstruct the

estimated network profile matrix Â. VBPCA can automatically

choose the optimal number of factors while estimating missing

values in the incomplete speed data matrix D. Hence, it

might be tempting to assume that the information about the

maximum number of factors (rank) is redundant. However,

this assumption does not hold in all cases. Fig. 3 shows the

impact of setting a limit on the maximum number of latent

factors for VBPCA. The reconstruction error is shown for the

scenario when 90% of speed data is missing. We can conclude

that VBPCA is also prone to overfitting if a suitable cut-off

value for the rank is not available.

B. Performance analysis

In this section, we analysis the performance of various

matrix and tensor completion methods for various road

networks. As a baseline, we also estimate missing values using

mean substitution and linear splines. These are commonly

used baseline techniques for evaluating the performance of

matrix/tensor completion methods [4].

Let us start by analyzing the estimation accuracy of the

proposed algorithms in terms of weighted relative error (WRE)

and RMSE. Fig. 4 and 5 show the imputation accuracy

of these methods for different road types. For expressways,

VBPCA achieves the lowest WRE followed by FPCA. The

imputation error for expressways is lower for all the algorithms

as compared to other road categories. For major and minor

arterial roads, CP (3D) and FPCA provide slightly better

performance as compared to other methods (see Fig. 5b and

Fig. 5c). FPCA also achieves better performance for slip roads

(see Fig. 5d). In the case of access roads, all the algorithms

suffered from large imputation error.

CP (3D), CP (Unfold) and LS all try to impute missing

values by finding those traffic patterns that can minimize

the reconstructed squared error for the observed speed data

{(di j − âi j)
2}(i, j)∈Ω. Out of these three least squared based

methods, multi-way representation (tensor method) tends to

achieve the best performance. Furthermore, for arterial roads

and access roads, multi-way representation (tensor method)

also achieves better imputation accuracy than other methods

such as FPCA and VBPCA. However, in case of expressways,

the advantage of considering multi-way representation is not

that apparent (see Fig. 5a). It seems that tensor representation

is more useful for smaller roads where traffic behaves more

erratically. In such cases, multi-way representation of speed

data is an efficient way to extract underlying traffic patterns.

Let us now analyze the performance of different imputation

methods across the week. Fig. 6 shows the imputation error

of FPCA, LS and VBPCA during different days of the week.

The results are shown for different road categories with speed

data obtained from August 1, 2011 to August 7, 2011. In

this scenario, the missing data percentage was 70%. For

expressways, VBPCA has lower WRE as compared to other

methods during most of the days. This is expected as VBPCA

has the lowest overall imputation error for speed data obtained

from expressways (see Fig. 5a). For arterial roads, all three

methods have similar performance during most of the days (see

Fig. 6b and 6c). However, VBPCA and LS tend to suffer from

large estimation error on certain days. On the other hand, the

estimation performance of FPCA does not vary significantly

from one day to another. We also observe similar trend in

the performances of LS, FPCA and VBPCA for slip roads

(see Fig. 6d). For primary and local access roads, all three

methods reported large imputation error during all seven days

(see Fig. 6e). We can conclude that imputation performance of

FPCA is more robust to daily variations in traffic conditions

in comparison with other methods such as LS and VBPCA.

Table II shows the variance of the estimated data for

different road types. It also shows the variance of the

actual speed data. As expected, the imputation algorithms

underestimate the variance of the imputed data. For instance,

the actual variance of the speed data obtained from

expressways was around 153 km2/hr2. However, the variance

of the speed data obtained from different imputation methods

was around 100 − 130 km2/hr2. Moreover, the difference

between the variance of actual and imputed speed data

becomes larger as the percentage of missing data increases.

For expressways, VBPCA provided the best estimate of the

variance in the speed data. For other road types such as arterial

roads (CATA, CATB), access roads and slip roads, the variance

of the imputed data obtained from FPCA was the closest to

the variance of the actual speed data. Nonetheless, all the five

methods had comparable performance in terms of conserving

the variance of the speed data.

Table III shows the bias induced in the recovered speed

data by various proposed methods. The results show that the

proposed algorithms do not add significant bias in the imputed

data as the bias-value remains less than 1 km/hr for all test

cases. Still, the imputed speed data obtained from VBPCA and

LS had slightly higher bias (≈ 0.5 km/hr) in comparison with

other methods.



TABLE II: Variance of the imputed speed data for different road types. The units for variance are km2/hr2. The values in

the brackets represent the percentage variance of imputed speed data w.r.t the actual speed data.

Road Type Missing Data
Variance (%age of actual variance)

FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 118.30 (77) 128.47 (84) 94.39 (61) 117.95 (77) 128.75 (84)

CATA 30 % 114.02 (74) 127.15 (83) 95.16 (62) 118.95 (77) 129.53 (84)

Var = 153.73 40 % 112.64 (73) 109.53 (71) 95.37 (62) 114.43 (74) 129.13 (84)

70 % 116.99 (76) 111.29 (72) 95.10 (62) 117.09 (76) 124.84 (81)

80 % 112.10 (73) 114.81 (75) 95.52 (62) 96.37 (63) 121.89 (79)

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 132.30 (81) 120.72 (74) 119.86 (73) 122.91 (75) 123.20 (75)

CATB 30 % 128.66 (79) 121.22 (74) 119.60 (73) 122.83 (75) 122.98 (75)

Var = 163.26 40 % 127.95 (78) 117.20 (72) 120.01 (74) 120.41 (74) 122.68 (75)

70 % 128.76 (79) 106.49 (65) 119.95 (73) 120.61 (74) 118.31 (72)

80 % 127.01 (78) 107.63 (66) 118.13 (72) 109.69 (67) 116.15 (71)

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 79.28 (71) 74.91 (67) 67.87 (61) 71.10 (63) 73.78 (66)

CATC 30 % 75.68 (67) 81.62 (73) 67.80 (60) 68.60 (61) 73.20 (65)

Var = 112.15 40 % 80.67 (72) 67.78 (60) 67.70 (60) 68.68 (61) 72.90 (65)

70 % 77.50 (69) 60.80 (54) 67.80 (60) 61.73 (55) 66.79 (60)

80 % 75.11 (67) 62.10 (55) 66.38 (59) 61.81 (55) 63.95 (57)

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 361.91 (86) 332.86 (79) 338.79 (81) 350.01 (83) 348.07 (83)

Slip 30 % 366.98 (87) 333.50 (80) 337.95 (81) 347.75 (83) 347.32 (83)

Var = 419.41 40 % 364.52 (87) 332.88 (79) 338.43 (81) 351.49 (84) 344.75 (82)

70 % 355.76 (85) 315.75 (75) 342.67 (82) 312.50 (75) 336.64 (80)

80 % 351.26 (84) 318.51 (76) 343.60 (82) 313.48 (75) 331.79 (79)

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 132.67 (65) 115.86 (56) 109.47 (53) 118.33 (58) 123.75 (60)

Oth 30 % 130.58 (64) 124.72 (61) 109.36 (53) 116.34 (57) 122.31 (59)

Var = 205.56 40 % 130.42 (63) 109.35 (53) 109.29 (53) 110.28 (54) 121.10 (59)

70 % 124.18 (60) 95.14 (46) 108.29 (53) 111.71 (54) 108.81 (53)

80 % 119.51 (58) 96.87 (47) 107.93 (53) 99.67 (48) 105.20 (51)

TABLE III: Bias of the imputed speed data for different road types. The units for bias are km/hr.

Road Type Missing Data
Bias

FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 0.008 0.065 0.003 -0.009 0.065

CATA 30 % 0.012 0.062 -0.006 -0.006 0.063

Avg. Speed = 86 km/hr 40 % 0.008 0.069 -0.011 -0.004 0.068

70 % 0.006 0.074 0.009 0.003 0.066

80 % 0.004 0.062 -0.003 -0.010 0.064

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 0.009 0.434 -0.002 0.004 0.409

CATB 30 % 0.009 0.401 0.005 0.000 0.402

Avg. Speed = 43 km/hr 40 % 0.004 0.465 0.014 0.008 0.425

70 % -0.004 0.377 0.003 0.007 0.360

80 % -0.006 0.377 0.004 0.018 0.344

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % -0.007 0.478 0.015 0.013 0.400

CATC 30 % 0.001 0.348 -0.006 -0.008 0.379

Avg. Speed = 38 km/hr 40 % 0.000 0.416 -0.005 0.006 0.355

70 % -0.003 0.418 0.007 0.016 0.360

80 % -0.029 0.430 -0.006 0.001 0.334

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % 0.011 0.370 -0.012 -0.010 0.400

Slip 30 % 0.011 0.385 -0.012 -0.019 0.406

Avg. Speed = 55 km/hr 40 % 0.003 0.395 0.020 0.010 0.416

70 % -0.003 0.418 0.010 0.050 0.439

80 % -0.002 0.419 0.013 0.047 0.476

Road Type Missing Data FPCA LS CP (3D) CP (Unfold) VBPCA

20 % -0.023 0.446 -0.004 -0.005 0.391

Oth 30 % -0.025 0.423 0.021 0.016 0.419

Avg. Speed = 41 km/hr 40 % -0.024 0.411 -0.003 -0.002 0.386

70 % -0.022 0.361 0.005 0.003 0.367

80 % -0.031 0.359 -0.001 0.012 0.361
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(a) Expressways (CATA).
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(b) Major arterial roads (CATB).
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(c) Minor arterial roads (CATC).

Fig. 4: RMSE of the proposed algorithms for different percentages of missing data and various road networks.
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(a) Expressways (CATA).
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(b) Major arterial roads (CATB).
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(c) Minor arterial roads (CATC).
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(d) Slip roads.
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(e) Access roads.

Fig. 5: Weighted relative error of the proposed algorithms for different percentages of missing data and various road networks.

V. CONCLUSION

Missing data is a common problem faced by many

transportation management systems. In this paper, we

compared various methods to estimate missing traffic

information in data sets obtained from large road networks.

To this end, we extracted common global patterns from

incomplete speed data by applying various tensor and matrix

completion algorithms such as FPCA, VBPCA, LS and

CP-WOPT. Matrix and tensor completion methods have been

previously applied to solve the problem of missing data

in transportation systems. However, these studies typically

consider small test networks comprising of a few roads.

Furthermore, the performance of these methods for different

road categories as well as during different days of the week

is usually not analyzed.

In this study, we considered five large test networks each

comprising of around 1500 road segments. We analyzed

the reconstruction accuracy of various matrix and tensor

completion methods for different types of roads as well as

during different days of the week. We also analyzed the impact

of the choice of latent factors on the estimation accuracy

of recovered speed data. Moreover, we also compared the

variance and bias induced in the imputed speed data by the

proposed methods.

The results show that the performance of least square

based methods is highly sensitive to the choice of rank

as compared to VBPCA and FPCA. FPCA is particularly

useful for imputation of traffic data sets as its performance is
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(b) Major arterial roads (CATB).
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(c) Minor arterial roads (CATC).
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Fig. 6: Weighted relative error of the proposed algorithms during different days of the week for various road networks. The

reconstruction error is for the case when 70% of data is missing.

least sensitive to daily variations in traffic data. Furthermore,

it also provides better or comparable performance to other

algorithms for different road categories. In the future, we plan

to develop ensemble methods that combine the outputs of the

algorithms considered in the paper for various scenario specific

applications.
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