ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion-"Generalized Online Routing: New Competitive Ratios, Resource Augmentation and Asymptotic Analyses" by Patrick Jaillet and Michael R. Wagner, Operations Research, doi 10.1287/opre.1070.0450.

Generalized Online Routing: New Competitive Ratios, Resource Augmentation and Asymptotic Analyses Online Appendix

Patrick Jaillet
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, jaillet@mit.edu
Michael R. Wagner
Department of Management, California State University East Bay, Hayward, CA 94542, michael.wagner@csueastbay.edu

Subject classifications: Online Optimization, Transportation, Analysis of Algorithms.
Area of review: Transportation
History: Received May 2006; revision received November 2006; revision received February 2007; accepted April 2007.

Appendix

Proof of Theorem 1. Recall that r_{n} is the time of the last request and $l_{n}^{*}=\arg \max _{l_{n}^{j} \mid 1 \leq j \leq k(n)} d\left(o, l_{n}^{j}\right)$. We show that in each of the Cases (1), (2a) and (2b), PAH-G is $(1+(2 \rho-1) / \gamma)$-competitive.

In Case (1) PAH-G is at the origin at time r_{n}. It starts traversing a ρ-approximate set of tours that serve all the unserved requests. Since the online server has speed γ, the time needed by PAH-G is at most $r_{n}+\rho Z^{r=0}(n, Q) / \gamma \leq(1+\rho / \gamma) Z^{*}(n, Q)$.

Considering Case (2a), we have that $d\left(o, l_{n}^{*}\right)>d(o, p)$. Then PAH-G goes back to the origin, where it will arrive before time $r_{n}+\frac{d\left(o, l_{n}^{*}\right)}{\gamma}$. After this, PAH-G computes and follows a ρ-approximate set of tours through all the unserved requests. Therefore, the online cost is at most $r_{n}+\frac{d\left(o, l_{n}^{*}\right)}{\gamma}+$ $\rho Z^{r=0}(n, Q) / \gamma$. Noticing that $r_{n}+d\left(o, l_{n}^{*}\right) \leq Z^{*}(n, Q)$ and $2 d\left(o, l_{n}^{*}\right) \leq Z^{r=0}(n, Q)$, we have that the online cost is at most

$$
\begin{aligned}
r_{n}+\frac{d\left(o, l_{n}^{*}\right)}{\gamma}+\rho \frac{Z^{r=0}(n, Q)}{\gamma} & \leq Z^{*}(n, Q)+\left(\frac{1}{\gamma}-1\right) d\left(o, l_{n}^{*}\right)+\frac{\rho}{\gamma} Z^{*}(n, Q) \\
& \leq\left(1+\left(\frac{2 \rho-\gamma+1}{2 \gamma}\right)\right) Z^{*}(n, Q)
\end{aligned}
$$

Finally, we consider Case (2b), where $d\left(o, l_{n}^{*}\right) \leq d(o, p)$. Suppose PAH-G is following a route \mathcal{R} that had been computed the last time step (1) of PAH-G had been invoked. \mathcal{R} will also denote the actual distance of the route; we have that $\mathcal{R} \leq \rho Z^{r=0}(n, Q) \leq \rho Z^{*}(n, Q)$. Let \mathcal{S} be the set of requests that have been temporarily ignored (from step (2b) of algorithm PAH-G) since the last time PAH-G invoked step (1). Let l_{f} be the first location of the first request in \mathcal{S} visited by the offline algorithm, and let r_{f} be the time at which request f was released. Let $\mathcal{P}_{\mathcal{S}}^{*}$ be the fastest route that starts at l_{f}, visits all cities in \mathcal{S} and ends at the origin, respecting precedence and capacity constraints. Clearly, $Z^{*}(n, Q) \geq r_{f}+\mathcal{P}_{\mathcal{S}}^{*}$ and $Z^{*}(n, Q) \geq d\left(o, l_{f}\right)+\mathcal{P}_{\mathcal{S}}^{*}$.

At time r_{f}, the time that PAH-G still has left to complete route \mathcal{R} is at most $\left(\mathcal{R}-d\left(o, l_{f}\right)\right) / \gamma$, since $d\left(o, p\left(r_{f}\right)\right) \geq d\left(o, l_{f}^{*}\right) \geq d\left(o, l_{f}\right)$ implies that PAH-G has traveled on the route \mathcal{R} a distance not less than $d\left(o, l_{f}\right)$. Therefore, the server will complete the route \mathcal{R} before time $r_{f}+\left(\mathcal{R}-d\left(o, l_{f}\right)\right) / \gamma$. After that it will follow a ρ-approximate set of tours that covers the set \mathcal{S} of yet unserved requests; let $\mathcal{T}_{\mathcal{S}}$ denote the cost of the optimal set of tours. Hence, the total time to completion will be at most $r_{f}+\left(\mathcal{R}-d\left(o, l_{f}\right)\right) / \gamma+\rho \mathcal{T}_{\mathcal{S}} / \gamma$. Since $\mathcal{T}_{\mathcal{S}} \leq d\left(0, l_{f}\right)+\mathcal{P}_{\mathcal{S}}^{*}$, we have that the online cost is at most

$$
\begin{aligned}
r_{f}+\frac{\mathcal{R}-d\left(o, l_{f}\right)}{\gamma}+\frac{\rho}{\gamma} d\left(0, l_{f}\right)+\frac{\rho}{\gamma} \mathcal{P}_{\mathcal{S}}^{*} & =\left(r_{f}+\mathcal{P}_{\mathcal{S}}^{*}\right)+\frac{1}{\gamma} \mathcal{R}+\left(\frac{\rho-1}{\gamma}\right) d\left(0, l_{f}\right)+\left(\frac{\rho}{\gamma}-1\right) \mathcal{P}_{\mathcal{S}}^{*} \\
& \leq Z^{*}(n, Q)+\frac{\rho}{\gamma} Z^{r=0}(n, Q)+\left(\frac{\rho-1}{\gamma}\right) Z^{*}(n, Q) \\
& \leq\left(1+\frac{2 \rho-1}{\gamma}\right) Z^{*}(n, Q) .
\end{aligned}
$$

Since $\rho, \gamma \geq 1, \max \left\{1+\frac{\rho}{\gamma}, 1+\frac{2 \rho-1}{\gamma}, 1+\left(\frac{2 \rho-\gamma+1}{2 \gamma}\right)\right\}=1+\frac{2 \rho-1}{\gamma}$ and the theorem is proved.
Proof of Theorem 3. Let r_{n} be the time of the last request, l_{n} the position of this request and $p^{*}(t)$ the location of the farthest salesman at time t.

Case (1): All salesmen are at the origin at time r_{n}. Then they start implementing a ρ-approximate solution to $Z^{r=0}(n, m)$ that serves all the unserved requests. Applying Lemma 1, the time needed by PAH-m is at most

$$
\left.r_{n}+\frac{\rho}{\gamma} Z^{r=0}(n, m) \leq Z^{*}(n, 1)+\frac{\rho}{\gamma}\left(Z^{r=0}(n, 1)-(m-1) \beta\right)\right) \leq\left(1+\frac{\rho}{\gamma}(1-(m-1) \phi)\right) Z^{*}(n, 1) .
$$

Case (2a): We have that $d\left(o, l_{n}\right)>d\left(o, p^{*}\left(r_{n}\right)\right)$. All salesmen return to the origin, where they will all arrive before time $r_{n}+d\left(o, l_{n}\right) / \gamma \leq r_{n}+d\left(o, l_{n}\right)$. After this, PAH-m computes and follows a ρ-approximate solution to $Z^{r=0}(n, m)$ through all unserved requests. Therefore, the online cost is at most $r_{n}+d\left(o, l_{n}\right)+\frac{\rho}{\gamma} Z^{r=0}(n, m)$. Noticing that $r_{n}+d\left(o, l_{n}\right) \leq Z^{*}(n, 1)$ and applying Lemma 1 , we have that the online cost is at most $\left(1+\frac{\rho}{\gamma}(1-(m-1) \phi)\right) Z^{*}(n, 1)$.

Case (2b): We have that $d\left(o, l_{n}\right) \leq d\left(o, p^{*}\left(r_{n}\right)\right)$ and all salesmen, except p^{*}, return to the origin, if not yet already there. Suppose salesman p^{*} is following a tour \mathcal{R} that had been computed the last time it was at the origin. Note that $\mathcal{R} \leq \rho Z^{r=0}(n, m)$ and $Z^{r=0}(n, m) \leq Z^{*}(n, m) \leq Z^{*}(n, 1)$. Let \mathcal{Q} be the set of requests temporarily ignored since the last time a Case (1) re-optimization was performed; since $l_{n} \in \mathcal{Q}, \mathcal{Q}$ is not empty. Let $\mathcal{S} \subseteq\{1, \ldots, m\}$ denote the set of salesmen that serve \mathcal{Q} in the optimal offline solution. For $j \in \mathcal{S}$, let l^{j} be the location of the first city in \mathcal{Q} served by server j in the optimal offline solution and let r^{j} be the time at which this city was released. Let $\mathcal{P}_{\mathcal{Q}}^{j}, j \in \mathcal{S}$, be the set of paths, the j-th path starting from l^{j}, that collectively visit all the cities in \mathcal{Q} and end at the origin, such that the maximum path length is minimized (ties broken arbitrarily). It is easy to see that $Z^{*}(n, m) \geq \max _{j \in \mathcal{S}}\left\{\mathcal{P}_{\mathcal{Q}}^{j}\right\}$ since the min-max-path optimization has distinct advantages over the offline solution: (1) having the servers start at cities $l^{j},(2)$ needing to only serve the cities in \mathcal{Q} and (3) ignoring release dates. If the servers start from the origin, the earliest time that server j can visit city l^{j} is $\max \left\{r^{j}, d\left(0, l^{j}\right)\right\}$; by extension we have that $Z^{*}(n, m) \geq \max _{j \in \mathcal{S}}\left\{r^{j}+\mathcal{P}_{\mathcal{Q}}^{j}\right\}$ and $Z^{*}(n, m) \geq \max _{j \in \mathcal{S}}\left\{d\left(o, l^{j}\right)+\mathcal{P}_{\mathcal{Q}}^{j}\right\}$.

At time r^{j}, the distance that salesman p^{*} still has to travel on the route \mathcal{R} before arriving at the origin is at most $\mathcal{R}-d\left(o, l^{j}\right)$, since $d\left(o, p^{*}\left(r^{j}\right)\right) \geq d\left(o, l^{j}\right)$ implies that p^{*} has traveled on the route \mathcal{R} a distance not less than $d\left(o, l^{j}\right)$. Therefore, it will arrive at the origin before time $r^{j}+\frac{\mathcal{R}-d\left(o, l^{j}\right)}{\gamma}$; note that since this is valid for any j, we can say that the salesman will arrive at the origin before time $\min _{j \in \mathcal{S}}\left\{r^{j}+\frac{\mathcal{R}-d\left(o, l^{j}\right)}{\gamma}\right\}$. Note that all other salesmen have already arrived at the origin. Next, a ρ-approximate $Z^{r=0}(n, m)$ will be implemented on \mathcal{Q}; let $\mathcal{T}_{\mathcal{Q}}$ denote the optimal maximum
 Now, note the following feasible solution for the final case (1) re-optimization: Use only the set of salesmen \mathcal{S}, force salesman j to first go to city l^{j} and then traverse path $\mathcal{P}_{\mathcal{Q}}^{j}$. Therefore, $\mathcal{T}_{\mathcal{Q}} \leq$ $\max _{j \in \mathcal{S}}\left\{d\left(0, l^{j}\right)+\mathcal{P}_{\mathcal{Q}}^{j}\right\}$ and we have that the online cost is at most

$$
\min _{j \in \mathcal{S}}\left\{r^{j}+\frac{\mathcal{R}-d\left(o, l^{j}\right)}{\gamma}\right\}+\rho \max _{j \in \mathcal{S}}\left\{\frac{d\left(0, l^{j}\right)+\mathcal{P}_{\mathcal{Q}}^{j}}{\gamma}\right\} .
$$

Letting k be the arg max of the second term, we have that the online cost is at most

$$
\begin{aligned}
r^{k}+\frac{\mathcal{R}-d\left(o, l^{k}\right)+\rho\left(d\left(0, l^{k}\right)+\mathcal{P}_{\mathcal{Q}}^{k}\right)}{\gamma} & =\left(r^{k}+\mathcal{P}_{\mathcal{Q}}^{k}\right)+\frac{1}{\gamma} \mathcal{R}+\left(\frac{\rho-1}{\gamma}\right) d\left(o, k^{k}\right)+\left(\frac{\rho}{\gamma}-1\right) \mathcal{P}_{\mathcal{Q}}^{k} \\
& \leq Z^{*}(n, m)+\frac{\rho}{\gamma} Z^{r=0}(n, m)+\left(\frac{\rho-1}{\gamma}\right)\left(d\left(o, l^{k}\right)+\mathcal{P}_{\mathcal{Q}}^{k}\right) \\
& \leq \frac{\rho}{\gamma}\left(Z^{r=0}(n, 1)-(m-1) \beta\right)+\left(\frac{\rho-1+\gamma}{\gamma}\right) Z^{*}(n, 1) \\
& \leq\left(1+\frac{\rho}{\gamma}(1-(m-1) \phi)+\frac{\rho-1}{\gamma}\right) Z^{*}(n, 1) . \square
\end{aligned}
$$

Proof of Theorem 7. Let $p^{*}(t)$ be the position of the farthest server at time t. Let us consider the state of the algorithm at time q_{n}, the final disclosure date.

Case (1): All servers are at the origin at time q_{n}. Letting T denote the cost of the final Case (1) re-optimization, we have that

$$
\begin{aligned}
Z^{\text {PAH-m-dd }}(n, m) & \leq q_{n}+T \\
& =r_{n}+T-a \\
& \leq Z^{*}(n, m)+(T-\underset{a}{a}) \\
& =Z^{*}(n, m)+\left(1-\frac{a}{T}\right) T \\
& \leq Z^{*}(n, m)+\left(1-\frac{a}{T}\right) Z^{*}(n, m)
\end{aligned}
$$

Inserting the obvious bound $T \leq a+Z^{r=0}(n, m)$ proves the theorem for this case.
Case (2a): We have that $d\left(o, l_{n}\right)>d\left(o, p^{*}\left(q_{n}\right)\right)$ and the servers return to the origin, arriving before time $q_{n}+d\left(o, l_{n}\right)=r_{n}+d\left(o, l_{n}\right)-a$. Once at the origin, the servers re-optimize; let T^{\prime} denote the cost of this re-optimization. Clearly, $r_{n}+d\left(o, l_{n}\right) \leq Z^{*}(n, m)$. Thus, we have that

$$
Z^{\mathrm{PAH}-\mathrm{dd}}(n, m) \leq r_{n}+d\left(o, l_{n}\right)+\left(T^{\prime}-a\right) \leq Z^{*}(n, m)+\left(1-\frac{\alpha}{1+\alpha}\right) Z^{*}(n, m)=\left(2-\frac{\alpha}{1+\alpha}\right) Z^{*}(n, m) .
$$

Case (2b): We have that $d\left(o, l_{n}\right) \leq d\left(o, p^{*}\left(r_{n}\right)\right)$ and all servers, except p^{*}, return to the origin, if not yet already there. Suppose server p^{*} is following a tour \mathcal{R} that had been computed the last time it was at the origin. Note that $\mathcal{R} \leq Z^{*}(n, m)$. Let \mathcal{Q} be the set of requests temporarily ignored since the last time a Case (1) re-optimization was performed; since $l_{n} \in \mathcal{Q}, \mathcal{Q}$ is not empty. Let $\mathcal{S} \subseteq\{1, \ldots, m\}$ denote the set of servers that serve \mathcal{Q} in the optimal offline solution. For $j \in \mathcal{S}$, let l^{j} be the location of the first city in \mathcal{Q} served by server j in the optimal offline solution and let r^{j} be the time at which this city was released. Let $\mathcal{P}_{\mathcal{Q}}^{j}, j \in \mathcal{S}$, be the set of paths, the j-th path starting from l^{j}, that collectively visit all the cities in \mathcal{Q} and end at the origin, such that the maximum path length is minimized. As was argued in the proof of Theorem $3, Z^{*}(n, m) \geq \max _{j \in \mathcal{S}}\left\{r^{j}+\mathcal{P}_{\mathcal{Q}}^{j}\right\}$ and $Z^{*}(n, m) \geq \max _{j \in \mathcal{S}}\left\{d\left(o, l^{j}\right)+\mathcal{P}_{\mathcal{Q}}^{j}\right\}$.

At time q^{j}, the distance that salesman p^{*} still has to travel on the route \mathcal{R} before arriving at the origin is at most $\mathcal{R}-d\left(o, l^{j}\right)$, since $d\left(o, p^{*}\left(q^{j}\right)\right) \geq d\left(o, l^{j}\right)$ implies that p^{*} has traveled on
the route \mathcal{R} a distance not less than $d\left(o, l^{j}\right)$. Therefore, it will arrive at the origin before time $q^{j}+\mathcal{R}-d\left(o, l^{j}\right)$; note that since this is valid for any j, we can say that the salesman will arrive at the origin before time $\min _{j \in \mathcal{S}}\left\{q^{j}+\mathcal{R}-d\left(o, l^{j}\right)\right\}$. Note that all other salesmen have already arrived at the origin. Next, a re-optimization will be implemented on \mathcal{Q}; let $\mathcal{T}_{\mathcal{Q}}$ denote the maximum tour length. Hence, the completion time of PAH-m-dd will be at most $\min _{j \in \mathcal{S}}\left\{q^{j}+\mathcal{R}-d\left(o, l^{j}\right)\right\}+\mathcal{T}_{\mathcal{Q}}$. Again, $\mathcal{T}_{\mathcal{Q}} \leq \max _{j \in \mathcal{S}}\left\{d\left(0, l^{j}\right)+\mathcal{P}_{\mathcal{Q}}^{j}\right\}$ and we have that the online cost is at most

$$
\min _{j \in \mathcal{S}}\left\{q^{j}+\mathcal{R}-d\left(o, l^{j}\right)\right\}+\max _{j \in \mathcal{S}}\left\{d\left(0, l^{j}\right)+\mathcal{P}_{\mathcal{Q}}^{j}\right\} .
$$

Letting k be the arg max of the second term, we have that the online cost is at most

$$
q^{k}+\mathcal{R}-d\left(o, l^{k}\right)+d\left(0, l^{k}\right)+\mathcal{P}_{\mathcal{Q}}^{k}=\left(r^{k}+\mathcal{P}_{\mathcal{Q}}^{k}\right)+(\mathcal{R}-a) \leq\left(2-\frac{\alpha}{1+\alpha}\right) Z^{*}(n, m)
$$

Proof of Theorem 8. Define a metric space \mathcal{M} as a graph with vertex set $V=\{1,2, \ldots, n\} \cup\{o\}$ with distance function d that satisfies the following: $d(o, i)=1$ and $d(i, j)=2$ for all $i \neq j \in V \backslash\{o\}$. For simplicity, assume m divides n evenly.

At time 0 , there is a request at each of the n cities in $V \backslash\{o\}$. If an online server visits the request at city i at time $t \leq 2 \frac{n}{m}-1-\epsilon$, for some small ϵ, then at time $t+\epsilon$, a new request is disclosed at city i. In this way, at time $2 \frac{n}{m}-1$ the online servers still have to serve requests at all n cities, some of which are only disclosed and not released. If all cities were released, the online servers could finish at time $\left(2 \frac{n}{m}-1\right)+\left(2 \frac{n}{m}-1\right) / \gamma=(1+1 / \gamma)\left(2 \frac{n}{m}-1\right)$; therefore this is a lower bound for the online cost when cities have only been disclosed. Denoting $Z^{A}(n, m)$ as the online cost of an arbitrary online algorithm A, we have that $Z^{A}(n, m) \geq\left(1+\frac{1}{\gamma}\right)\left(2 \frac{n}{m}-1\right)$. The optimal offline servers, however, will be able to visit all cities by time $2 \frac{n}{m}+a$. Therefore, by letting $k=\frac{n}{m}$ and noting that $Z^{r=0}(n, m)=2 k$, we have that

$$
\frac{Z^{A}(n, m)}{Z^{*}(n, m)} \geq \frac{(1+1 / \gamma))(2 k-1)}{2 k+a}=\frac{1+1 / \gamma}{1+\alpha}-\frac{1+1 / \gamma}{2 k+a} ;
$$

taking k arbitrarily large proves the theorem.
Proof of Theorem 9. Define a metric space \mathcal{M} as a graph with vertex set $V=\{1,2, \ldots, n\} \cup\{o\}$ with distance function d that satisfies the following: $d(o, i)=1$ and $d(i, j)=2$ for all $i \neq j \in V \backslash\{o\}$. For simplicity, assume m divides n evenly.

At time 0 , there is a request at each of the n cities in $V \backslash\{o\}$. If an online server visits the request at city i at time $t \leq 2 \frac{n}{m}-1-\epsilon$, for some small ϵ, then at time $t+\epsilon$, a new request is disclosed at city i. In this way, at time $2 \frac{n}{m}-1$ the online servers still have to serve requests at all n cities, some of which are only disclosed and not released. If all cities were released, the online servers could finish at time $\left(2 \frac{n}{m}-1\right)+\left(2 \frac{n}{m}-1\right) / \gamma=(1+1 / \gamma)\left(2 \frac{n}{m}-1\right)$; therefore this is a lower bound for the online cost when cities have only been disclosed. Denoting $Z^{A}(n, m)$ as the online cost of an arbitrary online algorithm A, we have that $Z^{A}(n, m) \geq\left(1+\frac{1}{\gamma}\right)\left(2 \frac{n}{m}-1\right)$. The single optimal offline server will be able to visit all cities by time $2 n+a$. Therefore, noting that $Z^{r=0}(n, m)=2 n / m$, we have that

$$
\begin{aligned}
\frac{Z^{A}(n, m)}{Z^{*}(n, 1)} & \geq \frac{(1+1 / \gamma))(2 n / m-1)}{2 n+a} \\
& =(1+1 / \gamma)(1 / m) \frac{Z^{r=0}(n, m)}{Z^{r=0}(n, m)+a / m}-\frac{1+1 / \gamma}{2 n+a} \\
& =(1+1 / \gamma)(1 / m) \frac{1}{1+\alpha / m}-\frac{1+1 / \gamma}{2 n+a}
\end{aligned}
$$

taking n arbitrarily large proves the theorem.

Proof of Theorem 10. The proof is very similar to that of Theorem 1; we detail only the differences for the case analysis.

Case (1): The time needed by PAH-G is at most $r_{n}+\rho Z^{r=0}(n, Q) / \gamma \leq Z^{*}(n, q)+\rho Z^{r=0}(n, Q) / \gamma$. By Lemma 3, this upper bound is asymptotically equal to $Z^{*}(n, q)+\frac{\rho q}{\gamma Q} Z^{r=0}(n, q) \leq(1+$ $\left.\frac{\rho q}{\gamma Q}\right) Z^{*}(n, q)$, almost surely.
Case (2a): Applying Lemma 3, we have that the online cost is almost surely at most

$$
\begin{aligned}
r_{n}+\frac{d\left(o, l_{n}^{*}\right)}{\gamma}+\rho \frac{Z^{r=0}(n, Q)}{\gamma} & \leq Z^{*}(n, q)+\left(\frac{2 \rho-\gamma+1}{2 \gamma}\right) Z^{r=0}(n, Q) \\
& \rightarrow Z^{*}(n, q)+\left(\frac{2 \rho-\gamma+1}{2 \gamma}\right)\left(\frac{q}{Q}\right) Z^{r=0}(n, q) \\
& \leq\left(1+\left(\frac{2 \rho-\gamma+1}{2 \gamma}\right)\left(\frac{q}{Q}\right)\right) Z^{*}(n, q)
\end{aligned}
$$

Case (2b): Since $Z^{*}(n, Q) \leq Z^{*}(n, q)$, the online cost is almost surely at most

$$
\begin{aligned}
Z^{*}(n, Q)+\frac{\rho}{\gamma} Z^{r=0}(n, Q)+\left(\frac{\rho-1}{\gamma}\right) Z^{*}(n, Q) & \leq Z^{*}(n, q)+\frac{\rho}{\gamma} Z^{r=0}(n, Q)+\left(\frac{\rho-1}{\gamma}\right) Z^{*}(n, q) \\
& \rightarrow Z^{*}(n, q)+\frac{\rho q}{\gamma Q} Z^{r=0}(n, q)+\left(\frac{\rho-1}{\gamma}\right) Z^{*}(n, q) \\
& \leq\left(1+\frac{\rho q}{\gamma Q}+\frac{\rho-1}{\gamma}\right) Z^{*}(n, q)
\end{aligned}
$$

Since $\rho, \gamma \geq 1$ and $Q \geq q \geq 0, \max \left\{1+\frac{\rho q}{\gamma Q}, 1+\frac{\rho q}{\gamma Q}+\frac{\rho-1}{\gamma}, 1+\left(\frac{2 \rho-\gamma+1}{2 \gamma}\right)\left(\frac{q}{Q}\right)\right\}=1+\frac{\rho q}{\gamma Q}+\frac{\rho-1}{\gamma}$ and the theorem is proved.

