OPERATIONS RESEARCH DOI 10.1287/opre.1070.0450ec pp. ec1-ec6

e-companion

ONLY AVAILABLE IN ELECTRONIC FORM

Electronic Companion—"Generalized Online Routing: New Competitive Ratios, Resource Augmentation and Asymptotic Analyses" by Patrick Jaillet and Michael R. Wagner, *Operations Research*, DOI 10.1287/opre.1070.0450.

Generalized Online Routing: New Competitive Ratios, Resource Augmentation and Asymptotic Analyses Online Appendix

Patrick Jaillet

Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, jaillet@mit.edu

Michael R. Wagner

Department of Management, California State University East Bay, Hayward, CA 94542, michael.wagner@csueastbay.edu

Subject classifications: Online Optimization, Transportation, Analysis of Algorithms. Area of review: Transportation History: Received May 2006; revision received November 2006; revision received February 2007; accepted April 2007.

Appendix

Proof of Theorem 1. Recall that r_n is the time of the last request and $l_n^* = \arg \max_{l_n^j \mid 1 \le j \le k(n)} d(o, l_n^j)$. We show that in each of the Cases (1), (2a) and (2b), PAH-G is $(1 + (2\rho - 1)/\gamma)$ -competitive.

In Case (1) PAH-G is at the origin at time r_n . It starts traversing a ρ -approximate set of tours that serve all the unserved requests. Since the online server has speed γ , the time needed by PAH-G is at most $r_n + \rho Z^{r=0}(n, Q)/\gamma \leq (1 + \rho/\gamma)Z^*(n, Q)$.

Considering Case (2a), we have that $d(o, l_n^*) > d(o, p)$. Then PAH-G goes back to the origin, where it will arrive before time $r_n + \frac{d(o, l_n^*)}{\gamma}$. After this, PAH-G computes and follows a ρ -approximate set of tours through all the unserved requests. Therefore, the online cost is at most $r_n + \frac{d(o, l_n^*)}{\gamma} + \rho Z^{r=0}(n, Q)/\gamma$. Noticing that $r_n + d(o, l_n^*) \leq Z^*(n, Q)$ and $2d(o, l_n^*) \leq Z^{r=0}(n, Q)$, we have that the online cost is at most

$$r_{n} + \frac{d(o, l_{n}^{*})}{\gamma} + \rho \frac{Z^{r=0}(n, Q)}{\gamma} \leq Z^{*}(n, Q) + (\frac{1}{\gamma} - 1)d(o, l_{n}^{*}) + \frac{\rho}{\gamma}Z^{*}(n, Q)$$
$$\leq \left(1 + \left(\frac{2\rho - \gamma + 1}{2\gamma}\right)\right)Z^{*}(n, Q)$$

Finally, we consider Case (2b), where $d(o, l_n^*) \leq d(o, p)$. Suppose PAH-G is following a route \mathcal{R} that had been computed the last time step (1) of PAH-G had been invoked. \mathcal{R} will also denote the actual distance of the route; we have that $\mathcal{R} \leq \rho Z^{r=0}(n, Q) \leq \rho Z^*(n, Q)$. Let \mathcal{S} be the set of requests that have been temporarily ignored (from step (2b) of algorithm PAH-G) since the last time PAH-G invoked step (1). Let l_f be the first location of the first request in \mathcal{S} visited by the offline algorithm, and let r_f be the time at which request f was released. Let $\mathcal{P}_{\mathcal{S}}^*$ be the fastest route that starts at l_f , visits all cities in \mathcal{S} and ends at the origin, respecting precedence and capacity constraints. Clearly, $Z^*(n, Q) \geq r_f + \mathcal{P}_{\mathcal{S}}^*$ and $Z^*(n, Q) \geq d(o, l_f) + \mathcal{P}_{\mathcal{S}}^*$.

At time r_f , the time that PAH-G still has left to complete route \mathcal{R} is at most $(\mathcal{R} - d(o, l_f))/\gamma$, since $d(o, p(r_f)) \ge d(o, l_f^*) \ge d(o, l_f)$ implies that PAH-G has traveled on the route \mathcal{R} a distance not less than $d(o, l_f)$. Therefore, the server will complete the route \mathcal{R} before time $r_f + (\mathcal{R} - d(o, l_f))/\gamma$. After that it will follow a ρ -approximate set of tours that covers the set \mathcal{S} of yet unserved requests; let $\mathcal{T}_{\mathcal{S}}$ denote the cost of the *optimal* set of tours. Hence, the total time to completion will be at most $r_f + (\mathcal{R} - d(o, l_f))/\gamma + \rho \mathcal{T}_{\mathcal{S}}/\gamma$. Since $\mathcal{T}_{\mathcal{S}} \le d(0, l_f) + \mathcal{P}_{\mathcal{S}}^*$, we have that the online cost is at most

$$r_{f} + \frac{\mathcal{R} - d(o, l_{f})}{\gamma} + \frac{\rho}{\gamma} d(0, l_{f}) + \frac{\rho}{\gamma} \mathcal{P}_{\mathcal{S}}^{*} = (r_{f} + \mathcal{P}_{\mathcal{S}}^{*}) + \frac{1}{\gamma} \mathcal{R} + \left(\frac{\rho - 1}{\gamma}\right) d(0, l_{f}) + \left(\frac{\rho}{\gamma} - 1\right) \mathcal{P}_{\mathcal{S}}^{*}$$
$$\leq Z^{*}(n, Q) + \frac{\rho}{\gamma} Z^{r=0}(n, Q) + \left(\frac{\rho - 1}{\gamma}\right) Z^{*}(n, Q)$$
$$\leq \left(1 + \frac{2\rho - 1}{\gamma}\right) Z^{*}(n, Q).$$

Since $\rho, \gamma \ge 1$, $\max\left\{1 + \frac{\rho}{\gamma}, 1 + \frac{2\rho-1}{\gamma}, 1 + \left(\frac{2\rho-\gamma+1}{2\gamma}\right)\right\} = 1 + \frac{2\rho-1}{\gamma}$ and the theorem is proved. \Box *Proof of Theorem 3.* Let r_n be the time of the last request, l_n the position of this request and $p^*(t)$ the location of the farthest salesman at time t.

Case (1): All salesmen are at the origin at time r_n . Then they start implementing a ρ -approximate solution to $Z^{r=0}(n,m)$ that serves all the unserved requests. Applying Lemma 1, the time needed by PAH-m is at most

$$r_n + \frac{\rho}{\gamma} Z^{r=0}(n,m) \le Z^*(n,1) + \frac{\rho}{\gamma} \left(Z^{r=0}(n,1) - (m-1)\beta \right) \le \left(1 + \frac{\rho}{\gamma} \left(1 - (m-1)\phi \right) \right) Z^*(n,1).$$

Case (2a): We have that $d(o, l_n) > d(o, p^*(r_n))$. All salesmen return to the origin, where they will all arrive before time $r_n + d(o, l_n)/\gamma \le r_n + d(o, l_n)$. After this, PAH-m computes and follows a ρ -approximate solution to $Z^{r=0}(n,m)$ through all unserved requests. Therefore, the online cost is at most $r_n + d(o, l_n) + \frac{\rho}{\gamma} Z^{r=0}(n,m)$. Noticing that $r_n + d(o, l_n) \le Z^*(n,1)$ and applying Lemma 1, we have that the online cost is at most $\left(1 + \frac{\rho}{\gamma} \left(1 - (m-1)\phi\right)\right) Z^*(n,1)$.

Case (2b): We have that $d(o, l_n) \leq d(o, p^*(r_n))$ and all salesmen, except p^* , return to the origin, if not yet already there. Suppose salesman p^* is following a tour \mathcal{R} that had been computed the last time it was at the origin. Note that $\mathcal{R} \leq \rho Z^{r=0}(n,m)$ and $Z^{r=0}(n,m) \leq Z^*(n,m) \leq Z^*(n,1)$. Let \mathcal{Q} be the set of requests temporarily ignored since the last time a Case (1) re-optimization was performed; since $l_n \in \mathcal{Q}$, \mathcal{Q} is not empty. Let $\mathcal{S} \subseteq \{1,\ldots,m\}$ denote the set of salesmen that serve \mathcal{Q} in the optimal offline solution. For $j \in \mathcal{S}$, let l^j be the location of the first city in \mathcal{Q} served by server j in the optimal offline solution and let r^j be the time at which this city was released. Let $\mathcal{P}^j_{\mathcal{Q}}$, $j \in \mathcal{S}$, be the set of paths, the j-th path starting from l^j , that collectively visit all the cities in \mathcal{Q} and end at the origin, such that the maximum path length is minimized (ties broken arbitrarily). It is easy to see that $Z^*(n,m) \geq \max_{j \in \mathcal{S}} \{\mathcal{P}^j_Q\}$ since the min-max-path optimization has distinct advantages over the offline solution: (1) having the servers start at cities l^j , (2) needing to only serve the cities in \mathcal{Q} and (3) ignoring release dates. If the servers start from the origin, the earliest time that server j can visit city l^j is $\max\{r^j, d(0, l^j)\}$; by extension we have that $Z^*(n,m) \geq \max_{j \in \mathcal{S}} \{r^j + \mathcal{P}^j_Q\}$ and $Z^*(n,m) \geq \max_{j \in \mathcal{S}} \{d(o, l^j) + \mathcal{P}^j_Q\}$.

At time r^j , the distance that salesman p^* still has to travel on the route \mathcal{R} before arriving at the origin is at most $\mathcal{R} - d(o, l^j)$, since $d(o, p^*(r^j)) \ge d(o, l^j)$ implies that p^* has traveled on the route \mathcal{R} a distance not less than $d(o, l^j)$. Therefore, it will arrive at the origin before time $r^j + \frac{\mathcal{R} - d(o, l^j)}{\gamma}$; note that since this is valid for any j, we can say that the salesman will arrive at the origin before time $\min_{j \in \mathcal{S}} \{r^j + \frac{\mathcal{R} - d(o, l^j)}{\gamma}\}$. Note that all other salesmen have already arrived at the origin. Next, a ρ -approximate $Z^{r=0}(n,m)$ will be implemented on \mathcal{Q} ; let $\mathcal{T}_{\mathcal{Q}}$ denote the *optimal* maximum

tour length. Hence, the completion time of PAH-m will be at most $\min_{j \in \mathcal{S}} \{r^j + \frac{\mathcal{R} - d(o, l^j)}{\gamma}\} + \frac{\rho}{\gamma} \mathcal{T}_{\mathcal{Q}}$. Now, note the following feasible solution for the final case (1) re-optimization: Use only the set of salesmen \mathcal{S} , force salesman j to first go to city l^j and then traverse path $\mathcal{P}_{\mathcal{Q}}^j$. Therefore, $\mathcal{T}_{\mathcal{Q}} \leq \max_{j \in \mathcal{S}} \{d(0, l^j) + \mathcal{P}_{\mathcal{Q}}^j\}$ and we have that the online cost is at most

$$\min_{j \in \mathcal{S}} \left\{ r^j + \frac{\mathcal{R} - d(o, l^j)}{\gamma} \right\} + \rho \max_{j \in \mathcal{S}} \left\{ \frac{d(0, l^j) + \mathcal{P}_{\mathcal{Q}}^j}{\gamma} \right\}$$

Letting k be the arg max of the second term, we have that the online cost is at most

$$\begin{split} r^{k} + \frac{\mathcal{R} - d(o, l^{k}) + \rho\left(d(0, l^{k}) + \mathcal{P}_{\mathcal{Q}}^{k}\right)}{\gamma} &= \left(r^{k} + \mathcal{P}_{\mathcal{Q}}^{k}\right) + \frac{1}{\gamma}\mathcal{R} + \left(\frac{\rho - 1}{\gamma}\right)d(o, k^{k}) + \left(\frac{\rho}{\gamma} - 1\right)\mathcal{P}_{\mathcal{Q}}^{k} \\ &\leq Z^{*}(n, m) + \frac{\rho}{\gamma}Z^{r=0}(n, m) + \left(\frac{\rho - 1}{\gamma}\right)\left(d(o, l^{k}) + \mathcal{P}_{\mathcal{Q}}^{k}\right) \\ &\leq \frac{\rho}{\gamma}\left(Z^{r=0}(n, 1) - (m - 1)\beta\right) + \left(\frac{\rho - 1 + \gamma}{\gamma}\right)Z^{*}(n, 1) \\ &\leq \left(1 + \frac{\rho}{\gamma}\left(1 - (m - 1)\phi\right) + \frac{\rho - 1}{\gamma}\right)Z^{*}(n, 1).\Box \end{split}$$

Proof of Theorem 7. Let $p^*(t)$ be the position of the farthest server at time t. Let us consider the state of the algorithm at time q_n , the final disclosure date.

Case (1): All servers are at the origin at time q_n . Letting T denote the cost of the final Case (1) re-optimization, we have that

$$\begin{split} Z^{\text{PAH-m-dd}}(n,m) &\leq q_n + T \\ &= r_n + T - a \\ &\leq Z^*(n,m) + (T-a) \\ &= Z^*(n,m) + (1 - \frac{a}{T})T \\ &\leq Z^*(n,m) + (1 - \frac{a}{T})Z^*(n,m) \end{split}$$

Inserting the obvious bound $T \leq a + Z^{r=0}(n,m)$ proves the theorem for this case.

Case (2a): We have that $d(o, l_n) > d(o, p^*(q_n))$ and the servers return to the origin, arriving before time $q_n + d(o, l_n) = r_n + d(o, l_n) - a$. Once at the origin, the servers re-optimize; let T' denote the cost of this re-optimization. Clearly, $r_n + d(o, l_n) \le Z^*(n, m)$. Thus, we have that

$$Z^{\text{PAH-dd}}(n,m) \le r_n + d(o,l_n) + (T'-a) \le Z^*(n,m) + (1 - \frac{\alpha}{1+\alpha})Z^*(n,m) = (2 - \frac{\alpha}{1+\alpha})Z^*(n,m).$$

Case (2b): We have that $d(o, l_n) \leq d(o, p^*(r_n))$ and all servers, except p^* , return to the origin, if not yet already there. Suppose server p^* is following a tour \mathcal{R} that had been computed the last time it was at the origin. Note that $\mathcal{R} \leq Z^*(n, m)$. Let \mathcal{Q} be the set of requests temporarily ignored since the last time a Case (1) re-optimization was performed; since $l_n \in \mathcal{Q}$, \mathcal{Q} is not empty. Let $\mathcal{S} \subseteq \{1, \ldots, m\}$ denote the set of servers that serve \mathcal{Q} in the optimal offline solution. For $j \in \mathcal{S}$, let l^j be the location of the first city in \mathcal{Q} served by server j in the optimal offline solution and let r^j be the time at which this city was released. Let $\mathcal{P}^j_{\mathcal{Q}}, j \in \mathcal{S}$, be the set of paths, the j-th path starting from l^j , that collectively visit all the cities in \mathcal{Q} and end at the origin, such that the maximum path length is minimized. As was argued in the proof of Theorem 3, $Z^*(n,m) \geq \max_{j \in \mathcal{S}} \{d(o, l^j) + \mathcal{P}^j_{\mathcal{Q}}\}$.

At time q^j , the distance that salesman p^* still has to travel on the route \mathcal{R} before arriving at the origin is at most $\mathcal{R} - d(o, l^j)$, since $d(o, p^*(q^j)) \ge d(o, l^j)$ implies that p^* has traveled on the route \mathcal{R} a distance not less than $d(o, l^j)$. Therefore, it will arrive at the origin before time $q^j + \mathcal{R} - d(o, l^j)$; note that since this is valid for any j, we can say that the salesman will arrive at the origin before time $\min_{j \in \mathcal{S}} \{q^j + \mathcal{R} - d(o, l^j)\}$. Note that all other salesmen have already arrived at the origin. Next, a re-optimization will be implemented on \mathcal{Q} ; let $\mathcal{T}_{\mathcal{Q}}$ denote the maximum tour length. Hence, the completion time of PAH-m-dd will be at most $\min_{j \in \mathcal{S}} \{q^j + \mathcal{R} - d(o, l^j)\} + \mathcal{T}_{\mathcal{Q}}$. Again, $\mathcal{T}_{\mathcal{Q}} \leq \max_{j \in \mathcal{S}} \{d(0, l^j) + \mathcal{P}_{\mathcal{Q}}^j\}$ and we have that the online cost is at most

$$\min_{j \in \mathcal{S}} \{q^j + \mathcal{R} - d(o, l^j)\} + \max_{j \in \mathcal{S}} \{d(0, l^j) + \mathcal{P}_{\mathcal{Q}}^j\}.$$

Letting k be the arg max of the second term, we have that the online cost is at most

$$q^{k} + \mathcal{R} - d(o, l^{k}) + d(0, l^{k}) + \mathcal{P}_{\mathcal{Q}}^{k} = \left(r^{k} + \mathcal{P}_{\mathcal{Q}}^{k}\right) + \left(\mathcal{R} - a\right) \leq \left(2 - \frac{\alpha}{1 + \alpha}\right) Z^{*}(n, m) \square$$

Proof of Theorem 8. Define a metric space \mathcal{M} as a graph with vertex set $V = \{1, 2, ..., n\} \cup \{o\}$ with distance function d that satisfies the following: d(o, i) = 1 and d(i, j) = 2 for all $i \neq j \in V \setminus \{o\}$. For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the *n* cities in $V \setminus \{o\}$. If an online server visits the request at city *i* at time $t \leq 2\frac{n}{m} - 1 - \epsilon$, for some small ϵ , then at time $t + \epsilon$, a new request is disclosed at city *i*. In this way, at time $2\frac{n}{m} - 1$ the online servers still have to serve requests at all *n* cities, some of which are only disclosed and not released. If all cities were released, the online servers could finish at time $(2\frac{n}{m} - 1) + (2\frac{n}{m} - 1)/\gamma = (1 + 1/\gamma)(2\frac{n}{m} - 1)$; therefore this is a lower bound for the online cost when cities have only been disclosed. Denoting $Z^A(n,m)$ as the online cost of an arbitrary online algorithm *A*, we have that $Z^A(n,m) \ge (1+\frac{1}{\gamma})(2\frac{n}{m}-1)$. The optimal offline servers, however, will be able to visit all cities by time $2\frac{n}{m} + a$. Therefore, by letting $k = \frac{n}{m}$ and noting that $Z^{r=0}(n,m) = 2k$, we have that

$$\frac{Z^A(n,m)}{Z^*(n,m)} \ge \frac{(1+1/\gamma))(2k-1)}{2k+a} = \frac{1+1/\gamma}{1+\alpha} - \frac{1+1/\gamma}{2k+a};$$

taking k arbitrarily large proves the theorem. \Box

Proof of Theorem 9. Define a metric space \mathcal{M} as a graph with vertex set $V = \{1, 2, ..., n\} \cup \{o\}$ with distance function d that satisfies the following: d(o, i) = 1 and d(i, j) = 2 for all $i \neq j \in V \setminus \{o\}$. For simplicity, assume m divides n evenly.

At time 0, there is a request at each of the *n* cities in $V \setminus \{o\}$. If an online server visits the request at city *i* at time $t \leq 2\frac{n}{m} - 1 - \epsilon$, for some small ϵ , then at time $t + \epsilon$, a new request is disclosed at city *i*. In this way, at time $2\frac{n}{m} - 1$ the online servers still have to serve requests at all *n* cities, some of which are only disclosed and not released. If all cities were released, the online servers could finish at time $(2\frac{n}{m} - 1) + (2\frac{n}{m} - 1)/\gamma = (1 + 1/\gamma)(2\frac{n}{m} - 1)$; therefore this is a lower bound for the online cost when cities have only been disclosed. Denoting $Z^A(n,m)$ as the online cost of an arbitrary online algorithm *A*, we have that $Z^A(n,m) \ge (1 + \frac{1}{\gamma})(2\frac{n}{m} - 1)$. The single optimal offline server will be able to visit all cities by time 2n + a. Therefore, noting that $Z^{r=0}(n,m) = 2n/m$, we have that

$$\begin{aligned} \frac{Z^A(n,m)}{Z^*(n,1)} &\geq \frac{(1+1/\gamma))(2n/m-1)}{2n+a} \\ &= (1+1/\gamma)(1/m)\frac{Z^{r=0}(n,m)}{Z^{r=0}(n,m)+a/m} - \frac{1+1/\gamma}{2n+a} \\ &= (1+1/\gamma)(1/m)\frac{1}{1+\alpha/m} - \frac{1+1/\gamma}{2n+a}; \end{aligned}$$

taking n arbitrarily large proves the theorem. \Box

Proof of Theorem 10. The proof is very similar to that of Theorem 1; we detail only the differences for the case analysis.

Case (1): The time needed by PAH-G is at most $r_n + \rho Z^{r=0}(n,Q)/\gamma \leq Z^*(n,q) + \rho Z^{r=0}(n,Q)/\gamma$. By Lemma 3, this upper bound is asymptotically equal to $Z^*(n,q) + \frac{\rho q}{\gamma Q} Z^{r=0}(n,q) \leq (1 + \frac{\rho q}{\gamma Q})Z^*(n,q)$, almost surely.

Case (2a): Applying Lemma 3, we have that the online cost is almost surely at most

$$r_{n} + \frac{d(o, l_{n}^{*})}{\gamma} + \rho \frac{Z^{r=0}(n, Q)}{\gamma} \leq Z^{*}(n, q) + \left(\frac{2\rho - \gamma + 1}{2\gamma}\right) Z^{r=0}(n, Q)$$

$$\rightarrow Z^{*}(n, q) + \left(\frac{2\rho - \gamma + 1}{2\gamma}\right) \left(\frac{q}{Q}\right) Z^{r=0}(n, q)$$

$$\leq \left(1 + \left(\frac{2\rho - \gamma + 1}{2\gamma}\right) \left(\frac{q}{Q}\right)\right) Z^{*}(n, q)$$

Case (2b): Since $Z^*(n, Q) \leq Z^*(n, q)$, the online cost is almost surely at most

$$\begin{split} Z^*(n,Q) + \frac{\rho}{\gamma} Z^{r=0}(n,Q) + \left(\frac{\rho-1}{\gamma}\right) Z^*(n,Q) &\leq Z^*(n,q) + \frac{\rho}{\gamma} Z^{r=0}(n,Q) + \left(\frac{\rho-1}{\gamma}\right) Z^*(n,q) \\ &\rightarrow Z^*(n,q) + \frac{\rho q}{\gamma Q} Z^{r=0}(n,q) + \left(\frac{\rho-1}{\gamma}\right) Z^*(n,q) \\ &\leq \left(1 + \frac{\rho q}{\gamma Q} + \frac{\rho-1}{\gamma}\right) Z^*(n,q). \end{split}$$

Since $\rho, \gamma \ge 1$ and $Q \ge q \ge 0$, $\max\left\{1 + \frac{\rho q}{\gamma Q}, 1 + \frac{\rho q}{\gamma Q} + \frac{\rho - 1}{\gamma}, 1 + \left(\frac{2\rho - \gamma + 1}{2\gamma}\right)\left(\frac{q}{Q}\right)\right\} = 1 + \frac{\rho q}{\gamma Q} + \frac{\rho - 1}{\gamma}$ and the theorem is proved. \Box