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Abstract—Route prediction is important to analyzing and
understanding the route patterns and behavior of traffic
crowds. Its objective is to predict the most likely or “popular”
route of road segments from a given point in a road network.
This paper presents a hierarchical Bayesian non-parametric
approach to efficient and scalable route prediction that can
harness the wisdom of crowds of route planning agents by ag-
gregating their sequential routes of possibly varying lengths
and origin-destination pairs. In particular, our approach has
the advantages of (a) not requiring a Markov assumption
to be imposed and (b) generalizing well with sparse data,
thus resulting in significantly improved prediction accuracy,
as demonstrated empirically using real-world taxi route
data. We also show two practical applications of our route
prediction algorithm: predictive taxi ranking and route
recommendation.

Keywords-wisdom of crowds; crowdsourcing; sequential
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I. INTRODUCTION

Knowing and understanding the route patterns and be-
havior of traffic crowds has grown to be critical to the
goal of achieving smooth-flowing, congestion-free traffic
[1], especially in densely-populated urban cities. Of central
importance to analyzing the traffic route patterns and
behavior is that of route prediction whose objective is to
predict the most likely or “popular” route of road segments
from a given point1 in a road network. Such a capability
is useful in many real-world traffic applications such as
studying drivers’ route preferences, enhancing their situa-
tional awareness, supporting drivers’ safety and assistance
technologies, among others (see Section V). In practice,
it is often not possible to make perfect route predictions
because (a) the quantity of sensing resources (e.g., loop
detectors) that can be allocated to measure traffic flow in a
dense urban road network is cost-constrained, and (b) the
actual traffic flow is usually unknown or difficult to for-
mulate precisely in terms of other traffic-related variables
since it varies depending on the driver types (e.g., truck
or taxi/cab drivers, tourists) and road conditions/features
(e.g., tolls, congestion, traffic lights, speed limit, road
length, travel time). In the absence of accurate traffic flow
information to determine the most popular route(s) exactly,
we propose to rely on crowdsourcing for route prediction

1Besides a given origin, a destination is sometimes also specified (see
Section V-B).

in this paper, specifically by consulting the wisdom of
traffic crowds.

The proliferation of low-cost GPS technology has en-
abled the collection of massive volumes of spatiotemporal
data on large crowds of human-driven vehicles such as
taxis/cabs, from which we can exploit to learn about
the patterns of their planned routes to be used for route
prediction. To elaborate, though these human agents have
different levels of expertise and criteria affecting their
individual ability to compute and plan routes, consensus
patterns can generally be observed among their planned
routes in real-world traffic networks [2], [3]. If the crowds
of route planning agents are sufficiently large, these con-
sensus patterns potentially approximate the actual most
popular routes well, the latter of which are not available
as mentioned earlier. Hence, we will be able to harness
the wisdom of such traffic crowds for learning the route
prediction capability.

The “wisdom of crowds” phenomenon refers to the
observation that the aggregation of solutions from a group
of individual agents often performs better than the ma-
jority of individual solutions [4]. Traditionally, such a
phenomenon has been widely applied to simple point
estimation of continuous-valued physical quantities [4]
and discrete labeling [5], [6]. In contrast, our challenge
here is to aggregate more complex structured outputs (in
particular, sequential decisions) from the crowds of route
planning agents for performing route prediction. There
are several non-trivial practical issues confronting this
challenge:
• Real-time prediction and scalable learning. For the

consensus patterns to closely approximate the actual
most popular routes, a huge amount of traffic data (i.e.,
planned routes) is needed to filter out the noise and vari-
ation arising from different agents’ individual planning
abilities. Furthermore, prediction has to be performed
in real time in order to be useful for the applications
described above. How then can an aggregation model
be built to learn scalably and predict efficiently?

• Sequential nature of routes. An agent’s history of tra-
versed road segments can potentially affect its future
route. For example, suppose that two agents originating
from different locations share some common route and
subsequently split up to go to different destinations.
This example raises an important trade-off question:
How much history is needed to predict the future route



accurately? Existing literature have assumed a Markov
property [7], [8], that is, the future route of an agent
depends only on its current road segment. This is clearly
violated in the example; longer route histories have to
be considered in order to predict the future routes of
the two agents correctly.

• Data sparsity. Though the amount of traffic data is
huge, it may only sparsely populate a dense urban
road network. As a result, many road segments are
not traversed by any agent. How can an aggregation
model still be built to predict accurately when the data
is sparse?

This paper presents a hierarchical Bayesian non-
parametric approach to efficient route prediction (Sec-
tion III) that, in particular, can exploit the wisdom of
crowds of route planning agents by aggregating their
sequential routes of possibly varying lengths and origin-
destination pairs. It resolves the above-mentioned issues
in the following ways:
• Incremental/Online learning. Learning is made scalable

in an incremental/online fashion. In this manner, our ag-
gregation model can be trained with a small amount of
data initially and updated as and when new training data
arrives. We show that our incremental/online learning
algorithm incurs linear time in the size of training data
(Section III-D) and can satisfy the real-time requirement
(Section IV-D).

• Non-Markovian property. Our route prediction algo-
rithm does not require imposing a Markov assumption
(Section III-C). Consequently, the future route of an
agent can depend on the complete history of traversed
road segments. Without imposing a Markov assumption,
the prediction accuracy can be improved considerably,
as demonstrated empirically using real-world taxi route
data (Section IV-B).

• Smoothing. Smoothing (Section III-D) is an effective
way to deal with the issue of sparsity. The key idea
is to add some pseudo agents and make them travel
along road segments that are not traversed by any agent
in the traffic data. As a result, the prediction accuracy
can be significantly improved, as shown empirically in
Section IV-C.

Section V shows two practical applications of our route
prediction algorithm: predictive taxi ranking and route
recommendation.

II. BACKGROUND

A. Notations and Preliminaries

Definition 1 (Road Network): The road network G =
(V,E) is defined as a directed graph that consists of a set
V of vertices denoting intersections or dead ends and a
set E of directed edges denoting road segments.

Definition 2 (Route): A route R of length i is defined as
a walk in the road network G, that is, R , (r1, r2, . . . , ri)
where the road segments rk, rk+1 ∈ E are adjacent for
k = 1, . . . , i− 1.

B. Problem Formulation

Recall from Section I that the objective of route pre-
diction is to predict the most likely future route given a
history of traversed road segments. We achieve this in a
probabilistic manner: Let the route R′ denote the sequence
of road segments to be traversed in the future, that is,
R′ , (ri+1, . . . , rm) for some m ≥ i+ 1. Given a set D
of agents’ routes of possibly varying lengths and origin-
destination pairs, the most likely future route conditioned
on a past route R is derived using

max
R′

P (R′|R,D) .

It is computationally challenging to compute the posterior
probability P (R′|R,D) for every possible past route R
because the number of possible past routes is exponential
in the length of history of traversed road segments. To
reduce this computational burden, one can decrease the
length of history by imposing a Markov property:

P (R′|R,D) = P (R′|Rn,D) (1)

where Rn denotes a reduced route of R consisting of only
the past n road segments. That is, Rn , (ri−n+1, . . . , ri)
for 1 ≤ n ≤ i and R0 is an empty sequence. Note that n
is usually known as the order of Markov property.

C. Maximum Likelihood Estimation

A simple widely-used approach to model the posterior
probability P (R′|Rn,D) is that of maximum likelihood
estimation (MLE) [7]. Let cRn and cRn·R′ denote, respec-
tively, the count of Rn and the count of Rn concatenated
with R′ observed within the routes in the dataset D.
So, cRn

=
∑
R′ cRn·R′ . Then, P (R′|Rn,D) (1) can be

approximated using MLE by

PMLE(R
′|Rn,D) =

cRn·R′

cRn

.

In practice, MLE often performs poorly, especially when
the data is sparse. If a route R′ has not been observed
within the routes in the dataset D, then PMLE(R

′|Rn,D) =
0, which may not be the true value of P (R′|Rn,D) (1).
It may be due to sparse data that such a route has not
been observed. In reality, it may still be associated with a
small probability in the true distribution. Researchers from
linguistic community have developed smoothing methods
to resolve this issue. We will discuss them next.

D. Smoothing Methods

To tackle sparsity, the simplest form of smoothing
makes a prior assumption that every possible future route
R′ is observed once more than it already has. Then, this
smoothing method approximates P (R′|Rn,D) (1) by

PS(R
′|Rn,D) =

cRn·R′ + 1

cRn
+ |R′| (2)

where R′ is the set of all possible future routes R′ of
the same length. It can be observed from (2) that every
route R′ has at least a small probability 1/|R′| of being
traversed even if it is not observed in the dataset (i.e.,



cRn·R′ = 0). Hence, this smoothing method mitigates the
issue of sparsity.

To improve prediction accuracy, a more advanced
method called interpolated smoothing can be used. It per-
forms a weighted average of smoothing probabilities (2)
with different orders of Markov property and is formulated
as follows:

PI(R
′|Rn,D) = λnPS(R

′|Rn,D) +(1−λn)PI(R
′|Rn−1,D)

where λn ∈ [0, 1] is a fixed weight applied to the n-
order smoothing probability. To understand why inter-
polated smoothing can work well, supposing Rn cannot
be observed within the routes in dataset D but some
shorter routes Rm(m < n) within the route Rn can,
it is reasonable then to involve smoothing probabilities
with these lower m-order Markov property to yield more
accurate prediction.

Another advanced method called interpolated Kneser-
Ney (IKN) smoothing estimates the probability of the
future route by discounting the count cRn·R′ by a fixed
weight d and interpolating with lower-order probabilities:

PIKN(R
′|Rn,D) =

max(0, cRn·R′ − d)
cRn

+
d tn
cRn

PIKN(R
′|Rn−1,D)

(3)

where tn , |{R′|cRn·R′ > 0}| denotes the number of
distinct future routes R′ after traversing the past route Rn
in the dataset. The role of tn is to make the probability
estimates sum to 1. Modified Kneser-Ney (MKN) smooth-
ing generalizes IKN smoothing by making the discounting
weight depend on the length of Rn. Interested readers are
referred to [9] for more details. In the next section, we
will describe our route prediction algorithm that exploits
some form of smoothing to resolve the issue of sparsity.

III. SEQUENTIAL MODEL FOR AGGREGATING ROUTES

A. Non-Markovian Aggregation Tree

Since a Markov property is not imposed, we need
to address the challenge of aggregating and storing an
enormous set D of agents’ sequential routes efficiently.
To achieve this, our sequential model utilizes the data
structure of a suffix tree2 [10] which we call a non-
Markovian aggregation tree (Fig. 1). Specifically, every
possible prefix of an agent’s sequential route in D when
reversed is represented by some path in the tree starting
from its root. Consequently, the tree can aggregate the
sequential decisions within the routes of all the agents.
Since the tree’s height is determined by the length of
the longest route, the tree can maintain information on
all past sequential decisions made within the routes of
all agents, thus preserving the non-Markovian property.
As an illustration (Fig. 1), supposing there are two routes
R1 = (r3, r12, r5, r1) and R2 = (r6, r3), every possible
prefix of R1 and R2 when reversed is represented as a
path in the tree. For example, after updating the tree (i.e.,

2A suffix tree of a set of strings is a compacted trie of all suffixes of
all the strings.
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Figure 1: Non-Markovian aggregation tree (refer to text
for more details).

assuming that the tree has been updated using R1) with
R2, two solid nodes corresponding to (r6) and (r6, r3) are
added.

To perform route prediction, the key step is to learn
the posterior probability P (·|R,D) for every possible past
route R found in D and store them efficiently. To simplify
the notation, let GR , P (·|R,D). As shown in Fig. 1,
GR is stored in the node NR that is indexed by a context
representing some past route R. A node’s context can be
formed by appending the edge labels along the path back
to the root node; it therefore appears as the suffix of its
descendants’ contexts.

The tree construction algorithm is shown in Algo-
rithm 1. The tree is constructed dynamically from the
training data in O(|D|`2) time and O(|D|`) space where
` is the length of longest route in the dataset D.

Function UpdateTree(Tree,R)
Input: Current tree Tree, newly observed route

R = (r1, . . . , ri)
Output: Updated tree Tree
for k = 1 to i do

Search Tree for the node NR′ of context R′ that
shares the longest suffix with R̃ , (r1, . . . , rk)
if R′ is suffix of R̃ then

Insert NR̃ as a child of NR′
else

R′′ ← longest suffix of both R̃ and R′

Replace NR′ with NR′′
Insert NR′ and NR̃ as children of NR′′

end
end
return Tree

Algorithm 1: Tree construction algorithm.

B. Bayesian Nonparametric Model

In this subsection, we will describe how to infer GR
from the dataset D. Following the Bayesian paradigm,
GR is defined as a random variable such that a prior
distribution can be placed over GR before observing
data. After observing data, GR is updated to a posterior
distribution. Prediction can then be performed by sampling
from the posterior distribution. Formally, a nonparametric



prior called Pitman-Yor process [11] is placed over GR
with prior/base distribution H:

GR ∼ PY(d, α,H) (4)

where d ∈ [0, 1) and α > −d are discount and concen-
tration parameters, respectively. Both d and α control the
amount of variability around the base distribution H .

The Pitman-Yor process can be better understood by
interpreting it as a Chinese Restaurant Process (CRF)
[11]: The analogy is that a sequence (x1, x2, x3, . . .) of
customers go to visit a restaurant which has an unbounded
number of tables. The first customer sits at the first
available table while each of the subsequent customers sits
at the k-th occupied table with probability proportional to
(ck − d) where ck is the number of customers already
sitting at that table, and he sits at a new unoccupied table
with probability proportional to (d t + α) where t is the
current number of occupied tables. From the CRP, it can
be observed that a Pitman-Yor process has a useful rich-
get-richer property: If more people sit at one table, then
more people will sit at it. Using the CRP interpretation,
the predictive/posterior distribution for the next customer
can be derived as follows:

P (xc+1 = k|x1, . . . , xc) =
ck − d
c+ α

+
d t+ α

c+ α
H(k) (5)

where c =
∑t
k=1 ck. Note that when little data is available,

prior knowledge H plays a significant role. But, after
we have enough data, the predictive probability depends
primarily on the data and becomes less affected by the
prior distribution. Furthermore, (3) is similar to (5), which
explains why IKN smoothing is an approximate version of
CRP. We adapt the same idea to perform route prediction
by treating each customer as a road segment and extend
it to the sequential case, as discussed next.

C. Hierarchical Bayesian Nonparametric Model

Inspired by the hierarchical structure of the aggregation
tree (Section III-A), we extend the Pitman-Yor process to a
hierarchical model. To do this, we start by placing the base
distribution H in (4) as a prior at the root node of the tree.
Pitman-Yor process priors can then be placed recursively
in each node along the path descending from the root of
the tree as follows: Recall that Rn denotes a reduced route
of R consisting of only the past n road segments. Let
GRn−1

be the prior/base distribution for GRn
(see Fig. 1),

that is, GRn
∼ PY(dn, αn, GRn−1

). We can recursively
do this to derive the hierarchical version of the Pitman-Yor
process:

GRn
∼ PY(dn, αn, GRn−1

)
GRn−1 ∼ PY(dn−1, αn−1, GRn−2)

. . .
GR0

∼ PY(d0, α0, H)

where the parameters dn and αn depend on the length of
Rn, R0 is the empty route with length 0, and H is often set
to be a uniform distribution. Such a hierarchical structure
is inherently consistent with that of the aggregation tree.

The key insight behind the hierarchical structure is that
the predictive distribution GRn

of a node NRn
uses the

predictive distribution GRn−1
of its parent node NRn−1

as its prior/base distribution. Hence, this structure en-
codes the prior knowledge that the predictive distributions
GRn , GRn−1 , . . . , GR0 with routes of different lengths are
similar to each other. In particular, predictive distributions
with routes sharing longer suffixes are more similar to each
other. As a result, our hierarchical model can interpolate
and promote sharing of statistical strength between predic-
tive distributions with higher-order (i.e., longer route) and
lower-order (i.e., shorter route) Markov properties. When
there is no data for a route Rn, our model considers shorter
routes Rm(m < n) that appear in the training data by
removing the earliest road segments from Rn first. This
makes sense if we assume that the earliest road segments
are least important to determining the next road segment,
which is often the case.

D. Model Inference

Exact inference over Pitman-Yor processes is in-
tractable. Instead, we employ an approximate inference
method called the Lossless Compression Sequence Mem-
oizer (LCSM) [12] which is well-suited for real-time,
scalable learning. Different from [12], the input to our
model is not a single long sequence, but a set of agents’
routes. Hence, we modify it to be updated after observing
each new agent’s route.

The main idea of the inference procedure is to view
Pitman-Yor process in terms of CRP. The distribution of
Pitman-Yor process is captured by the counts {ck, t} of
CRP (5). The predictive/posterior probability can be com-
puted by averaging probabilities over all samples of counts
{ck, t} which is often performed by the computationally
intensive Markov chain Monte Carlo sampling method.
LCSM simply updates the counts information for a newly
observed route and removes the resampling step for the
counts. It can be viewed as a particle filter with only one
particle. For example, supposing there is a newly observed
road segment R′ = ri+1 after traversing the route Rn, the
counts information along the path from the root node NR0

to the node NRn is updated. Let tRn·R′ be the number
of tables labeled with R′ in the restaurant Rn in terms
of the CRP representation. Then, the predictive/posterior
probability is given by

P (R′|Rn,D)=


cRn·R′−dntRn·R′

cRn+αn
+

dntRn+αn

cRn+αn
P (R′|Rn−1,D)

if cRn·R′ >0,

P (R′|Rn−1,D) otherwise
(6)

where tRn
=

∑
R′ tRn·R′ . It is important to note that when

the parameters αn and dn are set to 0, (6) reduces to that
of MLE without smoothing [7] (Section II-C). We will
empirically compare the prediction accuracies of LCSM
vs. MLE in Section IV-C.

As the model is updated with each new route, it may
incur more space. However, coagulation and fragmentation
properties of the hierarchical Pitman-Yor process [13]



make it possible to maintain constant space overhead.
Learning can be done in O(|D|`2) time. Since the length
` of the longest route is constant, the time complexity is
linear in the size of training data D.

IV. EXPERIMENTS AND DISCUSSION

A. Traffic Data

In this section, we show experimental results based
on real-world taxi route data in Singapore. Our data
is provided by the Comfort taxi company. The data is
collected in the following way: The Comfort taxi company
has over 10, 000 taxis equipped with GPS roaming in the
city. The GPS location, velocity, and status information
of these taxis are sent to and stored at a central server.
The dataset is collected in the whole month of August,
2010. But, the GPS data is noisy and sampling frequency
is relatively low. The data cannot be used directly since it
is in GPS format. Hence, the GPS data must be mapped
onto routes of road segments. We apply a map matching
technique [14] to preprocess the data and assume that the
map matching result is perfect. After preprocessing the
GPS data, we obtain a set of taxi routes such that each
route’s origin and destination correspond to the pick-up
and drop-off locations, respectively. In this paper, we focus
mainly on routes that are associated with the Bugis area.
The reason for choosing Bugis is because of its dense road
network and high volume of taxi traffic which make the
route prediction problem even more challenging.

B. Prediction Accuracy

In the first experiment, we evaluate how the prediction
accuracy varies in terms of varying length of history of
traversed road segments and length of future route to
be predicted. The size of training data is 6000 routes.
Fig. 2 shows the results averaged over 300 test instances.
Fig. 2a reveals that increasing the length of history of
traversed road segments improves the average prediction
accuracy. When the history increases beyond the length
of 10, there is no significant improvement. The prediction
accuracy stabilizes at around 85%. This implies the order
n of Markov property can be set to be 10 with little or
no performance loss. In turn, the maximum depth of the
aggregation tree can be limited to 10, which significantly
reduces the space overhead. Fig. 2b shows that the pre-
diction accuracy decreases almost linearly in the length of
future route to be predicted. For predicting future routes
of length 10, our model can achieve 50% accuracy.

The second experiment evaluates the prediction accu-
racy with increasing size of training data. Our sequential
model is learned incrementally with 100 routes each time,
and its resulting prediction accuracy is shown in Fig. 3.
It can be observed that the prediction accuracy stabilizes
after the model has learned from about 5000 observed
routes.

The third experiment evaluates how the prediction accu-
racy changes at different times of the day. In the previous
experiments, the training data covers the whole day. In this
experiment, the training and test data are obtained from
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Figure 2: Graphs of average prediction accuracy vs. (a)
length of history of traversed road segments and (b) length
of future route to be predicted: The latter result is based
on using the history of traversed road segments of length
10.
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Figure 3: Graph of prediction accuracy vs. size of training
data D (i.e., number of observed routes): The result is
based on using the history of traversed road segments of
length 10.

4 different times of the day (specifically, 2 a.m., 8 a.m.,
1 p.m., 9 p.m.), each lasting 45 minutes. The results are
shown in Fig. 4. It can be observed that the time of the
day has minimal effect on the prediction accuracy except
during 2 − 2:45 a.m. This time of the day offers higher
prediction accuracy when the history of traversed road
segments is short (i.e., of length 2 to 4). This may be
due to fewer, more easily distinguished routes during this
time.

C. Effect of Smoothing

To evaluate the effect of smoothing, the prediction
accuracy of LCSM with smoothing is compared to that
of MLE without smoothing [7], as described previously
in Section II-C. Besides considering the Bugis data, we
also experiment with the more sparse data taken from
the whole Singapore. The size of training data for each
region is 6000 routes. The results are shown in Fig. 5.
Firstly, it can be observed that LCSM with smoothing
generally performs better than MLE without smoothing
for both Singapore and Bugis data, with the performance
improvement being more significant for the sparse Sin-
gapore data. The latter demonstrates that smoothing can
achieve larger performance improvement for more sparse
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Figure 4: Graphs of prediction accuracy vs. length of
history of traversed road segments at different times of
the day.
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Figure 5: Graphs of prediction accuracy vs. length of
history of traversed road segments: “SG LCSM” and
“SG MLE” denote results that correspond to data taken
from the whole Singapore while “Bugis LCSM” and
“Bugis MLE” denote results that correspond to data taken
from the Bugis area.

data. Secondly, the prediction accuracy is lower for the
larger Singapore road network, which is expected due to
data sparsity.

D. Time and Space Overhead

As mentioned in Section III-D, the learning time is
linear in the size of training data D. Fig. 6a shows that
the incurred learning time is linear, and it only takes about
3 seconds to learn from 6000 routes, which is sufficient for
achieving a high prediction accuracy, as reported earlier in
Section IV-B. The prediction time is linear in the depth
of the aggregation tree. Fig. 6b shows that the incurred
prediction time stabilizes at about 0.03 seconds after
learning from 6000 routes because the depth of the tree
has more or less stabilized as well. The space overhead
is also very reasonable. After learning from 6000 routes,
our sequential model uses about 50MB of space.
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Figure 6: Graphs of time overhead vs. size of training data.

V. PRACTICAL APPLICATIONS

In this section, we demonstrate two practical applica-
tions of our route predictive algorithm.

A. Predictive Taxi Ranking

The taxi dispatch system assigns taxis to the callers/
passengers waiting at different locations. Efficient taxi
dispatching is essential to reducing passengers’ waiting
time and consequently, greater customer satisfaction.

A key factor that determines the system efficiency is
that of ranking of the taxis to be dispatched. The state-
of-the-art way of ranking [15] is based on the shortest
path or duration from the taxi to the passenger, which
can be retrieved by providing the GPS locations of the
taxi and passenger to Google Maps API. In practice,
such a ranking algorithm often performs poorly: The GPS
sampling frequency is low, thus resulting in a discrepancy
between the GPS location of the taxi and its actual location
at the time of booking. Furthermore, there is a latency
between the receipt of the booking message and the
response of the taxi driver to it, during which the taxi
would have moved along its original intended route for
some distance to a new location. As a result, the taxi
may no longer be “closest” to the passenger in terms of
path distance or waiting time. This problem is exacerbated
when the taxi crosses an intersection or moves into a
congested road or expressway during this latency period. If
there are many other taxis roaming in the same area, then
some may have moved to be even closer to the passenger.
This motivates the need to predict the future locations of
the taxis using our route prediction model and exploit them
for the ranking instead.

A simple experiment is set up to empirically compare
the performance of our predictive taxi ranking (PTR)
algorithm with that of the state-of-the-art non-predictive
taxi ranking (NTR) algorithm [15]: to simulate the taxi
dispatch system, we pick 202 taxis roaming in the Bugis
area, and place 11 passengers at random locations in Bugis
calling for taxis. We assume the latency to be between 5
to 10 seconds and our model predicts the future locations
of the taxis after this latency. Table I shows the waiting
time of the 11 passengers. With a high prediction accuracy
of about 85%, our PTR algorithm can achieve shorter
waiting time for 5 passengers and the same waiting time as
the NTR algorithm for the remaining ones, thus resulting
in shorter average waiting time over all passengers. We



Algo. P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11
∑11

i=1 Pi/11
NTR 86 551 83 68 506 365 156 157 10 57 121 196
PTR 86 551 83 41 424 365 9 31 10 57 33 153

Table I: Waiting time (seconds) of passenger Pi for i = 1, . . . , 11.

conjecture that the performance of our PTR algorithm will
be even better than that of the NTR algorithm with greater
latency and less available taxis.

B. Route Recommendation

Existing route planning methods such as that in Google
Maps consider explicit criteria such as shortest distance or
travel time (calculated based on speed limit3). In contrast,
our route prediction algorithm recommends maximum-
likelihood routes that implicitly account for all the (hid-
den) criteria (e.g., tolls, time of the day, etc.) affecting
the crowds of route planning agents. This is illustrated in
Fig. 7.

VI. RELATED WORK

Researchers have developed mobility models to address
route prediction problem. The most naive idea is to do
prediction by matching current route to a set of observed
routes using data mining methods [2]. But, they are not
capable of predicting a route that has never appeared
in the training data. The decision-theoretic work of [16]
modeled a driver’s route selection as a Markov Decision
Problem (MDP) and employed a maximum entropy ap-
proach to imitate the driver’s behavior. It suffered from
computational inefficiency due to the MDP solver. The
work of [17] adopted the kinematic model and mapped
GPS locations to hidden velocity variables. They modeled
the moving vehicles as a mixture of Gaussian processes
(GP) with a Dirichlet process (DP) prior over the mixture
weights. This approach works well, but has granularity
problem: the prediction accuracy depends on the size
of each disjoint cell/region. Since the approach directly
maps each GPS location to a velocity, it cannot deal with
predictions involving the same cells/regions such as u-
turns or crossing the same intersections more than once.

The most closely related work to our sequential model
is that of Markov models. Recall that our processed data is
a set of road segment sequences. Markov models assume
that the next road segment only depends on a few preced-
ing road segments, which is called Markov assumption.
[8] trained a hidden Markov model to predict a driver’s
future road segments while simultaneously predicting the
driver’s destination. Their model was restricted to a single-
vehicle scenario. Although they achieved a next-segment
prediction accuracy of up to 99% with 46 trips, there was
only one possible next road segment to choose from (i.e.,
perfect prediction) for 95% of road segments. The work
of [7] on Markov-based route prediction studied how the
order of the Markov model affects the prediction accuracy.
However, they did not account for the important issue of
sparsity of data, which occurs in our real-world data. We

3http://goo.gl/QEvqW, http://goo.gl/7nHi4

show through empirical comparison (Section IV) that our
algorithm can resolve the issue of sparsity and achieve
better prediction accuracy than that of [7]. Other models
are limited by some unrealistic model assumptions such
as knowing the origins and destinations of vehicle routes
[18], one unique destination in the problem [16], and fully
observed routes [19].

The issues of real-time prediction and online learning
are rarely considered in the literature. With high-order
Markov assumption, the space complexity is exponential
and learning time is quadratic in the length of the input se-
quence. The learning time for our model is also quadratic,
but its space complexity is only linear. Our proposed
incremental learning method also differs from those works
performing batch learning [7], [17] (i.e., training the model
with all the observed data). Our model can be updated
incrementally/online as and when new data comes.

VII. CONCLUSION

This paper describes a hierarchical Bayesian non-
parametric model to aggregate the sequential decisions
from the crowds of route planning agents for performing
efficient and scalable route prediction. By not imposing
a Markov assumption, the results show that our model
can achieve a prediction accuracy of around 85% for the
Bugis area which has a dense road network and high
volume of taxi traffic. The results also show that our model
with smoothing can be effectively used to improve the
prediction accuracy over the widely-used MLE with no
smoothing for sparse traffic data. Our model is highly
time-efficient in learning and prediction: It only takes
about 3 seconds to learn from 6000 taxi routes and
0.03 seconds to perform prediction. In terms of practical
applications, our model can be used in predictive taxi
ranking to achieve shorter passengers’ waiting time over
many test instances as compared to the state-of-the-art
non-predictive one. It can also be used to recommend
routes that implicitly account for the criteria (e.g., tolls)
affecting the crowds of route planning agents.
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