
On Centralized and Decentralized Architectures for
Traffic Applications

Nikola Mitrovic, Student Member, IEEE, Aditya Narayanan, Muhammad Tayyab Asif, Student Member, IEEE,
Ansar Rauf, Justin Dauwels, Senior Member, IEEE and Patrick Jaillet

Abstract—The role of smartphones in traffic applications is
typically limited to front end interface. Although smartphones
have significant computational resources, which are most likely
to increase further in the near future, most of the computations
are still performed on servers. In this paper, we study the
computational performance of centralized, decentralized and
hybrid architectures for Intelligent Transportation Systems
applications. We test these architectures on various Android
devices. For implementation, we consider Android Software
Development Kit (SDK) and Android Native Development Kit
(NDK). Numerical results show that recent smartphones take less
than one second to estimate the speed for each road segment in a
network of 10,000 links from speed measurements at 1,000 links.
The proposed decentralized architecture significantly reduces the
overhead of the communication network and paves the way for
new cooperative traffic applications and operations.

Index Terms—Android applications, NDK, Low-dimensional
models, speed estimation, traffic prediction.

I. INTRODUCTION

Smartphones currently play a vital role in everyday
traffic management operations. Being equipped with global
positioning system (GPS) and Internet access, mobile phones
are frequently used to collect location and (instantaneous)
speed of vehicles [1]. Internal sensors of smartphones
such as accelerometers and GPS devices can further
provide information about the behavior of drivers and the
road conditions [2]. High penetration rate and powerful
visualization capabilities of smartphones facilitate delivery of
valuable traffic information to the end users (e.g., drivers) [3].
In most traffic applications, all of the computational operations
are performed on servers, while the role of smartphones is
often restricted as a front end interface. We refer to this
as centralized (or traditional) system architecture. Although
a typical smartphone possesses significant computational
resources, which are most likely to increase in the future, this

This paper was presented in part at the IEEE Intelligent Transportation
Systems Conference, Qingdao, 2014

Nikola Mitrovic, Aditya Narayanan, Ansar Rauf and Justin Dauwels
are with the School of Electrical and Electronic Engineering, College
of Engineering, Nanyang Technological University, Singapore, 639798;
nikola001@e.ntu.edu.sg, jdauwels@ntu.edu.sg.

Muhammad Tayyab Asif was with Nanyang Technological University when
this work was done. He is now with IBM Research Collaboratory - Singapore.

Patrick Jaillet is with the Department of Electrical Engineering and
Computer Science, School of Engineering, and also with the Operations
Research Center, Massachusetts Institute of Technology, Cambridge,
MA 02139 USA. He is also with the Center for Future Urban
Mobility, Singapore-MIT Alliance for Research and Technology, Singapore
(e-mail:jaillet@mit.edu).

The research described in this project was funded in part by the Singapore
National Research Foundation (NRF) through the Singapore MIT Alliance for
Research and Technology (SMART) Center for Future Mobility (FM).

potential has hardly been explored in traffic applications. The
only exceptions are a few safety related applications [4] where
all the computations are internally performed with the help of
native programming languages.

In this paper, we explore how traffic speed estimation and
prediction, and travel time prediction can be implemented
in a decentralized manner on smartphones, as opposed to a
centralized server. Although this method can be applied to
many other different domains, we focus on ITS applications.
We use a column based (CX) matrix decomposition method
to allocate certain computations from the server to the
smartphones. The CX method approximates any arbitrary
matrix as a product of a subset of its columns and
an extrapolation matrix. The extrapolation matrix contains
the relationship functions (coefficients) that expresses every
column of the matrix in terms of the basis provided by
a small subset of the original columns. The extrapolation
matrix is inferred from the training data set, for a given
subset of columns. This subset of the columns can be
selected according to different criteria [5]. The CX method
has proven to be efficient in traffic networks since traffic
parameters (e.g., speed, volume) across different roads tend
to be related [6]. The CX method has been deployed for
applications of compression, estimation and prediction where
the traffic conditions in the entire network (represented as a
matrix) are assessed using the information from a few road
segments (columns of the matrix) [7]. However, this method
has previously not been deployed and systematically tested in
an Android environment.

For the purpose of the study, we have developed an Android
app that aims to assess the traffic conditions of the entire
network from the data of a subset of the road segments. The
developed app estimates the traffic conditions in the entire
network through vector-matrix multiplications where: (i) the
row vector contains the traffic data (e.g., speed) for a subset of
the links; (ii) the extrapolation matrix (or relationship matrix)
encompasses relationship functions between this subset of
the links (defined in (i)) and the entire network [7]. The
extrapolation matrix can be pre-computed on the server and
stored in the phone memory. In this case, the server sends
the traffic data for the predefined subset of the links to the
smartphones where the extrapolation is performed. We refer
to this as the Decentralized Non-Adaptive (D-NA) mode of
operations. The D-NA architecture aims to reduce the overhead
of the communication network since only the subset of the
predefined links is explicitly monitored.

In the D-NA mode of operations, we assume that traffic

data, for the predefined subset of road segments, will be
available during all time instances. However, this may not be
a reasonable assumption due to malfunctions of fixed sensors
and the nature of mobile sensors (e.g., probe vehicles) [8]. In
such cases, we can still use the server to collect data from a
subset of available sensors and send it to the smartphone. Then,
the smartphone can compute the corresponding extrapolation
matrix for the obtained data and use it to perform network
extrapolation. We refer to this as the Decentralized ADaptive
(D-AD) mode of operations. The proposed D-AD architecture
is a stepping stone toward cooperative (or server-free) mode
of operations, since information about traffic conditions may
be provided directly by other probes.

We use the decentralized modes of operations for other
application domains, beyond estimation, such as traffic and
travel time predictions. In these applications, the server
performs traffic prediction for a subset of the links and sends
the predicted data to the smartphone where the extrapolation is
performed. Similar to the application of network estimation,
we can also compute the relationship matrix on the server
(D-NA mode) or the smartphones (D-AD mode). With the help
of the relationship matrix, the smartphone app can compute
the future conditions for the entire network and different
prediction horizons. This information can then be used for
travel time calculations of potential routes. For each road
segment of these routes, the algorithm estimates when the
driver will be traveling through it, and chooses the prediction
horizon accordingly. Then, the smartphone infers the link
travel time by dividing the predicted traffic speed by the length
of the segment. Finally, the smartphone computes the total
travel time as a sum of the link travel times.

We evaluate the execution time of the decentralized
architecture for different Android platforms and smartphone
devices using traffic data from the Singapore network. For
development platforms, we consider the commonly used native
development kit (NDK) and software development kit (SDK).
We also consider different generations of smartphone devices,
and we evaluate the performance of different smartphones
with the help of the Android emulator [9]. We measure the
execution time of the app by inserting monitoring functions
into the Android operating system. Since the execution time
depends upon the size of the underlying network, we assess
the app performance in three test network comprising 2,156
(highway network), 5,000 and 10,000 links.

Our experiments show that the proposed modes of
operations represent promising alternatives to the commonly
used centralized framework. Decentralized mode of operations
can be efficiently deployed if the development platform
of the traffic app relies on native development kit (NDK)
platform where the physically complex operations are coded in
native languages. In particular, the NDK development platform
outperforms the traditional software development kit platform
(SDK) by 93-95% in the case of the complex problems.
Furthermore, the NDK execution time of the app is highly
acceptable for all tested modes of operations, even in the case
of large traffic networks. The experimental results also show
that memory requirements of the traffic app are satisfactory in
most of the tested cases.

Nowadays, traffic applications are increasingly relying on
various sensors to collect data about mobility conditions.
These applications then use these large data sets to improve
user’s mobility experience. The centralized architecture,
however, can potentially become a bottleneck in terms of
scalability, connectivity and service delivery, in the future.
At the same time, smartphones offer great untapped potential
to explore decentralized and hybrid architectures for traffic
related applications. These architectures can also prove useful
for device-to-device communication and vehicle-to-vehicle
communications. In this study, we consider the problem of
traffic state estimation in the context of above mentioned
architectures. Our main contributions in this regard are as
follows: We investigate a decentralized approach to traffic
estimation and prediction, implemented on smartphones. We
also discuss the choice of different development platforms for
Android OS for traffic related applications.

The rest of the paper is structured as follows. In Section II
we briefly review the relevant literature. In Section III we
introduce the low-dimensional traffic models and explain
how we deploy them on smartphones for applications of
traffic estimation and prediction, and travel time prediction. In
Section IV we explain the different modes of operations and
programming models that we use to test our app. In Section V
we explain the tested scenarios and describe the analyzed
data sets in this paper. In Section VI we provide and discuss
results of our experiments. In Section VII we summarize our
contributions and propose topics for future work.

II. RELATED WORK

In this paper, we explore the computational capabilities
of smartphones for different modes of operations and traffic
applications. Being equipped with smart sensors and high
visualization capabilities, smartphones have found many
applications in the domain of intelligent transportation systems
(ITS) [1], [2], [10]–[18]. Numerous smart sensors such as
GPS, manometers, barometers etc., have been used to detect
the speed, location and activity of the travelers, mode of the
transportation and user (driver) behavior [1], [2], [10]–[14].
Conversely, smartphones are frequently seen as a convenient
way to deliver real-time traffic information to the travelers.
This information encompasses current and future traffic
conditions, relevant transit information, as well as step-by-step
guidance from origin to the destination [15]–[18]. In these
studies, traffic apps often deal with the computationally
light operations in a centralized framework and typically do
not use all available CPU resources. Although smartphones
possess significant computational power nowadays, these
resources, to our best knowledge, have not been evaluated for
computationally intensive traffic applications.

Development of traffic (and other Android) applications
is typically done in the Java programming language with
the help of Android Software Development Kit (SDK), third
party libraries, and other useful tools [19]. The SDK platform
is “easy-programmable”, portable, and supported by most
Android features such as services and content providers [20].
Unlike the SDK, the Native Development Kit (NDK) platform
uses C/C++ libraries for computation components of the

intensive smartphone applications such as video games, image
processing applications, etc. [20], [21]. Recent studies on the
Android platform show that applications written in C/C++
achieve better performance than those in Java [20]–[22]. These
benefits of using native languages vary across the applications
and underlying architecture of the devices [20]–[22]. If only
the front-end of the application is implemented on the mobile
device (such as in [1], [2], [10]–[18]), then the improvement
in performance may not be that significant [20]–[22]. For
the intensive smartphone applications, this improvement might
be significant [20]–[22]. Although the NDK development
platform may yield a significant improvement in performance,
it is still not clear whether it is sufficient for the ITS
applications at hand. To answer this question, one needs to
implement and test the NDK development platform for various
traffic applications.

III. COLUMN BASED METHOD FOR TRAFFIC APPLICATIONS
ON SMARTPHONE

In this section, we explain how we use the column based
(CX) matrix approximation to allocate certain computations
from the server to smartphones, for applications of traffic
speed estimation and prediction, and travel time prediction.

A. Column based (CX) matrix approximation
The column based method approximates a matrix

A ∈ Rm×n as the product of low dimensional matrices
C ∈ Rm×c and X ∈ Rc×n, such that Â = CX [23].
Matrix C contains c columns of the matrix A (see Fig. 1a).
The relationship (or extrapolation) matrix X expresses every
column of A in terms of the basis provided by the columns
of C [23]. For given matrices C and A, we compute the
matrix X as:

X = C+A, (1)

where C+ is the Moore-Penrose pseudo-inverse of matrix C.
There are a few sampling strategies to select c columns [5].

The SVD based sampling technique, which assigns higher
selection probability to the columns with larger variations, has
the best performance [5], [23]. The SVD strategy assigns the
selection probability to each column {Pai}n

i=1 in proportion
to the Euclidean norm of top k right singular vectors of the
matrix:

Pai =
1
k

k

∑
j=1

v2
i j ∀ i = 1, ...n, (2)

where vi j is the i-th coordinate of j-th right singular vector.
The other selection strategy that performs reasonably well is

random sampling [5]. This algorithms assigns equal selection
probabilities to each column of the matrix A. We refer
to [5], [23] for detailed information about the low-dimensional
network representation and different sampling methods.

B. CX method for traffic speed estimation
We start by explaining how we use column based (CX)

low-dimensional models to assess current traffic conditions
in the entire network through straightforward vector matrix
multiplication. For this purpose, we consider the traffic data
in the form of a matrix A ∈ Rm×n where the columns
of the matrix {ai}n

i=1 contain traffic data from different
roads {si}n

i=1. In that way we can write the traffic data matrix
as A = [a1 ... an]. Fig. 1b shows an arbitrary traffic network
with the n road segments. Suppose that the matrix C contains
the observed traffic conditions at c specific locations in the
network, such that {c1, ...,cc} ⊆ {a1, ...,an}. These c locations

are shown as red rectangles in Fig. 1b where ci is a row
vector that contains the traffic parameter (e.g., speed) at these
c specific locations at time i. Then, at time i we can estimate
the traffic conditions of the entire network (α i ∈ R1×n) as:

α̂ i = ciX. (3)

We estimate the current traffic conditions of the entire
network by taking the product of traffic data for the subset
of the links (given in the form of a row vector) and the
relationship matrix (see (3)). Since the latter remains constant
at any time i (and for a given subset c) it motivates us to
explore whether network extrapolation can be executed on a
smartphone. We propose to store the extrapolation matrix in
the phone memory and use it to perform extrapolation once
the traffic data (for given subset of the links) is fetched from
the server. We refer to this as the Decentralized Non-Adaptive
(D-NA) method since the relationship matrix is pre-computed
on the server in an offline manner.

The D-NA method assumes that traffic data for the
predefined subset of the links in the network is available
all the time (see Fig. 1b). However, this may not be a
reasonable assumption since the traffic sensors are prone
to faulty operations and damages (see Fig. 1c) [8]. One
alternative is to use the server to re-compute the extrapolation
matrix for the available subset of the links (see green circles
in Fig. 1c) and send it to the smartphone. However, this is
not a feasible solution since the relationship matrix has to
be transmitted for each new subset of the explicitly observed
links. Another alternative is to re-compute the appropriate
extrapolation matrix X∗ on the smartphone as:

X∗ = C+
∗ A, (4)

where C∗ contains the historical traffic information for the
subset of any c∗ locations where the traffic data is currently
available (see green circles in Fig. 1c). In this case, the
historical traffic data for the entire network, given as matrix A,
has to be stored in the phone memory, as part of the
smartphone app (see (4)). Finally, we estimate the traffic
conditions of the entire network as α̂ i = ci

∗X∗. We refer to
this as the Decentralized ADaptive (D-AD) scenario since the
relationship matrix is calculated in an adaptive manner, using
the smartphone resources.

We deploy the proposed method for the more realistic
scenario where only up-to-date traffic estimates of several
potential routes are provided. We estimate the current traffic
conditions of only these links (j = 1,2, ...,L) that lie along the
potential routes, as follows:

α̂ i
j = cix j, ∀ j = 1, ... L, (5)

where x j is jth column of the relationship matrix X. In this
case, the list of L segments has to be either stored in the phone
memory (for the commonly used routes by a user) or obtained
from the server. The approach (5) can be deployed within any
of the described decentralized modes of operations.

It is noteworthy that c (in D-NA case) and c∗ (in D-AD case)
are subsets of α̂ and this helps to reduce the computational
load of the matrix multiplication as follows. Let us assume
that c j (j ∈ {1, 2, . . . , c}) is jth element of c and ℓ-th
(ℓ ∈ { 1, 2, . . . , n}) entry of α̂ . The ℓ-th column of the
extrapolation matrix X has all zeros except the ℓ-th entity
which is equal 1. We improve the computation efficiency by
storing the c positions of these columns, instead of performing
c vector-vector multiplications.

(a) Column based data matrix. (b) Decentralized non-adaptive (D-NA) scenario. (c) Decentralized adaptive (D-AD) scenario.

Fig. 1: Left: An example of a matrix (blue) and a subset of columns (red). The explicitly observed red shaded values are used to infer the blue shaded
values. Middle: An analogous example of traffic network (blue) with the predefined subset of locations where the traffic is explicitly monitored (red).
Right: Locations of the currently available sensors (green) may not overlap with the subset of predefined locations (red).

Fig. 2: List of the computations performed on the server (orange) and smartphone (green), for different operation modes (red). Memory requirement of
the traffic app is given in blue.

C. CX method for speed prediction
Similar to (3), we can obtain the future traffic conditions of

the entire network for the k-th prediction horizon as:
α̂ i+k∆t = ĉi+k∆tX, (6)

where ∆t is the sampling interval (e.g., 5 minutes). The
row vector ĉi+k∆t contains the predicted traffic speed for c
selected locations and kth (k = 1,2, . . . , p) prediction horizon.
These predicted values ĉi+k∆t are computed on the server by
means of a state-of-the-art prediction algorithm (e.g., support
vector regression (SVR)). Since the extrapolation matrix X
remains unchanged for different prediction horizons, we
can use (6) to perform network extrapolation for multiple
prediction horizons (ki+∆t . . . ki+p∆t). In this case the matrix
Ĉ ∈ Rp×c ([ĉi+∆t . . . ĉi+p∆t]

T) has to be fetched from the
server and sent to the smartphone. Similar to the application of
traffic speed estimation, the extrapolation matrix can be either
pre-computed on the server or re-computed on the smartphone;
leading to the already described D-NA and D-AD scenarios,
respectively.

D. CX method for travel time prediction

In the following we extend the idea of compressed
prediction to additional practical applications. More precisely,
we rely on the compressed prediction method for inferring the
future traffic conditions along several potential routes. Next we
use the speed predictions to predict the travel times along these
routes.

Similar to (5), we predict the traffic speed of the link j and
horizon k as follows:

α̂ i+k∆t
j = ĉi+k∆tx j. (7)

By fetching the matrix Ĉ from the server and multiplying
each row of the matrix Ĉ with the corresponding columns of
X, we can compute the expected traffic conditions at different
time instances (see (7)). We estimate the prediction horizon
(k) when the driver will be traveling through the link s j as
follows [24]:

ks j =

⌊ 1
∆t

(To +
j−1

∑
i=1

li
v̂i,k

)

⌋
+1, (8)

where ks j is an integer ([1,2, . . . p]). li is the length of
the link si. v̂i,k is the predicted speed for the link si and
prediction horizon k (k 6 ks j). The variable To represent
the time offset between the current time and trip starting
time. We assume that the server performs route selections by
means of a state-of-the-art routing algorithm, and sends the
ordered list of L road segments, along the selected route, to the
smartphone. As an alternative, the lists of road segments (of
commonly used routes) may be pre-stored in the smartphone
memory. For each link in the list, we use (8) to compute
the prediction horizon k. Then, we apply the computed k
in (7) to obtain a link travel time. Hence, the complexity of
the travel time computations for the selected route involves
L vector-vector multiplications (where each vector has c
elements) and straightforward addition of link travel times.

We use the smartphone’s resources to predict the travel time
and inform the driver about the most likely traffic conditions of
the particular link at time when he is expected to travel across
this link. This information can help the drivers in deciding the
route, mode of transportation and the departure time. As part
of future work, we will investigate the option to (partially)
perform routing on the smartphone.

(a) SDK scenario (b) NDK scenario

Fig. 3: Major components of the traffic app for SDK (left) and NDK (right) scenarios. Computation part is coded using either the SDK (orange) or NDK
programming platform (red). Graphics part is coded with the help of the GIS SDK module (green).

IV. SYSTEM INFRASTRUCTURE

In the following section, we explain the different modes of
operations and development platforms that we use to evaluate
the computational performance of smartphone devices for the
applications of traffic speed estimation and prediction, and
travel time prediction.

A. Mode of operations

Fig. 2 shows the list of operations that are performed on
the server and smartphone, for centralized and decentralized
modes of operations. In the centralized (or traditional)
approach the server performs all the required computations;
i.e., collecting, processing and sending the traffic data
to the smartphone. The smartphone is not involved in
any calculations in this scenario, instead it only handles
the visualization. Specifically, the smartphone overlays the
obtained data on the top of underlying road map (see Fig. 4).

In the decentralized operation mode, the server only collects
the traffic data for a subset of the road segments in the network
and performs predictions for these roads by means of a
state-of-the-art prediction algorithm. Next the server sends the
collected and predicted data to the smartphone, which uses its
own resources to perform the network extrapolation, estimate
the travel time along the requested route, and visualize the
computed data. We recall that relationship matrix X can be
either computed in advance for the predefined subset of the
links and stored in the phone memory (see D-NA approach
in Fig. 2) or computed online with the help of computational
resources of the smartphone and historical traffic matrix A,
stored in the phone memory (see D-AD approach in Fig. 2).

In this study, we evaluate the execution time and memory
requirement of the traffic app for the different modes of
operations and ITS applications. Although any Android
platform can be used to build the app, we rely on the
commonly used SDK and NDK approaches which we briefly
explain in the following.

B. Android platforms

We have developed an app that estimates or predicts
the traffic speed by means of the CX method, and then

overlays the traffic information on the top of the street map.
The proposed smartphone app has two components. The
first component conducts the vector-matrix operations on the
traffic data. The second component performs visualization,
where road segments are colored according to the inferred
or predicted traffic speed (see Fig. 4). We have implemented
apps in two environments: SDK and NDK. In Fig. 3,
we depict the data flow in both implementations. In the
former, we use the traditional SDK development platform
to perform the computations and visualization operations,
with the help of Java computation libraries and the ArcGIS
module (see Fig. 3a). In the latter, we use the Java Native
Interface (JNI) to call the native applications and libraries in
Java code. We use these applications and libraries, written
in C/C++, to perform vector-matrix operations. Once the
computations have been performed, JNI sends the data to the
Java environment where the visualization tasks are performed
using the ArcGIS module (see Fig. 3b).

V. EXPERIMENTAL SETUP

In this study, we consider the nationwide traffic network
in Singapore that contains highways and arterial roads. The
variable of interest is the average traffic speed, i.e., the
mean speed of all vehicles which traverse a road segment
during the given sampling interval of 5 minutes. The Land
Transportation Authority provided us experimental data for a
period of three months (August - October 2011). We selected
10,000 highway and arterial links that have less than 5% of
missing values. We imputed the missing data by means of the
Low Dimensional CP Weighted OPTimization (LDCP-WOPT)
imputation method as it can deal with large data set [25], [26].
The relative imputation error is negligible (∼ 2%) since only
a few percent of data (∼ 3% on average) is missing [25].

We use this data set for the following two purposes:
(i) to evaluate the performance of column based (CX)
low-dimensional models for the applications of traffic speed
estimation and prediction, and travel time prediction; (ii) to
compute the execution time of the proposed app for these
applications and different modes of operations. Since the size
of the network significantly impacts the required execution

Fig. 4: City-scale traffic network of Singapore with 10,000 links of the arterial
(grey) and highway (other colors) categories. The highway network contains
2,156 road segments, divided into 8 highways. Each highway is marked with
different color and used as a testing route for travel time calculations.

time, we investigate the smartphone performance for three
different networks: (i) highway traffic network that consists
of 2,156 links (see Fig.4); (ii) traffic network consisting of
5,000 road segments; (iii) traffic network containing 10,000
road segments (see Fig.4).

The proposed app aims to inform drivers about the expected
travel time and update them with up to date traffic estimates
during the trip. Hence, the app is not required to be frequently
run and, therefore, the battery drainage should not be an issue.
However, the precise evaluation of the energy consumption of
an app is still a challenging task [27]. We will investigate the
battery depletion of the proposed app as part of our future
work. Moreover, the communication costs and collection of
traffic data are not explicitly considered here. We make the
reasonable assumption that traffic information will be available
in (near) real-time, similarly as the PEMS online database [28].

A. Performance of low-dimensional models

We divide the data set into training and test subsets. The
training subset contains the speed data of the months August
and September, 2011. In case of D-AD mode of operations,
we use speed data of one week (within two months), leading
to the eight mutually exclusive training subsets. The training
subset is used to determine the subnetwork of c links (see (2)
and Section III-A), generate relationship matrices (see (1) and
(4)), and train predictors. All the predictors are trained on
the training data for two months. We apply support vector
regression (SVR) for prediction as it is a commonly used and
effective approach [15], [29]–[32]. The test subset contains
the speed data of the month October 2011. We use the test
subset to assess the accuracy of the applications. In case of
D-AD mode of operations, the reported accuracy refers to the
average performance of eight different training subsets.

We apply SVD and uniform sampling strategies to identify
the c links in the network. The SVD selection strategy is
deployed for the D-NA scenario where the server sends traffic
data for a predefined subset of the locations to the smartphone.
The uniform selection strategy is deployed for the D-AD
scenario since the traffic data is obtained from arbitrary sets
of links (without control of the user).

1) Traffic speed estimation: We collect traffic information
at c locations and extrapolate this information through the

Galaxy S2 Galaxy S3 Nexus 5

System Chip Exynos 4210 Exynos 4412 Snapdragon 800

Processor 2 Cores (1.2Ghz) 4 Cores (1.4Ghz) 4 Cores (2.2Ghz)

RAM 1024 MB 1024 MB 2048 MB

Memory 8GB 16GB 16GB

Android Version 4.2 4.3 4.4.2 (kitkat)

Release Feb. 2011 May 2012 Oct. 2013

TABLE I: Technical characteristics of the tested smartphones.

network using the relationship matrix (see (3)), inferred from
the training data set.

2) Speed prediction: We predict the traffic variable at c
locations using a baseline (SVR) predictor and extrapolate
these predictions through the network using the relationship
matrix (see (6)). As benchmark, we perform prediction by
means of the same SVR algorithm at every single link in
the network, as opposed to only the links in the (random)
subnetwork. This is our baseline method.

3) Travel time prediction: We use the predicted traffic
information (for multiple prediction horizons) to assess the
travel time along each direction of 8 highways in the
network (see Fig. 4). As benchmark, we consider commonly
used historical and instantaneous travel time methods [33].

4) Performance measure: We compute the percent root
mean distortion (PRD) to evaluate the performance of the
applications. The PRD quantifies the error as:

PRD(%) =
∥ T− T̂ ∥F

∥ T ∥F
. (9)

For the applications of traffic estimation and speed prediction,
T and T̂ are matrices that contain the true and inferred speed
values, respectively for the entire network and all testing
time instances. In case of traffic estimation T̂ = CX while
for the application of the traffic prediction T̂ = ĈX. For the
application of travel time prediction, T and T̂ are matrices that
contain the true and predicted travel times, respectively for 16
test routes in the network and all testing time instances.

B. Computation time

We test the computational performance of the smartphones
for the above ITS applications. We evaluate the execution time
of the app for different modes of operations, development
platforms, and smartphone devices using the Android
emulator. The Android emulator accurately approximates the
execution time of the proposed app for different smartphone
devices (see Fig. 5) [9]. The execution time is measured by
inserting the monitoring functions into the Android operating
system [9]. Our development platforms rely on either the
NDK+SDK framework or only the SDK platform (see Fig. 3).
In the former, the computation components are coded in NDK
framework using C/C++ libraries while the visualization part
is executed through the SDK. In the latter, traffic app is
built in commonly used SDK environment. Table I shows the
specifications of different smartphone devices that are used in
the experiments.

VI. RESULTS

In this section we analyze the performance of the
low-dimensional models and execution time of smartphone
app for the applications of traffic speed estimation and
prediction, and travel time prediction.

Fig. 5: Computation time of the emulator (shaded bars) and the corresponding
smartphone device (solid bars) for various test cases.

Application and

sampling strategy

Training

subset

Compression Ratio

2 4 10

Estimation (SVD) 2 months 2.80 5.13 7.20

Estimation (uniform) 2 months 2.95 5.31 7.67

Estimation (uniform) 1 week 5.15 7.11 9.06

TABLE II: PRD error [%] of the applied low dimensional approach for
applications of estimation and for two sampling strategies.

A. Performance of the CX models for traffic applications

We use data from the Singapore highway network to
evaluate the performance of the CX-based models. We sample
the road segments according to the SVD and uniform sampling
methods, since these techniques are deployed in D-NA and
D-AD scenarios, respectively. For each sampling strategy and
compression ratio, i.e., the ratio of the number of links in the
subnetwork (c) and the total number of links (n), we repeat the
experiments five times and report the mean value. The standard
deviation around the mean (of these five runs) is typically less
than .001 due to significant homogeneity of the highway traffic
network.

1) Traffic speed estimation: Table II shows the estimation
accuracy of the sampling techniques for different compression
ratios. As expected, the SVD-based sampling strategy
outshines the uniform sampling where all the columns (roads)
have the same probability of being selected. The minor
difference in performance is consequence of high homogeneity
of the test network that only contains the highway segments.
As can be seen from Table II, there is a slight reduction in
estimation performance of the D-AD mode of operations as a
consequence of reduced training subset.

2) Speed prediction: Fig. 6 shows the prediction accuracy
of traditional and compressed methods, for different
compression ratios and various prediction horizons. Table III
shows the required computation times for the compressed
and traditional methods when all experiments are run on
a 2.67 GHz MacPro server on a single core and 32GB
of random-access memory (RAM). The results indicate
that column based (CX) low-dimensional methods provide
significant reduction in computational complexity by explicitly

Prediction Horizon
5 10 15 20 25 30

P
R

D
 (

%
)

2

3

4

5

6

7

8

9

10

11

Traditional method
D-NA method CR=2
D-NA method CR=4
D-NA method CR=10
D-AD method CR=2
D-AD method CR=4
D-AD method CR=10

Fig. 6: The performance of compressed and traditional prediction methods. In
the case of compressed prediction, the roads are sampled using the SVD and
random sampling strategies which are deployed in D-NA and D-AD modes
of operations, respectively. The roads are sampled from either two months of
training data (D-NA mode) or one week of the training subset (D-AD mode).

CR 2 4 10

SVR 5.51 2.75 1.10

Extrapolation 0.0042 0.0025 0.0015

Total 5.52 2.76 1.10

Traditional method 10.99

Savings 49.77% 74.89% 89.99%

TABLE III: Computation time (in seconds) for compressed and traditional
prediction methods. Network extrapolation is performed on the server.

dealing with the traffic variable for only a small subset of
road segments in the network (see Table III). This reduction
in the computational cost comes at the expense of a negligible
increase in error (see Fig. 6). Similar to the application of
traffic estimation, the degradation in prediction accuracy of
the D-AD mode of operation is associated with the limited
training data set.

3) Travel time prediction: Table IV shows the average
accuracy of the proposed method (for different compression
ratios) and benchmark methods. As can be seen from Table IV,
the proposed method outperforms the historical and
instantaneous models and shows that taking speed predictions
into account leads to more accurate travel time estimation.

B. Computation time of the app

The performance of CX methods encourage us to explore
the option where network extrapolation is performed on the
smartphone which possesses significant computational power.
In the following, we analyze the execution time of smartphone
app for the applications of traffic speed estimation and
prediction, and travel time prediction.

CR=1 CR=2 CR=4 CR=10 Instant. Hist.

PRD (%) 2.43 2.75 2.82 3.24 4.48 6.44

TABLE IV: Performance of the proposed and benchmark methods for travel
time estimation.

Compression Ratio 2 4 10

Number of links 1,078 539 216

Size of the X matrix 11.3 Mb 8.1 MB 3.9 Mb

SDK

Galaxy 2 24,264 16,885 7,854

Galaxy 3 21,348 14,567 6,939

Nexus 5 16,861 12,047 6,240

NDK

Galaxy 2 984 612 538

Galaxy 3 937 596 479

Nexus 5 859 698 437

TABLE V: Required computation time [ms] for different programming models
and smartphones to perform extrapolation and visualization tasks in the case
of Singapore highway network (2,156 links).

Size of

the network

Compression Ratio (CR)

CR = 2 CR =4 CR = 10

5,000 3,077 33.6 Mb 1,312 16.8 Mb 795 6.4 Mb

10,000 6,321 134 Mb 2,964 67.4 Mb 957 24.1 Mb

TABLE VI: The execution time [ms] of the app for D-NA scenario required
to perform extrapolation and data visualization.

1) Traffic speed estimation: Table V shows the execution
times of different smartphone devices and Android platforms
to perform network extrapolation (for different compression
ratios) and display traffic information on the road map once
the extrapolation is performed. The reported results refer to the
highway network in Singapore and decentralized non-adaptive
(D-NA) mode of operations. From Table V it can be seen
that the NDK development platform requires significantly less
time than the commonly used SDK. Since in both scenarios
the visualization task is performed in the same manner,
the significant time savings is obtained for computational
tasks. Table V shows that newer Android models require
less computation time to perform network extrapolation as
a consequence of the increased computational resources
(see Table I). Table V also shows the size of the corresponding
extrapolation matrix that needs to be stored on the phone, as
part of traffic app. The elements of the extrapolation matrix
have type double. As can be seen from Table V memory
requirement and app execution time (in the case of the NDK
platform) are acceptable from the user point of view. As the
NDK platform clearly outshines the SDK platform, we will
only consider the NDK programming platform from now on.
Similarly, we will only consider smartphone Nexus 5 in the
rest of the paper.

In the following, we present the performance of the D-NA
mode of operations in the case of traffic networks that
contain 5,000 and 10,000 road segments (see Table VI).
Here, the server sends traffic data for the subset of the
links to the smartphone where data extrapolation is performed
with the help of the extrapolation matrix X. Table VI
shows the promising execution time of the D-NA mode of
operations, especially for higher compression ratios. However,
the memory requirement of traffic app may make it less user
friendly since the large extrapolation matrix X has to be stored
in the phone memory (see Table VI).

We now investigate decentralized adaptive (D-AD) mode
of operations. Unlike in the D-NA case, the traffic data
comes from the subset of locations which are only revealed
in real-time and will change from one time instance to

Number of links in

the network, and size

of the data matrix A

Execution time,

required to

compute / perform:

Compression ratio

(CR)

2 4 10

2,156 (12,4 Mb)
Extrapolation matrix 3,077 1,312 795

D-NA scenario 859 698 437

D-AD method 4,378 1,897 1,211

5,000 (28,2 Mb)
Extrapolation matrix 16,881 6,088 2,056

D-NA scenario 3,077 1,312 795

D-AD method 19,958 7,400 2,851

10,000 (57,6 Mb)
Extrapolation matrix 221, 489 27,443 9,552

D-NA scenario 6,321 2,964 957

D-AD method 227,810 30,407 10,509

TABLE VII: The execution time [ms] of the app for the D-AD scenario and
different networks. The total execution time includes: (i) computation of the
relationship matrix; (ii) network extrapolation; and (iii) data visualization.

another. Consequently, the pre-defined relationship matrix
can not be used here. We deploy the NDK development
platform to calculate the relationship matrix X and perform
network extrapolation in the case of three test networks. For
computation of the matrix X, we use the historical data for
the entire network, stored in the phone memory and fetched
every time when a new subset of data is received. The
stored historical data matrix encompasses one week of traffic
data (2016 time instances) since the similar traffic patterns
can be observed during the same week days [5]. Table VII
shows the execution time of the traffic app for different
sizes of the underlying traffic network. The computation
time for the extrapolation matrix accounts for a significant
portion of the total execution time, especially for the lower
compression ratios and larger traffic networks (see Table VII).
Hence, the D-AD mode of operations might be efficiently
deployed in the following cases: (i) in small and moderate
traffic networks (e.g., a few thousand links) regardless of
the compression ratio; (ii) in large traffic networks in the
case of higher compression ratios. In the case of large
traffic networks and lower compression ratios (e.g., CR=2)
the smartphone has to compute the pseudo-inverse of a
large matrix which is still an intensive task for the existing
smartphone resources (see Table VII). Table VII also provides
the memory requirements of the historical traffic data, stored
in the phone memory. The stored matrix contains the historical
speed data for one week, which are stored as integer values.

2) Speed prediction: We now explore the execution time of
the decentralized non-adaptive (D-NA) mode of operations for
the application of compressed prediction. The predictions for
c road segments and p prediction horizons are obtained from
the server in the form of matrix Ĉ ∈ Rp×c. To obtain traffic
conditions in the entire network for the kth prediction horizon
we multiply the kth row of Ĉ with the extrapolation matrix X,
stored in the phone memory. The app execution time for the
single prediction horizon is equivalent to the execution time for
the application of speed estimation which we discussed earlier
(see Tables V and VI). Naturally, execution time for p multiple
prediction horizons will be p times larger than corresponding
times given in Tables V and VI.

Similar to the application of traffic estimation, we assess
the execution time of the D-AD mode of operations as the

Number of the links along the route (L) 50 100 300 700

Execution time [ms] 690 790 857 919

TABLE VIII: Required computation time [ms] that traffic app takes to assess
the future speed for the list of links, followed by computation of travel time.

sum of two components: (i) time required to compute the
relationship matrix; (ii) time required to execute corresponding
D-NA scenario (see Table VII).

3) Travel time prediction: Table VIII shows the app
execution time for different sizes (L) of the test routes in
the Singapore highways network using the NDK development
platform and Nexus 5. The reported results refer to the D-NA
mode of operations. Similar results are obtained for other
two test networks that contain 5,000 and 10,000 links. As
can be seen from Table VIII, smartphones are capable of
performing travel time calculations, even along the routes that
contain hundreds of road segments, corresponding to several
kilometers of route length.

In case of the D-AD mode of operations, we assess
the execution time of the app as the sum of two
components: (i) time required to compute the relationship
matrix (see Table VII); (ii) time required for travel time
calculations and data visualization (see Table VIII).

VII. CONCLUSIONS

In this paper, we evaluated the computational capabilities
of the smartphones for three ITS applications: traffic speed
estimation and prediction, and travel time prediction. Based
on column based (CX) low-dimensional models, we developed
a traffic app that uses speed measurements from a small
number of locations in the network and delivers traffic
conditions for the entire network through a vector-matrix
multiplication. Furthermore, the proposed app uses generated
predicted traffic data to predict the travel time along the
particular route for given ordered list of segments on that
route. We tested the proposed app for different development
platforms, smartphone devices and different sizes of the
test network. The numerical results show that column
based (CX) matrix decomposition leads to accurate results
and has low computational complexity, enabling real-time
traffic prediction on smartphones. Results also show that
the native development kit (NDK) development platform
has considerably better performance than traditional software
development kit (SDK) in the case of complex problems.
For most of the tested scenarios, the execution time of the
NDK is acceptable even for very large networks. Hence, while
the “easily-programmable” SDK performs well for traditional
traffic applications [1], [2], [10]–[18], the more complex
operations should be coded in the NDK development platform.

We also explored the memory requirements of the app,
since either the historical data or extrapolation matrix has to
be stored in the phone memory. The numerical results show
that in most tested scenarios, the memory requirements of the
traffic app are acceptable.

The proposed decentralized modes of operations reduce
the overhead of the communication network, since only
the measurements from a subset of the links are sent
to the smartphone. More importantly, the decentralized

adaptive mode of operations has great potential in emerging
applications such as vehicle-to-vehicle communications.
However, safety and security aspects of the vehicle-to-vehicle
communications, for the suggested and other similar
applications, have to be carefully considered and ensured [34].
In future work, we will investigate an approach where the
traffic information are obtained from ad hoc probes in the
network, leading to the “server-free” mode of operations.
We will also provide a more detailed study of travel time
estimation based on predicted traffic conditions and explore
the option of performing routing on smartphones.

REFERENCES

[1] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet, T. M. T. Do,
O. Dousse, J. Eberle, and M. Miettinen, “From big smartphone data to
worldwide research: The mobile data challenge,” Pervasive and Mobile
Computing, vol. 9, no. 6, pp. 752–771, 2013.

[2] M. Fazeen, B. Gozick, R. Dantu, M. Bhukhiya, and M. C. González,
“Safe driving using mobile phones,” Intelligent Transportation Systems,
IEEE Transactions on, vol. 13, no. 3, pp. 1462–1468, 2012.

[3] C. L. Schweiger, Use and Deployment of Mobile Device Technology for
Real-time Transit Information. Transportation Research Board, 2011,
vol. 91.

[4] L. M. Bergasa, D. Almería, J. Almazan, J. J. Yebes, and R. Arroyo,
“Drivesafe: An app for alerting inattentive drivers and scoring driving
behaviors,” in Intelligent Vehicles Symposium Proceedings, 2014 IEEE.
IEEE, 2014, pp. 240–245.

[5] N. Mitrovic, M. T. Asif, U. Rasheed, J. Dauwels, and P. Jaillet, “CUR
decomposition for compression and compressed sensing of large-scale
traffic data,” in Intelligent Transportation Systems (ITSC), 2013 16th
International IEEE Conference on, oct. 2013, pp. 1475–1480.

[6] Y. Han and F. Moutarde, “Statistical traffic state analysis in large-scale
transportation networks using locality-preserving non-negative matrix
factorisation,” Intelligent Transport Systems, IET, vol. 7, no. 3, pp.
283–295, 2013.

[7] N. Mitrovic, M. Asif, J. Dauwels, and P. Jaillet, “Low-dimensional
models for compressed sensing and prediction of large-scale traffic
data,” Intelligent Transportation Systems, IEEE Transactions on, vol. PP,
no. 99, pp. 1–6, 2015.

[8] P.-E. Mazaré, O.-P. Tossavainen, A. Bayen, and D. Work, “Trade-offs
between inductive loops and gps probe vehicles for travel time
estimation: A mobile century case study,” in Transportation Research
Board 91st Annual Meeting (TRB), vol. 349, 2012.

[9] R. Rogers, J. Lombardo, Z. Mednieks, and B. Meike, Android
application development: Programming with the Google SDK. O’Reilly
Media, Inc., 2009.

[10] K. Sankaran, M. Zhu, X. F. Guo, A. L. Ananda, M. C. Chan, and
L.-S. Peh, “Using mobile phone barometer for low-power transportation
context detection,” in Proceedings of the 12th ACM Conference on
Embedded Network Sensor Systems. ACM, 2014, pp. 191–205.

[11] J. C. Herrera, D. B. Work, R. Herring, X. J. Ban, Q. Jacobson, and
A. M. Bayen, “Evaluation of traffic data obtained via gps-enabled mobile
phones: The mobile century field experiment,” Transportation Research
Part C: Emerging Technologies, vol. 18, no. 4, pp. 568–583, 2010.

[12] F. Calabrese, M. Colonna, P. Lovisolo, D. Parata, and C. Ratti,
“Real-time urban monitoring using cell phones: A case study in rome,”
Intelligent Transportation Systems, IEEE Transactions on, vol. 12, no. 1,
pp. 141–151, 2011.

[13] S. Amin, S. Andrews, S. Apte, J. Arnold, J. Ban, M. Benko, R. M.
Bayen, B. Chiou, C. Claudel, C. Claudel et al., “Mobile century using
gps mobile phones as traffic sensors: A field experiment,” 2008.

[14] J. Steenbruggen, M. T. Borzacchiello, P. Nijkamp, and H. Scholten,
“Mobile phone data from gsm networks for traffic parameter and urban
spatial pattern assessment: a review of applications and opportunities,”
GeoJournal, vol. 78, no. 2, pp. 223–243, 2013.

[15] E. J. Horvitz, J. Apacible, R. Sarin, and L. Liao, “Prediction, expectation,
and surprise: Methods, designs, and study of a deployed traffic
forecasting service,” arXiv preprint arXiv:1207.1352, 2012.

[16] J. Jariyasunant, B. Kerkez, R. Sengupta, S. Glaser, and A. Bayen,
“Mobile transit trip planning with real-time data,” 2011.

[17] S. Diewald, A. Möller, L. Roalter, and M. Kranz, “Driveassist-a
v2x-based driver assistance system for android.” in Mensch & Computer
Workshopband, 2012, pp. 373–380.

[18] K. Erhardt, “Development of a navigation solution for the android based
driver assistance system driveassist,” 2012.

[19] R. Meier, Professional Android 4 application development. John Wiley
& Sons, 2012.

[20] T. Peer and M. Wagner, “Embedding c++ code in android java
applications,” 2012.

[21] Y.-J. Kim, S.-J. Cho, K.-J. Kim, E.-H. Hwang, S.-H. Yoon, and J.-W.
Jeon, “Benchmarking java application using jni and native c application
on android,” in Control, Automation and Systems (ICCAS), 2012 12th
International Conference on. IEEE, 2012, pp. 284–288.

[22] S. Lee and J. W. Jeon, “Evaluating performance of android platform
using native c for embedded systems,” in Control Automation and
Systems (ICCAS), 2010 International Conference on. IEEE, 2010, pp.
1160–1163.

[23] P. Drineas, M. W. Mahoney, and S. Muthukrishnan, “Relative-error
cur matrix decompositions,” SIAM Journal on Matrix Analysis and
Applications, vol. 30, no. 2, pp. 844–881, 2008.

[24] K. Sung, M. G. Bell, M. Seong, and S. Park, “Shortest paths in a network
with time-dependent flow speeds,” European Journal of Operational
Research, vol. 121, no. 1, pp. 32–39, 2000.

[25] M. T. Asif, N. Mitrovic, L. Garg, J. Dauwels, and P. Jaillet,
“Low-dimensional models for missing data imputation in road
networks,” in Acoustics, Speech and Signal Processing (ICASSP), 2013
IEEE International Conference on, 2013, pp. 3527–3531.

[26] E. Acar, D. M. Dunlavy, T. G. Kolda, and M. Mørup, “Scalable
tensor factorizations for incomplete data,” Chemometrics and Intelligent
Laboratory Systems, vol. 106, no. 1, pp. 41–56, 2011.

[27] R. Mittal, A. Kansal, and R. Chandra, “Empowering developers to
estimate app energy consumption,” in Proceedings of the 18th annual
international conference on Mobile computing and networking. ACM,
2012, pp. 317–328.

[28] California Freeway Performance Measurement System,
http://pems.dot.ca.gov/, accessed 09-November-2015.

[29] M. Lippi, M. Bertini, and P. Frasconi, “Short-term traffic flow
forecasting: An experimental comparison of time-series analysis
and supervised learning,” Intelligent Transportation Systems, IEEE
Transactions on, vol. 14, no. 2, pp. 871–882, 2013.

[30] W.-C. Hong, “Traffic flow forecasting by seasonal svr with chaotic
simulated annealing algorithm,” Neurocomputing, vol. 74, no. 12, pp.
2096–2107, 2011.

[31] C. Wu, J. Ho, and D. Lee, “Travel-time prediction with support vector
regression,” Intelligent Transportation Systems, IEEE Transactions on,
vol. 5, no. 4, pp. 276–281, 2004.

[32] Y. Zhang and Y. Liu, “Traffic forecasting using least squares support
vector machines,” Transportmetrica, vol. 5, no. 3, pp. 193–213, 2009.

[33] T. Toledo and R. Beinhaker, “Evaluation of the potential benefits
of advanced traveler information systems,” Journal of Intelligent
Transportation Systems, vol. 10, no. 4, pp. 173–183, 2006.

[34] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A survey of
mobile malware in the wild,” in Proceedings of the 1st ACM workshop
on Security and privacy in smartphones and mobile devices. ACM,
2011, pp. 3–14.

Nikola Mitrovic is currently a Ph.D. student in
the School of Electrical and Electronic Engineering
at Nanyang Technological University in Singapore.
He received the Bachelor of Engineering degree
from the University of Traffic and Transportation
Engineering, Belgrade, Serbia, in 2009 and Masters
degree from the Department of Civil Engineering
at Florida Atlantic University, USA, in 2011.
His research are simulation & data-driven traffic
modeling, ITS, machine learning and transportation
planning.

Aditya Narayanan completed the Bachelor of
Technology from National Institute of Technology
Trichy India and Master of Science in Computer
control and automation from Nanyang Technological
University Singapore. He is currently working as
a Process control systems engineer at Micron
Technology in Singapore. His research interests
are control systems and optimization of large-scale
systems.

Muhammad Tayyab Asif is a research staff
member with IBM Research Collaboratory -
Singapore. Prior to that he was a Ph.D. student in
the School of Electrical and Electronic Engineering,
College of Engineering, Nanyang Technological
University, Singapore. He received the Bachelor
of Engineering degree from the University of
Engineering and Technology Lahore, Lahore,
Pakistan. He also worked with Ericsson as a
Design Engineer in the domain of mobile packet
core networks. His research interests include sensor

fusion, network optimization, and modeling of large-scale networks.

Ansar Rauf received bachelors degree in Electrical
Engineering from National University of Science
and Technology Pakistan in 2010. He completed
his Masters degree in Computer Control and
Automation from School of Electrical and Electronic
Engineering at Nanyang Technological University in
Singapore. He is currently working as a Software
Engineer in the field of Logistics Automation. His
areas of interest are software development, process
control and automation.

Justin Dauwels is an Assistant Professor with
School of Electrical & Electronic Engineering at
the Nanyang Technological University (NTU) in
Singapore. He is the Deputy Director of the
ST Engineering - NTU corporate laboratory on
autonomous systems. His research interests are
in Bayesian statistics, iterative signal processing,
and computational neuroscience. He obtained the
PhD degree in electrical engineering at the Swiss
Polytechnical Institute of Technology (ETH) in
Zurich in December 2005. He was a postdoctoral

fellow at the RIKEN Brain Science Institute (2006-2007) and a research
scientist at the Massachusetts Institute of Technology (2008-2010). He
has been a JSPS postdoctoral fellow (2007), a BAEF fellow (2008), a
Henri-Benedictus Fellow of the King Baudouin Foundation (2008), and a JSPS
invited fellow (2010,2011). His research on Intelligent Transportation Systems
(ITS) has been featured by the BBC, Straits Times, and various other media
outlets. His research on Alzheimer’s disease is featured at a 5-year exposition
at the Science Centre in Singapore. His research team has won several best
paper awards at international conferences. He has filed 5 US patents related
to data analytics.

Patrick Jaillet is the Dugald C. Jackson Professor
in the Department of Electrical Engineering and
Computer Science and a member of the Laboratory
for Information and Decision Systems at MIT.
He is also co-Director of the MIT Operations
Research Center. His research interests include
online optimization, online learning, and data-driven
optimization with applications to transportation
and to the internet economy. He is a Fellow of
INFORMS.

