
When Should you Offer an Upgrade: Online
Upgrading Mechanisms for Resource Allocation

Patrick Jaillet
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, jaillet@mit.edu

Chara Podimata
Sloan School of Management, Massachusetts Institute of Technology, podimata@mit.edu

Andrew Vakhutinsky
Oracle Lab, andrew.vakhutinsky@oracle.com

Zijie Zhou
Operations Research Center, Massachusetts Institute of Technology, Cambridge, MA, 02139, zhou98@mit.edu

In this work, we study an upgrading scheme for online resource allocation problems. We work in a sequential
setting, where at each round a request for a resource arrives and the decision-maker has to decide whether to
accept it (and thus, offer the resource) or reject it. The resources are ordered in terms of their value. If the
decision-maker decides to accept the request, they can offer an upgrade-for-a-fee to the next more valuable
resource. This fee is dynamically decided based on the currently available resources. After the upgrade-for-
a-fee option is presented to the requester, they can either accept it, get upgraded, and pay the additional
fee, or reject it and maintain their originally allocated resource.

We take the perspective of the decision-maker and wish to design upgrading mechanisms in a way that
simultaneously maximizes revenue and minimizes underutilization of resources. Both of these desiderata are
encapsulated in a notion of regret that we define, and according to which we measure our algorithms’ per-
formance. We present a fast algorithm that achieves O(logT) regret. Finally, we implemented our algorithm
utilizing data akin to those observed in the hospitality industry and estimated our upgrading mechanism
would increase the annual revenue by over 17%.

1. Introduction
In online resource allocation, we model the interplay between a supplier that allocates resources
and requesters that arrive sequentially and request resources. In general, the resources can be of
variable value both to the supplier and the requester, i.e., some are more premium than others.
The supplier is tasked with making real-time, irrevocable decisions concerning the method and
pricing of the resource to be allocated, despite lacking complete foresight into future demand. Once
allocated, the requester provides some payment to the supplier in return. Online resource allocation
models have been studied for many different settings such as airline seat allocation (Bertsimas
and De Boer 2005, Zhang and Cooper 2009) and hotel room allocation (Ivanov and Zhechev 2012,
Ivanov 2014); their impact has been tremendous both in the academic and the industry world.
An important challenge in online resource allocation occurs when a supplier does not have infor-

mation about the future realized demand from the requesters and the availability of the resources
remains constant. For example, the number of seats on an airplane or rooms in a hotel is fixed,
while demand is subject to variability. Demand can surge during certain seasons and shrink during
others, but the supplier lacks the flexibility to adjust its resource availability accordingly. As a con-
sequence, there are cases when premium resources can be underutilized. For example, according to
Travel (2020), approximately 80% of hotel rooms in the United States remain vacant. Addressing
this inefficiency calls for the development of advanced resource allocation algorithms, ensuring that
even during periods of low demand for premium resources, they are optimally utilized.
One popular idea for ensuring that premium resources do not go underutilized is to employ some

upgrading scheme. Existing models in the literature (Shumsky and Zhang 2009, Yu et al. 2015,

1

ar
X

iv
:2

40
2.

08
80

4v
1

 [
m

at
h.

O
C

]
 1

3
Fe

b
20

24

2 : Online Upgrading Mechanism

Cui et al. 2023) primarily assume that suppliers can only offer upgrades to requesters at no extra
charge. This assumption (although helpful in simplifying the mathematical modeling) diverges from
what happens in reality, where upgrades come at an extra cost. For instance, when booking a hotel
room through an online platform, it is common for a requester to encounter offers for upgrading
to a premium room at an additional fee, typically highlighted with prompts such as ”Would you
like to upgrade to a premium room for an additional $50?” This reflects the reality that upgrades
are not always complimentary, and determining the optimal pricing for such upgrades is crucial for
effective revenue management.

1.1. Our Contributions and Techniques

Model. We subscribe to the agenda of using upgrades as a way of using premium resources
properly and introduce an online upgrading mechanism for a fee. At a high level, our model
is as follows. Resources of interest (e.g., airline/railway seats, hotel rooms, ride-hailing services,
gaming equipment etc.) exhibit an ascending order in both quality and cost. The online upgrading
mechanism operates by sequentially processing resource requests. Decisions to accept or reject
these requests, along with potential upgrade plans, are made based on factors like arrival rates,
remaining availabilities, and associated costs. An upgrade plan entails offering the customer an
option to move to the next superior resource category at an additional price. Customers can either
accept the upgrade, incurring the extra cost for better resources, or continue using their initially
chosen resource at the original price. Our formal model is given in Section 2.

Upgrading Mechanism for Online Resource Allocation. Our main contribution is the devel-
opment of a mechanism that we call DynUp (stands for “Dynamic Upgrading”) for identifying when
and for how much a supplier should offer an upgrade. For ease of exposition, we first explain the
mechanism DynUp-2 and its analysis for the simpler case of 2 resource types in Section 3. We use
DynUp-2 as a building block for our general mechanism DynUp-n (presented in Section 4) which
works for n resource types. The performance of our algorithms is measured in terms of regret to
an in-hindsight optimum benchmark. Roughly, our algorithms achieve the following guarantees.

Theorem 1 (Informal). For online resource allocation with 2 resource types, DynUp-2 incurs
regret O(logT). For online resource allocation with n resource types, DynUp-n incurs regret
O(n logT).

Before we delve into the high level description of our mechanism for the 2-type resource case, we
first need to explain the benchmark we are comparing against. At first sight, it may seem tricky
to establish a reliable benchmark for the online upgrading problem since at every period we not
only have to decide whether to accept or reject a request but also decide on an upgrade price if
we do decide to accept. Importantly, this decision at a period t crucially affects the space of allow-
able decisions for future periods; this is because if we do offer an upgrade price that is ultimately
accepted, then we are taking one unit of the premium resource away from future rounds. To navi-
gate this challenge, we propose a “hybrid programming” approach which corresponds to an upper
bound of the hindsight optimal expected revenue. The “hybrid programming” interpolates between
a deterministic and a hindsight optimum counterpart, which draw intuition from approaches tra-
ditionally found in price- and quantity- based revenue management respectively. As it will become
clear moving forward, we use the “hybrid programming” in the development of algorithms DynUp-2
and DynUp-n. Detailed explanations of the hybrid programming and the benchmark for 2 and n
resource types can be found in Sections 3.1 and 4.1 respectively.
At a high level, Algorithm DynUp-2 determines the upgrading price at each time period t by

solving the aforementioned hybrid programming with the remaining availability of each resource
and remaining expected demand for each type of resource at t. Although the hybrid programming
is a non-convex optimization problem, we show that we can obtain a closed-form solution to it. To
understand the O(logT) regret of DynUp-2, we need to study how the upgrade pricing decisions
of DynUp-2 evolve over time. We distinguish between two cases. First, when the initial resource

: Online Upgrading Mechanism 3

availability exceeds the expected demand, the stochastic process of DynUp-2’s pricing decisions
forms a martingale with an expected value change of 0. Therefore, by comparing this martingale
process at each period and the optimal decision variable of “hybrid programming”, from a known
result of Jasin and Kumar (2012), we can obtain that the regret can be upper bounded by O(logT).
Second, when the resource availability falls short of expected demand, DynUp-2’s dynamic pricing
decision is not a martingale. To address this bottleneck we construct a complicated stochastic
process which can be shown to be a martingale, closely mirroring the pattern of the actual dynamic
pricing decision made by DynUp-2 so that the distance of this martingale and the dynamic pricing
decision made by DynUp-2 at each period can be upper bounded by O(1/T 2).
We then extend our findings to the scenario involving n types of resources. Algorithm DynUp-

n is implemented by incorporating Algorithm DynUp-2 between consecutive resource types, i.e.,
between type i and type i+1, for all i ∈ [n− 1]. In Section 4, we show that the online upgrading
problem with n types of resources can be fully decomposed to n− 1 “parallel” problems with 2
types of resources, leading to a regret bound of O(n logT). Practically, the number of resource
types does not increase with time T , making n a fixed parameter. So, under the assumption that n
is constant, Algorithm DynUp-n achieves a regret bound of O(logT), demonstrating its efficiency
and scalability for managing resources across various types.

Empirical Study in Hotel Management. Our empirical investigation involved a real dataset
from the hospitality industry. This dataset encompassed 13,155 requests for rooms spanning one
year. Applying Algorithm DynUp-n to this real-world data led to a significant increase in annual
revenue by 17%. Notably, in the high-demand month of November, the implementation of Algorithm
DynUp-n resulted in a revenue increase exceeding 26%.

1.2. Related Work

Price-based Revenue Management. Gallego and Van Ryzin (1994, 1997) introduced the price-
based revenue management model. This model processes requests sequentially, with the central
decision revolving around the pricing strategy. Typically, higher pricing leads to reduced demand.
The authors provided an optimal static pricing technique that achieves an O(

√
T) regret. Subse-

quently, Jasin and Kumar (2012), Jasin (2014) developed a dynamic pricing strategy that entails
solving a deterministic program for each incoming request, demonstrating that this approach results
in an O(logT) regret. Further advancing this field, Wang and Wang (2022) employed an innovative
technique to establish that the dynamic pricing method attains an O(1) regret. Additionally, there
are variations to these models, such as Aydin and Ziya (2008), which explored dynamic pricing in
the context of product bundling.
While our online upgrading process shares certain similarities with price-based revenue manage-

ment, there are two key distinctions to consider. First, from a modeling standpoint, our approach
requires a decision not just on pricing but also on whether to accept each request. This dual consid-
eration positions our model as a hybrid of quantity-based (Reiman and Wang 2008, Bumpensanti
and Wang 2020, Sun et al. 2020) and price-based models. Second, from technical standpoint, all
literature on price-based revenue management assumes a concave revenue function, leading to an
online convex optimization problem. In contrast, our model, incorporating both quantity and price
variables, is characterized by a non-concave revenue function.

Upgrading Models. The domain of upgrading models has seen various contributions. Shumsky
and Zhang (2009) proposed a dynamic model where upgrades are complimentary, allowing each
request to be upgraded only to the immediately superior resource category. McCaffrey and Wal-
czak (2016) employed dynamic programming to effectively resolve the issue of free upgrading in a
two-type resource scenario. Extending this concept, Yu et al. (2015) introduced a multi-step free
upgrading framework, permitting requests to be upgraded to any higher-tier resource without cost.
Cui et al. (2023) further expanded this model by transitioning from reactive to proactive upgrad-
ing. These studies, however, diverge significantly from our work as they are predicated on the
assumption of costless upgrading, aligning them more with quantity-based revenue management. In

4 : Online Upgrading Mechanism

contrast, Gallego and Stefanescu (2009) introduced the concept of “upsell” as a non-complimentary
upgrade in their research as an extension. They focused on static upselling strategies but did not
provide any theoretical performance guarantees for this method.

2. Model
We consider a setting where a supplier wants to allocate n distinct resources to interested indi-
viduals (aka requesters). Each resource has a different type i ∈ [n]. For each resource type i ∈ [n],
there is an associated availability ci and a cost ri. We assume that resources are ordered in terms
of their cost to the requesters and that higher costs are associated with higher value for all the
requesters, i.e., r1 < r2 < . . . < rn and the nth resource type is the most premium. On the request
side, requests arise sequentially across a discrete time horizon spanning T periods. In any given
period, at most one requester may show up, and request precisely one unit of some resource. The
request arrival rate for resource type i is known and denoted by λi, and λ0 represents the rate of
no request. We normalize the arrival rates such that

∑n

i=0 λi = 1. Consequently, the probability of
a request for resource type i within a specific period is λi, and the probability for no request is λ0.
When a request for a resource of type i emerges, the supplier is faced with the decision to either

accept or reject this request. If the request is rejected, there are no resources allocated. On the
other hand, if the request is accepted, the supplier offers an upgrade plan1: would the requester
be willing to pay an additional cost, ui ∈ [0, ri+1 − ri], in exchange for the superior type i + 1
resource2? If this plan is accepted by the requester, the supplier assigns one unit of the type i+1
resource, leading the requester to pay a combined cost of ri +ui. Conversely, a rejection results in
the allocation of the type i resource, with a corresponding cost of ri. We posit that any request
for a resource of type i has a fi(ui) likelihood of accepting the upgrade for an additional cost of
ui. The overall objective for the supplier is to maximize the revenue obtained given the resources
and their availabilities, and the designated upgrading offer mechanism. We use regret to measure
the performance of the online upgrading mechanism, where the regret is defined as the hindsight
optimal revenue E[WOPT] minus the expected cumulative revenue generated by the mechanism:

R(T) =E[WOPT −W π]

where W π denotes the revenue generated by a mechanism π.

2.1. Model Assumptions and Notations
We assume that the likelihood functions fi(·) are known both by the supplier and the requesters.
These functions are bijective, continuous, and monotone-decreasing. Further, let fi(0) = 1, captur-
ing the fact that no individual would decline a free upgrade. The inverse function of fi(·) is denoted
by pi(·) (e.g., if vi = fi(ui), then ui = pi(vi)). In other words, function pi(v) returns the upgrade
price u such that the probability that u is accepted for the upgrading from resource i to i+ 1
is fi(u). Furthermore, the functions pi(·) are also bijective, continuous, and monotone decreasing.
Since fi(0) = 1, then pi(1) = 0. The expected revenue arising from the upgrade are captured by
Ri(vi) = vipi(vi) = uifi(ui). We assume that the functions Ri(·) are bounded and quasi-concave. The
assumption of quasi-concavity aligns with common functional forms of pi(·), such as linearly and
exponentially decreasing functions, which inherently lead to quasi-concave Ri(·). We also assume
that Ri(·) has a finite maximizer, denoted by v⋆i , which lies in the interval [fi(ri+1 − ri),1].

1 If i= n or the type i+1 resource has availability less than 1, no upgrade plan will be offered.

2 If we accept the type i request, but type i resource has availability less than 1, we can only upgrade this request to
the type i+1 resource with ui = 0.

: Online Upgrading Mechanism 5

3. Algorithm for Two Types of Resources
In this section, we focus on the setting with two distinct resource types where only one of them can
be upgraded to the other. We assume that the availability of the premium resource (type 2) exceeds
its expected demand, namely c2 > λ2T . Otherwise, the problem becomes trivial as there would
be no need for upgrading. We first describe the optimal stochastic and deterministic formulations
of the online upgrading mechanism to introduce the upper bound performance for any upgrading
algorithm (Section 3.1). Second, we present our algorithm, and its regret analysis in Section 3.2.

3.1. Benchmark Revenue Upper Bound
In each period t ∈ [T], let Λ

(t)
i be the binary variable that represents whether the type i request

arrives in period t, and y
(t)
i be the binary variable that indicates whether the supplier accepts

the type i request. Let D
(t)
i represent the quantity of type i resources consumed in period t. For

example, at period t, if a type 1 request arrives and accepts the upgrading plan, then no type 1
resource is used and one unit of type 2 resource is consumed, and hence D

(t)
1 = 0 and D

(t)
2 = 1. Note

that D
(t)
i is a random variable, influenced by the upgrading cost ui. Hence, the optimal cumulative

revenue can be expressed as the following stochastic programming:

W opt = max
y1,y2,u1

∑
t∈[T]

E
[
Λ

(t)
1 y

(t)
1

(
r1D

(t)
1 +(r1 +u

(t)
1)D

(t)
2

)
+Λ

(t)
2 y

(t)
2 r2D

(t)
2

]
s.t.

∑
t∈[T]

Λ
(t)
1 y

(t)
1 D

(t)
1 ≤ c1∑

t∈[T]

(Λ
(t)
1 y

(t)
1 +Λ

(t)
2 y

(t)
2)D

(t)
2 ≤ c2, (SP)

where the expectation is taken on the randomness of the arrival process, and the constraints must
hold almost surely. In (SP), we maximize the sum of the expected revenue over all periods t∈ [T].
In each period t, if a type 1 request shows up (Λ

(t)
1 = 1) and is accepted (y

(t)
1 = 1), the expected

revenue generated is r1D
(t)
1 (the request rejects the upgrading plan) plus (r1+u

(t)
1)D

(t)
2 (the request

accepts the upgrading plan). If a type 2 request shows up (Λ
(t)
2 = 1) and is accepted (y

(t)
2 = 1), the

expected revenue generated is r2D
(t)
2 . The first constraint guarantees that the sum of the type 1

resource consumed over all periods does not exceed c1, and the second constraint ensures that the
sum of the type 2 resource consumed (type 1 request accepts the upgrading plan or type 2 request
is accepted) over all periods does not surpass c2.

Observe that SP only outlines the decision-making process under the condition that both resource
types remain available; it does not account for scenarios where either resource is exhausted. For
example, in cases where type 2 resource runs out, there is no upgrading option. Under these
circumstances, the approach mandates rejecting all type 2 requests, while accepting those from
type 1, provided there is remaining availability in type 1 resources. To solve the (SP) we can use
the following dynamic program:

Wt(c
(t)
1 , c

(t)
2) = max

y
(t)
1 ,y

(t)
2 ,u

(t)
1

E
[
Λ

(t)
1 y

(t)
1

(
r1D

(t)
1 +(r1 +u

(t)
1)D

(t)
2

)
+Λ

(t)
2 y

(t)
2 r2D

(t)
2

+Wt+1(c
(t)
1 −Λ

(t)
1 y

(t)
1 D

(t)
1 , c

(t)
2 − (Λ

(t)
1 y

(t)
1 +Λ

(t)
2 y

(t)
2)D

(t)
2)
]
.

where c
(t)
1 , c

(t)
2 are the remaining availability for type 1, 2 resource respectively at time t. However,

the curse of dimensionality presents a significant challenge to computing the exact solution of the
dynamic program. To counteract this problem, a prevalent approach in the context of price-based
revenue management is to formulate a deterministic counterpart to the stochastic program defined
in (SP) (Gallego and Van Ryzin 1994, 1997). This is achieved by substituting the upgrade price
random variable v

(t)
1 = f1(u

(t)
1) with a fixed variable v1. However, contrary to price-based revenue

6 : Online Upgrading Mechanism

management, in our problem, there also exists a quantity-based variable y
(t)
i capturing whether to

accept or reject the arriving type i request and we need to account for it. A well-known formulation
that can be treated as an upper bound of the (SP) and contains quantity-based variables is the
hindsight optimum formulation (Reiman and Wang 2008, Bumpensanti and Wang 2020), where we
define Yi as the total number of type i requests to accept, and define Λi as the aggregate number
of arrivals for each type i. Here, Λi is a binomial random variable, namely Λi ∼Bin(T,λi), and in
the hindsight formulation, one assumes that the value of Λi is known in advance.
Putting everything together, we propose a hybrid programming that integrates both the hindsight

and deterministic formulations, where Λi is the hindsight variable and v1 is the deterministic
variable. This formulation will henceforth be referred to as “hybrid programming” (HP).

wh =max
Y1,v1

Λ2r2 +Y1 ((r1 + p(v1))v1 + r1(1− v1))

s.t. Y1 ≤Λ1

Y1v1 ≤ c2 −Λ2

Y1(1− v1)≤ c1. (1)

We provide some more details about the optimization problem in (1). The objective function
captures the total revenue. Since we always accept type 2 requests when there is availability, the
revenue generated by type 2 requests is Λ2r2. For type 1 requests, we accept Y1 of them and
each request will generate an expected revenue of (r1 + p(v1))v1 (accept the upgrading plan) plus
r1(1 − v1) (reject the upgrading plan). The first constraint ensures that the number of type 1
requests accepted is no larger than the total number of type 1 arrivals. The second constraint
guarantees that the total number of upgraded type 1 requests is less than or equal to the availability
of type 2 resource minus the number of type 2 requests. The third constraint suggests that the total
number of type 1 requests who reject the upgrading plan is less than or equal to the availability of
type 1 resource. As (r1 + p(v1))v1 + r1(1− v1) is always positive, the optimization problem (1) is
equivalent to the following hybrid of hindsight and deterministic programming:

wh =max
v1

Λ2r2 +min

{
Λ1,

c2 −Λ2

v1
,

c1
1− v1

}
(R1(v1)+ r1) . (HP)

Let wh be the optimal objective value; note that wh is a random variable that depends on Λ1

and Λ2. We define W h =E[wh].
Recall that (SP) only captures the decision-process only up to the point where a resource runs

out. Consequently, W h should be regarded as an approximate upper bound for the total revenue
achievable prior to the depletion of any resources. In our framework, decision-making ends either at
the exhaustion of both resources or upon surpassing the designated time horizon, denoted as [0, T].
Accordingly, it becomes necessary to split the analysis based on the order of resource depletion,
with comprehensive elaborations provided in the following theorem.

Theorem 2. Define three sets V1, V2, V3 such that V1 =
{
v1 : Λ1 =min{Λ1,

c2−Λ2
v1

, c1
1−v1

}
}
, V2 ={

v1 :
c2−Λ2

v1
=min{Λ1,

c2−Λ2
v1

, c1
1−v1

}
}
, and V3 =

{
v1 :

c1
1−v1

=min{Λ1,
c2−Λ2

v1
, c1
1−v1

}
}
.

For v1 ∈ V1: wU1 = max
v1∈V1

Λ2r2 +Λ1 (R1(v1)+ r1)

For v1 ∈ V2: wU2 = max
v1∈V2

Λ2r2 +
c2 −Λ2

v1
R1(v1)+ r1min{Λ1, c1 + c2 −Λ2}

For v1 ∈ V3: wU3 = max
v1∈V3

Λ2r2 +
c1

1− v1
R1(v1)+ r1min{Λ1, c1 + c2 −Λ2} .

Let wU be such that:
wU =max{wU1 ,wU2 ,wU3}. (Upper-HP)

: Online Upgrading Mechanism 7

Algorithm 1: Optimal Upgrade Price

Input: time period t; remaining availability c
(t)
1 , c

(t)
2 ; arrival rate λ1, λ2.

Output: Optimal upgrade price at time t.
if c

(t)
1 + c

(t)
2 < (λ1 +λ2)(T − t+1) then

Let upgrade plan v
(t)
1 =min

{
max

{
c
(t)
2 −λ2(T−t+1)

c
(t)
1 +c

(t)
2 −λ2(T−t+1)

,0

}
,1

}
else

Let upgrade plan v
(t)
1 =max

{
min

{
v⋆1 ,

c
(t)
2

λ1(T−t+1)
− λ2

λ1

}
,1− c

(t)
1

λ1(T−t+1)

}
return min

{
max

{
p1(v

(t)
1),0

}
,1
}
.

Then, given any Λ1 and Λ2, the optimal solution to Upper-HP is the same as the one to HP.
Furthermore, WU ≥E[W opt], where WU =E[wU].

The proof of Theorem 2 can be found in Appendix EC.1. To demonstrate that Equations
(Upper-HP) and (HP) share the same optimal solution, we only need to calculate the optimal
solution in three distinct cases: when v1 is inside V1, or V2, or V3. To establish that wU is the
maximum potential revenue achievable by any online algorithm, we find that, in each case, upon
fixing the hindsight variables, Λi, the optimization problem with respect to v1 is convex. Then, by
Gallego and Van Ryzin (1994), the statement immediately follows.
Theorem 2 describes hybrid programming formulations (Upper-HP) that effectively capture the

order of resource depletion. Specifically, wU1 captures the case where no resource will run out
because the number of type 1 arrivals is not enough. wU2 captures the case where the type 2 resource
runs out first, and after that, the supplier cannot give an upgrading option to the remaining type
1 requests. In this case, the remaining type 1 requests can only generate a revenue of r1 each. wU3

describes the case where the type 1 resource first runs out, and after that, the supplier can only
give free upgrades to the remaining type 1 requests. In that case, the remaining type 1 requests
can also only generate a revenue of r1 each. Finally, Theorem 2 states that the optimal solution to
(HP) coincides with the one to (Upper-HP), namely v

(h)
1 = argmaxv1

wh = argmaxv1
wU.

Going back to our benchmark revenue E[WOPT], by Theorem 2, WU is an upper bound for
E[W opt], which implies that R(T) ≤ E[WU −W π], where the expectation is taken on the arrival
process. Henceforth, we will use E[WU −W π] as a stronger performance metric.

3.2. Algorithm Description and Regret Analysis
In this section, we introduce a fast algorithm (Algorithm DynUp-2) for the supplier to make the
decision at each time period: either accept or reject the demand, and if they accept, what the
upgrade price will be. Formally, we prove the following theorem.

Theorem 3. The regret of Algorithm DynUp-2 is bounded by O(logT).

At a high level, in Algorithm DynUp-2, we split the time horizon into two segments. The first
segment, [1, τ], starts from the beginning and extends up to the moment τ , defined as the first
instance when the type 1 resource is completely depleted, i.e., τ = inf{t : c(t)1 = 0}. The second seg-
ment, [τ,T], covers the remaining portion of the time horizon. In the first segment [1, τ], requests
are accepted on a first-come first-serve basis (i.e., demand is rejected only if there is insufficient
availability). The upgrade price is determined by Algorithm 1 in each time step t. In the second
segment [τ,T], as the type 1 resource is depleted, the problem becomes a single-leg revenue man-
agement problem: there is one type of resource serving two types of customers with revenue for the
supplier r1 and r2 respectively. In this case, the last step of DynUp-2 borrows the state-of-the-art
algorithm for single-leg revenue management from Vera and Banerjee (2021). Let WU(t1, t2) be

8 : Online Upgrading Mechanism

Algorithm 2: DynUp-2

Input: time horizon T ; initial availability c
(1)
1 , c

(1)
2 ; arrival rate λ1, λ2.

for t∈ {1,2, ..., T} do

Observe demand of type i. If i= 2, we accept the request if and only if c
(t)
2 ≥ 1.

if i= 1 and c
(t)
1 ≥ 1 then

Input t, c
(t)
1 , c

(t)
2 , λ1, and λ2 to Algorithm 1, and denote the output as u

(t)
1 .

if c
(t)
2 ≥ 1 then

Accept the request and give an upgrade plan with additional price u
(t)
1 .

else
Accept the request without an upgrade plan.

else if i= 1 and c
(t)
1 = 0 then

Accept the request and give a free upgrade if and only if(
c
(t)
2 −λ2(T − t+1)

)+

> 1
2
λ1(T − t+1)

the upper bound of the revenue between [t1, t2], and W π(t1, t2) the total revenue generated by
Algorithm DynUp-2 between [t1, t2]. From the definition of regret:

R(T) =E[WU(1, T)−W π(1, T)]

=E[WU(1, τ − 1)−W π(1, τ − 1)]+E[WU(τ,T)−W π(τ,T)] (2)

Then, we bound the two expectations in Equation (2) respectively. First, we suggest a lemma to
upper bound E[WU(1, τ − 1)−W π(1, τ − 1)] as follows:

Lemma 1. The regret of the first time segment is upper bounded as:

E[WU(1, τ − 1)−W π(1, τ − 1)]≤E
[∑

t∈[τ−1]

(
R(v

(h)
1)−R(v

(t)
1)
)]

.

The proof can be found in Appendix EC.2. Next, we study the relationship between v
(h)
1 and v

(t)
1 .

Observe that v
(t)
1 is a stochastic process, which corresponds to the optimal solution to (Upper-HP),

taking into account both the remaining availability of each resource, c
(t)
i , and the anticipated

demand for each category, λi(T − t+1), i∈ {1,2}. According to Theorem 2, the optimal solutions
for (Upper-HP) and (HP) are equivalent, and our focus shifts primarily to solving (HP). Notice
that (HP) is a non-convex optimization problem at each period t, the following lemma shows the
closed-form solutions of (HP) when t= 1.

Lemma 2. If c
(1)
1 + c

(1)
2 > (λ1 +λ2)T , we have that:

v
(1)
1 =max

{
min

{
v⋆1 ,

c
(1)
2 −λ2T

λ1T

}
,
λ1T − c

(1)
1

λ1T

}
and v

(h)
1 =max

{
min

{
v⋆1 ,

c
(1)
2 −Λ2

Λ1

}
,
Λ1 − c

(1)
1

Λ1

}
.

If c
(1)
1 + c

(1)
2 ≤ (λ1 +λ2)T , we have that:

v
(1)
1 =

c
(1)
2 −λ2T

c
(1)
1 +c

(1)
2 −λ2T

and v
(h)
1 =

c
(1)
2 −Λ2

c
(1)
1 +c

(1)
2 −Λ2

.

Before providing the full proof, we first give some intuition. In the first case where c
(t)
1 + c

(t)
2 <

(λ1+λ2)(T − t+1), the aggregate availability is less than the cumulative estimated expected future

arrivals; the left diagram in Fig. 1 shows that min

{
λ1(T − t+1),

c
(t)
2 −λ2(T−t+1)

v1
,

c
(t)
1

1−v1

}
cannot equal

λ1(T − t+1). If
c
(t)
2 −λ2(T−t+1)

v1
is the minimum, Lemma EC.1 from Appendix EC.1 implies that W h

: Online Upgrading Mechanism 9

Figure 1 Auxiliary image for the proof sketch. Left: the case where c
(t)
1 + c

(t)
2 < (λ1 +λ2)(T − t+1). Right: the

case where c
(t)
1 + c

(t)
2 ≥ (λ1 +λ2)(T − t+1)

is decreasing with respect to v1. Conversely, if
c
(t)
1

1−v1
is the minimal value, the same lemma suggests

that W h is increasing with respect to v1. Consequently, at time period t, the optimal solution to

(HP) is at the intersection of the functions
c
(t)
2 −λ2(T−t+1)

v1
and

c
(t)
1

1−v1
, yielding v

(h)
1 =

c
(t)
2 −λ2(T−t+1)

c
(t)
1 +c

(t)
2 −λ2(T−t+1)

.

For the second case where c
(t)
1 + c

(t)
2 ≥ (λ1+λ2)(T − t+1), the right diagram of Fig. 1 shows the

relationship between λ1(T − t+1),
c
(t)
2 −λ2(T−t+1)

v1
, and

c
(t)
1

1−v1
. By Lemma EC.1, the monotonicity of

W h in each function shows that the optimal solution v
(h)
1 is within

I =

{
v1 : λ1(T − t+1)=min

{
λ1(T − t+1),

c
(t)
2 −λ2(T−t+1)

v1
,

c
(t)
1

1−v1

}}
.

In this context, (HP) becomes a convex optimization problem: maxv1∈I R1(v1). R1(v1) has a unique

maximizer v⋆1 , so we set v
(t)
1 as the projection of v⋆1 to I. The formal proof follows.

Proof of Lemma 2 If c
(1)
1 + c

(1)
2 > (λ1 + λ2)T , Lemma EC.1 implies that v

(1)
1 ∈[

λ1T−c
(1)
1

λ1T
,
c
(1)
2 −λ2T

λ1T

]
. Let the unique maximizer of R1(v1) be v⋆1 . If v

⋆
1 ∈
[

λ1T−c
(1)
1

λ1T
,
c
(1)
2 −λ2T

λ1T

]
, then

v
(1)
1 = v⋆1 = argmax

v1∈
[
λ1T−c

(1)
1

λ1T
,
c
(1)
2 −λ2T

λ1T

]R1(v1).

If v⋆1 >
c
(1)
2 −λ2T

λ1T
, by Lemma EC.1, we have v

(1)
1 =

c
(1)
2 −λ2T

λ1T
. Similarly, if v⋆1 <

λ1T−c
(1)
1

λ1T
, by Lemma

EC.1, we have v
(1)
1 =

λ1T−c
(1)
1

λ1T
. By the same approach, we can also get the expression of v(h).

If c
(1)
1 + c

(1)
2 ≤ (λ1+λ2)T , by Theorem 2, we have in this case, WU =max{WU2 ,WU3}. The max

can be attained if and only if WU2 =WU3 , which implies that

c2 −λ2T

v
(1)
1

=
c1

1− v
(1)
1

.

Because the left hand side is monotone decreasing in v
(1)
1 and right hand side is monotone increasing

in v
(1)
1 , there is only one solution, which is

v
(1)
1 =

c
(1)
2 −λ2T

c
(1)
1 + c

(1)
2 −λ2T

.

By the same approach, we can also get the expression for v(h). □

10 : Online Upgrading Mechanism

Lemma 2 provides the closed form of the decision of Algorithm DynUp-2 in the first period, v
(1)
1 ,

and the optimal solution to (HP), v
(h)
1 . The following lemma shows their distance and the proof

can be found in Appendix EC.2.

Lemma 3. E[v(1)1 − v(h)] =O(1/T).

Given that the initial value of the stochastic process v
(t)
1 is close to v(h), we discuss how v

(t)
1

evolves. This requires to split the analysis into two cases based on the remaining availability and
time.

3.2.1. Case 1: c
(t)
1 + c

(t)
2 > (λ1 +λ2)(T − t+1)

In this case, by Lemma 2, we can obtain

v
(t)
1 =max

{
min

{
v⋆1 ,

c
(t)
2

λ1(T − t+1)
− λ2

λ1

}
,1− c

(t)
1

λ1(T − t+1)

}
.

We have v
(1)
1 = max

{
min

{
v⋆1 ,

c
(1)
2 −λ2T

λ1T

}
,
λ1T−c

(1)
1

λ1T

}
. If v⋆1 is in the middle of the inter-

val

[
λ1T−c

(1)
1

λ1T
,
c
(1)
2 −λ2T

λ1T

]
, then v

(1)
1 = v⋆1 . For each period t, v

(t)
1 is the projection of v⋆1 into[

1− c
(t)
1

λ1(T−t+1)
,

c
(t)
2

λ1(T−t+1)
− λ2

λ1

]
. As the value of the lower and upper bound of the interval is slightly

changing for each t, we have most likely, v⋆1 is always in this interval, and v
(t)
1 = v⋆1 = v

(1)
1 . Therefore,

in this case, we almost have zero loss.

However, if v⋆1 is outside the interval

[
λ1T−c

(1)
1

λ1T
,
c
(1)
2 −λ2T

λ1T

]
, for example, v⋆1 >

c
(1)
2 −λ2T

λ1T
, then v

(1)
1 =

c
(1)
2 −λ2T

λ1T
. Therefore, in each period t, if the upper bound moves left, we will have v

(t)
1 < v

(1)
1 , which

result in some loss. The next lemma constructs a martingale to characterize the movement of the
upper bound of the interval.

Lemma 4. Let △2(s) be the amount of type 2 resources assigned in period s. Suppose that v
(1)
1 =

c
(1)
2 −λ2T

λ1T
. Construct a stochastic process ϵUt = v

(1)
1 −

(
c
(t)
2

λ1(T−t+1)
− λ2

λ1

)
. Then, we have

ϵUt =
1

λ1

t−1∑
s=1

△2(s)−E[△2(s)]

T − s+1
,

and ϵUt is a martingale.

Proof of Lemma 4 As v
(1)
1 =

c
(1)
2 −λ2T

λ1T
, we have c

(1)
2 = λ1Tv

(1)
1 +λ2T . If t= 2, we have

c
(1)
2

λ1(T−2+1)
−

λ2
λ1

=
c
(1)
2 −△2(1)

λ1(T−1)
− λ2

λ1
. Then, we can obtain

ϵU2 =
1

λ1

(
c
(1)
2

T
− c

(1)
2 −△2(1)

T − 1

)
=

1

λ1

△2(1)T − c
(1)
2

T (T − 1)

=
1

λ1

△2(1)T − (λ1Tv
(1)
1 +λ2T))

T (T − 1)
=

1

λ1

△2(1)−E[△2(1)]

T − 1
,

where the last step is because △2(1) = 1 if and only if premium request arrives or basic request
arrives and accepted the upgrading plan. Therefore, the expectation of △2(1) is λ1v

(1)
1 +λ2.

: Online Upgrading Mechanism 11

Next, by math induction, we have

ϵUt =
1

λ1

t−1∑
s=1

△2(s)−E[△2(s)]

T − s+1
.

Because at each t expected increment E [△2(t)−E[△2(t)]] = 0, we have that ϵUt is a martingale.
□
Similarly, if v⋆1 <

c
(1)
2 −λ2T

λ1T
, then v

(1)
1 =

λ1T−c
(1)
1

λ1T
. The next lemma constructs a martingale to char-

acterize the movement of
λ1(T−t+1)−c

(t)
1

λ1(T−t+1)
, and the proof can be found in Appendix EC.2.

Lemma 5. Let △1(s) be the amount of type 1 resources assigned in period s. Suppose that v
(1)
1 =

λ1T−c
(1)
1

λ1T
. Construct a stochastic process ϵLt = v

(1)
1 − λ1(T−t+1)−c

(t)
1

λ1(T−t+1)
. Then, we have

ϵLt =
1

λ1

t−1∑
s=1

E[△1(s)−△1(s)]

T − s+1
,

and ϵLt is a martingale.

Lemmas 4 and 5 show that in this case, v
(1)
1 − v

(t)
1 is a martingale with expected increment 0.

3.2.2. Case 2: c
(t)
1 + c

(t)
2 ≤ (λ1 +λ2)(T − t+1)

In this case, Lemma 2 implies that

v
(t)
1 = 1− c

(t)
1

c
(t)
1 + c

(t)
2 −λ2(T − t+1)

.

However, different with case 1, it is easy to see that v
(1)
1 −v

(t)
1 in this case is not a martingale. The

next lemma constructs a complicated stochastic process αt which satisfies two key properties: (i)
it is a martingale with expected increment 0, (ii) the difference between αt and ϵt can be bounded
by O(1/T 2) for t∈ [1, τ].

Lemma 6. Define ϵt = v
(1)
1 −v

(t)
1 for any t∈ [T]. For any constant γ ∈ (0,1), on the time horizon

[1, γT], there exists a martingale αt and a constant ζ, such that |αt − ϵt| ≤ ζ/T 2.

Proof of Lemma 6 First, when c
(t)
1 + c

(t)
2 = (λ1 +λ2)(T − t+1), we have

1− c
(t)
1

c
(t)
1 + c

(t)
2 −λ2(T − t+1)

=
c
(t)
2

λ1(T − t+1)
− λ2

λ1

= 1− c
(t)
1

λ1(T − t+1)
.

This implies that the phase transition during the decision-making process is smooth and continuous.
By Lemmas 4 and 5, we have when c

(t)
1 + c

(t)
2 > (λ1 +λ2)(T − t+1), ϵt is a martingale. Therefore,

we only need to take αt = ϵt.

Then, we focus on the case where v
(t)
1 = 1− c

(t)
1

c
(t)
1 +c

(t)
2 −λ2(T−t+1)

. We proceed by induction. Take

α1 = 0. For t= 2,
• With probability 1−λ1 −λ2, no request arrives, and we have:

v
(1)
1 − v

(2)
1 =−

(
c
(1)
1

c
(1)
1 + c

(1)
2 −λ2T

− c
(1)
1

c
(1)
1 + c

(1)
2 −λ2T +λ2

)
=−c

(1)
1 λ2

1

(c
(1)
1 + c

(1)
2 −λ2T)(c

(1)
1 + c

(1)
2 −λ2T +λ2)

=−c
(1)
1 λ2

1

(c
(1)
1 + c

(1)
2 −λ2T)2

+O(1/T 3).

12 : Online Upgrading Mechanism

• With probability λ1(1−v
(1)
1), a type 1 request arrives and the upgrade is not accepted. Then:

v
(1)
1 − v

(2)
1 =−

(
c
(1)
1

c
(1)
1 + c

(1)
2 −λ2T

− c
(1)
1 − 1

c
(1)
1 − 1+ c

(1)
2 −λ2T +λ2

)

=− c
(1)
2 −λ2T +λ2c

(1)
1

(c
(1)
1 + c

(1)
2 −λ2T)(c

(1)
1 − 1+ c

(1)
2 −λ2T +λ2)

=−c
(1)
1

(
v
(1)
1

1− v
(1)
1

+λ2

)
1

(c
(1)
1 + c

(1)
2 −λ2T)(c

(1)
1 − 1+ c

(1)
2 −λ2T +λ2)

=−c
(1)
1

(
v
(1)
1

1− v
(1)
1

+λ2

)
1

(c
(1)
1 + c

(1)
2 −λ2T)2

+O(1/T 3),

where the third equality is because

c
(1)
2 −λ2T +λ2c

(1)
1 =

(
c
(1)
2 −λ2T

c
(1)
1

+λ2

)
c
(1)
1 = (

c
(1)
2 −λ2T

c
(1)
1 + c

(1)
2 −λ2T

c
(1)
1 + c

(1)
2 −λ2T

c
(1)
1

+λ2)c
(1)
1

=

(
v
(1)
1

1− v
(1)
1

+λ2

)
c
(1)
1 .

• With probability λ2 +λ1v
(1)
1 , a type 2 request arrives or a type 1 request arrives and accepts

the upgrading plan, we have

v
(1)
1 − v

(2)
1 =

c
(1)
1

c
(1)
1 + c

(1)
2 − 1−λ2T +λ2

− c
(1)
1

c
(1)
1 + c

(1)
2 −λ2T

= c
(1)
1 (1−λ2)

1

(c
(1)
1 + c

(1)
2 −λ2T)(c

(1)
1 + c

(1)
2 − 1−λ2T +λ2)

= c
(1)
1 (1−λ2)

1

(c
(1)
1 + c

(1)
2 −λ2T)2

+O(1/T 3).

Next, we define α2 as the value of v
(1)
1 − v

(2)
1 without the O(1/T 3) term:

α2 =

−c

(1)
1 λ2

1

(c
(1)
1 +c

(1)
2 −λ2T)2

with probability 1−λ1 −λ2

−c
(1)
1

(
v
(1)
1

1−v
(1)
1

+λ2

)
1

(c
(1)
1 +c

(1)
2 −λ2T)2

with probability λ1(1− v
(1)
1)

c
(1)
1 (1−λ2)

1

(c
(1)
1 +c

(1)
2 −λ2T)2

with probability λ2 +λ1v
(1)
1

Then, we calculate the expectation of α2:

E[α2] =
c
(1)
1

(c
(1)
1 + c

(1)
2 −λ2T)2

(
−λ2(1−λ1 −λ2)−λ1(1− v

(1)
1)+ (λ2 +λ1v

(1)
1)(1−λ2)

)
= 0.

Therefore, we define the stochastic process

αt =

−c

(t)
1 λ2

1

(c
(t)
1 +c

(t)
2 −λ2(T−t+1))2

with probability 1−λ1 −λ2

−c
(t)
1

(
v
(t)
1

1−v
(t)
1

+λ2

)
1

(c
(t)
1 +c

(t)
2 −λ2(T−t+1))2

with probability λ1(1− v
(t)
1)

c
(t)
1 (1−λ2)

1

(c
(t)
1 +c

(t)
2 −λ2(T−t+1))2

with probability λ2 +λ1v
(t)
1

: Online Upgrading Mechanism 13

By math induction, we have αt is a martingale with expectation 0. In addition, between αt and
ϵt, there is an error term of O(1

(T−t+1)3
). On time horizon [1, γT], we can use a union bound to

upper bound the gap between αt and ϵt: for any t∈ [1, γT],

|αt − ϵt|=
γT∑
t=1

O

(
1

(T − t+1)3

)
≤ ζ

T 2

for some constant ζ > 0. □
Lemma 6 shows that we can always find a martingale to approximate the gap between our

decision variable v
(t)
1 and the optimal variable v

(1)
1 for any t∈ [1, γT], where γ ∈ (0,1). Recall that

our goal is to approximate this gap for any t∈ [1, τ]. Therefore, we capture the value of the stopping
time τ by the following lemma.

Lemma 7. For any arbitrarily small constant η > 0, with probability at least 1−O(1/T),(
c
(1)
1 + c

(1)
2 −λ2T

λ1T
− η

)
T ≤ τ ≤

(
c
(1)
1 + c

(1)
2 −λ2T

λ1T
+ η

)
T

Proof of Lemma 7 Let △1(s) be the total number of type 1 resources assigned in period s, and

we have △1(s)∼Ber
(
λ1(1− v

(s)
1)
)
. Then, we have

P

(
τ ≥ (

c
(1)
1 + c

(1)
2 −λ2T

λ1T
− η)T

)
= P

(
c
(1)
1 +c

(1)
2 −λ2T

λ1T
−η)T∑

s=1

△1(s)< c
(1)
1

= P

(
c
(1)
1 +c

(1)
2 −λ2T

λ1T
−η)T∑

s=1

(
△1(s)−λ1

c
(1)
1

c
(1)
1 + c

(1)
2 −λ2T

)
< ηT

 .

By Lemma 6, we have E[△2(s)] = λ1
c
(1)
1

c
(1)
1 +c

(1)
2 −λ2T

+O(1/T 2). Therefore, by Chernoff’s inequality:

P

(
τ ≥

(
c
(1)
1 + c

(1)
2 −λ2T

λ1T
− η

)
T

)
<

1

T
.

Similarly, with a symmetric statement, we can also get

P

(
τ ≤

(
c
(1)
1 + c

(1)
2 −λ2T

λ1T
+ η

)
T

)
<

1

T
.

□
Lemma 7 shows that τ = γT for some constant γ ∈ (0,1). Therefore, by Lemma 6, the error of

the constructed martingale αt can be bounded by O(1
T2).

Combined the results from Case 1 and Case 2, we are ready to upper bound the value of

E
[∑

t∈[τ−1]

(
R(v

(h)
1)−R(v

(t)
1)
)]

.

Lemma 8.

E

 ∑
t∈[τ−1]

(
R(v

(h)
1)−R(v

(t)
1)
)=O(logT).

14 : Online Upgrading Mechanism

The proof, detailed in Appendix EC.2, utilizes the Taylor series expansion of R(v
(t)
1). The

underlying intuition draws from Lemmas 4, 5, and 6, which establish the existence of a mar-
tingale closely approximating the stochastic process v

(t)
1 . Given that R(·) is bounded, continu-

ous, and concave, Jasin and Kumar (2012), Jasin (2014) suggest that the expected difference

E
[∑

t∈[τ−1]

(
R(v

(h)
1)−R(v

(t)
1)
)]

scales logarithmically with T , denoted as O(logT).

Finally, we bound E[WU(τ,T)−W π(τ,T)] by the proposition below.

Proposition 1. The regret for the second time segment is: E[WU(τ,T)−W π(τ,T)] =O(1).

Proof of Proposition 1 In the horizon [τ,T], we only have type 2 resources. In this case, when
a type 1 request arrives, we can only upgrade them for free. Therefore, accepting a type 1, 2
request can generate a revenue of r1, r2 respectively. This turns the problem to be the classical
quantity-based single leg revenue management problem under stochastic arrival process. By Vera
and Banerjee (2021), the regret is O(1). □

Combining Lemma 8 and Proposition 1 in Equation (2), we can compute the regret.

R(T) =O(logT)+O(1) =O(logT)

4. Algorithm for Multiple Types of Resources
In this section, we focus on scenarios involving n distinct types of resources, where n is a given
parameter. Similarly to the steps in the previous section, we first describe the upper bound of the
performance of any online mechanism in Section 4.1, and subsequently, we present and analyze our
algorithm in Section 4.2.

4.1. Upper Bound on Performance of Any Online Algorithm
In Section 3.1, we introduced the hybrid programming (Upper-HP), whose optimal objective value
establishes an upper bound across all algorithms. Nevertheless, the complexity of (Upper-HP)
arises from the necessity to discuss the sequence in which resources become exhausted. Consid-
ering the presence of n distinct resource types in this context, it is impracticable to exhaustively
enumerate every potential sequence of depletion for each resource type. To address this, we define
Λ= [Λ1,Λ2, . . . ,Λn] as a vector of random variables, each representing the total number of arrivals
for each resource type. Furthermore, v = [v1, v2, . . . , vn−1] is a vector of decision variables. Given
Λi, i∈ [n], and a fixed upgrade probability vi for each type i∈ [n− 1], we let the total revenue be
W n(Λ,v). Therefore, the hybrid formulation can be articulated as:

wU =max
v

W n(Λ,v) (n-type HP)

Since wU is a random variable depending on the value of Λ, we define WU =E[wU] as the expected
hindsight total revenue. The hybrid programming formulation (n-type HP) finds the optimal fixed
upgrading probabilities for each category, with the objective of maximizing the total revenue
under Λi arrivals of type i requests. Specifically, for type n resources, which are classified as the
most superior resource, we should accept all such requests. This acceptance results in a residual
availability of (cn − Λn)

+ resources of type n, which are then exclusively allocated for poten-
tial upgrades of requesters classified under type n − 1. Given the arrival of Λn−1 requesters of
type n− 1, the optimal upgrading probability, denoted as vn−1, is computed utilizing Equation
(Upper-HP). With a little bit abuse of notation, we denote wU as wU(c1, c2,Λ1,Λ2), explicitly indi-
cating its dependence on the availability of resources and number of requesters. Consequently, the
optimal decision variable v

(h)
n−1 is determined as v

(h)
n−1 = argmaxvn−1

wU(cn−1, (cn − Λn)
+,Λn−1,0).

Subsequently, for type n − 2 requests, the remaining resources of type n − 1 are quantified as(
cn−1 − Λn−1

1−v
(h)
n−1

)+
, leading to the derivation of the optimal solution for vn−2, which is formulated

as v
(h)
n−2 = argmaxvn−2

wU(cn−2,
(
cn−1 − Λn−1

1−v
(h)
n−1

)+
,Λn−2,0). This methodology is iteratively applied

across the spectrum of types, from type n−1 to type 1. The subsequent theorem encapsulates the
derived upper bound of this analysis where the proof can be found in Appendix EC.3.

: Online Upgrading Mechanism 15

Algorithm 3: DynUp-n

Input: time horizon T ; initial availability vector c= [c
(1)
1 , c

(1)
2 , . . . , c(1)n]; arrival rate vector

λ= [λ1, λ2, . . . , λn]; optimal solution vector to a defined optimization problem:
v(h) = [v

(h)
1 , v

(h)
2 , . . . , v

(h)
n−1,0].

for i∈ {1,2, . . . , n− 1} do

Apply DynUp-2 for type i and type i+1 requests with input T , c
(1)
i ,
(
c
(1)
i+1−

λi+1T

1−v
(h)
i+1

)+
, λi,

0.

Theorem 4. The optimal solution to (n-type HP) is: v
(h)
n−1 = argmaxvn−1

wU(cn−1, (cn −
Λn)

+,Λn−1,0); and for i∈ {n−2, n−3, . . . ,1}, v(h)i = argmaxviw
U(ci,

(
ci+1− Λi+1

1−v
(h)
i+1

)+
,Λi,0). More-

over, WU is an upper bound of the total revenue among all online algorithms, where WU =E[wU].

4.2. Algorithm Description and Regret Analysis
In this section, we present Algorithm DynUp-n, designed for n resource types. By applying
Theorem 4, we can obtain the closed form of optimal solution vector to (n-type HP): v(h) =

[v
(h)
1 , v

(h)
2 , . . . , v

(h)
n−1]. Next, for each type i resource, we protect

(
c
(1)
i+1 −

λi+1T

1−v
(h)
i+1

)+
for type i − 1

requesters to upgrade. Thereafter, we implement Algorithm 1 to dynamically decide the upgrade
pricing between each adjacent pair of request types. The next theorem summarizes the result.

Theorem 5. The regret of Algorithm DynUp-n is bounded by O(n logT).

The proof can be found in Appendix EC.3. The total revenue, wU, can be decomposed into the
sum of total revenue accrued between each consecutive pair of resources. Theorem 4 shows that
the mechanism by which DynUp-n allocates protection to each category i resource for the potential
upgrade demands of category i− 1 is the same as (n-type HP). By Theorem 3, the regret between
each adjacent pair of resource types is O(logT). This leads to an overall regret of O(n logT).

5. Empirical Study for Hotel Upgrading
In this section, we present an empirical study based on real data from the hospitality industry.

Data Description. The dataset contains 13,155 upgrade offers recorded over one year. The left
histogram of Figure 2 illustrates the monthly distribution of these offers. The peak in the volume
of the offers is observed in November. Consequently, in this section, we use the data corresponding
to November as an example for a detailed examination and implementation of the proposed algo-
rithm3. The right histogram of Figure 2 describes the daily distribution of requests in November.
The dataset for each reservation request includes the following attributes:
• price: initial payment by the customer.
• from: requested room category.
• total : cost of the next higher room category.
• to: next higher room category.
• upgrade: upgrade price presented to the customer.
• decision: the customer accepts or rejects the upgrade offer.

It is important to note that room prices, even within the same category, are subject to dynamic
fluctuation. To effectively measure the relative cost of an upgrade, the dataset employs the upgrade
price proportion, calculated as upgrade proportion= upgrade/(total−price). In addition, the exist-
ing upgrading strategy does not incorporate information about the remaining capacities of each
room category. Instead, it only considers factors related to pricing and demand. Therefore, for

3 We also implement the algorithm for all days in all the months.

16 : Online Upgrading Mechanism

Figure 2 Left: Distribution of number of requests in each month in 2022. Right: Distribution of a number of
requests in each day in November 2022.

every request to room category i, the existing system provides roughly the same upgrade proportion
for upgrading to the category i+1.

Simulation Setup. The dataset encompasses three room categories with inventories of 60, 30,
and 2, respectively, within the examined booking channel. To derive functions f1(·) and f2(·)
mapping the upgrade proportion to the probability of accepting the upgrade plan for type 1 and
type 2 requests, a regression analysis is conducted. Based on data visualization, we propose a
parametric exponential decay family of functions, F , consisting of all functions of the form f(v) =

e−avb . Subsequent regression analysis identifies the functions with the minimal mean square error,
resulting in f1(v1) = e−4.4853v0.98891 and f2(v2) = e−2.33v2 , which best fit the observed data.
We assume that each request corresponds to a single-night occupancy, which confines the

decision-making process to a daily basis. Each day, we randomly generate 100 permutations of
the arrival order to represent arriving instances. The benchmark algorithm employs the upgrade
price found in the data and follows a first-come, first-served protocol, continuing until either all
requests have arrived or the inventory is full. To implement Algorithm DynUp-n, we first approx-
imate the arrival rates, denoted as λi, i ∈ [3]. We set a horizon T to simulate daily reservations
maintained by hotels and add random noise to λ, accounting for cancellation in guest attendance or
arrivals without reservations: λi ∼Unif(Λi −

√
Λi,Λi +

√
Λi)/T . Subsequently, Algorithm DynUp-n

is applied to the 100 samples and we compare its performance to the benchmark using the same
sample instances.

Results. The left diagram of Figure 3 provides a comparative evaluation of daily revenues gener-
ated during November by both the benchmark and Algorithm DynUp-n. Despite noticeable fluc-
tuations in daily demand, DynUp-n consistently outperforms the benchmark. Particularly on days
characterized by higher demand, DynUp-n achieves a significant increase in total revenue, exceeding
26%. The right panel of Figure 3 and Table 1 illustrate the monthly revenue trends throughout
the year, with improvements of over 15% highlighted in red. Over the entire period, the aggregate
revenue generated by Algorithm DynUp-n exceeded the benchmark by approximately 17%.

Table 1 Monthly Summary in 2022

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

Improvement 4.49% 7.84% 2.98% 10.61% 20.56% 16.75% 17.24% 8.55% 27.22% 15.20% 26.82% 10.79% 17.07%

: Online Upgrading Mechanism 17

Figure 3 Left: Daily total revenue of Benchmark and Algorithm DynUp-n in November 2022. Right: Monthly
total revenue of Benchmark and Algorithm DynUp-n in 2022.

6. Conclusion
In this paper, we studied upgrading mechanisms for a fee for general resource allocation problems.
Our proposed mechanism (Algorithm DynUp-n) achieves regret O(logT) against a “hybrid pro-
gramming” benchmark that we analyze. Algorithm DynUp-n stands out not only for its theoretical
regret bound but also for its performance in real-world hotel management scenarios.
There are a lot of avenues for future research. For instance, accurately estimating the functions

fi(·) presents a challenge in practical settings. This raises the question of whether effective blind
online upgrading can be implemented without prior knowledge of fi(·). Specifically, it necessitates
developing strategies for upgrade pricing to make online learning of fi(·) possible without incur-
ring significant losses during the learning phase. Additionally, exploring other factors, such as the
impact of customer loyalty on upgrading costs, is essential. Determining optimal strategies for dis-
counting upgrade fees to reward loyalty requires careful consideration. Moreover, ensuring fairness
in upgrading costs poses a significant challenge. Given that our dynamic upgrading mechanism
assigns different fees to each request, incorporating fairness constraints necessitates adjustments
to the algorithm’s structure. Addressing these questions will enhance the efficacy of the online
upgrading model and mechanism.

18 : Online Upgrading Mechanism

References
Goker Aydin and Serhan Ziya. 2008. Pricing promotional products under upselling. Manufacturing & Service

Operations Management 10, 3 (2008), 360–376.

Dimitris Bertsimas and Sanne De Boer. 2005. Simulation-based booking limits for airline revenue manage-
ment. Operations Research 53, 1 (2005), 90–106.

Pornpawee Bumpensanti and He Wang. 2020. A re-solving heuristic with uniformly bounded loss for network
revenue management. Management Science 66, 7 (2020), 2993–3009.

Zheng Cui, Daniel Zhuoyu Long, and Lijian Lu. 2023. Dynamic Resource Allocation with Proactive Upgrades:
The Value and Design of Fulfillment Flexibility. HKUST Business School Research Paper 2023-101
(2023).

Guillermo Gallego and Catalina Stefanescu. 2009. Upgrades, upsells and pricing in revenue management.
Available at SSRN 1334341 (2009).

Guillermo Gallego and Garrett Van Ryzin. 1994. Optimal dynamic pricing of inventories with stochastic
demand over finite horizons. Management science 40, 8 (1994), 999–1020.

Guillermo Gallego and Garrett Van Ryzin. 1997. A multiproduct dynamic pricing problem and its applica-
tions to network yield management. Operations research 45, 1 (1997), 24–41.

Stanislav Ivanov. 2014. Hotel revenue management: From theory to practice. Zangador.

Stanislav Ivanov and Vladimir Zhechev. 2012. Hotel revenue management–a critical literature review.
Tourism: an international interdisciplinary journal 60, 2 (2012), 175–197.

Stefanus Jasin. 2014. Reoptimization and self-adjusting price control for network revenue management.
Operations Research 62, 5 (2014), 1168–1178.

Stefanus Jasin and Sunil Kumar. 2012. A re-solving heuristic with bounded revenue loss for network revenue
management with customer choice. Mathematics of Operations Research 37, 2 (2012), 313–345.

David McCaffrey and Darius Walczak. 2016. Optimal dynamic upgrading in revenue management. Production
and Operations Management 25, 11 (2016), 1855–1865.

Martin I Reiman and Qiong Wang. 2008. An asymptotically optimal policy for a quantity-based network
revenue management problem. Mathematics of Operations Research 33, 2 (2008), 257–282.

Robert A Shumsky and Fuqiang Zhang. 2009. Dynamic capacity management with substitution. Operations
research 57, 3 (2009), 671–684.

Rui Sun, Xinshang Wang, and Zijie Zhou. 2020. Near-optimal primal-dual algorithms for quantity-based
network revenue management. arXiv preprint arXiv:2011.06327 (2020).

CNN Travel. 2020. Nearly 80% of hotel rooms in the US are empty, according to new data. https: // www.
cnn. com/ 2020/ 04/ 08/ us/ hotel-rooms-industry-coronavirus-trnd/ index. html (2020).

Alberto Vera and Siddhartha Banerjee. 2021. The bayesian prophet: A low-regret framework for online
decision making. Management Science 67, 3 (2021), 1368–1391.

Yining Wang and He Wang. 2022. Constant regret resolving heuristics for price-based revenue management.
Operations Research 70, 6 (2022), 3538–3557.

Yueshan Yu, Xin Chen, and Fuqiang Zhang. 2015. Dynamic capacity management with general upgrading.
Operations Research 63, 6 (2015), 1372–1389.

Dan Zhang and William L Cooper. 2009. Pricing substitutable flights in airline revenue management.
European Journal of Operational Research 197, 3 (2009), 848–861.

 https://www.cnn.com/2020/04/08/us/hotel-rooms-industry-coronavirus-trnd/index.html
 https://www.cnn.com/2020/04/08/us/hotel-rooms-industry-coronavirus-trnd/index.html

e-companion to : Online Upgrading Mechanism ec1

Online Appendix

EC.1. Supplemental Materials for Section 3.1
Lemma EC.1. Fix any value of Λ1,Λ2 ≥ 0, Λ2r2 +

c2−Λ2
v1

R1(v1) + r1min
{
Λ1, c1 + c2 − Λ2

}
is

a monotone decreasing function in v1 ∈ [0,1]. Λ2r2 +
c1

1−v1
R1(v1) + r1min

{
Λ1, c1 + c2 − Λ2

}
is a

monotone increasing function in v1 ∈ [0,1].

Proof of Lemma EC.1 First, to check the monotonicity of Λ2r2+
c2−Λ2

v1
R1(v1)+r1min

{
Λ1, c1+

c2 −Λ2

}
, we only need to show that R1(v1)

v1
is decreasing. This is obvious because R1(v1)

v1
= p(v1),

which is defined as a monotone decreasing function.

Second, to check the monotonicity of Λ2r2+
c1

1−v1
R1(v1)+r1min

{
Λ1, c1+ c2−Λ2

}
, we only need

to show that R1(v1)

v1
is increasing in v1. As R(·) is concave, we have (v1p(v1))

′′
< 0, which implies

that p
′′
(v1)<

−2p
′
(v1)

v1
. Then, we have

(
R(v1)

1− v1

)′

=
p(v1)+ v1(1− v1)p

′
(v1)

(1− v1)2
.

Observe that(
p(v1)+ v1(1− v1)p

′
(v1)

)′

= 2(1−v1)p
′
(v1)+p

′′
(v1)(v1−v21)< 2(1−v1)p

′
(v1)+

−2p
′
(v1)

v1
(v1−v21)< 0,

which implies that p(v1)+ v1(1− v1)p
′
(v1) is a decreasing function. Therefore,(

R(v1)

1− v1

)′

=
p(v1)+ v1(1− v1)p

′
(v1)

(1− v1)2

≥ p(1)+ 1 · (1− 1)p
′
(1)

(1− v1)2
= 0,

and we can obtain that R(v1)

1−v1
is increasing. □

EC.1.1. Proof of Theorem 2
Proof of Theorem 2 We split the proof into two parts, where in part 1, we show that the optimal

solution to Upper-HP is the same as the one to HP, and in part 2, we prove that WU ≥E[W opt].
Part 1

Let v
(h)
1 = argmaxv1

Λ2r2 +min
{
Λ1,

c2−Λ2
v1

, c1
1−v1

}(
R1(v1) + r1

)
. Then, we show that v

(h)
1 is also

the optimal solution to wU.
Define v⋆1(U1) = argmaxv1∈V1

wU1 , v⋆1(U2) = argmaxv1∈V2
wU2 , and v⋆1(U3) = argmaxv1∈V3

wU3 . By
Lemma EC.1, we have v⋆1(U2) = inf V2 and v⋆1(U3) = supV3. Then, we split the discussion into two
cases.
Case 1: V1 = ∅. In this case, as c2−Λ2

v1
is decreasing in v1 and c1

1−v1
is increasing in v1, these two

functions can have only one intersection. Due to V1 = ∅, we have inf V2 = supV3, which implies that
v⋆1(U2) = v⋆1(U3). By definition, we have wU2 =wU3 =wU.
Moreover, by Lemma EC.1, if V1 = ∅, we have v(h)1 = inf V2 = supV3 = v⋆1(U2) = v⋆1(U3). Therefore,

both wU and W h share the same optimal solution in this case.

ec2 e-companion to : Online Upgrading Mechanism

Case 2: V1 ̸= ∅. In this case, as Λ1 is a constant function, it can have only one intersection with
c2−Λ2

v1
and one intersection with c1

1−v1
. Therefore, we have v⋆1(U2) = inf V2 = supV1 and v⋆1(U3) =

supV3. This implies that

wU2 =Λ2r2 +Λ1R1(v
⋆
1(U2))+ r1min

{
Λ1, c1 + c2 −Λ2

}
,

and

wU3 =Λ2r2 +Λ1R1(v
⋆
1(U3))+ r1min

{
Λ1, c1 + c2 −Λ2

}
.

It is easy to see that

wU1 = max
v1∈V1

Λ2r2 +Λ1

(
R1(v1)+ r1

)
≥wU2 ,

and

wU1 = max
v1∈V1

Λ2r2 +Λ1

(
R1(v1)+ r1

)
≥wU3 .

Therefore, we have wU =wU1 , and its optimal solution is v⋆1(U1).

Moreover, by Lemma EC.1, if V1 ̸= ∅, we have Λ1 =min
{
Λ1,

c2−Λ2

v
(h)
1

, c1

1−v
(h)
1

}
, and this implies that

v
(h)
1 ∈ V1. Therefore, v

(h)
1 = v⋆1(U1), and both wU and W h share the same optimal solution in this

case.
Part 2
Let v

(h)
1 be the optimal solution to (HP). From part 1, v

(h)
1 is also the optimal solution to

(Upper-HP). Then, we split the proof into three cases:

Case 1: Λ1 =min
{
Λ1,

c2−Λ2

v
(h)
1

, c1

1−v
(h)
1

}
. In this case, by definition, wU =W h. In expectation, no

resource is depleted during the time horizon [0, T]. As our decision process is Markovian and the
objective is concave, by a well-known result (Gallego and Van Ryzin (1994) Theorem II), we have
wU =W h ≥W opt.

Case 2: c2−Λ2

v
(h)
1

= min
{
Λ1,

c2−Λ2

v
(h)
1

, c1

1−v
(h)
1

}
. In this case, the premium resource (type 2) will be

depleted at certain point during the time horizon [0, T]. Again, by Gallego and Van Ryzin (1994)
Theorem II, if the decision process stops when the premium resource is depleted, maxv1∈V2

Λ2r2 +
c2−Λ2

v1
(R1(v1)+r1) serves an upper bound to the optimal policy. However, for a given v1 ∈ V2, there

is c1 − c2−Λ2
v1

(1− v1) basic resource (type 1) remaining unused. Also, there is Λ1 − c2−Λ2
v1

type 1
demand units who will arrive in the remaining time horizon in expectation. Therefore, the upper
bound formulation is:

max
v1∈V2

Λ2r2 +
c2 −Λ2

v1
(R1(v1)+ r1)+ r1min

{
Λ1 −

c2 −Λ2

v1
, c1 −

c2 −Λ2

v1
(1− v1)

}
= max

v1∈V2

Λ2r2 +
c2 −Λ2

v1
R1(v1)+ r1min

{
Λ1, c1 + c2 −Λ2

}
=wU2

Because wU ≥wU2 , we have wU ≥W opt.

Case 3: c1

1−v
(h)
1

=min
{
Λ1,

c2−Λ2

v
(h)
1

, c1

1−v
(h)
1

}
. In this case, the basic resource (type 1) will be depleted

at certain point during the time horizon [0, T]. Again, by Gallego and Van Ryzin (1994) Theorem II,
if the decision process stops when the basic resource is depleted, maxv1∈V3

Λ2r2+
c1

1−v1
(R1(v1)+ r1)

serves an upper bound to the optimal policy. However, for a given v1 ∈ V3, there is c2−Λ2− c1
1−v1

v1
premium resource (type 2) remaining unused. Also, there is Λ1− c1

1−v1
type 1 demand units who will

arrive in the remaining time horizon in expectation. These type 1 demand units can be upgraded

e-companion to : Online Upgrading Mechanism ec3

to the premium resource even if the basic resource is depleted. Thus, the upper bound formulation
is:

max
v1∈V3

Λ2r2 +
c1

1− v1
(R1(v1)+ r1)+ r1min

{
Λ1 −

c1
1− v1

, c2 −Λ2 −
c1

1− v1
v1

}
= max

v1∈V3

Λ2r2 +
c1

1− v1
R1(v1)+ r1min

{
Λ1, c1 + c2 −Λ2

}
=wU3

Because wU ≥wU3 , we have wU ≥W opt. This also implies that WU ≥E[W opt]. □

EC.2. Supplementary Materials for Section 3.2
Proof of Lemma 1 Denote I1 as the time index that a type 1 customer arrives before τ .

E[WU(1, τ − 1)−W π(1, τ − 1)]

=E

[
Λ2(1, τ − 1)r2 +Λ1(1, τ − 1)

(
R1(v

(h)
1)+ r1

)
−Λ2(1, τ − 1)r2 +

∑
t∈I1

(
R(v

(t)
1)+ r1

)]

≤E

[
τ−1∑
t=1

(
R(v

(h)
1)−R(v

(t)
1)
)]

,

where the first equality is because by Wald’s equality, at stopping time τ , the remaining capacity
of type 2 resource is c

(τ)
2 ≈ λ2(T − τ +1)> 0, which implies that before τ , no resource is depleted.

Proof of Lemma 3 If both v
(1)
1 and v(h) are v⋆1 , we have v

(1)
1 − v(h) = 0. If v

(1)
1 =

c
(1)
2 −λ2T

λ1T
and

v(h) =
c
(1)
2 −Λ2

Λ1
, since Λ1 and Λ2 are independent, we have

E[v(1)1 − v(h)] =E

[
c
(1)
2 −λ2T

λ1T
− c

(1)
2 −Λ2

Λ1

]
= (c

(1)
2 −λ2T)

(
1

λ1T
−E

[
1

Λ1

])
.

As Λ1 ∼Bin(T,λ1), we have

E
[
1

Λ1

]
≈E

[
1

1+Λ1

]
.

Use the fact that E
[

1
a+X

]
=
∫ 1

0
ta−1PX(t)dt, where PX(t) is the probability generating function for

X, we can obtain

E
[

1

1+Λ1

]
=

∫ 1

0

t0PΛ1
(t)dt

=

∫ 1

0

(1−λ1 +λ1t)
Tdt

=
1− (1−λ1)

T+1

(T +1)λ1

Therefore, we have 1
λ1T

− E
[

1
Λ1

]
≈ 1

λ1T
− 1−(1−λ1)

T+1

(T+1)λ1
= O(T−2). Similarly, if v

(1)
1 =

λ1T−c
(1)
1

λ1T
and

v
(h)
1 =

Λ1−c
(1)
1

Λ1
, we can use the same method to derive that E[v(1)1 − v(h)] =O(T−2).

ec4 e-companion to : Online Upgrading Mechanism

Finally, if v
(1)
1 =

c
(1)
2 −λ2T

c
(1)
1 +c

(1)
2 −λ2T

and v
(h)
1 =

c
(1)
2 −Λ2

c
(1)
1 +c

(1)
2 −Λ2

, we have

E[v(1)1 − v(h)] =E

[
1− c

(1)
1

c
(1)
1 + c

(1)
2 −λ2T

−

(
1− c

(1)
1

c
(1)
1 + c

(1)
2 −λ2T

)]

= c
(1)
1 E

[
1

c
(1)
1 + c

(1)
2 −Λ2

− 1

c
(1)
1 + c

(1)
2 −λ2T

]
.

As Λ2 ∼ Bin(T,λ2), by Hoeffding’s inequality, with probability at least 1 − 1/T , we have Λ2 ∈
[λ2T −

√
T logT,λ2T +

√
T logT]. Therefore, we have

E

[
1

c
(1)
1 + c

(1)
2 −Λ2

− 1

c
(1)
1 + c

(1)
2 −λ2T

]
= (1− 1

T
)O(T− 3

2 logT)+
1

T
=O(

1

T
).

Proof of Lemma 5 As v
(1)
1 =

λ1T−c
(1)
1

λ1T
, we have c

(1)
1 = λ1T (1 − v

(1)
1). If t = 2, we have

λ1(T−2+1)−c
(2)
1

λ1(T−2+1)
= 1− c

(1)
1 −△1(1)

λ1(T−1)
. Then, we can obtain

ϵL2 =
1

λ1

(
c
(1)
1 −△1(1)

T − 1
− c

(1)
1

T

)
=

1

λ1

λ1T (1− v
(1)
1)−△1(1)T

T (T − 1)

=
1

λ1

E[△1(1)]−△1(1)

T − 1
,

where the last step is because △1(1) = 1 if and only if basic request arrives and rejected the
upgrading plan. Therefore, the expectation of △1(1) is λ1(1− v

(1)
1).

Next, by math induction, we have

ϵLt =
1

λ1

t−1∑
s=1

E[△1(s)]−△1(s)

T − s+1
.

Because each time the expected increment E [E[△1(t)]−△1(t)] = 0, we immediately have ϵLt is a
martingale. □
Proof of Lemma 8 Take ζ = 1

T3 , and we perturb the term R(v
(h)
1) by ζ units to make R differ-

entiable at v
(h)
1 −ζ. In Lemma 3, we upper bound the expected difference of β = v

(h)
1 −v

(1)
1 by O(1

T
).

Moreover, in Lemma 6, we defined a martingale αt which approximately captures ϵt = v
(1)
1 − v

(t)
1 ,

and |αt − ϵt|=O(1
T2). By Taylor’s expansion, we have

τ−1∑
t=1

R(v
(t)
1)≥ (τ − 1)R(v

(h)
1 − ζ)+R′(v

(h)
1 − ζ)

τ−1∑
t=2

(β+ ϵt − ζ)+
1

2
R′′(v

(h)
1 − ζ)

τ−1∑
t=2

(β+ ϵt − ζ)2

+
τ−1∑
t=1

(R(v
(t)
1)−E[R(v

(t)
1)|Ft]).

Observe that
∑t

s=1(R(v
(s)
1)−E[R(v

(s)
1)|Fs]) is a martingale. By stopping time theorem, we have

E

[
τ−1∑
t=1

(R(v
(t)
1)−E[R(v

(t)
1)|Ft])

]
= 0.

e-companion to : Online Upgrading Mechanism ec5

By continuity of R, we have

E
[
(τ − 1)R(v

(h)
1)− (τ − 1)R(v

(h)
1 − ζ)

]
=O(

1

T 2
).

As ϵt is close to a martingale αt, and |αt− ϵt|=O(1
T2), we have E[

∑τ−1

t=2 ϵt] =O(1
T
) and by Lemma

3, E[β] =O(1
T
), we can obtain

−E

[
R′(v

(h)
1 − ζ)

τ−1∑
t=2

(β+ ϵt − ζ)

]
=O(1).

Finally, we also have

−E[
1

2
R′′(v

(h)
1 − ζ)

τ−1∑
t=2

(β+ ϵt − ζ)2]≤O(1)+
1

2
R′′(v

(h)
1 − ζ)E

[
τ−1∑
t=2

(ϵt)
2

]

=O(1)+
1

2
R′′(v

(h)
1 − ζ)E[

τ−1∑
t=2

∑
1≤s,v≤t

1

(T − s)(T − v)
ϵsϵv]

=O(1)+
1

2
R′′(v

(h)
1 − ζ)E[

τ−1∑
t=2

t−1∑
s=1

1

(T − s)2
(ϵs)

2]

=O(logT).

□

EC.3. Supplementary Materials for Section 4
Proof of Theorem 4 Firstly, the social cost of type i+1 dominates the maximum upgrade social

cost of type i, namely ri+1 ≥ ri + ui, we can decompose the hindsight formulation with multiple
types to n hindsight formulation with 1 type of demand and 2 types of resources. Therefore, by
Theorem 2, the hybrid programming WU serves as an upper bound.

Secondly, to show the closed form solution of (n-type HP), let us focus initially on type n
requests. As there are Λn such requests and considering that rn > rn−1 > . . . > r1, the optimal
approach entails accepting min{Λn, cn} type n requests. This results in a surplus of (cn − Λn)

+

units of type n resources. These remaining resources are exclusively allocated for fulfilling upgraded
type n−1 demands. Given that each type n−1 demand utilizes either a unit of type n−1 or type
n resource, and in both cases, the total revenue surpasses that of other resources, it is necessary to
accommodate as many type n− 1 demands as feasible. Thus, by Theorem 2, the optimal upgrade
probability of type n− 1 demands is v

(h)
n−1 = argmaxvn−1

WU(cn−1, (cn −Λn)
+,Λn−1,0).

Next, by setting the upgrade probability of type n−1 demand as v
(h)
n−1, the surplus of type n−1

resources is

(
cn−1 − Λn−1

1−v
(h)
n−1

)+

, and by similar reasoning, the optimal upgrade probability of type

n− 2 demand is v
(h)
n−2 = argmaxvn−2

wU(cn−2,

(
cn−1 − Λn−1

1−v
(h)
n−1

)+

,Λn−2,0). By math induction, we

have for i∈ {n− 3, n− 4, . . . ,1}, v(h)i = argmaxvi
wU(ci,

(
ci+1 − Λi+1

1−v
(h)
i+1

)+

,Λi,0). □

Proof of Theorem 5 Recall that in Theorem 2, we have defined the upper bound of total revenue
WU, which directly depends on c1, c2, Λ1, and Λ2. In addition, it maximizes over all possible v1.
Therefore, in this proof, we denote the total revenue of the deterministic programming of two types
of resource as wU(c1, c2,Λ1,Λ2;v

(h)
1). That is, if Λ1 =min{Λ1,

c2−Λ2

v
(h)
1

, c1

1−v
(h)
1

},

wU(c1, c2,Λ1,Λ2;v
(h)
1) = Λ2r2 +Λ1T

(
R1(v

(h)
1)+ r1

)
,

ec6 e-companion to : Online Upgrading Mechanism

if c2−Λ2

v
(h)
1

=min{Λ1,
c2−Λ2

v
(h)
1

, c1

1−v
(h)
1

},

wU(c1, c2,Λ1,Λ2;v
(h)
1) = Λ2r2 +

c2 −Λ2

v
(h)
1

R1(v
(h)
1)+ r1min

{
Λ1, c1 + c2 −Λ2

}
,

if c1

1−v
(h)
1

=min{Λ1,
c2−Λ2

v
(h)
1

, c1

1−v
(h)
1

},

wU(c1, c2,Λ1,Λ2;v
(h)
1) = Λ2r2 +

c1

1− v
(h)
1

R1(v
(h)
1)+ r1min

{
Λ1, c1 + c2 −Λ2

}
.

Let v(h) = [v
(h)
1 , v

(h)
2 , . . . , v

(h)
n−1,0], where each v

(h)
i is defined in Theorem 4, we have the total

revenue of (n-type HP) is

wU =wU(c
(1)
n−1, c

(1)
n ,Λn−1,Λn;v

(h)
n−1)+

n−2∑
i=1

wU(c
(1)
i ,

(
c
(1)
i+1 −

Λi+1

1− v
(h)
i+1

)+

,Λi,0;v
(h)
i),

where we input

(
c
(1)
i+1 −

Λi+1

1−v
(h)
i+1

)+

is because if we take v
(h)
i+1 as the static upgrade probability, there

will be
Λi+1

1−v
(h)
i+1

type i+1 demand units not upgraded.

Define W π
i as the expected total revenue generated by Algorithm 3 on type i requests. By

Theorem 3, we have,

E
[
wU(c

(1)
n−1, c

(1)
n ,Λn−1,Λn;v

(h)
n−1)−wπ

n−1 −wπ
n

]
=O(logT),

and for any i∈ [n− 2],

E

wU(c
(1)
i ,

(
c
(1)
i+1 −

Λi+1

1− v
(h)
i+1

)+

,Λi,0;v
(h)
i)−W π

i

=O(logT).

Therefore, we can obtain

E
[
wU −W π

]
=E

[
wU(c

(1)
n−1, c

(1)
n ,Λn−1,Λn;v

(h)
n−1)−W π

n−1 −W π
n

]
+

n−2∑
i=1

E

wU(c
(1)
i ,

(
c
(1)
i+1 −

Λi+1

1− v
(h)
i+1

)+

,Λi,0;v
(h)
i)−W π

i

= (n− 1)O(logT) =O(n logT).

□

	Introduction
	Our Contributions and Techniques
	Related Work
	Model
	Model Assumptions and Notations

	Algorithm for Two Types of Resources
	Benchmark Revenue Upper Bound
	Algorithm Description and Regret Analysis
	Case 1: c1(t)+c2(t) > (1+2)(T-t+1)
	Case 2: c1(t)+c2(t) (1+2)(T-t+1)

	Algorithm for Multiple Types of Resources
	Upper Bound on Performance of Any Online Algorithm
	Algorithm Description and Regret Analysis

	Empirical Study for Hotel Upgrading
	Conclusion
	Supplemental Materials for Section 3.1
	Proof of Theorem 2
	Supplementary Materials for Section 3.2
	Supplementary Materials for Section 4

