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Abstract

We study a planner’s provision of information to manage workplace occupancy when
strategic workers (agents) face risk of infectious disease transmission. The planner
implements an information mechanism to signal information about the underlying risk
of infection at the workplace. Agents update their belief over the risk parameter using
this information and choose to work in-person or remotely. We address the design of
the optimal signaling mechanism that best aligns the workplace occupancy with the
planner’s preference (i.e., maintaining safe capacity limits and operational efficiency at
workplace).
For various forms of planner preferences, we show numerical and analytical proof that
interval-based information mechanisms are optimal. These mechanisms partition the
continuous domain of the risk parameter into disjoint intervals and provision informa-
tion based on interval-specific probability distributions over a finite set of signals. When
the planner seeks to achieve an occupancy that lies in one of finitely many pre-specified
ranges independent of the underlying risk, we provide an optimal mechanism that uses
at most two intervals. On the other hand, when the preference on the occupancy is
risk-dependent, we show that an approximately optimal interval-based mechanism can
be computed efficiently. We bound the approximation loss for preferences that are
expressed through a Lipschitz continuous function of both occupancy and risk param-
eter. We provide examples that demonstrate the improvement of proposed signaling
mechanisms relative to the common benchmarks in information provision.
Our findings suggest that information provision over the risk of disease transmission is
an effective intervention for maintaining desirable occupancy levels at the workplace.
Considering various preferences of the planner, our results provide the optimal sig-
naling mechanisms for a heterogeneous workforce facing practically-driven, continuous
distributions of underlying risk.

1 Introduction

1.1 Motivation and Focus

The COVID-19 pandemic has generated considerable interest in the design of strategies that
allow for in-person activities while controlling the risk of disease spread (Nowzari et al. (2016),
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Drakopoulos et al. (2014)). Although pharmaceutical tools (i.e. vaccines and medicines) are
critical for reducing the impact of diseases on public health, they often need to be supple-
mented by other interventions. These interventions include clinical education by experts, the
use of peer influencers, or informational directives from community leaders (Adeagbo et al.
(2022)). Such interventions become especially important after the disease becomes endemic
because pharmaceuticals may lose their efficacy with time (as the genetic diversity of the
disease increases) and variant-adapted pharmaceuticals might be too costly for widespread
deployment (Moore (2021)).
A “planner”— an entity who seeks to achieve a desired tradeoff between the value from in-
person activities and the expected cost from the resulting disease spread—has access to two
broad classes of non-pharmaceutical interventions: hard and soft. Hard interventions are
meant to control the disease spread via enforcable restrictions such as lockdowns, capacity
limits, or mask mandates. When vaccines are not available or not widely accessible, such
measures can be effective in flattening the contagion growth. However, relying on hard
interventions in the long-term is both economically and socially costly (Birge et al. (2020)).
On the other hand, soft interventions aim to influence agents in a susceptible population
to take actions that reduce their risk of infection – these measures include promoting self-
testing (and guidance for home isolation upon positive test) and providing information to
help agents schedule their in-person activities (Ely et al. (2021), Hernandez-Chanto et al.
(2021)). Recent empirical studies have shown that public information disclosure about the
risk of infection from community transmission (i.e., when the source of transmission for agents
is not traceable) can be an effective tool for shaping the agents’ activity choices (Bursztyn
et al. (2020), Simonov et al. (2020), Allcott et al. (2020)).
In this paper, we address the following question: How should a planner disclose informa-
tion over the risk of infection from community transmission in order to align the aggre-
gate outcome of workers’ choices about in-person activity with the planner’s own prefer-
ences? We contribute to the related literature on this topic by developing approaches to
Bayesian information design that account for broad range of planner preferences over the
aggregate outcomes of a strategic, heterogeneous agent population in the face of a stochas-
tic, continuously-valued risk parameter. Our results provide new insights on which classes
of planner preferences have optimal information disclosure rules that necessarily exhibit a
“monotone partitional structure”. We also develop a linear programming formulation that
provides approximately optimal and practically implementable designs for realistic planner
preferences that cannot be directly captured by stylized models (de Véricourt et al. (2021),
Hu and Zhou (2022)).

1.2 Our setting and main contributions

We focus on a hybrid work setting. In our setting, a strategic planner provisions informa-
tion to a population (workforce) of risk-neutral, heterogeneous, non-atomic agents of unit
total mass. Both the planner and the agent population face the same uncertainty about the
stochastic risk of infection from community transmission. We consider that this risk can
be measured by a parameter (state) that is a continuous random variable with a bounded
domain, with larger values of the state corresponding to a higher risk of community trans-
mission. Each agent in the population derives value from in-person work rather than working
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remotely, but faces a stochastic cost associated with being infected at the workplace. This
cost increases with the mass of agents at the workplace and realized value of state because
of the increased frequency of close contacts and the increased risk of disease transmission
per close contact, respectively.
Intuitively, under no information about the state beyond its prior distribution, agents’ choices
can lead to an outcome that overcrowds the workplace (resp. depletes in-person work) even
when the true parameter is large (resp. small). Similarly, revealing full information about
the true parameter can lead to agents with a high value of in-person work infecting other such
agents via contact or social interactions at the workplace. More generally, under imperfect
information, agents choosing in-person work must have their benefit exceed a threshold
value that is increasing in the expected value of state. This motivates the basic idea behind
information design – a planner may be able to induce desirable outcomes in comparison to
no- and full-information benchmarks by designing a signaling mechanism that shapes the
agents’ belief about the state.
In general, the planner’s signaling mechanism comprises of a set of signals (e.g., public
health advisory, reporting of case counts, highlighting findings of latest research) and a
distribution of these signals (e.g., choosing reporting service or recommendation strategy)
for each possible value of the state (Bursztyn et al. (2020), Allcott et al. (2020)). The planner
uses this mechanism to signal the agents about the value of state. Agents use this signal
and public knowledge of the mechanism to update their public belief about the true risk and
make strategic choices on where to work (in-person or remote). If the resulting equilibrium
outcome in the absence of signaling matches with the planner’s preference for all values of
state, information design is unnecessary. However, in most practical settings, the planner
can achieve a more desirable outcome by choosing an appropriate signaling mechanism.
We consider that the planner’s preference is captured by a utility function over equilibrium
size of in-person (or remote) population and the true state. Fundamentally, this function
allows the planner to tradeoff between gain from in-person work and the cost of infections
from community transmission. A number of factors contribute to this tradeoff: productivity
levels of in-person/remote agents, costs of maintaining the workspace, agents’ willingness
to adhere to public health guidelines (e.g., masking when sharing workspace with others)
and the expected cost due to ill health and unavailability of infected agents (Vecherin
et al. (2022),Parker et al. (2020)). In this paper, we assume that the planner’s preference
is given and focus on the design of an optimal signaling mechanism that maximizes her
expected utility in equilibrium, subject to agents’ public uncertainty about the true state
and randomness in their posterior mean belief induced by the signaling mechanism.
We now highlight the types of preferences that can be addressed by our approaches to design
optimal signaling mechanisms. First, the planner may seek to maintain the size distribution
of agents across in-person and remote work in a certain set that may or may not vary with
the state. We consider a state-independent set-based preference where the planner specifies
a single range for the size distribution of agents that is fixed across all values of the state
(Sec. 3). More generally, we allow the planners utility to be a jointly Lipschitz function of
the in-person equilibrium mass and the true state (Sec. 4). Utilities of this form are general
enough to cover a broad range of planner preference in practice.
By considering a continuous (and bounded) state, we extend the work of de Véricourt et al.
(2021). We believe that information provision for managing strategic agents in settings such
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as ours should be based on a continuous-valued state for at least two reasons. First of
all, for a new disease, it may be argued that both planner and agents use beliefs over the
infectiousness (hence risk from transmission) that are supported over multiple values, rather
than a binary state. Secondly, as public health teams and academic research on predictive
models of risk indicators becomes more advanced, it might be prudent to rely on ensemble
forecasts that utilize multiple models (as opposed to stand-alone models) (Cramer et al.
(2022)). The uncertainty resulting from such probabilistic forecasting tools can be better
captured by a continuous state distribution.
By studying the structure of information design for both state-independent and state-
dependent preferences, we shed light on whether or not the optimal signaling mechanism
admits a monotone partitional structure (MPS). Such a mechanism is particularly relevant
to settings with continuous-valued state, since such mechanisms partition the state domain
into contiguous intervals and maps each interval to a single interval-specific signal. It is
then sufficient to disclose the signal corresponding to the interval that has the true state;
and hence the set of signals is a strictly ordered set. In Sec. 3, Theorem 1, we show that
optimal signaling mechanism for state-independent set-based preference of the planner (i.e.,
when her utility is an indicator function of whether the equilibrium outcome lies within a
fixed range) admits a MPS, except when agent’s prior belief on the state is not too tightly
concentrated to be affected by signaling. We also obtain closed-form expressions of optimal
mechanism for this setting and show performance improvement relative to no-information
and full disclosure benchmarks.
In contrast, we find that optimal signaling mechanisms for state-dependent preferences do not
admit a MPS in general. Without a guarantee of MPS, the structure of the exactly optimal
signalling mechanism may be arbitrary and difficult to characterize in closed-form. Instead,
we seek methods that can provide an “approximately” optimal solution whose suboptimality
can become arbitrarily close to zero. Our method discretizes both the prior distribution on
the state and the utility function. By using a linear programming formulation, we obtain the
optimal solution to the discretized problem and show that with sufficient discretization the
computed solution can achieve a value arbitrarily close to the optimal signalling mechanism
(Theorem 2). We do this by bounding the quality of approximate solution in terms of
the Lipschitz constants of the planner’s utility function. We present a numerical study
to demonstrate fast convergence of the approximation error as the level of discretization
becomes finer. Finally, we show that our computational approach is flexible enough to
recover the optimal design for binary valued state given by de Véricourt et al. (2021) and
provide near-optimal designs for other types of realistic utility functions that cannot be
readily handled using earlier approaches (Sec. 5 and B.8).

1.3 Related Work

Our work is related to broader area of information design in the economics community,
starting from similar work of Kamenica and Gentzkow (2011) and well-surveyed in Can-
dogan (2020), Bergemann and Morris (2019), Kamenica (2019). In recent years, there has
been a considerable interest in identifying information design problems for which an opti-
mal signaling mechanism exhibits MPS and also settings in which such a structure is not
retained (Dworczak and Martini (2019), Guo and Shmaya (2019), Candogan and Strack
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(2021), Ivanov (2015), Candogan and Wu (2023)). Fundamentally, the set of distributions
over posterior means that can be induced by a signaling mechanism exhibits an interest-
ing property: the extreme points of this set correspond to all possible interval-based signal
mechanisms (Kleiner et al. (2021)). Naturally, mechanisms satisfying MPS also have this
extremal nature. For the case of state-independent set-based preference we obtain tight con-
ditions for the optimal signaling mechanism to admit MPS. Here we leverage the equivalence
between signaling mechanisms over continuous state and mean-preserving contractions of the
parameter’s prior distribution (Gentzkow and Kamenica (2016)). Using our computational
approach, we can address a variety of general state-dependent preferences which are hard to
tackle analytically, and demonstrate that while retaining the interval-based structure one can
compute approximately optimal signaling mechanisms with time complexity polynomial in
reciprocal of error. In this sense, our work is the first one to establish the practical relevance
of signaling mechanisms with interval-based structure to a fairly generic class of planner
preferences.
Another line of related work pertains to the recent work on the design of soft interventions
to mitigate disease spread. Examples include: optimal design of rotation schemes of safe
in-person work (Ely et al. (2021)); identifying conditions when fully information disclosure
by the planner maximizes expected social welfare (Hernandez-Chanto et al. (2021)); and
optimal disclosure strategy for maximizing welfare in a healthcare congestion game (Hu and
Zhou (2022)). All these works choose specific utility functions to model planner preferences.
As mentioned before, our work addresses these limitations and also considers continuous-
valued state (as opposed to simplistic treatment of binary-valued state in de Véricourt et al.
(2021)). The results we present significantly extend the work of Shah et al. (2022) which
considers optimal design over continuous-valued state relevant to occupancy management
under risk of disease transmission. While they demonstrate an optimal signalling mechanism
for a simpler state-independent preference, we fully characterize optimal MPS mechanisms
for a more general setting. We also extend their results by introducing a computational
approach to design signaling mechanisms with asymptotically diminishing approximation
loss for state-dependent planner preferences under continuous-valued state.

2 Model and Problem Formulation

2.1 Agents and Information Environment

We consider a population of non-atomic, risk-neutral, Bayesian-rational agents (workers).
For convenience, assume that the total mass of the population is unity. Each agent faces
a choice to either work in-person at a common workplace (ℓS) or remotely (ℓR). The total
mass of agents who choose to work remotely is denoted as y ∈ [0, 1]; the mass of agents at
the workplace is then (1− y). Agents choosing ℓS each receive a privately-known value from
in-person work but also incur an uncertain cost from being infected at the workplace and
possibly facing symptoms of the disease. We describe both these quantities next.
In our model, any agent’s value from in-person work, denoted v, is random and follows
a (publicly-known) distribution G over R+. This value includes the agent’s personal gain
from working in-person, which can be due to benefits of a shared environment (e.g., work
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efficiency and collaboration with co-workers) net the cost of travel to the workplace. The
quantile function associated with G is given by G−1(u) := sup{t : G(t) ≤ u}. For any
u ∈ [0, 1], G−1(u) is the threshold below which a randomly drawn value of in-person work
would fall below with probability u.
The uncertain cost form being infected and/or symptomatic depends on two quantities: (i)
an unknown risk parameter (or state), denoted by θ∗, which captures both the uncertainty
from being infected via community transmission and the disutility from being symptomatic;
and (ii) the mass of agents at the workplace (1 − y), which determines the likelihood of
contact between the susceptible and infected agents.
Importantly, we treat θ∗ as a continuous random variable with a common prior distribution
F defined on the interval Θ := [0,M ]. One can interpret M as the worst-case risk that agents
face based on the prior knowledge about the transmissivity and severity of the disease. The
prior distribution F over Θ then reflects the population’s overall uncertainty of the risk as
estimated by the epidemiological models developed by researchers and public health agencies.
For notational ease, we express our subsequent modeling choices using the mass of agents
choosing remote work y rather than in-person mass 1 − y. For any y and θ∗, the utility of
any agent with value v from choosing to work in-person is:

uv(ℓS, y; θ
∗) = v − β(y; θ∗), (1)

where β(y; θ∗) denotes the expected cost incurred by the agent from being infected by the
disease and facing its symptoms. Here, the subscript v can be regarded as “type” of the
agent. For simplicity, agents who choose to work remotely neither face the cost of infection
nor receive the benefit of in-person work; hence uv(ℓR, y; θ

∗) = 0 for any θ∗ and any y.
Motivated by a simple epidemiological model of community transmission (see Appendix B.5),
we assume that this cost is linear in the true state θ∗ and decreasing in the mass of agents
choosing remote work y, and can be expressed as:

β(y; θ∗) := θ∗c1(y) + c2(y), (2)

where c1, c2 : [0, 1] → R are publicly known functions with following properties: (i) c1(1) =
c2(1) = 0; (ii) c1 is strictly decreasing, continuous and bounded above by a constant C; and
(iii) c2 is weakly decreasing and continuous.
The planner is a strategic entity who can implement a signaling mechanism to publicly
provision information about the true state θ∗ to all agents of the population. The provision
of information occurs as follows. First, the planner commits to and discloses a mechanism
π = ⟨I, {zθ}θ∈Θ⟩ where I is the set of signals and {zθ}θ∈Θ is a set of probability distributions
with each zθ denoting a distribution over the set I. Next, the true state θ∗ is realized from the
distribution F unbeknownst to the agents and the planner, and the corresponding probability
distribution zθ∗ is used to disclose a signal to all the agents; that is, i ∈ I is publicly signaled
with probability zθ∗(i). Finally, agents use the received signal to symmetrically update their
belief over θ∗ and make simultaneous choices to either work in-person (ℓS) or remotely (ℓR).
Specifically, on receiving signal i′ ∈ I, the agents update their belief over θ∗ according to
Bayes’ rule:

Fi′(t) = P[θ∗ ≤ t|i = i′] =

∫ t

0
zθ(i

′)dF (θ)∫M

0
zθ(i′)dF (θ)

, (3)
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where Fi′ is the posterior distribution corresponding to the signal i′. For a signaling mech-
anism π and each signal i ∈ I, one can obtain the probability with which the signal is
generated qi and the corresponding posterior mean of the state µi as follows:

qi :=

∫ M

0

zθ(i)dF (θ) [signal probability] (4)

µi :=

∫M

0
θzθ(i)dF (θ)∫M

0
zθ(i)dF (θ)

[posterior mean] (5)

Since agents are risk-neutral, they only account for the posterior mean (and do not consider
higher-order statistics) in choosing their strategies. Hence, it is often convenient to consider
direct mechanisms where the planner performs the Bayesian update and shares the updated
posterior mean corresponding to the realized signal with all agents. The direct mechanism
corresponding to π is denoted as Tπ = {(qi, µi)}i∈I .

2.2 Equilibrium characterization

We adopt the concept of Bayes-Nash equilibrium to determine the outcome of agents’ strate-
gic choices under the information provided by a signaling mechanism π (or its direct coun-
terpart Tπ). In particular, for a mechanism π and realized signal i ∈ I, we are interested
in characterizing the equilibrium mass of remote agents y∗π(i), resulting from all the agents
simultaneously making their choices under the posterior belief Fi over the state θ∗. The
following result shows that y∗π(i) can be simply expressed a function of the posterior mean
µi.

Proposition 1. For any signal i ∈ I realized by mechanism π, the equilibrium mass of
remote agents is given by:

y∗π(i) = m(µi) := inf{u ≥ 0 : G−1(u) ≥ c1(u)µi + c2(u)},

where µi is the posterior mean for signal i. Furthermore, at equilibrium, agents with private
value of in-person work v choose ℓS if v > m(µi), and choose ℓR otherwise.

Intuitively, at equilibrium, the remote agent mass in response to the posterior mean m(µi)
can be obtained by decreasing the mass of remote agents u until the benefit from in-person
work given by the (monotone) quantile function G−1(u) no longer exceeds the expected cost
from being infected µic1(u) + c2(u).
The benefit that the marginal agent derives from in-person work can be viewed as the “critical
type” v∗(i) := G−1(y∗π(i)). Agents will work in-person if and only if their benefit exceeds
v∗(i). This threshold-based equilibrium characterization plays a crucial role in our design
of signaling mechanism because — to influence the mass of remote workers — the signaling
mechanism equivalently needs to shape the posterior mean that is evaluated by m(·).
Moreover, we establish that as the posterior mean µi of the true state θ

∗ increases, the mass
of agents choosing in-person work weakly decreases in equilibrium because the expected cost
from being infected strictly increases. This property is captured by the monotonicity and
continuity of m(·):

7



Lemma 1. m(·) is non-decreasing, bounded and continuous function of posterior mean.

See Appendix B.1 for the proofs of Prop. 1 and Lemma 1. Together, these results imme-
diately allow us to obtain equilibrium outcome for two benchmarks: no information and
full information. For the case when agents have no information beyond the prior mean of
F , denoted µ◦ = Eθ∗∼F [θ

∗], the equilibrium mass of remote agents is simply the constant
m(µ◦). On the other hand when they have full information about the realized true state θ∗,
the equilibrium outcome is the random quantity m(θ∗).
In Fig. 1 we illustrate how the equilibrium mass of remote agents and the threshold benefit
needed by an agent to shift to in-person work varies with mean belief of the true state for
various distributions G on the benefit of in-person work. Here we remark that the prior

Figure 1: Equilibrium mass of remote agents versus posterior mean (left) and critical type or
threshold versus posterior mean (right) for various distributions G. c1(u) = 1−u, c2(u) = 0.
Uniform: G ∼ Unif [0, 10], Exponential: G ∼ Exp(λ = 1

5
), Normal: G ∼ N (µ = 5, σ2 = 1),

Bimodal: G ∼ 1
2
N (µ = 3, σ2 = 1) + 1

2
N (µ = 7, σ2 = 1).

distribution F over the true state θ∗ does not directly impact the equilibrium outcome – the
equilibrium outcome is only a function of the posterior belief µi corresponding to the signal i
realized by the mechanism. Also note that while m(·) satisfies Lemma 1, it is not necessarily
concave over the domain of state Θ.1

2.3 Planner preferences and information design problem

In general, we consider that the planner’s utility function h is a mapping from (y; θ∗) ∈
[0, 1]×Θ into R+. For a signaling mechanism π = ⟨I, {zθ}θ∈Θ⟩ the planner’s expected utility

1In the literature, the concavity of m(·) over the region of Θ where it assume non-zero values often plays
a crucial role in the design of signaling mechanism; see for e.g., two-state setting of Kamenica and Gentzkow
(2011), Bergemann and Morris (2019), de Véricourt et al. (2021). In our model, this holds when G is a
uniform or exponential distribution.
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(objective function), denoted VF,h(π), is given by:

VF,h(π) = Eθ∗∼F,i∼zθ∗

[
h(y∗π(i); θ

∗)
]
, (6)

where y∗π(i) is the equilibrium mass of remote agents when the signal realized by mechanism
π is i ∈ I.
We say that a signaling mechanism π∗

F,h is optimal if it maximizes the objective function:

π∗
F,h ∈ argmax

π:⟨I,{zθ}θ∈Θ⟩
VF,h(π). (7)

Under the no-information (resp. full-information) environment, the value of the planner’s
objective is Eθ∗∼F

[
h(m(µ◦); θ∗)

]
(resp. Eθ∗∼F

[
h(m(θ∗); θ∗)

]
) which we show generally is

not necessarily equal to the maximum achievable utility V ∗
F,h under an optimal signaling

mechanism π∗
F,h. Thus, we are concerned with the problem of designing π∗

F,h that induces the
agents’ posterior mean beliefs on the state, with the equilibrium choices of agents resulting
in an outcome that maximizes the planner’s expected utility (6). For the sake of comparison,
we will use the notation πNI and πFI to denote the mechanisms corresponding to no- and
full-information benchmarks, respectively.
In Sec. 3, we first focus on the design of optimal signaling mechanisms for the setting
when the planner maintains a fixed, set-based preference over the size distribution of agents
across in-person and remote work for all values of the state – we refer to this case as state-
independent set-based preference. Then, in Sec. 4, we consider a general state-dependent
preference model h(y; θ∗) where h is a jointly Lipschitz function.

3 State-Independent, Set-Based Preferences

In this section, we consider the information design setting in which the planner maintains a
set-based preference over the size distribution of agents across in-person and remote work,
identical for all values of the state. This preference is represented by the union of finitely
many (K) closed intervals: Y = ∪K

k=1Ωk ⊆ [0, 1] where Ωk := [ωℓ
k, ω

h
k ]. Without loss of

generality, we consider that these intervals are disjoint and increasing, that is 0 ≤ ωh
k <

ωℓ
k+1 ≤ 1 for all k. We refer to this setting as state-independent set-based preference.

The choice of Ωk is driven by practical considerations such as desirable ranges of agent
occupancies at the workplace, as driven by the number of workplace facilities, their sizes,
and minimum/maximum number of occupants and public health guidelines at each facility.
As an example, K = 1 and Y = [ωℓ

1, ω
h
1 ] would mean that the planner with two workplace

facilities prefers the in-person mass of agents to be in one of the intervals [0, ωℓ
1) or (ω

h
1 , 1];

this corresponds to an occupancy limit below ωℓ
1 in the first facility, and a minimum (resp.

maximum) limit (ωh
1 − ωℓ

1) (resp. (1 − ωℓ
1)) in the second facility, which is to be used after

the first facility’s occupancy limit is reached.
The planner’s utility for state-independent set-based preferences can be defined as h(y; θ∗) :=
I{y ∈ Y}. Her expected objective VF,h(π) for a signaling mechanism π = ⟨I, {zθ}θ∈Θ⟩ then
becomes VF,h(π) = P{y∗π(i) ∈ Y} = P{y∗π(i) ∈ ∪K

k=1Ωk}, where y∗π(i) is the agents’ equilibrium
remote mass in response to signal i ∈ I that is realized with probability z∗θ(i). Following
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Prop. 1, we can write the problem of maximizing planner’s objective (6) as follows:

V ∗
F,h = max

π:⟨I,{zθ}θ∈Θ⟩

K∑
k=1

P{ωℓ
k ≤ m(µi) ≤ ωℓ

k}, (8)

where µi is the posterior mean belief induced by the signal i. Lemma 1 implies that for any
k = 1, . . . , K the preimage of m(·) over Ωk = [ωℓ

k, ω
h
k ] is a closed interval [θ

¯k
, θ̄k] =: Θ̄k ⊆ Θ.

Hence, the occurrence of the event {m(µi) ∈ Ωk} is equivalent to that of the event {µi ∈ Θ̄k}.
Furthermore, the monotonicity of m(·) implies that θ

¯k
and θ̄k are increasing in k. By

exploiting this structure, the problem (8) can be re-written as optimization over direct
mechanisms of the form Tπ = {(qi, µi)}i∈I :

V ∗
F,h = max

Tπ :{(qi,µi)}i∈I

∑
i∈I

K∑
k=1

qiI{θ
¯k

≤ µi ≤ θ̄k}, (9)

where qi and µi are the signal probability and posterior mean for signal i (refer to (4) and
(5)).

3.1 Regimes

Now consider the no-information mechanism πNI which can be constructed by choosing I
as a singleton set (say {s}) and zθ = 1 for all θ ∈ Θ. The corresponding direct mechanism
is TNI = {(1, µ◦)}, where µ◦ is the mean for prior distribution F . From (9), note that the
no-information mechanism achieves maximum planner utility of 1 if and only if there exists
an interval k = [K] for which the prior mean belief µ◦ ∈ Θ̄k. On the other hand, if µ◦ /∈ Θ̄k

for all k ∈ [K], then the planner achieves a utility of 0 under πNI.
Consequently, to solve (9), it is useful to distinguish the following qualitative different cases
– which we refer to as regimes – based on the position of prior mean µ◦ relative to the
intervals {[θ

¯k
, θ̄k]}k∈[K]. These regimes can be defined in terms of ∪K

k=1Θ̄k as follows:

(R1): µ◦ ∈ ∪K
k=1Θ̄k. The prior mean µ◦ lies in one of the intervals Θ̄k – and as noted

above πNI is optimal in this regime.

(R2): µ◦ > sup∪K
k=1Θ̄k. Equivalently, θ̄K < µ◦ ≤ M , where M is the maximum value

of the state.

(R3): µ◦ < inf ∪K
k=1Θ̄k. Equivalently, 0 ≤ µ◦ < θ

¯1
.

(R4): µ◦ /∈ ∪K
k=1Θ̄k ∧ inf ∪K

k=1Θ̄k < µ◦ < sup∪K
k=1Θ̄k. That is, µ◦ does not lie in

any interval but lies in the gap between two contiguous intervals (∃k′ ∈ [K] such that
µ◦ ∈ (θ̄k′ , θ

¯k
′+1)).

Furthermore, in any regime, any direct mechanism Tπ that solves (9) is not unique in general.
This follows from the fact that any signal i ∈ I with signal probability qi and posterior
mean µi can be branched into two signals ii, i2 uniformly at random to induce symmetric
posterior means µi1 = µi2 = µi with probability qi/2 each, and hence such a construction
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achieves the same planner objective. However, the following lemma shows that the search
for an optimal mechanism can be limited to the class of direct mechanisms that use a set of
signals I of size at most |I| = K + 1 (see proof in Appendix A.1).

Lemma 2. There exists a direct mechanism T ∗
π = {(qi, µi)}i∈[K+1] that achieves optimal

planner objective in (9) and satisfies following constraints:

µi ∈ Θ̄i, i = 1, . . . , K, and µK+1 /∈ ∪K
k=1Θ̄k.

That is, to solve for an optimal mechanism, we need at most one signal for each of the
K intervals (i.e., Θ̄i, i = 1, . . . , K) to induce posterior mean in the desirable set, and one
additional signal that induces posterior mean that does not lie in any of these sets. We
henceforth use this insight to search over mechanisms that can be represented by the set of
tuples {(qi, µi)}i∈[K+1], and define the (cumulative) distribution of posterior means for such

a set of tuples as H(t) =
∑K+1

k=1 qkI{µk ≤ t}.
We say that posterior mean distribution H corresponding to Tπ = {(qi, µi)}i∈[K+1] is

a mean-preserving contraction if and only if for any y ∈ Θ,
∫ y

0
H(t)dt ≤

∫ y

0
F (t)dt, with

equality for y = M (Mas-Colell et al. (1995)). If H is a mean-preserving contraction of F we
write H ≽ F (i.e., H majorizes F ). This relationship can be expressed with the following
equivalent constraints (Candogan and Strack (2021)):∫ y

0

(1−H(t))dt ≥
∫ y

0

(1− F (t))dt,∀y ∈ Θ ⇔
∫ x

0

H−1(s)ds ≥
∫ x

0

F−1(s)ds,∀x ∈ [0, 1]

(10)

with equality at y = M (resp. x = 1).
Following the seminal result from Gentzkow and Kamenica (2016) who build on Blackwell
and Girshick (1954), we know that set of tuples {(qi, µi)}i∈[K+1] is implementable via a sig-
naling mechanism π if and only if the corresponding posterior mean distribution H ≽ F , i.e.,
H is a mean-preserving contraction of the prior distribution F . Intuitively, implementability
requires that the mechanism shifts the probability mass from the tails of the prior distribu-
tion F “inward” in a manner that preserves the mean of the distribution (both F and H
have equal means).
We note that f(x) =

∫ x

0
F−1(s)ds is convex in x with f(0) = 0. Furthermore, by definition

of H,
∫ u

0
H−1(s)ds is a piecewise linear function in u with breakpoints in the set {

∑n
j qj : n ∈

[K + 1]}. Hence, we obtain that to ensure H ≽ F , it suffices to enforce the constraint (10)
at these breakpoints. The following lemma captures this observation (see proof in Appendix
A.1):

Lemma 3. For the posterior distribution of means defined as H(t) =
∑K+1

k=1 qkI{µk ≤ t} for
all t ∈ Θ, enforcing that H ≽ F is equivalent to the following constraints:

n∑
j=1

qjµj ≥
∫ ∑n

j=1 qj

0

F−1(s)ds, ∀n ∈ [K] (11a)

K+1∑
j=1

qjµj = µ◦. (11b)

11



3.2 Regimes with monotone paritional structure (MPS)

We define a class of signaling mechanisms that plays an important role in our subsequent
results:

Definition 1. We say that a signaling mechanism π has a monotone partitional structure
(MPS) if there exists a finite partition of the state-space Θ, defined as P := {Θj}nj=1 =
{(tj−1, tj]}nj=1 for some n with 0 = t0 < t1 < · · · < tn−1 < tn = M , such that I = [n] and
for any θ ∈ Θ, zθ(j) = I{θ ∈ (tj−1, tj]}. The corresponding direct counterpart can be written
as the set of tuples {(qj, µj)}j∈[n], where following (4) and (5), qj = F (tj) − F (tj−1) and
µj =

∫ tj
tj−1

θdF (θ)/qj.

We are now in the position to characterize the optimal signaling mechanism for the regimes
R2 and R3. (We already know that πNI is optimal in regime R1.) The following proposition
shows that the optimal signaling mechanism in these regimes has a monotone partitional
structure. (This property does not necessarily hold for regime R4, as extensively discussed
in Sec. B.2. We instead identify sufficient conditions for MPS to hold at optimality for
regime R4 and provide a method to find the optimal direct signalling mechanism.) Before
proceeding, we define the increasing function for any θ ∈ Θ:

f̄(θ) := sup

{
x :

∫ x

0

F−1(s)ds ≤ xθ

}
, (12)

and note that for any θ ∈ Θ the constraint θx ≥ f(x) is satisfied if and only if 0 ≤ x ≤ f̄(θ).

Theorem 1. The optimal value of planner’s objective V ∗
F,h and the corresponding signaling

mechanism π∗
F,h for the regimes R1− R3 are as follows:

(R1): V ∗
F,h = 1 and π∗

F,h = ⟨{1}, {zθ}θ∈Θ⟩ with zθ(1) = 1 for all θ ∈ Θ.

(R2): V ∗
F,h = q∗1 where q∗1 := min

{
f̄(θ̄K),

M−µ◦

M−θ̄K

}
and π∗

F,h = ⟨{1, 2}, {zθ}θ∈Θ⟩ with

zθ(1) = 1 for θ ≤ F−1(q∗1) and zθ(2) = 1 for θ > F−1(q∗1).

(R3): V ∗
F,h = 1 − q∗2 where q∗2 := inf

{
q ≥ θ

¯ 1−µ◦

θ
¯ 1

: q ≤ f̄(θ
¯ 1 −

θ
¯ 1−µ◦

q
)
}

and π∗
F,h =

⟨{1, 2}, {zθ}θ∈Θ⟩ with zθ(1) = 1 for θ > F−1(q∗2) and zθ(2) = 1 for θ ≤ F−1(q∗2).

Thus, π∗
F,h has a monotone partitional structure in regimes R1−R3: t0 = 0 and t1 = M for

(R1); t0 = 0, t1 = F−1(q∗1) and t2 = M for (R2); and t0 = 0, t1 = F−1(q∗2) and t2 = M for
(R3).

We provide the proof of this result in Appendix A.1. The structure of optimal mechanism
for each of the regimes (R1 − R3) is depicted in Fig. 2. In R1, the optimal mechanism
is πNI. It maps the entire probability mass over Θ to a single signal, and induced posterior
mean is same as the prior mean. In regimes R2 and R3, the optimal mechanism partitions
the state-space Θ into two intervals which can understood as “low” and “high” parameter
ranges, and each interval corresponds to a unique signal. The locations of posterior means
induced by the two signals relative to the prior mean are also illustrated in the figure, along
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Figure 2: The probability density function for θ∗, the location of prior mean µ◦, and the
intervals [θ

¯k
, θ̄k] (blue) for regimes (R1−R3); for simplicity K = 1. For optimal mechanism

given by Theorem 1, the signal probabilities are determined by the probability mass of
colored regions (green, violet, yellow) and the locations of corresponding posterior means
are marked as ⋆.

with the corresponding signal probabilities. These signal probabilities and posterior means
define the optimal direct mechanism that is implemented by the π∗

F,h given in Theorem 1.
While optimal, we also demonstrate the derived optimal mechanism manifests a nontrivial
practical improvement non-informative and fully-informative benchmarks. We substantiate
these improvements from optimal signaling with numerical experiments described in further
detail in Section B.6.

4 State-dependent Preferences

In this section, we consider state-dependent preferences; i.e., settings where the planner’s
preference is modeled by h(y; θ∗) which is her utility for an equilibrium remote mass y and
the state is θ∗. In particular, we seek to solve the design problem (7) for preference models
h that are Lipschitz continuous where the planner’s utility is Lipschitz in both y and θ∗.
The information design problem for these settings becomes more challenging in comparison
to Sec. 3 due to the fact that the set of preferred equilibrium outcomes depends on the true
state. Hence, it is no longer sufficient to characterize the optimal mechanism by analyzing
the locations of induced posterior means µi within the state-space Θ.
In fact, one can show MPS mechanisms are not necessarily optimal as the optimal signaling
mechanism may “pool” disparate intervals of the state space Θ to the same signal (see Section
B.7 in supplementary materials). Lacking simple structural guarantees, this creates tremen-
dous difficulty in the analytical characterization of optimal signaling for state-dependent
preferences. Hence, we adopt a computational approach to design approximately optimal
signaling mechanisms, while still maintaining an interval-based structure. The approach
entails discretizing the continuous distribution F in order to limit the number of states θ
for which we need to consider preferences h(·; θ) over remote agent mass. This allows us
to compute an optimal solution under this discretization using a linear programming (LP)
formulation. We subsequently use this LP-based design to provide approximately optimal
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solutions for Lipschitz continuous preference models.

4.1 LP-based Design for Discretized Problem

We discretize F over the continuous space Θ into a discrete distribution Fδ by taking a
uniform partition of Θ with N := Mδ intervals [ j−1

δ
, j
δ
) each of length 1

δ
and assigning all

the probability mass in the interval to the minimum of that interval νj :=
j−1
δ
, giving us the

distribution Fδ.

Definition 2. The δ-discretization Fδ of any continuous distribution F is a discrete prob-
ability distribution over νj by Θδ := {ν1, ..., νN} such that θ̂ ∼ Fδ has P[θ̂ = νj] := pj =
F ( j

δ
)− F ( j−1

δ
).

Observe that Eθ∗∼F [θ
∗] ≥ Eν∼Fδ

[ν] since the probability mass of each interval is shifted
towards the minimum of the interval.
For a given y ∈ [0, 1], the function h(y; νj) can be evaluated for each νj ∈ Θδ. To
computationally obtain an optimal design for the discretized setting, we further consider
that for all νj, the function h(·; νj) is evaluated at pre-specified discrete number of points
y0 := 0 < y1 < .. < yK−1 < yK := 1 (K ∈ N). Additionally, for all νj ∈ Θδ and y ∈ [yk−1, yk],
we take h(y; νj) ≈ cjk, where cjk for j = 1, . . . , N and k = 1, . . . , K are values corresponding
to a piecewise-constant approximation of h. For convenience, we let y = (y0, . . . , yK) and
c = (cjk) ∈ RN×K . We are ready to state the LP-based design for the discretized setting
when θ∗ ∼ Θδ and h(y; ν) is piecewise-constant in y (see B.4 for proof).

Lemma 4. An optimal design π∗
H,h = ⟨I, {zθ}θ∈Θδ

⟩ for the discretized setting where H is
discrete and h is piecewise-constant can be constructed from an optimal solution {z∗ji} of the
following linear program by choosing I = [K] and, for all i ∈ I and j ∈ [N ] setting zνj(i) = 0

if pj = 0 and zνj(i) =
z∗ji
pj

otherwise.

maximize
∑N

j=1

∑K
i=1 cjizji

subject to
∑N+1

i=1 zji = pj, j = 1, . . . , N
zji ≥ 0, j = 1, . . . , N, i = 1, . . . , K

m−1(yi−1)
∑N

j=1 zji ≤
∑N

j=1 νjzji, i = 1, . . . , K∑N
j=1 νjzji ≤ m−1(yi)

∑N
j=1 zji, i = 1, . . . , K

The above linear program, denoted LP(H,y, c), has NK variables zji. We can conclude
that the time complexity of LP(Fδ,y, c) is O(N2.5K2.5), i.e. polynomial in the number of
partitions (K) to represent the piecewise approximation of h(·; ν) and the size (N) of the
support for the discretized distribution Fδ (Vaidya (1989)). Hence, we can identify optimal
signaling mechanisms for discretized objectives and discretized distributions over state with
efficient computation time.
To use the above linear program, we require h to be piecewise-constant. To implement this,
we approximate our Lipschitz objective h(·, θ) for each value of θ ∈ Θ by a piecewise constant
function hτ , where τ is another discretization parameter. Precisely, for a fixed τ , we create
uniform intervals of length 1

τ
over [0, 1] with the discretized function taking a constant value

over each interval equal to the average of the minimum and maximum over this interval.
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Definition 3. The τ -discretization hτ of any continuous function h : [0, 1] × θ → R is a
piecewise constant function such that for all k ∈ [τ ], θ ∈ Θ, x ∈ [k−1

τ
, k
τ
):

hτ (x, θ) := h(
2k − 1

2τ
, θ)

Consequently, hτ is piecewise-constant over each interval [k−1
τ
, k
τ
) for all k ∈ [τ ].

4.2 ϵ-optimal Design

To extend the solution obtained from Lemma 4 for the discrete distribution Fδ to the original
continuous distribution F , we introduce the notion of an ϵ-optimal signaling mechanism
where ϵ > 0 bounds the suboptimality gap of the mechanism.

Definition 4. A mechanism π̂ is ϵ-optimal for a problem instance (6) defined by distribution
F over Θ and utility function h if |VF,h(π̂)− VF,h(π

∗)| ≤ ϵ.

Thus, the ϵ-optimal signaling mechanism π̂ must be close to π∗ when evaluated according
to the planner’s objective in expectation with the true prior distribution F . However, the
tuples π∗ and π̂ themselves need not be “close” and cannot be compared in a straightforward
manner.
We utilize Lemma 4 to develop an ϵ-optimal signalling mechanism as follows. We first solve
for π∗

Fδ,hτ
= ⟨Iδ, {zδνj}νj∈Θδ

⟩ using the linear program in Lemma 4 as both Fδ is discrete
and hτ is piecewise-constant. We then adapt π∗

Fδ,hτ
to a continuous signaling mechanism

π̂Fδ,hτ
:= ⟨Iδ, {ẑθ}θ∈Θ⟩ such that for all j ∈ [N ], θ ∈ [νj−1, νj), and i ∈ Iδ, we have

ẑθ(i) := zδνj(i). We prove that, subject to regularity on the distribution of agents’ value of

in-person work2 and the Lipschitz continuity of h, this solution π̂Fδ,hτ is ϵ-optimal and hence
achieves an objective ϵ-close to that of π∗

F,h (details on the proof are deferred to Sec. B.4).

Theorem 2. Let h(y; θ∗) be uniformly η1-Lipschitz for all θ
∗ ∈ Θ and uniformly η2-Lipschitz

for all y ∈ [0, 1]. Then, if G is continuously differentiable with 0 < dG
dv

≤ κ, the signaling
mechanism π̂Fδ,hτ constructed from π∗

Fδ,hτ
obtained by solving LP(Fδ,y, c) where yi =

2i−1
2τ

and cjk = hτ (yk; νj) (Lemma 4) is ϵ-optimal for δ > 8η2+8Cη1κ
ϵ

, τ > 4η1
ϵ
.

Although closed-form solutions are not attainable in general for this class of preference
models, the preceding theorem shows that asymptotically optimal approximations can be
achieved through sufficient discretization. This implies that, for practical preference models
that adhere to the Lipschitz condition by exhibiting moderate sensitivity to variations in
infectiousness or mass, a straightforward procedure exists for identifying nearly optimal
solutions in practice. As illustrated in Sec. 5, our computational approach to tackle this
large class of models allows us to consider richer preferences in comparison to other works
(e.g. de Véricourt et al. (2021)). Furthermore, by construction, the derived mechanisms use
identical randomization over signals for each θ∗ in each discretized interval (i.e. interval-
based mechanisms). In practice, this interval-based feature of the computed mechanism has
the advantage of greater interpretability when discretization is minimal.

2This condition is justified by the fact that highly concentrated distributionG can lead to a high sensitivity
of equilibrium mass of remote agents to the induced posterior means, thus making approximation difficult.
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5 Computational Study

In this section, we apply our computational approach to a class of operationally relevant
planner preferences, and demonstrate that we asymptotically recover the optimal planner
utility.
In Section B.8, we provide a detailed comparison of our method on the objectives href(λ) that
are investigated in de Véricourt et al. (2021):

href(λ)(y; θ
∗) = λEv∼G[vI{v ≥ G−1(y)}]− (1− λ)θ∗(1− y)2.

We demonstrate that our approach can recover their optimal closed-form solutions faster
than the rate described in Theorem 2. Todemonstrate that our approach is more general, we
consider another class of preference for which there is no provably known optimal solution.
Particularly, we allow F to now be continuous. Moreover, while it is possible to characterize
the optimal signaling mechanism in closed-form for specific state distributions (e.g., binary
valued), in practice the planner may also want to ensure that the induced in-person mass is
not too close to fully remote or full in-person work. This additional “regularization” becomes
especially relevant for hybrid work settings in which the workplace facilities need to be used
at moderate occupancy levels to contain the risk of transmission and yet maintain sufficient
productivity levels. To reflect this preference, we modify the planner’s utility function:

hρ(y; θ
∗) =

1

2

(
(1− ρ)(5(1− y2)− θ∗(1− y)2)

)
+ ρy(1− y), (13)

where ρy(1−y) reflects the regularization term with parameter ρ and other terms are same as
for href(0.5)(y; θ

∗). Previously known results cannot be used to compute an optimal mechanism
for such a preference model due to its complex dependence on posterior means. However,
the model satisfies the conditions of Theorem 2; thus, we can design an ϵ-optimal mech-
anism using the LP-based solution introduced in Sec. 4. Furthermore, we can bound the
approximation loss in terms of discretization parameters (δ, τ).
We leverage our result in Theorem 2 and assume that the true optimal signaling mechanism
π∗
F,hρ

is well approximated by choosing the approximate solution π̂Fδ,hτ for δ = τ = 1000.
Figure 3 shows how the planner’s utility corresponding to our approximate solution com-
pares against the computationally obtained optimal value for varying levels of discretization
and choice of regularization parameter. Observe that the error of our computational solu-
tion reduces quickly to the limits of numerical precision and achieves much faster rate of
convergence to 0, in comparison to the theoretically guaranteed rate of 1

ϵ5
. Again, this can

be explained by noting that our computed solution has an interval-based structure – in par-
ticular, the agent distribution induced by our signaling mechanism is (close to) the outcome
achieved by no- or full-information mechanisms, depending on the value of underlying state
(see Fig. 4). Since interval-based mechanisms are extreme points of the polytope containing
all signaling mechanisms, our LP-based solution achieves a very fast convergence rate in
traversing the extreme points of the polytope (Bergemann and Morris (2019)).
Finally, we can verify that the optimal design for the preference model hρ induces outcomes
with progressively more moderate in-person agent mass as ρ increases. In Figure 4, we plot
the joint distribution of the equilibrium mass and the state corresponding to the approx-
imately optimal mechanism π̂Fδ,hτ with the ϵ-optimality guarantee provided in Theorem 2
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Figure 3: Error of computed ϵ-optimal solution π̂Fδ,hτ as discretization (δ, τ ; assume equal)
increases and the regularizations ρ are varied; λ = 0.5.

(δ = τ = 1000). From these plots we can determine which equilibrium masses are most
frequent by considering the marginal distribution. These plots also reveal the structure of
the signalling mechanism since we can determine which posterior means (through the equi-
librium mass) are mapped from each state. We again consider hρ from Equation (13) for
values of ρ ∈ [0.5, 0.75, 1] and qualitatively compare how the equilibrium behavior compares.
We again choose G ∼ Unif [0, 6] and F ∼ Unif [0, 10], and consider the product distribution
over (θ∗, yπ∗

F,h
(i)).

Figure 4: Density plot over the joint distribution of
(
θ∗, yπ∗

F,h
(i)

)
(higher density is in purple).

ρ = 0.5 (left), 0.75 (middle), 1 (right).

In Fig. 4, observe that for ρ = 0.5 (and for all ρ < 0.5 though not shown), all the probability
mass lies on an approximately smooth curve that is identical to the structure of m(θ). This
implies that, at optimality, in any given state θ∗, the planner simply reveals the state and the
equilibrium remote mass is m(θ∗). Hence, fully-informative signaling is optimal for ρ ≤ 0.5.
We also observe that as ρ increases to 1 and the regularization term becomes more prominent,
the planner strongly prefers moderate masses and seeks to avoid equilibrium masses close
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to 0 or 1. The prior mean belief induces a moderate mass (m(µ◦) = 5
11
), so the optimal

mechanism shifts to the non-informative mechanism as that generates this same moderate
posterior mean regardless of state.
Interestingly, we find that for intermediate values such as ρ = 0.75, we obtain a mechanism
that directly reveals the state for larger values when the function m(·) levels off, but elects
to aggregate the states for smaller values of the state to a single signal. This mechanism
can be thought of as a combination of the non-informative and fully-informative mechanism
as agents learn whether or not θ∗ exceeds a threshold and then are either directly revealed
the state or revealed nothing further. This mechanism belongs to a class of mechanisms
that either only reveals the interval containing the state or fully reveals the state on each
interval for a partition of the state space. This class falls under a superset of interval-
based mechanisms which captures the extreme points of the polytope containing all signaling
mechanisms. In fact, such mechanisms find prominence in optimal designs and the related
literature for simpler settings than we consider (Ivanov (2015), Guo and Shmaya (2019)).
This reinforces that computationally-obtained signalling mechanisms from Theorem 2 allow
us to achieve near-optimal designs when analytical approaches to design becomes intractable.
Consequently, for many practical objectives, planners may need to consider mechanisms that
do not have MPS to achieve good outcomes.
While certain planner preferences recover results similar to that of de Véricourt et al. (2021)
where optimal mechanisms are based on no- or full-information signaling mechanisms, we also
demonstrated examples where partially informative, interval-based signaling mechanisms are
optimal (Fig. 4). Our approach handles general forms of state uncertainty over a continuous
domain, accommodates a richer class of planner preferences and identifies signalling mecha-
nisms with a more complex structure. Our approach also provides an efficiently computable
solution, with the approximation error converging to zero even with a coarse discretization
level.

6 Concluding Remarks

In this paper, we introduced a model to study information provision for strategic hybrid
workers. The central planner seeks to control the mass of in-person workers across each
group in the equilibrium outcome. Our model captures two key features: (a) a general
objective that aims to maximize the probability that the equilibrium outcome lies in a
particular set which may or may not be state-dependent; (b) heterogeneous workers making
strategic decisions to trade-off in-person work and infectious risk. We provided a complete
description of the equilibria of the game in response to the signals and derived the optimal
signaling mechanism that the planner can employ.
For settings with more complex objectives, we derived algorithms that compute ϵ-optimal
signaling information disclosure rules. These analytic and numerical insights suggest that
simple information disclosure rules using interval-based disclosure strategies, which are more
easily implementable in practice, are sufficient to achieve near-optimal or optimal outcomes.
While it is not always possible to codify exact functional representations of the objectives
or functions in practice, these insights can inform how planners should strategically disclose
information.
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These results provide valuable guidelines for the design and deployment of signaling mech-
anisms, especially as hard intervention measures are being phased down by public health
agencies.
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A Appendix

A.1 Proofs for Sec. 3

Proof of Lemma 2

For any optimal signaling mechanism π∗ = ⟨I, {zθ}θ∈Θ⟩, consider its direct mechanism which
takes the form T ∗

π = {(qi, µi)}i∈I . Suppose that for any k ∈ [K] there exists i, j ∈ I such
that µi, µj ∈ Θ̄k. Then, replacing the two signals i and j with a single signal ij, consider
π′ = ⟨I ∪ {ij} \ {i, j}, {zθ}θ∈Θ⟩ where zθ(s) = zθ(s) for all s ∈ I \ {i, j}, θ ∈ Θ, and
zθ(ij) = zθ(i) + zθ(j) for all θ ∈ Θ. Let µi ≤ µj without loss of generality. Observe that
q′s and µ′

s are unchanged for all s ∈ I such that s ̸= i, j. Moreover, from (4) and (5),
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observe that q′ij = qi + qj and µ′
ij =

qi
qi+qj

µi +
qj

qi+qj
µj is a weighted average of µi and µj so

µi ≤ µ′
ij ≤ µj and µ′

ij ∈ Θ̄k. Hence, from (9), observe that Tπ′ achieves the same objective
as T ∗

π and therefore must also be optimal. Likewise, if µi, µj /∈ Θ̄k for all k, then from
examination of (9), we note that Tπ′ is also optimal since it achieves an objective no smaller
than that achieved by Tπ∗ :

∑
s∈I

K∑
k=1

qsI{θ
¯k

≤ µs ≤ θ̄k} =
∑

s∈I\{i,j}

K∑
k=1

qsI{θ
¯k

≤ µs ≤ θ̄k}+
K∑
k=1

qiI{θ
¯k

≤ µi ≤ θ̄k}+
K∑
k=1

qjI{θ
¯k

≤ µj ≤ θ̄k}

=
∑

s∈I\{i,j}

K∑
k=1

qsI{θ
¯k

≤ µs ≤ θ̄k}

=
∑

s∈I\{i,j}

K∑
k=1

q′sI{θ¯k ≤ µ′
s ≤ θ̄k}

≤
∑

s∈I∪{ij}\{i,j}

K∑
k=1

q′sI{θ¯k ≤ µ′
s ≤ θ̄k}

Consequently, recursively performing this reduction in the size of the signal set I for each
interval Θ̄k for k ∈ [K] and [0,M ] \ ∪K

k=1Θ̄k, we obtain an optimal direct mechanism with
each subset containing no more than one posterior mean µi. Hence, from this optimal direct
mechanism, replacing the signal set with I = [K +1] where µk ∈ Θ̄k for all k ∈ [K] achieves
the result.

Proof of Lemma 3

Consider any posterior mean distribution of the form H(t) =
∑K+1

k=1 qk I{µk ≤ t} for all
t ∈ Θ. We show the equivalence between H ≽ F and constraints given by (11a) and (11b).
From the definition of mean-preserving contractions, H ≽ F implies the constraints in (11a)
are satisfied and that the mean is preserved across F and H which subsequently implies
(11b).
Moreover, consider any distribution H(t) =

∑K+1
k=1 qk I{µk ≤ t} satisfying (11a) and

(11b). Then, by (11b), the mean of H and F are equal so
∫ 1

0
H−1(s)ds =

∫ 1

0
F−1(s)ds.

For any 0 ≤ x < 1, there exists n ∈ [K] such that
∑n−1

j=1 qj ≤ x <
∑n

j=1 qj. Observe that

f(t) :=
∫ t

0
(F−1(s) − H−1(s))ds is convex over

∑n−1
j=1 qj ≤ t ≤

∑n
j=1 qj since

∫ t

0
F−1(s)ds is

convex and
∫ t

0
H−1(s)ds is linear over

∑n−1
j=1 qj ≤ t ≤

∑n
j=1 qj. Since the constraints of (11a)

imply that f(
∑n−1

j=1 qj), f(
∑n

j=1 qj) ≤ 0, the convexity of f implies that f(x) ≤ 0. Hence,∫ x

0
H−1(s)ds ≥

∫ x

0
F−1(s)ds for all x ∈ [0, 1) which implies H ≽ F .

Proof of Theorem 1

Proof. In R1, we know that π∗
F,h = πNI, and hence TNI = {(1, µ◦)}. From (9), we ob-

tain V ∗
F,h = 1, which is the maximum achievable value of planner’s objective function.
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To proceed with R2 and R3, we can simplify the objective function in (9) using Lemma 2 as
follows:

K+1∑
i=1

K∑
k=1

qiI{θ
¯k

≤ µi ≤ θ̄k} =
K∑
i=1

qi = (1− qK+1) .

Hence, the problem of optimal signaling mechanism design can be expressed as follows:

min
Tπ :{(qi,µi)}i∈[K+1]

qK+1

s.t. H ≽ F,

µi ∈ Θ̄i, i ∈ [K],

where the second constraint ensures implementability by requiring that the posterior dis-
tribution H is a mean-preserving contraction of prior distribution F . Using Lemma 3, the
definitions of sets Θ̄i, and the fact that all signal probabilities must sum to 1, we can re-write
the above problem:

min qK+1 (14a)

s.t.
∑

i∈[K+1]

qi = 1 (14b)

θ
¯i

≤ µi ≤ θ̄i, ∀i ∈ [K] (14c)

(11a), (11b).

We now proceed to solve for the optimal signaling mechanism for R2; the proof for R3 is
analogous. For simplicity and without loss of generality, we assume M = 1 since any optimal
solution is invariant to linear scaling.

Claim 1. µK+1 ≥ µ◦ and qK+1 > 0, hence q∗K+1 > 0.
Under R2, we know that θ̄K < µ◦. From constraint µK ≤ θ̄K , we obtain µK ≤ θ̄K < µ◦.

Suppose that µK+1 < µ◦. Then by (11b) and by condition of R2, we obtain µ◦ =
∑K+1

i=1 qiµi <∑K+1
i=1 qiµ

◦ = µ◦. However, this is a contradiction. Hence, we conclude that µK+1 ≥ µ◦.

Next, suppose that qK+1 = 0. Then, µ◦ =
∑K

i=1 qiµi ≤
∑K

i=1 qiθ̄i ≤ θ̄K
∑K

i=1 qi = θ̄K .
However, this is a contradiction since under R2, θ̄K < µ◦. Hence, we conclude that qK+1 > 0
(and hence q∗K+1 > 0).

Claim 2. q∗j = 0 for all j < K.
Suppose for the sake of contradiction that q∗j > 0 for some j < K, and let the corresponding
distribution of posterior means be denoted H∗. Now consider the new distribution of signal

probabilities obtained by decreasing q∗j by
(µ∗

K+1−µ∗
K)

(µ∗
K+1−µ∗

j )
ϵ, increasing q∗K by ϵ, decreasing q∗K+1

by
(µ∗

K−µ∗
j )

(µ∗
K+1−µ∗

j )
ϵ, for a small ϵ > 0. Then, the value of objective (14a) strictly increases and

constraints (14b) and (14c) are still satisfied. Furthermore, this is a convex stochastic mod-
ification of the original mechanism; hence the modified set of tuples generates a distribution
of posterior means such that H ′ ≽ H∗ (refer to Theorem 3.A.7. of Shaked and Shanthiku-
mar (2007)). By transitivity, we obtain that H ′ ≽ F , which implies that constraints (11a),
(11b) for ensuring mean-preserving contraction also hold. This establishes the contradiction.
Hence, q∗j = 0 for all j < K.
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Following the above claims, we can simply rename qK to q1 and qK+1 to q2, and similarly
rename µK to µ1 and µK+1 to µ2, where the signal set is I = {1, 2}. The problem (14)
simplifies as follows:

max
q1,q2,µ1,µ2

q1 (15a)

s.t. q1 + q2 = 1 (15b)

θ
¯K

≤ µ1 ≤ θ̄K (15c)

µ◦ ≤ µ2 ≤ M (15d)

q1µ1 ≥
∫ q1

0

F−1(s)ds (15e)

q1µ1 + q2µ2 = µ◦. (15f)

Suppose that (q∗1, q
∗
2, µ

∗
1, µ

∗
2) is an optimal solution of (15) with µ∗

1 < θ̄K . Then we can find
another optimal solution by choosing same signal probabilities q′1 = q∗1, q

′
2 = q∗2, but the

posterior means as µ′
1 = θ̄K and µ′

2 = µ◦ +
(µ−θ̄K)(µ∗

2−µ◦)

(µ◦−µ∗
1)

(this follows by noting that all the

constraints in (15) are satisfied). Hence, we can restrict µ1 = θ̄K in the optimal design.
Following (12), we can rewrite the constraint (15e) as 0 ≤ q1 ≤ f̄(θ̄K) and substitute q2 with
1− q1 to obtain:

max
q1,µ2

q1 (16a)

s.t. q1θ̄K + (1− q1)µ2 = µ◦ (16b)

0 ≤ q1 ≤ f̄(θ̄K) (16c)

µ◦ ≤ µ2 ≤ M. (16d)

From (16b) we obtain q1 = µ2−µ◦

µ2−θ̄K
and using θ̄K ≤ µ◦ ≤ µ2 ≤ M (Claim 1 and (16d)),

we know that q1 ≤ M−µ◦

M−θ̄K
. Combining with (16c), the optimal value of (16) is q∗1 =

min{f̄(θ̄K), M−µ◦

M−θ̄K
}. To summarize, µ∗

2 =
µ◦−q∗1 θ̄K

1−q∗1
, µ∗

1 = θ̄K , and q∗2 = 1 − q∗1, specifies

the optimal direct mechanism T ∗ = {(q∗1, µ∗
1), (q

∗
2, µ

∗
2)}.

Finally, given the optimal objective value V ∗
F,h and the direct mechanism T ∗, we want to

find a mechanism π∗
F,h = ⟨I, {zθ}θ∈Θ⟩ that implements T ∗ to achieve the value V ∗

F,h. Here,
we appeal to earlier results: Prop. 1 in Gentzkow and Kamenica (2016) and Thm. 3.A.4 in
Shaked and Shanthikumar (2007). In particular, consider the discrete distribution G that
places probability q∗1 on µ∗

1 = θ̄K and 1− q∗1 on µ∗
2. Then, g(x) :=

∫ x

0
G(t)dt can be expressed

as:

g(x) =


0 x ≤ θ̄K

q∗1(x− θ̄K) θ̄K < x ≤ µ∗
2

q∗1(µ
∗
2 − θ̄K) + (x− µ∗

2) µ∗
2 < x ≤ M

We know that g is convex and g(x) ≤ g◦(x) :=
∫ x

0
F (t)dt for all x ∈ [0, 1]. Moreover,

g′(0) = g◦′(0) and g′(1) = g◦′(1). From Shaked and Shanthikumar (2007) and Ivanov (2021),
it is known that if there exists s ∈ [θ̄K , µ

∗
2] such that g◦(s) = g(s) —see Claim 3 below—
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then g is tangent to g◦ at s and therefore is tangent on each linear segment of g. It follows
that such a direct mechanism can be implemented using a signaling mechanism that has a
monotone partitional structure with t0 = 0, t1 = s := F−1(q∗1), t2 = 1. To check consistency,
note that P[θ ∈ [0, s]] = F (s) = F (F−1(q∗1)) = q∗1, which is the probability of signal 1.

Claim 3. ∃ s ∈ [θ̄K , µ
∗
2] such that g◦(s) = g(s).

Suppose by contradiction that for all s ∈ [θ̄K , µ
∗
2], g

◦(s) > g(s). Then since g◦ − g is
convex over [θ̄K , µ

∗
2], let inft∈[θ̄K ,µ∗

2]
g◦(t)−g(t) = ϵ > 0 with some minimizer t∗ ∈ [θ̄K , µ

∗
2] such

that g◦(t∗)− g(t∗) = ϵ. Furthermore, let µ̃∗
2 solve (q∗1 + ϵ)(x− θ̄K) = q∗1(µ

∗
2 − θ̄K) + (x− µ∗

2)
and define the function g̃:

g̃(x) =


0 x ≤ θ̄K

(q∗1 + ϵ)(x− θ̄K) θ̄K < x ≤ µ̃∗
2

(q∗1 + ϵ)(µ̃∗
2 − θ̄K) + (x− µ̃∗

2) x > µ̃∗
2

Notice that g̃ is also convex and that g ≤ g̃ ≤ f ; hence following Gentzkow and Kamenica
(2016) the distribution over posterior means with signal probability q∗1 + ϵ on posterior mean
θ̄K and 1 − q∗1 − ϵ on µ̃∗

2 is implementable through a signaling mechanism. However, this
would violate the optimality of q∗1, which is a contradiction.

B Supplementary Information

B.1 Proofs for Sec. 2

Proof of Proposition 1

First, we show that in equilibrium, there is a critical type v∗(i) ∈ R+ such that all agents of
type v ≤ v∗(i) work remotely, and all agents of type v > v∗(i) work in-person. We denote
the equilibrium action of agents with type v by s∗v(i).

Lemma 5. There exists a critical type v∗(i) ∈ R+ such that for all v ≤ v∗(i), s∗v(i) = ℓR
and for all v > v∗(i), s∗v(i) = ℓS.

Proof. The proof follows by construction. Given an equilibrium in response to observed
posterior mean µi from generated signal i, v∗(i) = sup{t : s∗t (i) = ℓR}. Suppose, by
contradiction, that there exists v < v∗(i) such that s∗v(i) = ℓS. Then, v ≥ c1(y

∗
π(i))µi +

c2(y
∗
π(i)). However, this would imply that v̂ > c1(y

∗
π(i))µi+ c2(y

∗
π(i)) for all v̂ > v and hence,

s∗v̂(i) = ℓS and sup{t : s∗t (i) = ℓR} ≤ v. This is a contradiction. Thus, we conclude that for
all v ≤ v∗(i), s∗v(i) = ℓR and v∗(i) satisfies the conditions of the critical type.

Next, we characterize the in-person equilibrium mass in response to signal i, and hence the
equilibrium remote mass y∗π(i).

Lemma 6. The equilibrium remote mass y∗π(i) = inf{u ≥ 0 : G−1(u) ≥ c1(u)µi + c2(u)}.
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Proof. Let y∗π(i) = z and inf{u ≥ 0 : G−1(u) ≥ c1(u)µi + c2(u)} = z + ϵ for some ϵ. By
Lemma 5, all agents of type v ≤ G−1(z) are such that v ≤ c1(z)µi + c2(z) and all agents of
type v > G−1(z) are such that v > c1(z)µi + c2(z).
Suppose by contradiction ϵ > 0. Since c1(u)µi+c2(u) is strictly decreasing in u, by definition
of infimum, for all t < z + ϵ, G−1(t) < c1(t)µi + c2(t). Hence, G−1(z + ϵ

2
) < c1(z +

ϵ
2
)µi +

c2(z +
ϵ
2
). But G−1(z + ϵ

2
) ≥ G−1(z) since G−1 is non-decreasing, and hence G−1(z + ϵ

2
) >

c1(z)µi + c2(z) > c1(z +
ϵ
2
)µi + c2(z +

ϵ
2
). This is a contradiction.

Analogously, suppose by contradiction, that ϵ < 0. Then, G−1(z + ϵ
2
) ≤ G−1(z) ≤ c1(z)µi +

c2(z) < c1(z+
ϵ
2
)µi+c2(z+

ϵ
2
). But, by infimum definition, G−1(z+ ϵ

2
) ≥ c1(z+

ϵ
2
)µi+c2(z+

ϵ
2
).

This is again a contradiction.
This implies that ϵ = 0, so y∗π(i) = inf{u ≥ 0 : G−1(u) ≥ c1(u)µi + c2(u)}.

Together, Lemma 5 and Lemma 6 imply Proposition 1.

Proof of Lemma 1

Observe that 0 ≤ m(µ) ≤ 1, since by definition (Prop. 1), m(µ) ≥ 0 and G−1(1) > 0 =
c1(1)µ + c2(1) which implies that m(µ) ≤ 1. Hence, m(µ) is bounded. Similarly, letting

f(u) = G−1(u)−c2(u)
c1(u)

, we equivalently have m(µ) = inf{u : f(u) ≥ µ}. Since c1(u) is a strictly

decreasing function in u and G−1(u) − c2(u) is a non-decreasing function, f(·) is strictly
increasing. For any µ′ ≤ µ′′ notice {u : f(u) ≥ µ′′} ⊆ {u : f(u) ≥ µ′}, so m(µ′) ≤ m(µ′′)
and hence m is non-decreasing. Applying Berge’s Maximum Principle, we obtain that m(µ)
is continuous.

B.2 Regime with non-MPS

We now focus on the characterization of optimal signaling mechanism in regime R4, which
corresponds to the case when the prior mean µ◦ does not lies in any of the intervals Θ̄k, k =
1, . . . , K, but lies in the gap between two contiguous intervals, i.e., ∃k′ ∈ [K] such that µ◦ ∈
(θ̄k′ , θ

¯k
′+1). In this regime, the planner seeks to design signaling that induces posterior mean

beliefs outside of the interval (θ̄k′ , θ
¯k

′+1), where Θ̄k′ = [θ
¯k

′ , θ̄k′ ] (resp. Θ̄k′+1 = [θ
¯k

′+1, θ̄k′+1])
is the interval immediately left (resp. right) to the µ◦.

The following example illustrates that regime R4 may not necessarily admit an optimal
signaling mechanism with MPS:

Example 1. Let F be uniform on [0, 1] (µ◦ = 0.5). Consider K = 2 and for some small
ϵ, define Ω̄1 = [0.4 − ϵ, 0.4 + ϵ] and Ω̄2 = [0.6 − ϵ, 0.6 + ϵ]. Hence, regime R4 is active.
We can exhaust mechanisms with MPS by considering three cases: Firstly, no information
mechanism (which has a MPS with t1 = 1) yields 0 planner objective value (9). Secondly,
when t1 < 0.8−2ϵ, the posterior mean µ1 is strictly less than 0.4−ϵ (and thus µ1 /∈ Ω̄1∪ Ω̄2),
yielding the objective value of 1−F (t1) < 1. Finally, when 0.8−2ϵ ≤ t < 1, then µk /∈ Ω̄1∪Ω̄2

for all k > 1, so the objective value is F (t1) < 1. Hence, no signaling mechanism with MPS
can achieve the maximum objective value of 1.
However, observe that by choosing I = {1, 2} with zθ(1) = 0.7 and zθ(2) = 0.3 for all
θ ≤ 0.5, and zθ(1) = 0.3 and zθ(2) = 0.7 for all θ ≥ 0.5, the posterior means are µ1 = 0.4
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and µ2 = 0.6. This interval-based mechanism does not have a MPS but yields the maximum
objective value of 1. ◁

Hence, unlike regimes R1 − R3, we need to broaden the search for optimal signaling
mechanism to include mechanisms with a non-MPS structure. Analogous to the proof of
Theorem 1, we can state the problem of computing an optimal direct signaling mechanism T ∗

π

as follows:

V ∗
F,h = min

Tπ :{(qi,µi)}i∈[K+1]

H≽F
µi∈Θ̄i, ∀i∈[K]

qK+1,

where, by definition of Θ̄is, we know that µk is increasing for all k ∈ [K]. However, in contrast
to both R2 and R3 (where we know that µK < µK+1), we can no longer determine how µK+1

positioned relative to the other posterior means µ1, . . . , µK . Still, one can computationally
solve for T ∗

π by iterating over all K + 1 possible placements of µK+1 relative to {µi}i∈[K].
That is, we can solve K + 1 individual optimization problems of the form (17) and finally
obtain the optimal direct mechanism as T ∗ = argminj=1,...,K+1 V

j
F,h.

V j
F,h = min

Tπ :{(qi,µi)}i∈[K+1]

qK+1 (17a)

s.t. H ≽ F (17b)

µi ∈ Θ̄i, ∀i ∈ [K] (17c)
µK+1 < µ1 if j = 1

µj−1 < µK+1 ≤ µj if j = 2, . . . , K

µK+1 > µK if j = K + 1

(17d)

Analogous to the proof of Theorem 1, we can rewrite (17a)-(17c) and obtain for j = 1, . . . , K + 1:

V j
F,h =min qK+1

s.t.
∑

i∈[K+1]

qi = 1

θ
¯i

≤ µi ≤ θ̄i ∀i ∈ [K]

(11a), (11b), and(17d)

In fact, each of these problems can convexified by introducing variables zj := qjµj. Hence,
we arrive at the following result:

Proposition 2. An optimal direct signaling mechanism Tπ∗ and the corresponding optimal
value V ∗

F,h can be obtained by solving K convex programs.

Although one can computationally obtain an optimal direct mechanism Tπ∗ , the question
of analytical characterization of optimal signaling mechanism π∗

F,h that implements Tπ∗ is
not trivial for regime R4, mainly because we can no longer utilize the MPS. However, as
shown in Example 1, one can still hope to find an optimal mechanism π∗

F,h that partitions
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the statespace Θ into subintervals and uses a fixed probability distribution zθ(·) within each
interval. We now show that optimal π∗

F,h has an interval-based structure when we restrict
attention to a (more likely) subcase of regime R4.

From the definition of R4, one can intuitively argue that signaling is less effective for a
prior distribution F if the induced beliefs are “tightly concentrated” in the interval (θ̄k′ , θ

¯k
′+1).

In particular, for a given F , consider the increasing functions: s
¯
(t) = EF [θ|θ ≤ t] and

s̄(t) = EF [θ|θ ≥ t]. Then the information design may not increase planner’s expected utility
beyond the no-information benchmark if, for most values of t, s̄(t) is close to µ◦ and F (t)
close to 0, or s

¯
(t) is close to µ◦ and F (t) close to 1. We now introduce a sub-regime of R4,

denoted R4a, which corresponds to the situations when F places sufficient probability mass
outside the interval (θ̄k′ , θ

¯k
′+1):

(R4): µ◦ /∈ ∪K
k=1Θ̄k and inf ∪K

k=1Θ̄k < µ◦ < sup∪K
k=1Θ̄k

(R4a): ∃θ′, θ′′ ∈ ∪K
k=1Θ̄k such that for any δ ∈ [0, 1] and any t ∈ Θ, the following

constraints hold: 0 ≤ δp(t, θ′) ≤ 1 and δp(t, θ′) + (1 − δ)p(t, θ′′) = 1, where p(t, θ) :=
(1−F (t))(s̄(t)−θ)

F (t)(θ−s
¯
(t))

, θ ∈ {θ′, θ′′}.

Proposition 3. Let θ′, θ′ ∈ ∪K
k=1Θ̄

′
k satisfy the conditions for (R4)-(R4a), and let λ =

δp(t, θ′) for some δ ∈ [0, 1], t ∈ Θ. Then V ∗
F,h = 1 and π∗

F,h = ⟨{1, 2}, {zθ}θ∈Θ⟩ with
zθ(1) = λI{θ ∈ [0, t]}+ δI{θ ∈ (t,M ]} and gθ(1) = (1−λ)I{θ ∈ [0, t]}+(1− δ)I{θ ∈ (t,M ]}.

Proof. The proof follows from construction. We can check that π∗
F,h induces Tπ∗

F,h
= {(λF (t)+

δ(1− F (t)), θ′), ((1− λ)F (t) + (1− δ)(1− F (t)), θ′′)} and from (9) we conclude that V ∗
F,h =

1.

The interval-based structure of the optimal mechanism π∗
F,h in R4a is illustrated in Fig. 5:

the mechanism is based on a threshold t which splits the statespace Θ into two disjoint
intervals, each corresponding to a signal distribution. Thus, the set of signal I = {1, 2}.
If θ ≤ t, π∗

F,h reveals signal 1 with probability λ and signal 2 with probability (1 − λ). If
θ > t, π∗

F,h reveals signal 1 with probability δ and signal 2 with probability (1 − δ). Thus,
for signal 1, the signal probability and induced posterior mean are λF (t) + δ(1− F (t)) and
θ′, respectively. Similarly, for signal 2, these quantities are (1 − λ)F (t) + (1 − δ)(1 − F (t))
and θ′′.

B.3 Proof of Lemma 4

For the discrete distribution, the optimization (see (6)) can be reformulated as:

V ∗
H,h = max

⟨{zθ}θ∈{νj}Nj=1
,I⟩

E[h(m(µi), θ
∗)]

= max
⟨{zθ}θ∈{νj}Nj=1

,I⟩

N∑
j=1

∑
s∈|I|

P{i = s, θ∗ = νj}h(m(µs), νj)

= max
⟨{zθ}θ∈{νj}Nj=1

,I⟩

N∑
j=1

∑
s∈|I|

pjzνj(s)h(m(µs), νj)
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Figure 5: The pdf for θ∗ and the intervals [θ
¯k
, θ̄k] (blue lines) satisfying conditions for (R4)-

(R4a). The set of probability distributions for signals 1 and 2 are denoted in blue and green
respectively; the induced posterior means µ1 and µ2 are marked as ⋆.

Analogous to Lemma 2, the objective value remains unchanged when any two signals s1, s2
with µs1 , µs2 ∈ [m−1(yk−1),m

−1(yk)) for any k ∈ [K] are consolidated to a signal s (µs1 ≤
µs ≤ µs2). Therefore, we define I = [K] with m−1(yi−1) ≤ µi < m−1(yi) for all i ∈ I.
Choosing the parameterization zji = pjzνj(i), we can rewrite the above optimization problem
as:

maximize
∑N

j=1

∑K
i=1 cjizji

subject to
∑K

i=1 zji = pj, j = 1, . . . , N
zji ≥ 0, j = 1, . . . , N, i = 1, . . . , K

m−1(yi−1)≤ µi =
∑N

j=1 νjzji∑N
j=1 zji

≤ m−1(yi), i = 1, . . . , K

Expanding the last inequalities we arrive at the specified linear program with optimal solution
π∗
H,h = ⟨I, {zθ}θ∈Θδ

⟩ where I = [K] and, for all i ∈ I and j ∈ [N ] setting zνj(i) = 0 if pj = 0

and zνj(i) =
z∗ji
pj
.

B.4 Proof of Theorem 2

To analyze π̂Fδ,hτ , we first note that by the Lipschitz continuity in y, ∥h(; θ) − hτ (; θ)∥∞ ≤
ϵ
4
for all θ ∈ Θ. Consequently, from Equation (6), this implies that for any signalling

mechanism π and distribution G, |VG,h(π) − VG,hτ (π)| ≤ ϵ
4
. Likewise, this implies that

|VG,hτ (π
∗
G,hτ

)−VG,h(π
∗
G,h)| ≤ ϵ

4
since the maximum operator contracts the difference between

feasible solutions.
To show ϵ-optimality of π̂Fδ,hτ , we need to consider four signaling mechanisms.

1. π∗
Fδ,hτ

= ⟨Iδ, {zδν}ν∈Θδ
⟩ is the optimal solution under the discrete distribution Fδ ob-

tained by solving LP(H,y, c) (Lemma 4) where yi =
2i−1
2τ

and cjk = h(yk; νj).

2. π̂Fδ,hτ = ⟨Iδ, {ẑθ}θ∈Θ⟩ such that for all j ∈ [N ], θ ∈ [νj−1, νj), and i ∈ Iδ, we have
ẑθ(i) := zδνj(i). That is, the signal distribution in the state νj for the discretized optimal
solution is applied to the entire corresponding interval of states in the continuous
extension of the mechanism π∗

Fδ,hτ
.
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3. π∗
F,h = ⟨I, {z∗θ}θ∈Θ⟩ is the unknown true optimal signaling mechanism. This will be

useful to bound the quality of π̂Fδ,h.

4. π′
F,h = ⟨I, {z′θ}θ∈Θδ⊆Θ⟩ is a discretized modification of π∗

F,h obtained by averaging the
signal distributions over intervals in Fδ as follows:

z′νj(i) =

∫ j
δ
j−1
δ

z∗θ(i)dF (θ)

pj
, ∀j ∈ [N ], i ∈ I. (18)

Observe that by the optimality of π∗
Fδ,hτ

:

VFδ,h(π
′
F,h)− VFδ,h(π

∗
Fδ,hτ

) ≤ ϵ

2
+ VFδ,hτ (π

′
F,h)− VFδ,hτ (π

∗
Fδ,hτ

)

≤ ϵ

2

Hence, :

VF,h(π
∗
F,h)− VF,h(π̂Fδ,hτ ) = VF,h(π

∗
F,h)− VFδ,h(π

∗
Fδ,h

) + VFδ,h(π
∗
Fδ,h

)− VF,h(π̂Fδ,hτ )

= VF,h(π
∗
F,h)− VFδ,h(π

′
F,h) + VFδ,h(π

′
F,h)− VFδ,h(π

∗
Fδ,hτ

) + VFδ,h(π
∗
Fδ,hτ

)− VF,h(π̂Fδ,hτ )

≤ VF,h(π
∗
F,h)− VFδ,h(π

′
F,h)︸ ︷︷ ︸

(i)

+VFδ,h(π
∗
Fδ,hτ

)− VF,h(π̂Fδ,hτ )︸ ︷︷ ︸
(ii)

+
ϵ

2
(19)

The term (i) is the loss due to averaging the true optimum’s signal distribution across each
discretized interval. The term (ii) represents the loss incurred by applying the discrete
optimum’s signal generation distribution across intervals. Following Def. 4, bounding each
of these terms by ϵ

4
is sufficient to ensure the ϵ-optimality of π̂Fδ,hτ .

Observe that in (i), both π∗
F,h and π′

F,h use an identical set of signals I; and in term (ii)
both π∗

Fδ,hτ
and π̂Fδ,hτ use Iδ. From the construction of π′

F,h (resp. π̂Fδ,hτ ) one can conclude
that for each signal i ∈ I (resp. i ∈ Iδ) the corresponding signal incidence probabilities q∗i
and q′i (resp. q̂i and qδi ) are equal across π∗

F,h and π′
F,h (resp. π∗

Fδ,hτ
and π̂Fδ,hτ ). Moreover,

we can conclude from Lemmas 8 and 9 that the impact of our chosen discretization scheme
on the posterior means induced by π∗

F,h and π′
F,h (i.e., µ∗

i and µ′
i for i ∈ I) can be controlled;

similarly for the posterior means induced by π∗
Fδ,hτ

and π̂Fδ,hτ (i.e., µδ
i and µ̂i for i ∈ Iδ).

We use these intermediate results to bound VF,h(π
∗
F,h)− VF,h(π̂Fδ,hτ ) (see (19)) for Lipschitz-

continuous models.

Lemma 7. If G is continuously differentiable with 0 < dG
dv

≤ κ, m(·) is Cκ-Lipschitz.

Proof. Recall that m(µ) := inf{u ≥ 0 : G−1(u) ≥ c1(u)µ + c2(u)} and, by assumption,
G is continuously differentiable and monotone so G−1 is continuous. Since c1, c2 are also
continuous:

m(µ) =


u G−1(u) = c1(u)µ+ c2(u), 0 < u < 1

0 G−1(0) ≥ c1(0)µ+ c2(0)

1 G−1(1) ≤ c1(1)µ+ c2(1)
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Suppose by contradiction the claim is false, then there exists 0 ≤ µ1 < µ2 ≤ M with
z2 := m(µ2), z1 := m(µ1) such that z2 − z1 > Cκ(µ2 − µ1). Since z1 > z2:

G−1(z1) ≥ c1(z1)µ1 + c2(z1)

G−1(z2) ≤ c1(z2)µ2 + c2(z2)

Therefore:

z1 ≥ G(c1(z1)µ1 + c2(z1))

z2 ≤ G(c1(z2)µ2 + c2(z2))

Observe that:

G(c1(z2)µ2 + c2(z2))−G(c1(z1)µ1 + c2(z1)) ≥ z2 − z1 > Cκ(µ2 − µ1)

However:

G(c1(z2)µ2 + c2(z2))−G(c1(z1)µ1 + c2(z1)) ≤ κ(c1(z2)µ2 + c2(z2)− c1(z1)µ1 − c2(z1))

≤ κ(c1(z2)µ2 + c2(z2)− c1(z1)µ1 − c2(z2))

≤ κ(c1(z2)µ2 − c1(z1)µ1)

≤ κ(c1(z2)µ2 − c1(z2)µ1)

≤ Cκ(µ2 − µ1)

This is a contradiction, hence m must be Cκ-Lipschitz.

Lemma 8. For any i ∈ I, q∗i = q′i and 0 ≤ µ∗
i − µ′

i ≤ 1
δ
.

Proof. For any i ∈ I, the discretization scheme and construction of z′νj implies that:

q′i =
N∑
j=1

Pθ∼Fδ
[θ = νj]z

′
νj
(i)

=
N∑
j=1

∫ j
δ

j−1
δ

dF (θ)

∫ j
δ
j−1
δ

z∗θ(i)dF (θ)∫ j
δ
j−1
δ

dF (θ)

=
N∑
j=1

∫ j
δ

j−1
δ

z∗θ(i)dF (θ) =

∫ M

0

z∗θ(i)dF (θ) = q∗i
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We now bound the difference between µ∗
i and µ̂i:

µ∗
i − µ′

i =

∫M

0
θz∗θ(i)dF (θ)∫M

0
z∗θ(i)dF (θ)

−
∫M

0
θz′θ(i)dFδ(θ)∫M

0
z′θ(i)dFδ(θ)

=

∫M

0
θz∗θ(i)dFδ(θ)

q∗i
−

∫M

0
θz′θ(i)dF (θ)

q′i

=
1

q∗i

(∫ M

0

θz∗θ(i)dF (θ)−
∫ M

0

θz′θ(i)dFδ(θ)
)

=
1

q∗i

( N∑
k=1

∫ k
δ

k−1
δ

θz∗θ(i)dF (θ)−
N∑
k=1

νkz
′
νk
(i)

∫ k
δ

k−1
δ

dF (θ)
)

=
1

q∗i

N∑
k=1

∫ k
δ

k−1
δ

(νk − θ)z∗θ(i)dF (θ)

By the discretization scheme, for all k, θ ∈ [k−1
δ
, k
δ
], we know that 0 < νk − θ ≤ 1

δ
:

0 ≤ 1

q∗i

N∑
k=1

∫ k
δ

k−1
δ

(νk − θ)z∗θ(i)dF (θ) ≤ 1

δq∗i

N∑
k=1

∫ k
δ

k−1
δ

z∗θ(i)dF (θ)

0 ≤ 1

q∗i

N∑
k=1

∫ k
δ

k−1
δ

(νk − θ)z∗θ(i)dF (θ) ≤ 1

δq∗i
q∗i

Therefore:

0 ≤ µ∗
i − µ′

i ≤
1

δ

Lemma 9. For any i ∈ Iδ, q
δ
i = q̂i and 0 ≤ µ̂i − µδ

i ≤ 1
δ
.

Proof. The proof is analogous to that of Lemma 8.

The proof proceeds in two parts - bounding terms (i) and (ii) from (19).
Using Lemma 7 and the conditions of the theorem, we can conclude that planner’s objective
function h(m(µi), θ

∗) is uniformly Cκη1-Lipschitz in µi. This is immediate by the conserva-
tion of Lipschitz continuity under composition.

We can now analyze (i):

VF,h(π
∗
F,h)− VFδ,h(π

′
F,h) = Eθ∗∼F,i∼z∗θ

[h(m(µi); θ
∗)]− Eθ′∼Fδ,i∼ẑθ′

[h(m(µ′
i); θ

′)]

=
∑
i∈I

∫
θ∈Θ

h(m(µi); θ)zθ(i)dF (θ)−
∑
i∈I

∑
ν∈Θδ

h(m(µ′
i); ν)pνzν(i)

=
∑
i∈I

N∑
k=1

(∫ k
δ

k−1
δ

h(m(µi); θ)zθ(i)dF (θ)−
∫ k

δ

k−1
δ

h(m(µ′
i); νk)zνk(i)dF (θ)

)
(18)
=

∑
i∈I

N∑
k=1

(∫ k
δ

k−1
δ

(
h(m(µi); θ)− h(m(µ′

i); νk)
)
zθ(i)dF (θ)

)
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By Lemma 8, since |νk − θ| < 1
δ
for all θ ∈ [k−1

δ
, k
δ
]:

≤
∑
i∈I

N∑
k=1

(∫ k
δ

k−1
δ

(
h(m(µi); νk)− h(m(µ′

i); νk) +
η2
δ

)
zθ(i)dF (θ)

)
≤

∑
i∈I

N∑
k=1

((Cκη1
δ

+
η2
δ

)
zθ(i)dF (θ)

)
=

Cκη1
δ

+
η2
δ

<
ϵ

4

We can analogously simplify expression (ii) using the same decomposition.

VFδ,h(π
∗
Fδ,hτ

)− VF,h(π̂Fδ,hτ ) = Eθ∗∼F,i∼z∗θ
[h(m(µi); θ

∗)]− Eθ′∼Fδ,i∼ẑθ′
[h(m(µ′

i); θ
′)]

=
∑
i∈I

∫
θ∈Θ

h(m(µi); θ)zθ(i)dF (θ)−
∑
i∈I

∑
ν∈Θδ

h(m(µ′
i); ν)pνzν(i)

=
∑
i∈I

N∑
k=1

(∫ k
δ

k−1
δ

h(m(µi); θ)zθ(i)dF (θ)−
∫ k

δ

k−1
δ

h(m(µ′
i); νk)zνk(i)dF (θ)

)
=

∑
i∈I

N∑
k=1

(∫ k
δ

k−1
δ

(
h(m(µi); θ)− h(m(µ′

i); νk)
)
zθ(i)dF (θ)

)
By Lemma 8 and Lemma 7 and since |νk − θ| < 1

δ
for all θ ∈ [k−1

δ
, k
δ
]:

≤
∑
i∈I

N∑
k=1

(∫ k
δ

k−1
δ

(
h(m(µi); νk)− h(m(µ′

i); νk) +
η2
δ

)
zθ(i)dF (θ)

)
≤

∑
i∈I

N∑
k=1

((Cκη1
δ

+
η2
δ

)
zθ(i)dF (θ)

)
=

Cκη1
δ

+
η2
δ

<
ϵ

4

Hence, returning to the general form, VF,h(π
∗
F,h)−VF,h(π̂Fδ,hτ ) ≤ ϵ and thus π̂Fδ,hτ is ϵ-optimal.

B.5 Infectious Cost Model

We justify the agent’s cost of being of infected (2) using a simple epidemiological model.
We refer to an activity-based model on a complete graph discussed in Hota and Gupta
(2021), Allen (2008). Specifically, consider a unit-mass of non-atomic agents over two periods
t ∈ {0, 1}, where each agent begins at t = 0 in one of the three possible states: susceptible
(S), asymptomatic (X) and symptomatic (Y ). In this model, both the asymptomatic and
symptomatic agents can transmit the disease. Denote the infectious state of each agent
i ∈ [0, 1] at time t by χi(t) ∈ {S,X, Y }. Assuming that the symptomatic individuals are
required to self-isolate, the remaining agents P := {i : χi(0) ̸= Y } are subject to the decision-
making process we consider in Sec. 2. Since the remaining agents in P cannot exactly
know their existing state, we assume that conditioned on χi(0) ̸= Y , each agent i ∈ P is
independently assigned χi(0) = S with probability p. Letting the action of agent i in period
t = 0 be ai ∈ {ℓS, ℓR}, the mass of agents working in person is m =

∫
i∈P I{ai = ℓS} and
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the mass of asymptomatic agents working in-person is mX =
∫
i∈P I{ai = ℓS}I{χi(0) = X}.

Given the risk of contracting disease from a single contact – what we refer to as the risk
parameter θ – any initially susceptible agent i with χi(0) = S and ai = ℓS transitions
to being infected in period t = 1 (i.e., χi(1) ∈ {X, Y }) with probability θmX for small
θ. Only susceptible agents will pay an incremental infectious cost as the remaining agents
were already infected. Specifically, agents i incur a cost γ if and only if χi(0) = S and
χi(1) ∈ {X, Y }. Hence, if ai = ℓR, agent i has no contact with other individuals and hence
the infection cost she fares in expectation is 0. On the other hand, if ai = ℓS, then agent i
pays an expected cost β(θ,m):

β(θ,m) = E[γI{χi(0) = S ∧ χi(1) ∈ {X, Y }}]
= γP[χi(0) = S]P[χi(1) ∈ {X, Y }}|χi(0) = S]

= γ(1− p)θE[mX ]

= γp(1− p)θm

This model suggests that an agent’s expected cost of infection has a linear dependence on θ
and the mass of agents working in-person m (which is 1−y in our setting). This is consistent
with the functional form of infectious costs in (2); in particular, when choosing c1(u) = 1−u
and c2(u) = 0. More generally, as the network structure underlying the infection dynamics
becomes specialized or other diseases become intermingled, the associated ci may be better
estimated through other functions that satisfy the assumptions we make on these terms. For
the purpose of numerical experiments in Sec. B.6, we consider β(θ, y) = θ(1− y).

B.6 Optimal signaling against No-Information and Full-Information
Benchmarks

Figure 6: Capacity compliance across non-informative, fully-informative and optimal signal-
ing.

We present a numerical example to compare the optimal signaling mechanism in The-
orem 1 with no-information and full-information benchmarks. Consider the planner’s set-
based preference Y = {y : y ≥ b}; i.e., the planner prefers that the mass of in-person agents
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(1 − y) is below a threshold capacity limit (1 − b) of the workplace facility. Let F be uni-
form on [5, 20] (µ◦ = 12.5) and G uniform on [0, 10]. The planner seeks to maximize the
probability that in-person mass complies with the capacity limit.
We vary b from 0 to 1 in increments of 0.05 and use 10,000 scenario runs for each b to
obtain the outcomes of optimal signaling mechanism and the two benchmarks. The results
are averaged across scenarios and shown in Fig. 6. The optimal signaling mechanism indeed
provides higher compliance relative to the two benchmarks, but the improvement reduces
as b ↗ 1 and as b ↘ 1. As b ↗ 1, the intersection between the outcomes achievable
in equilibrium and the ones preferred by the planner progressively reduces to 0, hence the
effectiveness of signaling in influencing agents decreases. On the other hand, as b ↘ 1 the
set of acceptable outcomes grows to encompass all outcomes, and the optimal signaling as
well as no- and full-information benchmarks approach full compliance. Thus, the value of
optimal signaling decreases as the planner’s set of acceptable outcomes grows.

B.7 State-dependent non-MPS mechanisms at optimality

Consider h(y, θ∗) = | θ∗
3
−y| with m(µ) = µ. Let F be uniform over [0, 1] (µ◦ = 0.5). Observe

h is uniformly 2-Lipschitz in both y and θ∗ over y, θ∗ ∈ [0, 1]. This example clarifies that
modifying the probability of generating signal i ∈ I when the state is θ (i.e. zθ(i)) is not
straightforward – any modification in the mechanism through the parameter zθ(i) to change
µi so that m(µi) = y∗π(i) moves away from θ can result in y∗π(i) moving toward θ′ for some
other state θ′ that also maps to i (i.e. zθ(i) > 0).
Thus, the planner may elect to generate signals in a way that forgoes some utility in some
realizations of the state θ∗ to generate posterior means that are more preferred for other
realizations of the state θ∗. This complicates the structure of the optimal signaling mech-
anisms. In particular, a monotone partitional structure no longer holds and the optimal
solution requires pooling of states from disconnected regions of the state-space.
To show this, consider any mechanism π satisfying MPS. Then there exists {tk}Kj=0 with
K ≥ 0, t0 = 0 and tK = 1 where π generates signal j ∈ [K] exactly when θ∗ ∈ [tj−1, tj].
Consequently, this mechanism induces a posterior mean µj =

tj−1+tj
2

for signal j. Hence the
objective attained by the planner using this mechanism is:

VF,h(π) = Eθ∗∼F,i∼zθ∗

[
h(y∗π(i); θ

∗)
]

(20)

= E
[
E[|θ

∗

3
− µj|

∣∣tj−1 ≤ θ∗ < tj]
]

(21)

For any j and for all θ∗ ∈ [tj−1, tj] observe that µj =
tj−1+tj

2
≥ tj

2
>

tj
3
≥ θ∗

3
, which implies

that | θ∗
3
− µj| = µj − θ∗

3
. Hence by tower rule and mean-preservation of the posteriors µj:

VF,h(π) = E
[
E[µj −

θ∗

3

∣∣tj−1 ≤ θ∗ < tj]
]

(22)

= E[µj]− E[
θ∗

3
] (23)

= µ◦ − 1

3
µ◦ =

1

3
(24)
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Hence, we have shown that every MPS mechanism achieves the same objective value of 1
3
.

Now consider the mechanism: πpool = ⟨I, {zθ}θ∈Θ⟩ where I = {1,2,3} and zθ(s) is as
follows:

zθ(·) =


1 w.p. 1 if θ ∈ S1 := [0, 0.25]

2 w.p. 1 if θ ∈ S2 := [0.25, 0.35] ∪ [0.95, 1]

3 w.p. 1 if θ ∈ S3 := [0, 1] \ {S1 ∪ S2}

The resulting posterior means are µ1 = 0.125, µ2 = 0.525 and µ3 = 0.65. Enumerating the
objective, πpool achieves an objective value of ≈ 0.4854, exceeding the performance of any
MPS-based mechanism.

B.8 Comparison with de Véricourt et al. (2021)

We first perform a direct comparison with the model studied in de Véricourt et al. (2021),
which corresponds to the following planner utility in our setting:

href(λ)(y; θ
∗) = λEv∼G[vI{v ≥ G−1(y)}]− (1− λ)θ∗(1− y)2.

Under the model they present, G ∼ Unif [0, 6] is the distribution of agent’s value of in-person
work, and continuous-valued state θ∗ ∼ Unif [0, 10] (in contrast to the binary-valued state
in de Véricourt et al. (2021). That is, planner’s expected utility is the expected gain of all
the agents who choose in-person work (i.e, Ev∼G[vI{v ≥ G−1(y)}]) net the total expected
disutility incurred by these agents in facing risk of disease transmission (θ∗(1 − y)2). The
weight λ ∈ [0, 1] captures the tradeoff between the two terms.
We do a direct comparison of our computational approach for approximating π∗

F,href(λ)
against

their closed-form optimal solution. Particularly, we replicate the preference model href(λ) of
de Véricourt et al. (2021) and consider a binary model of uncertainty θ∗ ∼ F̄ that takes value
θ∗ = 0 with probability 1

2
and θ∗ = 10 with probability 1

2
. We apply our numerical approach

to find approximate solutions for various levels of discretization when λ ∈ [0, 0.25, 0.5, 0.75, 1].
The results of de Véricourt et al. (2021) provide a closed form representation of π∗

F̄ ,href(λ)
and

show that full information πFI is optimal except when λ = 1. In this setting, observe our
algorithm need not discretize F̄ as it is already a discrete distribution. In Fig. 7, we plot the
error in the objective value achieved between using the computed signaling mechanism and
the true optimal signaling mechanism as we vary the discretization τ used in approximating
href(λ). As shown, our approach recovers a signaling mechanism with hardly any discretization
when the true optimum is full information disclosure. When λ = 1, the convergence is slower
– but still faster than the rate provided in Theorem 2. When the optimal signaling mechanism
is no longer fully-informative, the errors in the solution to the chosen linear program solution
z∗ji accumulate more heavily in the derived signaling mechanism as constructed in Lemma 4.
This occurs because the solutions z∗ji for partial-information disclosure mechanisms are no
longer as sparse as fully-informative or non-informative disclosure rules. In general, however,
our results do recover those of de Véricourt et al. (2021) and our rate of convergence beats
the theoretical bound we provide.
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