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Abstract

We study a market mechanism that sets edge prices to incentivize strategic agents

to organize trips that efficiently share limited network capacity. This market allows

agents to form groups to share trips, make decisions on departure times and route

choices, and make payments to cover edge prices and other costs. We develop a new

approach to analyze the existence and computation of market equilibrium, building on

theories of combinatorial auctions and dynamic network flows. Our approach tackles

the challenges in market equilibrium characterization arising from: (a) integer and

network constraints on the dynamic flow of trips in sharing limited edge capacity;

(b) heterogeneous and private preferences of strategic agents. We provide sufficient

conditions on the network topology and agents’ preferences that ensure the existence

and polynomial-time computation of market equilibrium. We identify a particular

market equilibrium that achieves maximum utilities for all agents, and is equivalent

to the outcome of the classical Vickery Clark Grove mechanism. Finally, we extend

our results to general networks with multiple populations and apply them to compute

dynamic tolls for efficient carpooling in San Francisco Bay Area.
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1 Introduction

Transportation and logistics networks often face losses from congestion caused by inefficient

use of limited capacity. One effective approach to improve resource utilization and reduce

costs is to incentivize users to share the network capacity by resource pooling. This can be

done through a market-based approach that sets appropriate prices for capacity usage at

specific times and locations. For example, setting edge toll prices for using road networks

can incentivize agents to organize carpooled trips, reduce the number of vehicles on the

road, and minimize congestion. Similarly, flexible and on-demand shipping applications can

optimize deliveries and routes, reducing the number of cargoes and the fleet size required.

By leveraging the complementarity between resource pooling and capacity-based pricing, we

can achieve substantial improvement in cost, time, and reducing environmental impacts for

transportation and logistics networks.

Our main contributions. The goal of this paper is to build a dynamic market mech-

anism that incentivizes strategic agents to share network capacities by forming groups and

share trips. We consider the setting with a discrete and finite time horizon. The transporta-

tion network has finite edge capacity, restricting the maximum number of trips that can

enter each edge at each time step. A trip is determined by the group of agents who share a

vehicle, the departure time, and the taken route. Agents have private and heterogeneous trip

preferences that incorporate their preferred latest arrival time, cost of late arrival, sensitivity

to travel time of the taken route, and the disutility of trip sharing that depends on the group

size.

Each trip, when entering an edge at a particular time, is charged with a price for occupy-

ing one unit capacity at that time step. The price of each edge is dynamic, and serves as the

“invisible hand” of the market that governs agents’ group formation and the spatiotemporal

distribution of demand of capacity – when the price of an edge increases, agents are more

incentivized to form groups to share trips and split the price or to change a route and a

departure time. Agents in each group make payments to cover the edge prices and other

trip costs.

A market equilibrium is defined as the trip organization, dynamic edge prices, and agent

payments that satisfy four important conditions: (i) individual rationality – all agents have

non-negative equilibrium utility; (ii) stability – no group of agents have incentive to deviate

from the equilibrium trips; (iii) budget balance – agents’ payments can cover the trip cost

and edge capacity prices; (iv) market clearing – prices are only charged on edges and time

steps such that the edge capacity is saturated. When equilibrium exists, the equilibrium

trip organization is feasible – the number of vehicles that enter each edge at each time step
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does not exceed the edge capacity, and socially optimal – maximizes the total value of all

organized trips (Ostrovsky and Schwarz [2019]).

Our main contributions include: (i) characterizing sufficient conditions (tractable scenar-

ios) under which market equilibrium is guaranteed to exist, and can be computed in poly-

nomial time (Sections 3 – 4); (ii) extending the results and algorithms beyond the tractable

scenarios to study organization of trip sharing markets in general networks with multiple

origin-destination pairs; (iii) using carpooling market as an example, we demonstrate the

applicability of our approach by computing the dynamic edge pricing (tolling) and carpool

trips for the San Francisco Bay area highway network (Section 5).

Our first step of analysis is to construct an integer program that solves the socially optimal

integer trip organization problem, and demonstrate that market equilibrium existence is

equivalent to zero integrality gap of the associated linear relaxation problem (Proposition 1).

This result converts the equilibrium existence problem to the existence of integer optimal

solution in the linearly relaxed program. However, such linear relaxation is not directly

useful even for computing the quasi- market equilibrium (i.e., equilibrium that drops integer

constraints or assumes a large market limit) due to its trip organization variables being

exponential in the number of agents and edges. Therefore, it is crucial to identify conditions

under which equilibrium computation is tractable, and provide efficient algorithms.

We develop a new approach for analyzing market equilibrium by leveraging ideas from

the dynamic network flow theory (Skutella [2009], Hoppe and Tardos [2000], Ruzika et al.

[2011]) and the theory of combinatorial auction (Kelso Jr and Crawford [1982], Gul and

Stacchetti [1999], De Vries and Vohra [2003], Leme [2017], Feldman et al. [2013]). This ap-

proach is natural for our setting since the trip organization involves determining the dynamic

flow of vehicles in the network, and incentivizing agents with heterogeneous preferences to

form group coalitions. The interesting aspect of this approach comes from the interaction

between the dynamic flow of vehicles and the trip sharing incentives – agents’ incentives of

forming groups are impacted by the departure time and taken route of the trip due to their

heterogeneous sensitivities of travel time and preferred latest arrival times.

We show that the sufficient conditions for market equilibrium existence include both

the condition on network topology – being series-parallel, and the condition on agents’

preferences – having homogeneous disutilities of sharing trips (Theorem 1). We demonstrate

(some level of) “tightness” of the two sufficient conditions by providing two simple counter

examples (Examples 1 and 2) that each violates one of the two conditions and market

equilibrium fails to exist. These conditions are not necessary conditions since any linear

programs may coincidentally have integer optimal solutions. We show in Sec. 4 that these

conditions also play a crucial role in developing polynomial-time algorithms for computing
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market equilibrium.

In our proof of Theorem 1, we show that in series-parallel networks, there exists an

optimal solution of the relaxed linear program such that the induced route flow is an earliest

arrival flow of the network, which takes integer value for each route and each departure

time. However, this property is no longer guaranteed for non series-parallel networks, which

leads to optimal trip flow being fractional. To see why the network topology condition plays

an important role in equilibrium existence, we notice that any trip that takes a certain route

utilizes a unit capacity of all edges on that route, and the edge price on one edge affects the

capacity utilization of all edges that share a route with it. Thus, both the trip organization

and edge prices are crucially influenced by the network structure.

Additionally, the homogeneous disutility of trip sharing condition stems from the coalition

formation. We show that forming groups with integer capacities is mathematically equivalent

to a Walrasian equilibrium in an auxiliary economy, with agents as ”indivisible goods” and

route capacity units as ”agents” with an augmented trip value function. The condition

of homogeneous disutility of trip sharing ensures that the augmented trip value function

satisfies the gross substitutes condition, even though the original value function does not.

Consequently, Walrasian equilibrium exists in the auxiliary economy (Gul and Stacchetti

[1999]), which can be turned into a market equilibrium in our setting.

Furthermore, we identify a particular market equilibrium such that the trip organization

and payment are identical to that of a Vickery Clark Grove mechanism. Interestingly, this

equilibrium also has the advantage of achieving the highest agent utilities among all market

equilibria, and only collecting the minimum total edge prices (Theorem 2). We also develop

a two-step polynomial-time algorithm to compute the market equilibrium. The design of our

algorithm builds on the proofs of Theorems 1 – 2: We first compute the equilibrium route flow

capacity as the earliest arrival flow in the series-parallel network using a greedy algorithm

(Algorithm 1). Then, we compute equilibrium groups given the route flow capacity as the

Walrasian equilibrium in the equivalent economy with augmented trip functions (Algorithm

3). In this algorithm, we develop an efficient way to iteratively compute the augmented

trip value functions, and build on the well-known Kelso-Crawford algorithm (Kelso Jr and

Crawford [1982]) that exploits the gross substitutes condition provided by the homogeneous

disutlities of trip sharing.

In Section 5, we extend our results to general networks with multiple origin-destination

pairs, and agents are separated into multiple populations with different disutility of sharing

trips. Building on Theorem 1, we show that market equilibrium still exists if capacity

prices are set on routes rather than edges, and each agent population is served in a separate

sub-market. Practically, different sub-markets correspond to customers with different trip
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flexibility and sharing preferences, and can be served with different departure frequencies

and by fleet of different sizes. Our two-step algorithms can be used to compute equilibrium

in each sub-market. The social welfare in equilibrium depends on how the edge capacities

are allocated across different sub-markets in each time step.

We show that the optimal allocation of network capacity across different sub-markets is

an NP hard problem even if the network is series-parallel (Proposition 3), and provide a lower

bound of integrality gap in Proposition 4. We formulate the socially optimal capacity allo-

cation problem as an integer program, and provide a branch and price algorithm (Algorithm

4). In each iteration of the algorithm, the polynomial-time computation of the sub-market

equilibrium again builds on Theorem 1 and the fact that agents in each sub-market have

identical disutilities of sharing trips.

Related literature: The paper Ostrovsky and Schwarz [2019] has proposed a compet-

itive market framework for sharing network capacity in the context of autonomous carpool-

ing. In this paper, authors defined the concept of market equilibrium in static settings, and

demonstrate that a market equilibrium (when exists) maximizes the social welfare. Our work

builds on Ostrovsky and Schwarz [2019] and extends to the dynamic setting, where agents’

preferences of trip organization depend on their latest arrival time, delay cost, sensitivity

to travel time, and disutilities of trip sharing. We further study the equilibrium existence,

computation, and demonstrate its applicability in real-world settings.

Market design approach has been widely adopted in many applications that involve net-

work constraints with limited capacity. Kelly [1997], Johari and Tsitsiklis [2004], Yang and

Hajek [2007], Jain and Walrand [2010] studied pricing and bandwidth sharing in communica-

tion networks with both price taking agents and price anticipating agents. In this application,

agents make payments to use a fraction of link capacity, and their utilities depend on the

allocated capacity and the price. Another important application of network market design

is spectrum auctions (Cramton [1998], Berry et al. [2010], Newman et al. [2017]). This line

of work concentrates on devising market mechanisms and auction procedures to tackle effi-

ciency and market-clearing challenges that arise from network constraints and externalities

among bidders. We consider a competitive market framework in our problem. Agents are

not allocated with or bidding for a certain fraction of capacity, but rather cooperatively form

coalitions to share a trip based on their heterogeneous preferences.

Our work is also related to the growing literature on the operations of mobility-on-

demand services and transportation marketplaces. In particular, the studies of the mobility-

on-demand services have focused on the spatial and temporal pricing (e.g. Banerjee et al.

[2015], Castillo et al. [2017], Bimpikis et al. [2019], Yan et al. [2020], Besbes et al. [2021],

Garg and Nazerzadeh [2022], Ma et al. [2022], Freund and van Ryzin [2021]), and dynamic
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matching (e.g. Ashlagi et al. [2019], Özkan and Ward [2020], Castro et al. [2021], Gurvich

and Ward [2015], Afeche et al. [2018], Feng et al. [2021], Hu and Zhou [2022]). Moreover,

recent literature has focused on the operations of carpooling services that include the study

of ride matching and route planning Alonso-Mora et al. [2017], Santi et al. [2014], Stiglic

et al. [2015], Ashlagi et al. [2019], Pavone et al. [2022], Lobel and Martin [2020], Taylor [2023],

Zhang et al. [2023], and pricing Hu et al. [2020], Jacob and Roet-Green [2021], Zhang and

Nie [2021]. A key challenge in ride-hailing market problems comes from the two-sided nature

of matching between agents (demand) and drivers (supply), and prices are set on services

for balancing the incentives of both sides. Our paper departs from this line of literature by

focusing on setting prices on the limited physical network capacity rather than the services

directly. How the capacity price is split as payments of each agent (which can be viewed as

the price of service (trip) that they receive) depends on agents’ heterogeneous preferences

of various factors such as value of time, preferred arrival time, and their sensitivity to trip

sharing. As a result, the key challenge of our analysis arises from analyzing how the prices

impact the group formation among agents with heterogeneous preferences under physical

constraints imposed by car size, edge capacity, and network structure, not the matching

between riders and drivers.

2 A Market Model

2.1 Network, Agents, and Trips

A finite set of agents m = 1, . . . ,M organize trips in a network at discrete time steps

t ∈ {1, 2, . . . , T}. We model the network as a directed graph. We present our main results

for networks with single origin-destination pair, and provide extensions to general networks

in Section 5. The set of edges in the network is E. The capacity of each edge e ∈ E is a

positive integer qe ∈ N+ that represents the maximum number of trips that can enter the

edge at each time step t. The set of routes is R, where each route r ∈ R is a sequence of

edges that form a directed path from the origin to the destination. We denote the travel

time of each edge e as de > 0, and the travel time of each route r as dr =
∑

e∈r de.

A trip is defined as a tuple (z, b, r), where z ∈ {1, 2, . . . , T} is the departure time at the

origin, b ∈ B
∆
=
{
2M | |b| ≤ A

}
is a group of agents who share the trip with maximum group

size of A, and r ∈ R is the route that the trip takes. A trip is feasible if the arrival time at
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the destination is before time T . The set of all feasible trips is given by:

Trip
∆
=

{
(z, b, r)

∣∣∣∣∣ z = 1, 2, . . . T, r ∈ R,

z + dr ≤ T, b ∈ B

}
. (1)

For each agent m ∈M , the value of a trip (z, b, r) such that b ∋ m is given by:

vzm,r(b) = αm − βmdr − πm(|b|)− γm(|b|)dr − ℓm((z + dr − θm)+). (2)

where

- αm is agent m’s value of arriving at the destination.

- βm is agent m’s value of time. When taking route r, the disutility of spending time dr

is βmdr.

- πm(|b|)+γm(|b|)dr is agentm’s disutility of sharing a trip with size |b|, and the disutility

is linear in the time cost dr.

- ℓm((z + dr − θm)+) is agent m’s cost of delay, where θm is agent m’s preferred latest

arriving time, and (z + dr − θm)+ = max{z + dr − θm, 0} is the time of agent m being

late. The function ℓm : R≥0 → R≥0 can be any non-decreasing function, and ℓm(0) = 0

for all m ∈M .

We note that the disutility of sharing a trip only depends on the group size |b| rather than
the identify of agents in the group. We consider that πm(|b|), γm(|b|) ≥ 0 for all |b| = 1, . . . , A,

and the disutility of sharing a trip is zero for any solo trip, i.e. πm(1), γm(1) = 0 for all

m ∈ M . That is, agents prefer to take solo trips rather than sharing with others, and

the disutility increases with the travel time. Additionally, we assume that the marginal

disutilities πm(|b| + 1) − πm(|b|) and γm(|b| + 1) − γm(|b|) are non-decreasing in the group

size |b| for all |b| = 1, . . . , A−1. Therefore, disutilities of all agents are non-decreasing in the

group size, and the extra disutility of adding one agent to any trip (z, b, r) is non-decreasing

in the group size |b|.
The cost of a trip with group b and route r equals to cr(b) = (σ + δdr) |b|. The cost is

non-negative, and increases with the trip time, i.e. σ, δ ≥ 0. The total value of each trip

(z, b, r) is the summation of the trip values for all agents in b net the trip cost:

V z
r (b) =

∑
m∈b

vzm,r(b)− cr(b). (3)
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2.2 Competitive market equilibrium

We represent the market outcome by the tuple (x, p, τ), where x is the trip organization

vector, p = (pm)m∈M is the payment vector, where pm is the payment charged from agent

m, and τ = (τ te)e∈E,t=1,...,T ∈ R|E|×T
≥0 is the edge price vector, where τ te is the edge price for a

trip that enters edge e at time t. Given the edge price vector τ , the price for a trip (z, b, r)

equals to
∑

e∈r τ
z+dr,e
e , where dr,e is the time cost from the origin to the beginning of edge e

along the route r, and τ
z+dr,e
e is the price of edge e when the vehicle enters the edge at time

z + dr,e. The trip organization vector is x = (xz
r(b))(z,r,b)∈Trip ∈ {0, 1}|Trip|, where xz

r(b) = 1

if trip (z, b, r) is organized and xz
r(b) = 0 if otherwise. A feasible trip vector x must satisfy

the following constraints:∑
(z,r,b)∈{Trip|b∋m}

xz
r(b) ≤ 1, ∀m ∈M, (4a)

∑
(z,r,b)∈Trip

xt−dr,e
r (b) ≤ qe, ∀e ∈ E, ∀t = 1, . . . , T, (4b)

xz
r(b) ∈ {0, 1}, ∀(z, r, b) ∈ Trip. (4c)

where (4a) ensures that no agent takes more than 1 trip, and (4b) ensures that the total

number of trips that enter any edge e ∈ E at any time t does not exceed the edge capacity

qe.

Given any (x, p, τ), the utility of each agent m ∈ M equals to the value of the trip that

m takes minus the payment:

um =
∑

(z,r,b)∈{Trip|b∋m}

vzm,r(b)x
z
r(b)− pm, ∀m ∈M. (5)

We define the market equilibrium as an outcome (x∗, p∗, τ ∗) that satisfies four properties

– individual rationality, stability, budget balance, and market clearing.

Definition 1. A market outcome (x∗, p∗, τ ∗) is an equilibrium if it satisfies

1. Individually rationality: All agents’ utilities u∗ as in (5) are non-negative, i.e.

u∗
m ≥ 0, ∀m ∈M. (6)

2. Stability: No agent group in B can gain higher total utility by organizing a different
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trip: ∑
m∈b

u∗
m ≥ V z

r (b)−
∑
e∈r

τ z+dr,e∗
e , ∀(z, r, b) ∈ Trip. (7)

3. Budget balance: The total payments of each organized trip equals to the sum of the

edge prices and the cost of the trip. An agent’s payment is zero if they are not part of

any organized trip:

xz∗
r (b) = 1, ⇒

∑
m∈b

p∗m =
∑
e∈r

τ z+dr,e∗
e + cr(b), ∀(z, r, b) ∈ Trip, (8a)

xz∗
r (b) = 0, ∀(z, r, b) ∈ {Trip|b ∋ m}, ⇒ p∗m = 0, ∀m ∈M. (8b)

4. Market clearing: For any edge e ∈ E and any time t = 1, . . . , T , the edge price τ t∗e is

zero when the number of trips entering edge e at time t is below the edge capacity:∑
(z,r,b)∈{Trip|r∋e}

xt−dr,e∗
r (b) < qe, ⇒ τ t∗e = 0, ∀e ∈ E, ∀t = 1, . . . , T. (9)

In Definition 1, individual rationality condition (6) prevents agents from opting out of

the market. The stability condition in (7) ensures that the total utility
∑

m∈b u
∗
m for any

group b induced by the market equilibrium (x∗, p∗, τ ∗) is higher or equal to the maximum

total utility that can be obtained by b taking any feasible trip (z, b, r), which is the trip

value V z
r (b) minus the edge prices

∑
e∈r τ

z+dr,e∗
e . Thus, agents have no incentive to form

another trip not in the equilibrium. The individual rationality condition and the stability

condition together guarantee that agents will follow the equilibrium trip organization. The

budget balance condition guarantees that the payments cover edge prices and trip costs,

while market clearing ensures that non-zero equilibrium edge prices only on fully utilized

edges and time stages.

2.3 Primal and Dual Formulations

The following integer program solves the socially optimal trip vector that maximizes the

total social welfare S(x) of all organized trips:

max
x

S(x) =
∑

(z,r,b)∈Trip

V z
r (b)x

z
r(b), s.t. x satisfies (4a) – (4c). (IP)
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We introduce the linear relaxation of (IP) as the primal linear program:

max
x

S(x) =
∑

(z,r,b)∈Trip

V z
r (b)x

z
r(b),

s.t.
∑

(z,r,b)∈{Trip|b∋m}

xz
r(b) ≤ 1, ∀m ∈M, (LP.a)

∑
(z,r,b)∈{Trip}

xt−dr,e
r (b) ≤ qe, ∀e ∈ E, ∀t = 1, . . . , T, (LP.b)

xz
r(b) ≥ 0, ∀(z, r, b) ∈ Trip. (LP.c)

Note that the constraint xz
r(b) ≤ 1 is implicitly included in (LP.a), and thus is omitted.

By introducing dual variables u = (um)m∈M for constraints (LP.a) and τ = (τ te)e∈E,t=1,...,T

for constraints (LP.b), the dual of (LP) can be written as follows:

min
u,τ

U(u, τ) =
∑
m∈M

um +
T∑
t=1

∑
e∈E

qeτ
t
e,

s.t.
∑
m∈b

um +
∑
e∈r

τ z+dr,e
e ≥ V z

r (b), ∀(z, r, b) ∈ Trip, (D.a)

um ≥ 0, τ te ≥ 0, ∀m ∈M, ∀e ∈ E, ∀t = 1, . . . , T. (D.b)

The dual variables u = (um)m∈M and τ = (τ ze )e∈E,z=1,...,T can be viewed as agents’ utilities

and the edge prices, respectively. In (D), the objective U(u, τ) equals the sum of all agents’

utilities and the total collected edge prices, and (D.a) is the same as the stability condition

in (7).

Proposition 1. A market equilibrium (x∗, p∗, τ ∗) exists if and only if (LP) has an optimal

integer solution. Any optimal integer solution x∗ of (LP) is an equilibrium trip vector, and

any optimal solution (u∗, τ ∗) of (D) is an equilibrium utility vector and an equilibrium edge

price vector. The equilibrium payment vector p∗ is given by:

p∗m =
∑
r∈R

T∑
z=1

∑
b∋m

x∗
r(b)v

z
m,r(b)− u∗

m, ∀m ∈M. (12)

The primal-dual formulation in Proposition 1 enables us to convert the market equilib-

rium existence problem to the existence of integer optimal solution in (LP). In the proof

of Proposition 1, we show that the four properties of market equilibrium – individual ra-

tionality, stability, budget balance, and market clearing – are equivalent to the feasibility

constraints and the complementary slackness conditions in (LP) and (D). Following from

10



strong duality, a market equilibrium exists if and only if the optimality gap between the

linear relaxation (LP) and the integer problem (IP) is zero. That is, the existence of market

equilibrium is equivalent to the existence of integer optimal solutions in (LP).

Even if we ignore the integer constraints, the linear programs (LP) and (D) cannot be

directly used to compute market equilibrium because the primal (resp. dual) program has

exponential number of variables (resp. constraints). Moreover, the integrality gap of (LP)

can be significant as we will show by examples in Section 3 and by the bound of the integrality

gap in Section 5. When (LP) does not have an integral solution, Proposition 1 indicates that

even if (IP) is solved, there does not exists an edge price vector and a payment vector to

implement the optimal trip organization so that agents are willing to take those trips.

In Sections 3 – 4, we provide conditions that guarantee the existence and tractability of

integer solution in (LP), and provide a polynomial time algorithm to compute the market

equilibrium. We extend the results of the tractable case to general networks with multiple

origin-destination pairs in Section 5.

3 Existence and properties of market equilibrium

In Sec. 3.1, we characterize sufficient conditions that guarantee market equilibrium existence.

In Sec. 3.2, we identify a market equilibrium that is equivalent to the outcome of the classical

Vickery Clark Groves mechanism, and this equilibrium achieves the maximum utility of each

player among all market equilibria.

3.1 Sufficient conditions for equilibrium existence

In this section, we characterize the sufficient conditions on network topology and trip val-

ues under which there exists a market equilibrium. Before we present the results, we first

introduce the definition of series-parallel network:

Definition 2 (Series-Parallel (SP) Network Milchtaich [2006]). A network is series-parallel

if it is constructed by connecting two series-parallel networks either in series or in parallel for

finitely many iterations. Equivalently, a network is series-parallel if and only if a wheatstone

structure as Figure 1 is not embedded.

Theorem 1. Market equilibrium (x∗, p∗, τ ∗) exists if the network is series-parallel, and agents

have homogeneous disutilities of trip sharing, i.e.

πm(d) = π(d), γm(d) = γ(d), ∀d = 1, . . . , A, ∀m ∈M. (13)
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Figure 1: Wheatstone network

Theorem 1 shows that the sufficient condition for equilibrium existence includes both

the condition on network topology – being series-parallel– and the condition on trip sharing

disutiliy parameters – being identical. We note that the homogeneous trip sharing distulity

condition still allows agents to have heterogeneous trip values – agents can have different

values of arriving at the destination αm, value of times βm, preferred latest arrival times θm,

and late-arrival costs ℓm.

We next provide two counterexamples, where market equilibrium does not exist when

either one of the two sufficient conditions in Theorem 1 does not hold.

Example 1. Consider the wheatstone network as in Figure 1. The capacity of each edge in

the set {e1, e2, e3, e4} is 1, and the capacity of edge e5 is 4. The travel time of each edge is

given by d1 = 1, d2 = 2, d3 = 2, d4 = 1, and d5 = 0.2.

The maximum capacity of vehicle is A = 2. Three agents m = 1, 2, 3 travel on this

network. agents have identical preference parameters: value of trip αm = 6, value of time

βm = 1, zero trip sharing disutility, i.e. πm(|b|) = 0 and γm(|b|) = 0 for any |b| = 1, 2 and

any m ∈ M . The latest arrival time for all agents is 4, and the delay cost of arriving after

t = 4 is infinity. For simplicity, we set the trip cost parameters as zero in this example, i.e.

σ = 0, δ = 0.

We note that any trip that departs at time z ≥ 2 has zero value since the arrival time

is later than 4. Thus, we only need to consider trips with z = 1. We define route e1-e2 as

r1, e1-e5-e4 as r2, and e3-e4 as r3. Trip values are: V 1
1 (m) = V 1

3 (m) = 3, and V 1
2 (m) = 3.8

for all m ∈ M ; V 1
1 (m,m′) = V 1

3 (m,m′) = 6, and V 1
2 (m,m′) = 7.6 for all m,m′ ∈ M . The

unique optimal solution of the linear program (LP) is x1∗
1 (1, 2) = x1∗

2 (2, 3) = x1∗
3 (1, 3) = 0.5,

and S(x∗) = 9.8. That is, (LP) does not have an integer optimal solution, and market

equilibrium does not exist (Proposition 1).

Example 2. Consider a network with two parallel edges e1, e2. Both edges have a capacity

of 1 and a travel time of d1 = d2 = 1. The maximum capacity of a vehicle is A = 6.

Twelve agents travel on this network; the latest arrival time for all agents is 3, and the delay

cost of arriving after t = 3 is infinity. Furthermore γm(|b|) = 0 for any |b| = 1, 2, 3, 4, 5, 6,
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and any m ∈ M . Agents 1, 2, . . . , 6 have the following preference parameters: the value of

arriving at the destination αm = 50, value of time βm = 1/6, and disutility of trip sharing

is πm(|b|) = 0.25(|b| − 1) for |b| ≤ 5, and 0.5(n − 1) for |b| = 6. Agents 7, 8, . . . , 12 have a

value of arriving at the destination αm = 100, βm = 0.5, and their disutility of trip sharing

is πm(|b|) = 2(|b| − 1) if |b| ≤ 4 and infinity otherwise.

The optimal solution to the LP-relaxation is x1
e1
({1, 2, 3, 4, 5, 6}) = 0.5, x1

e1
({9, 10, 11, 12}) =

0.5, x1
e2
({7, 8, 10, 12}) = 0.5, x1

e2
({7, 8, 9, 11}) = 0.5. This solution has a value of 662.5. The

optimal integer solution schedules the trip {1, 2, 3, 4, 5, 6} at time 1 on e1, and {9, 10, 11, 12}
at time 1 on e2; this solution has value of 621 < 662.5. This indicates that the LP relaxation

does not have an integer optimal solution, and thus market equilibrium does not exist.

Theorem 1 indicates that the network topology plays a crucial role in the stability and

efficiency of resource sharing in the market. Although most road networks in practice are

not series-parallel, services and operations such as carpool lanes and shipment routes are

often set on a subset of routes that have a much simpler network topology. Moreover, the

condition of identical disutility of trip sharing indicates that agents with different trip sharing

disutilities should be separated into different markets. In Section 4, we further show that the

homogeneous disutility condition is a necessary condition for polynomial time computation

of market equilibrium.

The two sufficient conditions in Theorem 1 provide valuable insights for designing the

trip market in general networks with multiple origin-destination pairs and agent populations

with heterogeneous trip sharing disutilities. As we will show in more details in Section 5,

the market design in the general setting involves first creating separate market for each

population that has the same origin-destination pair and the same trip sharing disutility,

then allocating edge capacities to each sub-market, where equilibrium is guaranteed to exist.

For the rest of this section, we present the proof sketch of Theorem 1. The complete

proof is included in Section C.

Proof sketch. The proof of Theorem 1 is built on ideas from the theory of earlist arrival

network flow problem (Skutella [2009], Hoppe and Tardos [2000], Ruzika et al. [2011]) and

the combinatorial auction theory (Kelso Jr and Crawford [1982], Gul and Stacchetti [1999]).

Recall from Proposition 1 that showing the existence of market equilibrium is equivalent to

proving that (LP) has an integer optimal solution. In step 1 of the theorem proof, we show

that when network is series-parallel, there exists an optimal solution of (LP) such that the

total flow of trips that take each route in each time step is integer, and such flow vector

can be computed as the earliest arrival flow of the network. In step 2, we show that with
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homogeneous trip sharing disutilites, the optimal trip sharing group formation that satisfies

the constructed flow constraints in step 1 is also integer.

Step 1. We construct a dynamic flow capacity vector k∗ = (kz∗
r )r∈R,z=1,...,T that sets capacity

w∗
r of taking route r at each feasible time step z:

kz∗
r = w∗

r , ∀r ∈ R, ∀z = 1, 2, . . . , T − dr. (14)

where w∗ = (w∗
r)r∈R is computed by the greedy Algorithm 1 that allocates edge capacity

(qe)e∈E to routes in increasing order of travel time. In this algorithm, we begin with com-

puting a shortest route rmin with travel time dmin, and sets its capacity to be the maximum

possible capacity w∗
rmin

= mine∈rmin
qe. Then, we reduce the residual capacity of each edge

on rmin by w∗
rmin

, and repeat this process until there exists no route with positive residual

capacity in the network. The dynamic flow capacity vector k∗ is the temporally repeated flow

that allocates w∗
r capacity to route r for every feasible departure time z = 1, 2, . . . , T − dr.

We denote R∗ = {R|w∗
r > 0} as the set of routes with positive flow capacity.

ALGORITHM 1: Greedy algorithm for computing static route capacity w∗

Initialize: Set Ẽ ← E; q̃e ← qe, ∀e ∈ Ẽ; w∗
r ← 0, ∀r ∈ R;

(dmin, rmin)← ShortestRoute(Ẽ);
while dmin <∞ do

w∗
rmin
← mine∈rmin

q̃e;
for e ∈ rmin do

q̃e ← q̃e − w∗
rmin

;
if q̃e = 0 then

Ẽ ← Ẽ \ {e};
end

end

(dmin, rmin)← ShortestRoute(Ẽ);

end
Return w∗

We consider another socially optimal trip organization problem (LPk∗), where trips sat-

isfy the capacity constraints according to k∗. Problem (LPk∗) is more restrictive than the

original problem (LP), as trip vectors satisfying capacity constraints in (LPk∗.b) must also

meet the original network capacity constraint (LP.b), but not necessarily vice versa. Lemma

1 demonstrates that for series-parallel networks, an optimal solution of (LPk∗) also optimizes

the original problem (LP).

Lemma 1. If the network is series-parallel, then any optimal solution of (LPk∗) is an
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optimal solution of (LP):

max
x

S(x) =
∑

(z,r,b)∈Trip

V z
r (b)x

z
r(b)

s.t.
∑

(z,r,b)∈{Trip|b∋m}

xz
r(b) ≤ 1, ∀m ∈M, (LPk∗.a)

∑
b∈B

xz
r(b) ≤ kz∗

r , ∀r ∈ R, ∀z = 1, . . . , T − dr, (LPk∗.b)

xz
r(b) ≥ 0, ∀b ∈ B, ∀r ∈ R, ∀z = 1, 2, . . . , T. (LPk∗.c)

We prove Lemma 1 by construction. We show that on a series-parallel network, for any

feasible solution x of (LP) on a series-parallel network, we can construct another trip vector

x̂ satisfying S(x̂) ≥ S(x) and feasibility in (LPk∗). Optimal values of (LPk∗) and (LP) are

equal, making any optimal solution of (LPk∗) optimal in (LP).

The key step of the proof is to construct such x̂ by redistributing flow of agent groups

in x, ensuring no group has later arrival time in x̂ compared to x and that agent groups

with higher time sensitivity are prioritized for shorter routes. The series-parallel network

condition is used to show that the temporally repeated flow k∗ as in (14) is the earliest arrival

flow in series-parallel networks (Lemma 8 in Appendix C). Thus, x̂ has the same total flow

of each b as in x, and the flow arriving before each time step t given x̂ is no less than that in

x. We also prove, using mathematical induction, that x̂ has higher social welfare compared

to x (i.e. S(x̂) ≥ S(x)) when the network is series-parallel: If the inequality holds on any

two series-parallel networks, then it also holds on the network constructed by connecting the

two sub-networks in series or in parallel.

Part 2. In this part, we show that when agents have homogeneous trip sharing disutilities,

(LPk∗) has an integer optimal solution. Following from Lemma 1 in part 1, we know that

this solution is also an optimal integer solution of (LP), and thus conclude Theorem 1. In

this step, we need to introduce the definitions of monotonicity and gross substitutes.

Definition 3 (Monotonicity). A function f : B → R is monotone if f(b∪b′) ≥ f(b), ∀b, b′ ∈
B.

The value of a monotonic function f increases as the set b increases.

Definition 4 (Gross Substitutes Reijnierse et al. [2002]). A function f : B → R satisfies

the gross substitutes condition if

(i) ∀b, b′ ⊆ B such that b ⊆ b′ and any i ∈ M \ b′, f(i|b′) ≤ f(i|b), where f(i|b) = f(b ∪
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{i})− f(b).

(ii) ∀b ∈ B and i, j, k ∈M \b, f(i, j|b)+f(k|b) ≤ max {f(i|b) + f(j, k|b), f(j|b) + f(i, k|b)}.

We note that the trip value function V z
r (b) defined on the feasible agent group set B in

(3) does not satisfy the monotonicity condition because the size of the combined group b∪ b′

may exceed the capacity limit A and the value V z
r (b ∪ b′) may be less than V z

r (b) when the

trip sharing disutility is sufficiently high. We denote all agent groups (with sizes both within

the vehicle capacity A or larger than A) as B̄
∆
= 2M . Then, we define augmented trip set

Trip to include trips with any agent group in B̄, and define the augmented value function

V̄ : Trip → R, where V̄ z
r (b̄) takes the maximum value of a feasible trip V z

r (b) with agent

group b ⊆ b̄. We denote the feasible agent group in b̄ that achieves this maximum value as

the representative agent group hz
r(b̄):

V̄ z
r (b̄)

∆
= max

b⊆b̄, b∈B
V z
r (b), hz

r(b̄)
∆
= arg max

b⊆b̄, b∈B
V z
r (b), ∀(b̄, z, r) ∈ Trip. (16)

The augmented value function V̄ satisfies the monotonicity condition. When all agents

have homogeneous trip sharing disutilities, V̄ also satisfies the gross substitutes condition. 1

Lemma 2. For any r ∈ R and any z = 1, . . . , T − dr, the augmented value function V̄ z
r is

monotone. Additionally, V̄ z
r satisfies the gross substitutes condition for all r ∈ R and all z

if agents have homogeneous trip sharing disutilities.

By replacing the original trip value function V with the augmented value function V̄ in

(LPk∗), we show that the corresponding linear program has an optimal integer solution x̄∗

when V̄ satisfies the monotonicity and gross substitutes conditions. Furthermore, we show

that we can construct an integer optimal solution x∗ of the original (LPk∗) by replacing the

augmented agent group with the represented agent group in all organized trips in x̄∗.

1We show that when agents have heterogeneous trip sharing disutilities, the augmented value function
may not be gross substitutes. Consider three agents m = 1, 2, 3 and a single route r with dr = 10. The latest
arrival time for all agents is T = 11, and the delay cost is infinity. Thus, we only consider trips with departure
time at z = 1. The maximum capacity of vehicle is A = 2. The preference parameters of agents are α1 = α2 =
α3 = 100, β1 = β2 = 6, β3 = 4, π1(2) = π2(2) = π3(2) = 0, γ1(2) = γ2(2) = 0, and γ3(2) = 3. That is, the
trip sharing disutilities are heterogeneous. We compute the value function of trips as V 1

r ({1}) = V 1
r ({2}) =

40, V 1
r ({3}) = 70, V 1

r ({1, 2}) = 80, V 1
r ({1, 3}) = V 1

r ({2, 3}) = 70. The augmented trip value function is
given by V̄ 1

r (b̄) = Vr(b) for any |b̄| ≤ 2, and V̄ 1
r ({1, 2, 3}) = V 1

r ({1, 2}) = 80. We can check that V̄ 1
r ({1}) +

V̄ 1
r ({2, 3}) = 110, V̄ 1

r ({2}) + V̄ 1
r ({1, 3}) = 110, and V̄ 1

r ({3}) + V̄ 1
r ({1, 2}) = 150. The gross substitutes

condition (ii) is violated because V̄ 1
r ({3})+ V̄ 1

r ({1, 2}) > max
{
V̄ 1
r ({1}) + V̄ 1

r ({2, 3}), V̄ 1
r ({2}) + V̄ 1

r ({1, 3})
}
.

We will show in Section 4 that gross substitutes condition is not only crucial for the equilibrium existence,
but also important to guarantee that equilibrium can be computed in polynomial time.
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Lemma 3. The following linear program has an optimal integer solution x̄∗ =
(
x̄z∗
r (b̄)

)
(b̄,z,r)∈Trip

if the augmented value function V̄ satisfies monotonicity and gross substitutes:

max
x̄

S(x̄) =
∑

(b̄,z,r)∈Trip

V̄ z
r (b̄)x̄

z
r(b̄),

s.t.
∑

(b̄,z,r)∈{Trip|b̄∋m}

x̄z
r(b̄) ≤ 1, ∀m ∈M, (LPk∗.a)

∑
b̄∈B̄

x̄z
r(b̄) ≤ kz∗

r , ∀r ∈ R, ∀z = 1, . . . , T − dr, (LPk∗.b)

x̄z
r(b̄) ≥ 0, ∀b̄ ∈ B̄, ∀(b̄, z, r) ∈ Trip. (LPk∗.c)

Furthermore, given an optimal integer solution x̄∗, any x∗ that satisfies the following

constraints is an optimal integer solution of (LPk∗):∑
b∈hz

r(b̄)

xz∗
r (b) = x̄z∗

r (b̄), xz∗
r (b) ∈ {0, 1}, ∀(b, z, r) ∈ Trip, ∀(b̄, z, r) ∈ Trip. (18a)

To prove that (LPk∗) has an integer optimal solution, we view each unit capacity of

departing at time t and taking route r as a “slot”. Thus, given k∗, there are |Lz
r| = kz∗

r = w∗
r

number of slots for each r ∈ R∗ and each z = 1, 2, . . . , T − dr. The total number of slots is

|L| =
∑

r∈R w∗
r · (T − dr). We demonstrate that the agent assignment problem is equivalent

to the good allocation problem in an auxiliary economy, where agents are indivisible goods

and slots are buyers. Following a similar primal and dual analysis as in Proposition 1, we

show that the existence of an integer solution in (LPk∗) is equivalent to the existence of

Walrasian equilibrium (Kelso Jr and Crawford [1982], see Definition 5 in Appendix C) of

our constructed economy. With monotonicity and gross substitutes conditions satisfied, the

Walrasian equilibrium exists, and (LPk∗) has an integer optimal solution x̄∗. Consequently,

x∗ in (18) is an integer optimal solution of (LPk∗) and, by Lemma 1, also of (LP), concluding

the proof of Theorem 1.

3.2 Equivalence to VCG mechanism

In this section, we identify a particular market equilibrium (x∗, u†, τ †) that induces the same

outcome as the classical Vickery-Clark-Grove (VCG) mechanism. We show that the u†

achieves the maximum utility for all agents and τ † charges the minimum total edge prices

among the set of equilibrium (u∗, τ ∗). Throughout this section, we assume that the network is

series-parallel and agents have homogeneous sharing disutilities, and thus market equilibrium
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exists following Theorem 1.

A Vickery-Clark-Grove (VCG) mechanism is defined as (x∗, p†), where x∗ is a socially

optimal trip organization vector, and payment p†m of each agent m ∈ M is the difference of

the total trip values for all other agents given the socially optimal trip organization with and

without agent m:

p†m = S−m(x
∗
−m)− S−m(x

∗), ∀m ∈M, (19)

where x∗
−m is the optimal trip vector with agent set M \ {m}. The optimal social welfare

with x∗
−m is S−m(x

∗
−m) given by (IP), and S−m(x

∗) = S(x∗)−
∑

(z,r,b)∈{Trip|b∋m} v
z
m,r(b)x

z∗
r (b)

is the social welfare for agents M \ {m} with the original optimal trip vector x∗. Given x∗

and p†, the utility of each agent m ∈ M is the difference of the optimal social welfare with

and without m:

u†
m

(5)
=

∑
(z,r,b)∈{Trip|b∋m}

vzm,r(b)x
z∗
r (b)− p†m

(19)
= S(x∗)− S−m(x

∗
−m), ∀m ∈M. (20)

From the classical theory of mechanism design Ausubel et al. [2006], we know that a VCG

mechanism is strategyproof. That means, if there exists a market platform that centrally

organizes trips based on agents’ reported preference parameters, then given the socially

optimal trip organization x∗, and the VCG payment p†, all agents will truthfully report their

preferences to the platform.

To show that there exists a strategyproof market equilibrium, it suffices to demonstrate

that we can find a price vector τ † such that
(
x∗, p†, τ †

)
is a market equilibrium. Next, we

show that such τ † exists. Moreover, all agents’ equilibrium utilities given by u† are the

highest of all market equilibrium, and the total collected edge prices is the minimum.

Theorem 2. If the network is series-parallel, and agents have homogeneous disutilities of

trip sharing, then a strategyproof market equilibrium
(
x∗, p†, τ †

)
exists, and the equilibrium

utility vector is u†. Moreover, given any other market equilibrium (x∗, p∗, τ ∗),

u†
m ≥ u∗

m, ∀m ∈M, and
T∑
t=1

∑
e∈E

qeτ
t†
e ≤

T∑
t=1

∑
e∈E

qeτ
t∗
e .

Theorem 2 shows that there exists a market equilibrium that can be implemented by

platforms in a centralized manner – agents report their private preference parameters to the

platform, and the platform mediates the market on the agents’ behalf. Our result shows

that the platform has to implement the equilibrium that maximizes agents’ utilities in order
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to ensure that agents will not lie about their preferences.

We prove Theorem 2 in two steps: Firstly, we show that a utility vector u∗ is an equi-

librium utility (i.e. there exists a price vector τ ∗ such that (u∗, τ ∗) is an optimal solution of

(D)) if and only if there exists a vector λ∗ = (λz∗
r )r∈R,z=1,...,T such that (u∗, λ∗) is an optimal

solution of (Dk∗) – the dual of (LPk∗) (Lemma 9).

min
u,λ

∑
m∈M

um +
∑
r∈R

T−dr∑
z=1

kz∗
r λz

r,

s.t.
∑
m∈b

um + λz
r ≥ V z

r (b), ∀(b, r, z) ∈ Trip, (Dk∗.a)

um ≥ 0, λz
r ≥ 0, ∀m ∈M, ∀z = 1, . . . T − dr, ∀r ∈ R. (Dk∗.b)

Here, λ is the dual variable of constraint (LPk∗.b), which can be viewed as the time-

dependent price for routes (instead of for edges as in τ). In particular, λz
r is the price

for any vehicle that departs at z and takes route r. Thus, step 1 indicates that the set of

agents’ equilibrium utilities with edge-based pricing in the original network is the same as

the set of equilibrium utilities achieved with route-based pricing when trips are organized

according to the dynamic flow capacity k∗. Secondly, we demonstrate that u† is an optimal

solution of (Dk∗), and the set of all equilibrium utility vectors is a lattice with the maximum

element being u† (Lemma 10). This step leverages the connection between the equilibrium

group formation given k∗ and the Walrasian equilibrium of the auxiliary economy.

4 Computing Market Equilibrium

We present a polynomial-time algorithm for computing market equilibrium.

Computing optimal trip organization. We compute the optimal trip vector x∗ in two

steps following Theorem 1: (Step 1) Compute the optimal static route capacity vector w∗

from Algorithm 1, and compute the dynamic route flow capacity vector k∗ as in (14). (Step 2)

Compute x∗ as an optimal integer solution of (LPk∗) by allocating agents to the set of slots L

given by k∗. This is done using a modified Kelso-Crawford algorithm (Kelso Jr and Crawford

[1982]) for computing Walrasian equilibrium in an equivalent economy with augmented trip

value functions V̄ . Algorithm 2 presents a sketch of step 2, omitting the computation of

augmented trip value function V̄ and the representative agent group hz
r(b̄l). For a complete

algorithm and an iterative approach to compute V̄ and hz
r(·) with time complexity of O(M),

see Algorithm 3 in Appendix A.
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ALGORITHM 2: Allocating agent groups (sketch)

Initialize: Set um ← 0 ∀m ∈M ; b̄l ← ∅, ∀l ∈ L;
while TRUE do

#Compute

Jl = argmaxJ⊆M\b̄l ϕl(J |b̄l)
∆
=
{
V̄l(J ∪ b̄l)−

∑
m∈b̄l um −

∑
m∈J (um + ϵ)

}
for

each l ∈ L;
for l ∈ L do

Set Jl ← ∅, # Next, we add m ∈M \ b̄l to Jl by greedy approach;
while True do

m̂← argmaxm∈M\{b̄l∪Jl} V̄l(b̄l ∪ Jl ∪ {m})− V̄l(b̄l ∪ Jl)− um − ϵ;

if V̄l(b̄l ∪ Jl ∪ {m̂})− V̄l(b̄l ∪ Jl)− um̂ − ϵ > 0 then
Jl ← Jl ∪ {m̂};

else
break

# Re-assign agents;
if Jl = ∅, ∀l ∈ L then

break
else

Arbitrarily pick l̂ with Jl̂ ̸= ∅, b̄l̂ ← b̄l̂ ∪ Jl̂, b̄l̂ ← b̄l̂ \ Jl̂, ∀l ̸= l̂,
um ← um + ϵ, ∀m ∈ Jl̂.

return
(
b̄l
)
l∈L

Algorithm 2 starts with setting the utility of all agents to be zero, and the set of agents

assigned to each slot l ∈ L to be empty (Line 1). The algorithm keeps track of (i) each

agent m’s utility um; (ii) the augmented agent group b̄l that is assigned to each slot l ∈
L; (iii) ϕl(b̄l) = V̄l(b̄l) −

∑
m∈b̄l um, which is the difference between the augmented trip

value with assigned agent group b̄l in slot l and the total utility of agents in b̄l, and Jl =

argmaxJ⊆M\b̄l ϕl(J |b̄l) which is the set of agents, when added to b̄l, maximally increases the

value of ϕl.

In each iteration of Algorithm 3, Lines 4-14 compute the set Jl based on the current

agent group assignment b̄l and the utility vector u for each l ∈ L. Since the augmented

value function V̄l(b̄) satisfies monotonicity and gross substitutes conditions (Lemma 2), we

compute the set Jl = argmaxJ⊆M\b̄l ϕl(b̄l ∪ J)− ϕl(b̄l) by iteratively adding agents not in b̄l

into Jl greedily according to their marginal contribution to the value of the function ϕl(b̄l)

(Gul and Stacchetti [1999], also included in Appendix B). We note that the greedy approach

can be used to compute Jl if and only if V̄l satisfies the monotonicity and gross substitutes

conditions (Gul and Stacchetti [1999]). Therefore, the homogeneous trip sharing disutility

condition is essential for the polynomial time complexity of the algorithm.
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In Lines 16-23, if there exists at least one slot l̂ ∈ L with Jl̂ ̸= ∅, then we choose one such

slot l̂, and re-assign agents in group Jl̂ to the current assignment l̂. We increase the utility

um for the re-assigned agents m ∈ Jl̂ by a small number ϵ > 0. The algorithm terminates

when Jl = ∅ for all l ∈ L. The algorithm returns the assigned augmented agent group b̄l for

all l ∈ L (Line 25). Given b̄l, we compute the representative agent group bl = hz
r(b̄l) for all

l ∈ Lz
r as in (16), see Algorithm 3 in Appendix A for details. Then, x∗ is given by xz∗

r (b) = 1

for all b ∈ {bl}l∈Lz
r
, z ∈ 1, . . . , T − dr and r ∈ R∗, and xz∗

r (b) = 0 for the remaining (z, r, b).

Proposition 2. For any ϵ < 1
2|M | , under the conditions that the network is series-parallel and

agents have homogeneous disutilities of trip sharing, the trip organization vector x∗ computed

by Algorithms 1, 2 is an optimal integer solution of (IP). Moreover, the time complexity of

Algorithm 1 is O(|E||N |2), and the time complexity of Algorithm 2 is O
(
Vmax

ϵ
|M |2|L|

)
.

Computing equilibrium payments and edge prices. Given the optimal trip vector

x∗, we compute the set of agent payments p∗ and edge prices τ ∗ such that (x∗, p∗, τ ∗) is

a market equilibrium. Recall from Proposition 1, the equilibrium utilities and edge prices

(u∗, τ ∗) are optimal solutions of the dual program (D). We can use the Ellipsoid method

to compute (u∗, τ ∗) given that the separation problem – identifying a violated constraint in

(D) for any (u, τ) – can be solved in polynomial time (Nisan and Segal [2006], Grötschel

et al. [1993]). To verify constraints (D.a), we need to check whether or not maxb∈B{V z
r (b)−∑

m∈b um} ≤
∑

e∈r τ
z+dr,e
e is satisfied for all r ∈ R and z = 1, . . . , T − dr. We note that

maxb∈B{V z
r (b) −

∑
m∈b um} = maxb̄∈B̄{V̄ z

r (b̄) −
∑

m∈b̄ um}. Under the monotonicity and

gross substitutes conditions, maxb̄∈B̄{V̄ z
r (b̄)−

∑
m∈b̄ um} can be computed by greedily adding

agents to the set b̄ as in Algorithm 2 Lines 5 - 14 (Algorithm 3 Line 3-29). Thus, constraints

(D.a) can be verified in O(|M ||R|T ). Additionally, constraints (D.b) are straightforward to

verify. Thus, an equilibrium utility vector u∗ and edge price vector τ ∗ can be computed by

the ellipsoid method in time polynomial in |M |, |R| and T . Based on x∗ and (u∗, τ ∗), we

can compute the payment vector p∗ using (12).

5 Extensions to general network with multiple agent

populations

In this section, we generalize the equilibrium existence and computation results to general

networks with multiple origin-destination pairs and agents with heterogeneous disutilities of

trip sharing. In this generalized setting, the set of all agents M is partitioned into a finite

number of subsets {Mi}i∈I , where agents in different subsets are associated with different
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origin destination pairs and trip sharing disutilities. For each i ∈ I, we denote the set

of routes connecting the origin and destination as Ri. Theorem 1 and Examples 1 – 2

demonstrate that market equilibrium may not exist in the general setting.

To overcome this issue, we consider (i) creating separate market for each agent subset

Mi, i.e. agents in each subset Mi only share trips with others in the same subset, and

the set of feasible trip groups of market i is Bi; (ii) setting route-based pricing instead of

edge-based pricing. That is, the price for any trip in market i to use route r with departure

time z is λz
r,i ≥ 0. We note that edge-based pricing is a special case of route-based pricing

since given any edge price vector τ , we can equivalently obtain a route-based price vector

where λi,z
r =

∑
e∈r τ

i,z+dr,e
e . The converse is not necessarily true in that a route-based price

vector λ may not correspond to the additive sum of edge-based prices. Following Theorem 1,

we can show that market equilibrium (x∗, p∗, λ∗) exists given any capacity allocation vector

q = (qzr,i)r∈Ri,i∈I,z=1,...,T , where qzr,i is the capacity allocated to market i on route r with

departure time z.

How to compute the optimal capacity allocation vector q so that the induced market equi-

librium maximize the social welfare? Building on Proposition 1, we formulate the following

integer optimization problem:

max S(x) =
∑

(z,r,b)∈Trip

V z
r (b)x

z
r(b)

s.t.
∑

(z,r,b)∈{Trip|b∋m}

xz
r(b) ≤ 1, ∀i ∈ I, ∀m ∈Mi, (IPmult.a)∑

b∈Bi

xz
r(b) ≤ qi,zr , ∀i ∈ I, ∀r ∈ Ri, ∀z, (IPmult.b)∑

i∈I

∑
r∈{Ri|r∋e}

qi,z−dr,e
r ≤ qe, ∀e ∈ E, ∀z, (IPmult.c)

xz
r(b) ∈ {0, 1}, qi,zr ∈ Z+ ∀i ∈ I, ∀b ∈ Bi, ∀r ∈ Ri, ∀z. (IPmult.d)

Proposition 3. The problem of computing the socially optimal (q∗, x∗) is NP-hard even if

the network is series-parallel.

The proof of this proposition follows from a reduction of the NP-hard edge-disjoint paths

problem. This result indicates that exact polynomial-time algorithms for computing the

optimal capacity allocation does not exist even if the network is series parallel. The following

proposition provides a bound on the integrality gap of (IPmult), which is defined as the worst-

case ratio of the optimal value of the LP relaxation of (IPmult) to the optimal value of (IPmult).
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Proposition 4. For a general network, the integrality gap of (IPmult) is at least Ω(max{k,
√
|E|}).

Moreover, on series-parallel networks, the integrality gap of (IPmult) is at least
3
2
as the time

horizon T goes to infinity.

The proof of Proposition 4 exploits the relation between our trip organization problem

with the problem of multicommodity integral flow problem. In particular, when group size

is restricted to be 1, our problem reduces to the multicommodity flow over time problem.

The paper Garg et al. [1993] provided the lower bound on the integrality gap of the multi-

commodity flow problem in static setting by considering an instance where the underlying

network is a grid. We extend their result to show that the same integrality gap holds in

our setting, and our proof addresses the subtleties arising due to the temporal nature of

the trip organization problem. Moreover, we construct a new problem instance to prove the

integrality gap of 3/2 on series parallel network.

Finally, we develop a Branch-and-Price algorithm to compute the equilibrium. Let

(LPmult) be the LP-relaxation of (IPmult), and let (x∗, q∗) be an optimal LP-solution. We

note that the computation of the LP relaxation (which has exponential number of variables)

builds on the fact that the trip value function in each sub-market satisfies gross substitute

condition due to the identical trip sharing disutilities, and thus can be solved efficiently

by column generation. If the capacity allocation vector q∗ is integral, one can efficiently

compute an equilibrium for each submarket via Algorithm 2. Otherwise, there must exist

at least one (i, r, z) such that q∗i,zr is fractional. We then branch on this variable to create

two subproblems by including one of the two new constraints qi,zr ≤ ⌊q∗i,zr ⌋, qi,zr ≥ ⌊q∗i,zr ⌋,
and compute the new optimal solution associated with the LP relaxation given the added

constraint. The algorithm terminates when all q∗i,zr variables are integer-valued. We include

formal description of Algorithm 4 and the implementation details in Appendix F.

6 Application for carpooling and toll pricing in San

Francisco Bay Area

Figure 2: Bay area network.

We apply our algorithm to the problem of designing the optimal

carpooling and toll pricing for the highway network in the San

Francisco Bay Area. In this problem, the edge price is the

toll price of using that highway segment in a time period, and

a shared trip is a carpool trip, where a group of travelers b

decides the departure time z and route r that connects their

origin and destination. This section provides a brief overview
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of the problem instance and key characteristics of the market

equilibrium; a detailed report of parameters and computational

results are included in Appendix F.

Network. We consider a network with six cities San Fran-

cisco, Oakland, San Leandro, Hayward, San Mateo, and South

San Francisco, and major highways that connect them (Fig-

ure 2). San Francisco city (SF) is the common destination, and the remaining five nodes

are the origins. We calibrate the capacity of each edge based on the traffic flow data col-

lected from the highway sensors provided by the California Department of Transportation

(https://pems.dot.ca.gov/). We consider each time interval to be 5 minutes, and the entire

time period is T = 60 minutes between 8am and 9am on workdays.

Populations. For each origin-destination pair (oi, SF), where oi is a city in Oakland, San

Leandro, Hayward, San Mateo, and South San Francisco, agents traveling from oi to SF

are divided into three populations, each with high (H), medium (M) and low (L) value of

time, and disutilities of trip sharing. We estimate the number of agents in each population

and their preference parameters based on the driving commuter population size, and their

income distributions using the data collected from Safegraph (https://www.safegraph.com/),

and US Census of Bureau (https://www.census.gov/), see Appendix F for detailed discussion

on parameter estimation.

Results. We compute the optimal capacity allocation, the equilibrium carpool sizes, pay-

ments and toll prices using Algorithm 4. We summarize our observations below:

1. Carpooling sizes : In the optimal solution, the L populations from all origins form carpools

of size 3 or 4, the M populations form carpools of size 1 or 2, and the H populations do not

carpool. We demonstrate the carpool size distribution in Fig. 6b in Appendix F.

2. Payments : We compute the equilibrium payment vector p∗ as in (12). The average

payment-per-agent for the L populations is $2, for the M populations is $4, and for the H

populations is around $5. We demonstrate the payment distribution in Fig. 6c in Appendix

F.

3. Tolls : The median toll per route is $3 for the L populations, $4 for M populations, and

$8 for the H populations. We plot the dynamic toll prices of all routes in Figure 3.
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Figure 3: Dynamic toll prices of all routes for H, M, L and populations illustrated in green,
blue, and red lines respectively.

7 Concluding Remarks

Our paper focuses on developing a dynamic market mechanism that incentivizes strategic

agents to optimize the use of transportation network capacities through group formation

and cost sharing. By introducing dynamic edge pricing as the incentive of resource pooling,

the paper aims to achieve equilibrium conditions that ensure individual rationality, stability,

budget balance, and market clearing. Our results include conditions for equilibrium exis-

tence and algorithms for computing market equilibrium. We also extend these findings to

general networks with multiple origin-destination pairs, and applying the approach to the

San Francisco Bay area highway network as a practical illustration. The results in this pa-

per demonstrates the potential for resource pooling and capacity-based pricing to enhance

efficiency, reduce costs, and mitigate environmental impacts in transportation and logistics

networks.
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A Agent allocation algorithm

For each each r ∈ R∗, and each z = 1, . . . , T − dr, we re-write the augmented trip value

function (16) with agent group b̄ ∈ B̄ and slot l ∈ Lz
r (with slight abuse of notation) as

follows:

V̄l(b̄) =
∑

m∈hl(b̄)

ηm,l − ξl(|hl(b̄)|), ∀b̄ ∈ B̄, ∀l ∈ Lz
r, (23)

where

ηm,l
∆
= αm − βmdr − ℓm((z + dr − qm)+),

ξl(|hl(b̄)|)
∆
=
(
π(|hl(b̄)|) + σ

)
|hl(b̄)|+

(
γ(|hl(b̄)|) + δ

)
|hl(b̄)|dr,

and hl(b̄) = hz
r(b̄) is the representative agent group in b̄ in slot l ∈ Lz

r as in (16).

Algorithm 3 starts with setting the utility of all agents to be zero, and the set of agents

assigned to each slot l ∈ L to be empty (Line 1). The algorithm keeps track of the following

quantities:

- um is the utility of each agent m ∈M .

- b̄l is the augmented agent group that is assigned to each slot l ∈ L.

- h̄l = hl(b̄l) is the representative agent group given b̄l in slot l ∈ L. |h̄l| is the size of

the representative agent group.

- ϕl(b̄l) = V̄l(b̄l)−
∑

m∈b̄l um is the difference between the augmented trip value function

with assigned agent group b̄l in slot l and the total utility of agents in b̄l.

- Jl = argmaxJ⊆M\b̄l ϕl(b̄ ∪ J)− ϕl(b̄) is the set of agents, when added to b̄l, maximally

increases the value of ϕl.

In each iteration of Algorithm 3, Lines 3-29 compute the representative agent group h̄l,

and the set Jl based on the current agent group assignment and the utility vector for each

l ∈ L. In particular, the representative agent group h̄l is computed by selecting agents from

the currently assigned augmented agent group b̄l in decreasing order of ηl,m in (23), and

the last selected agent m̂ (i.e. the agent in h̄l with the minimum value of ηl,m) satisfies

ηl,m̂ ≥ ξr(|h̄l|)− ξr(|h̄l| − 1). That is, adding agent m̂ to the set h̄l \ {m̂} increases the trip

value, but adding any other agents decrease the trip value, i.e. ηl,m̂ < ξr(|h̄l| + 1)− ξr(|h̄l|)
for all m ∈ b̄l \ h̄l. The value of h̄l, |h̄l| records the element and size of the representative

30



ALGORITHM 3: Allocating trip sharing groups (complete)

Initialize: Set um ← 0 ∀m ∈M ; b̄l ← ∅, ∀l ∈ L;
while TRUE do

for l in L do
Jl ← ∅, h̄l ← ∅, |h̄l| ← 0, λl ← 0, ϕl ← 0, ∀l ∈ L;
for m̂ in sort(b̄l, key = ηm,l) do

if ηm̂,l <
(
ξl(|h̄l|+ 1)− ξl(|h̄l|)

)
dl then

break
else
|h̄l| ← |h̄l|+ 1, h̄l ← h̄l ∪ {m̂}, λl ← ηm̂,l

ϕl ←
∑

m∈h̄l
ηm,l − ξl(|h̄l|)dl −

∑
m∈b̄l um;

for ĵ in sort(S \ b̄l, key = ηj,l − uj) do
if ηĵ,l ≥ λl ≥ (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl then
|h̄′

l| ← |h̄l|+ 1, h̄′
l ← h̄l ∪ {ĵ},

ϕ′
l ← ϕl + ηĵ,l − (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl − uĵ − ϵ, λ′

l ← λl

else if λl ≥ ηĵ,l ≥ (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl then
|h̄′

l| ← |h̄l|+ 1, h̄′
l ← h̄l ∪ {ĵ}, λ′

l ← ηĵ,l,

ϕ′
l ← ϕl + ηĵ,l − (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl − uĵ − ϵ

else if ηĵ,l ≥ λl and (ξl(|h̄l|+ 1)− ξl(|h̄l|))dl ≥ λl then

h̄′
l ← h̄l ∪ {ĵ} \ {l}, λ′

l ← ηĵ,l, ϕ
′
l ← ϕl + ηĵ,l − λl − uĵ − ϵ

else
ϕ′
l ← ϕl − uĵ − ϵ

if ϕ
′

l ≤ ϕl then
break

else

(h̄l, |h̄l|, ϕl, λl)← (h̄′
l, |h̄′

l|, ϕ′
l, λ

′
l), Jl ← Jl ∪ {ĵ}

if Jl = ∅, ∀l ∈ L then
break

else

Arbitrarily pick l̂ with Jl̂ ̸= ∅;
b̄l̂ ← b̄l̂ ∪ Jl̂;

b̄l̂ ← b̄l̂ \ Jl̂, ∀l ̸= l̂;
um ← um + ϵ, ∀m ∈ Jl̂.

Return
(
b̄l
)
l∈L, (h̄l)l∈L
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agent group in the current round, and λl records the value of ηl,m̂. We also compute the

value of the function ϕl(b̄l) = V̄l(b̄l)−
∑

m∈b̄l um in Line 12.

Furthermore, since the augmented value function V̄l(b̄) satisfies monotonicity and gross

substitutes conditions, we can compute the set Jl = argmaxJ⊆M\b̄l ϕl(b̄ ∪ J) − ϕl(b̄) by

iteratively adding agents not in b̄l into Jl greedily according to their marginal contribution

to the value of the function ϕl(b̄l) (Gul and Stacchetti [1999]). In this step, we do not re-

computed the represented agent group or the augmented trip value function every time we

add a agent ĵ to b̄l. Instead, we only need to compare ĵ with λl and the marginal change of

ϕl(|h̄l|) to determine if the representative agent group needs to include ĵ (Lines 13-29).

In Lines 30-38, if there exists at least one slot l̂ ∈ L with Jl̂ ̸= ∅, then we choose one such

slot l̂, and re-assign agents in group Jl̂ to the current assignment l̂. We increase the utility

um for the re-assigned agents m ∈ Jl̂ by a small number ϵ > 0. The algorithm terminates

when Jl = ∅ for all l ∈ L. The algorithm returns the representative agent group of each slot(
h̄l

)
l∈L (Line 39). The corresponding trip organization vector is given by (18).

B Review of Combinatorial Auction Theory

Consider an economy with a finite set of indivisible goods M and a finite set of buyers L.

Each buyer l ∈ L has a valuation function V̄l : B̄ → R, where each b̄ ∈ B̄ = 2M is a bundle

of goods, and V̄l(b̄) is buyer l’s valuation of b̄. The good allocation vector in this economy is

x̄ = (x̄l(b̄))l∈L,b̄∈B̄, where x̄l(b̄) = 1 if good bundle b̄ is allocated to buyer l and 0 if otherwise.

Equivalence between group formation and good allocation. Our problem of forming

trip sharing groups without vehicle capacity constraint can be equivalently viewed as the good

allocation problem in the economy with indivisible goods. In particular, the set of riders M

is equivalently viewed as the set of goods M . The set of route and departure time slots L

is viewed as the set of buyers. Then, the augmented trip value function V̄ z
r (b̄) is equivalent

to any buyer l ∈ Lz
r’s valuation of good bundle b̄. Each rider m’s utility is equivalent to the

price of good m.

We next define Walrasian equilibrium of the equivalent economy.

Definition 5 (Walrasian equilibrium Kelso Jr and Crawford [1982]). A tuple (x̄∗, u∗) is a

Walrasian equilibrium if

(i) For any l ∈ L, b̄l ∈ argmaxb̄∈B̄ V̄l(b̄) −
∑

m∈b̄l um, where b̄l is the good bundle that is

allocated to l given x̄∗, i.e. x̄∗
l (b̄l) = 1
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(ii) For any good m ∈ M that is not allocated to any buyer, (i.e.
∑

l∈L
∑

b̄∋m x̄∗
l (b̄) = 0),

the price u∗
m = 0.

Lemma 4 (Kelso Jr and Crawford [1982]). If the augmented value function V̄ z
r (b̄) satisfies

the monotonicity and gross substitutes conditions for all r ∈ R and all z = 1, . . . , T − dr,

then Walrasian equilibrium exists in the equivalent economy with indivisible goods.

Lemma 5 (Gul and Stacchetti [1999]). If the value function V̄ satisfies the monotonicity

and gross substitutes conditions, then the set of Walrasian equilibrium prices U∗ is a lattice

and has a maximum component u† =
(
u†
m

)
m∈M as in (20).

Lemma 6 (Kelso Jr and Crawford [1982]). Given any price vector u, if the value func-

tion V̄l for any l ∈ L satisfies the monotonicity and gross substitutes conditions, then

b̄l ∈ argmaxb̄∈B̄{V̄l(b̄)−
∑

m∈b̄ um} can be computed by greedy algorithm.

Lemma 7 (Kelso Jr and Crawford [1982]). For any ϵ < 1
2|M | , if the value function V̄l satisfies

the monotonicity and gross substitutes conditions for all l ∈ L, then (b̄l)l∈L computed by

Algorithm 3 is a Walrasian equilibrium good allocation.

C Proof of Statements in Section 2.3

Proof of Proposition 1. First, we proof that the four conditions of market equilibrium

(x∗, p∗, τ ∗) ensures that x∗ satisfies the feasibility constraints of the primal (LP), (u∗, τ ∗)

satisfies the constraints of the dual (D), and (x∗, u∗, τ ∗) satisfies the complementary slackness

conditions. Here, the vector u∗ is the utility vector computed from (5).

(i) Feasibility constraints of (LP): Since x∗ is a feasible trip vector, x∗ must satisfy the

feasibility constraints of (LP).

(ii) Feasibility constraints of (D): From the stability condition (7), individual rationality

(6), and the fact that edge prices are non-negative, we know that (u∗, τ ∗) satisfies the

feasibility constraints of (D).

(iii) Complementary slackness condition with respect to (LP.a): If rider m is not assigned,

then (LP.a) is slack with the integer trip assignment x∗ for some rider m. The budget

balanced condition (8b) shows that p∗m = 0. Since rider m is not in any trip and the

payment is zero, the dual variable (i.e. rider m’s utility) u∗
m = 0. On the other hand, if

u∗
m > 0, then rider m must be in a trip, and constraint (LP.a) must be tight. Thus, we

can conclude that the complementary slackness condition with respect to the primal

constraint (LP.a) is satisfied.
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(iv) Complementary slackness condition with respect to (LP.b): Since the mechanism is

market clearing, edge price τ te is nonzero if and only if the load that enters edge e at

time t is below the capacity, i.e. the primal constraint (LP.b) is slack for edge e ∈ E

and t. Therefore, the complementary slackness condition with respect to the primal

constraint (LP.b) is satisfied.

(v) Complementary slackness condition with respect to (D.a): From (8a), we know that

for any organized trip, the corresponding dual constraint (D.a) is tight. If constraint

(D.a) is slack for a trip (b, r), then the budget balance constraint ensures that trip is

not organized. Therefore, the complementary slackness condition with respect to the

primal constraint (D.a) is satisfied.

We can analogously show that the inverse of (i) – (v) are also true: the feasibility con-

straints of (LP) and (D), and the complementary slackness conditions ensure that (x∗, p∗, τ ∗)

is a market equilibrium. Thus, we can conclude that (x∗, p∗, τ ∗) is a market equilibrium if and

only if (x∗, u∗, τ ∗) satisfies the feasibility constraints of (LP) and (D), and the complementary

slackness conditions.

From strong duality theory, we know that the equilibrium trip vector x∗ must be an

optimal integer solution of (LP). Therefore, the existence of market equilibrium is equivalent

to the existence of an integer optimal solution of (LP). The optimal trip assignment is an

optimal integer solution of (LP), and (u∗, τ ∗) is an optimal solution of the dual problem (D).

The payment p∗ can be computed from (5). □

D Proof of Statements in Section 3.1

Lemma 8 (Ruzika et al. [2011]). On series-parallel networks, the flow k∗ maximizes the total

flow that arrives on or before t for every t = 1, 2, . . . , T . That is, for any x that satisfies

(LP.a) – (LP.c), we have:

∑
r∈R

t−dr∑
z=1

∑
b∈B

xz
r(b) ≤

∑
r∈R

k∗
r max{0, t− dr}, ∀t = 1, . . . , T.

Proof of Lemma 1. Consider any (fractional) optimal solution of (LP), denoted as x̂. For

any time step t, we denote f̂ t(b) =
∑

r∈R x̂t−dr
r (b) as the flow of group b that arrives at the

destination at time t. We denote F̂ t =
∑t

j=1

∑
b∈B f̂ j(b) as the total flows that arrive at the

destination on or before time step t. Since x̂ is feasible and the network is series-parallel, we
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know from Lemma 8 that

F̂ t ≤
∑
r∈R

kr ·max{0, t− dr}, ∀t = 1, 2, . . . , T. (24)

We denote the set of all groups with positive flow in x̂ as B̂
∆
= {b̂ ∈ B|

∑T
t=1 f̂

t(b̂) > 0}.
For each b̂ ∈ B̂, we re-write the trip value function in (3) as follows:

V z
r (b̂) = w(b̂)− g(b̂)dr −

∑
m∈b

ℓm((z + dr − θm)+), ∀
(
b̂, r
)
∈ B̂ ×R, ∀z = 1, . . . , T − dr,

where w(b̂) =
∑

m∈b̂

(
αm − πm(|b̂|)

)
− σ|b̂|, and g(b̂) =

∑
m∈b̂

(
βm + γm(|b̂|)

)
+ δ|b̂| is the

sensitivity with respect to travel time cost. We denote the number of agent groups in B̂ as

n, and re-number these agent groups in decreasing order of g(b̂), i.e.

g(b̂1) ≥ g(b̂2) ≥ · · · ≥ g(b̂n).

We now construct another trip vector x∗ by the following procedure:

Initial zero assignment vector xz∗
r (b)← 0 for all z = 1, 2, . . . , T , r ∈ R and all b ∈ B.

Initial residual capacity of arriving on or before each time t: ∆t =
∑

r∈R k∗
r ·max{0, t−dr}−

F̂ t.

Initial residual capacity of taking route r to arrive at time t: Λt
r = k∗

r .

For i = 1, . . . , n:

For t = 1, . . . , T : Re-assign the flow f̂ t(b̂i) =
∑

r∈R x̂t−dr
r (b̂i) of group b̂i that arrive at time

t.

(a) Determine the assignable arrival time step set: T̂ = {t′ < t|∆t′ > 0} ∪ {t}.

(b) Determine assignable route set R̂ = {r ∈ R|
∑

t∈T̂ Λt
r > 0}

(c) Assign agent group b̂i to a trip that takes route r̂ and starts at ẑ = t̂− dr̂, where (r̂, t̂)

satisfies:

r̂ = argmin
r∈R̂
{dr}, t̂ = max

t
{t ∈ T̂ |Λt

r̂ > 0}.

If t̂ = t and Λt
r̂ ≥ f̂ t(b̂i), then xẑ∗

r̂ (b̂i) = f̂ t(b̂i). Re-calculate Λt
r̂ ← Λt

r̂ − xẑ∗
r̂ (b̂i).

If t̂ = t and Λt
r̂ < f̂ t(b̂i), then xẑ∗

r̂ (b̂i) = Λt
r̂. Re-calculate Λt

r̂ ← 0. Repeat (a) - (c).

If t̂ < t and min{Λt̂
r̂,∆

t̂} ≥ f̂ t(b̂i), then xẑ∗
r̂ (b̂i) = f̂ t(b̂i). Re-calculate Λ

t̂
r̂ ← Λt̂

r̂−xẑ∗
r̂ (b̂i),

∆j ← ∆j − xẑ∗
r̂ (b̂i) for j = t̂, . . . , t− 1.
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If t̂ < t and min{Λt̂
r̂,∆

t̂} < f̂ t(b̂i), then xẑ∗
r̂ (b̂i) = min{Λt̂

r̂,∆
t̂}. Re-calculate Λt̂

r̂ ←
Λt̂

r̂ − xẑ∗
r̂ (b̂i), ∆

j ← ∆j − xẑ∗
r̂ (b̂i) for j = t̂, . . . , t− 1. Repeat (a) - (c).

The re-assignment proceeds to re-assign the flow of b̂ ∈ B̂ in decreasing order of their

sensitivity with respect to the travel time cost. For each b̂i, the procedure re-assigns the flow

of b̂i that arrives at time t in x̂ to a time step before t or at t. In particular, the flow f̂ t(b̂i)

can be re-assigned to arrive at a time step t̂ < t only if there is positive residual capacity ∆t̂.

Additionally, the re-assignment prioritizes to assign f̂ t(b̂i) to the route with the minimum

travel time cost among all routes that have residual capacity. After assigning f̂ t(b̂i), the

residual arrival capacity ∆ and the residual route capacity Λ are re-calculated.

We now check that the constructed trip assignment vector is a feasible solution of (LPk∗).

Since we only re-assigned trips with positive weight in x̂, we know that
∑

r∈R
∑T

z=1

∑
b∋m xz∗

r (b) ≤
1, and thus x∗ satisfies (LPk∗.a). Additionally, we note that in all steps of assignment, the

total flow of trips that use each r and starts at time z is less than the capacity in the tem-

poral repeated flow k∗
r . Thus, we have

∑
b∈B xz∗

r (b) ≤ kz∗
r for all r ∈ R and for all z ∈ T .

Therefore, (LPk∗.b) is satisfied. Thus, the constructed x∗ is a feasible solution of (LPk∗).

It remains to prove that x∗ is optimal of (LPk∗). We prove this by showing that S(x∗) ≥
S(x̂). The objective function S(x∗) can be written as follows:

∑
b∈B

T∑
z=1

∑
r∈R

V z
r (b)x

z∗
r (b) =

∑
b∈B

T∑
z=1

∑
r∈R

w(b)xz∗
r (b)−

∑
b∈B

T∑
z=1

∑
r∈R

g(b)drx
z∗
r (b)

−
∑
b∈B

T∑
z=1

∑
r∈R

(∑
m∈b

ℓm((z + dr − θm)+)

)
xz∗
r (b). (25)

We note that the flow f̂ t(b̂) for each t and b̂ is re-assigned with the same weight to arrive

on or before t since the total flow that arrive on or before t (i.e. F̂ t) is no higher than∑
r∈R k∗

r max{0, t − dr} (i.e. k∗ is the earliest arrival flow), and a flow that arrive later

than t is re-assigned to arrive before t only if the residual arrival capacity ∆t > 0. Such

re-assignment of arrival time does not occupy capacity for the flow that previously arrive on

or before t in x̂. As a result, the re-assignment process must terminate with all agent groups

being assigned with the same weight as in x̂, i.e.
∑

r∈R
∑T

z=1 x
z∗
r (b) =

∑
r∈R
∑T

z=1

∑
r∈R x̂z

r(b)

for all b ∈ B. Therefore,

∑
b∈B

T∑
z=1

∑
r∈R

w(b)xz∗
r (b) =

∑
b∈B

T∑
z=1

∑
r∈R

w(b)x̂z
r(b). (26)

Additionally, in the reassignment process (a), we note that all agent groups b̂1, . . . , b̂n with
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positive weight in x̂ are assigned to arrive at a time in x∗ that is no later than the arrival

time in x̂. Therefore, we know that

∑
b∈B

T∑
z=1

∑
r∈R

(∑
m∈b

ℓm((z + dr − θm)+)

)
xz∗
r (b) ≤

∑
b∈B

T∑
z=1

∑
r∈R

(∑
m∈b

ℓm((z + dr − θm)+)

)
x̂z
r(b).

To prove S(x∗) ≥ S(x̂∗), we only need to show that

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z∗
r (b) ≤

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx̂
z
r(b)

To do this, we next show that x∗ is an optimal solution of the following problem:

x∗ ∈ arg min
x∈X(f̂)

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z
r(b),

s.t. X(f̂)
∆
=

x

∣∣∣∣∣∣∣∣∣∣

∑
r∈R
∑t

j=1 x
j−dr
r (b) ≥

∑t
j=1 f̂

j(b), ∀b ∈ B, ∀t = 1, . . . , T − 1,∑
r∈R
∑T

z=1 x
z
r(b) =

∑T
j=1 f̂

j(b), ∀b ∈ B,∑
b∈B
∑

r∋e x
t−dr,e
r (b) ≤ qe, ∀e ∈ E, ∀t = 1, . . . , T,

xz
r(b) ≥ 0, ∀r ∈ R, ∀b ∈ B, ∀z = 1, . . . , T.

 .

(27)

That is, we will show that x∗ derived from the re-assignment of flow f̂ induced by x̂minimizes

the value of
∑

r∈R
∑T

z=1

∑
b∈B g(b)drx

z
r(b) across all trip organization vectors that allocate

the same weight of each b as in x̂ and do not increase the arrival time of any flow of b. In

particular, X(f̂) characterizes the set of all such x: the first constraint ensures that the flow

of each b given x arrives at the destination at time on or before t is no less than that in x̂;

The second constraint ensures that the total flow of each b is assigned with the same weight

in x as that in x̂; The third constraint ensures that x satisfies the edge capacity constraint in

all time steps; and the last constraint ensures the non-negativity of x. The intuition of (27)

is that in the re-assignment procedure, agent group b̂ with higher sensitivity with respect to

travel time cost is assigned first, and prioritized to take shorter routes.

We prove (27) by mathematical induction. To begin with, (27) holds trivially on any

single-link network since no-reassignment is needed with a single route. We next prove that

if (27) holds on two series-parallel sub-networks G1 and G2, then (27) holds on the network

G that connects G1 and G2 in series or in parallel. In particular, we analyze the cases of

series connection and parallel connection separately:

(Case 1) Series-parallel network G is formed by connecting two series-parallel sub-networks
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G1 and G2 in series. We denote the set of routes in subnetwork G1 and G2 as R1 and R2,

respectively. Since G1 and G2 are connected in series, the set of routes in network G is

R
∆
= R1 ×R2.

We define the set of feasible trip vectors in the subnetwork G2 that can induce a flow

satisfying the arrival time constraint as follows:

X2(f̂)
∆
=


x

∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
r2∈R2

∑
b∈B xz2

r2(b) ≤
∑

r1∈R1 max{0, z2 − dr1}
(∑

r2∈R2 k∗
r1r2

)
, ∀z2 = 1, . . . , T,∑

r2∈R2

∑T
z2=1 x

z2

r2(b) =
∑T

j=1 f̂
j(b), ∀b ∈ B,∑

r2∈R2

∑t
j=1 x

j−dr2
r2 (b) ≥

∑t
j=1 f̂

j(b), ∀b ∈ B, ∀t = 1, . . . , T − 1,∑
b∈B
∑

r2∋e x
t−dr2,e
r2 (b) ≤ qe, ∀e ∈ E2, ∀t = 1, . . . , T,

xz2

r2(b) ≥ 0, ∀r2 ∈ R2, ∀b ∈ B, ∀z2 = 1, . . . , T.


,

where the first constraint ensures that the flow departing from the origin of G2 at any z2

does not exceed the maximum flow that can arrive at the destination of G1 before z2.

Given x̂ (and the induced flow vector f̂), the trip vector obtained from the re-assignment

procedure restricted to the subnetwork G2 is x2∗ = (xz2∗
r2 (b))r2∈R2,b∈B,z2=1,...,T , where

xz2∗
r2 (b) =

∑
r1∈R1

x
z2−dr1∗
r1r2 (b), ∀r2 ∈ R2, ∀z2 = 1, . . . , T, ∀b ∈ B.

We can check that x2∗ ∈ X2(f̂). Therefore, according to the induction assumption, we have

∑
r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr1x
z2∗
r2 (b) ≤

∑
r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr2x
z2

r2(b), ∀x2 ∈ X2(f̂). (28)

Additionally, given any x2∗, the set of feasible trip vector restricted to the subnetwork G1 is

given by

X1(f̂)
∆
=

x1

∣∣∣∣∣∣∣∣∣∣

∑
r1∈R1

∑T
z1=1 x

z1

r1(b) =
∑T

j=1

∑
r2∈R2 x

j∗
r2(b), ∀b ∈ B,∑

r1∈R1

∑t
j=1 x

j−dr1
r1 (b) ≥

∑t
j=1

∑
r2∈R2 x

j∗
r2(b), ∀b ∈ B, ∀t = 1, . . . , T − 1,∑

b∈B
∑

r1∋e x
t−dr1,e
r1 (b) ≤ qe, ∀e ∈ E1, ∀t = 1, . . . , T,

xz1

r1(b) ≥ 0, ∀r1 ∈ R1, ∀b ∈ B, ∀z1 = 1, . . . , T.


We consider x1∗ = (xz1∗

r1 (b))r1∈R1,b∈B,z1=1,...,T , where

xz1∗
r1 (b) =

∑
r2∈R2

xz1∗
r1r2(b), ∀r1 ∈ R1, ∀z1 = 1, . . . , T, ∀b ∈ B.

Analogous to our argument on G2, we can check that x1∗ ∈ X1(f̂). Again from the induction
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assumption, x1∗ satisfies

∑
r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1∗
r1 (b) ≤

∑
r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1

r1(b), ∀x1 ∈ X1(f̂). (29)

From (28) and (29), we obtain that

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z
r(b) =

∑
r1∈R1

T∑
z=1

∑
b∈B

g(b)dr1

(∑
r2∈R2

xz
r1r2(b)

)
+
∑
r2∈R2

T∑
z=1

∑
b∈B

g(b)dr2

(∑
r1∈R1

xz
r1r2(b)

)

=
∑
r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1

r1(b) +
∑
r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr2x
z2

r2(b)

≥
∑
r1∈R1

T∑
z1=1

∑
b∈B

g(b)dr1x
z1∗
r1 (b) +

∑
r2∈R2

T∑
z2=1

∑
b∈B

g(b)dr2x
z2∗
r2 (b) =

∑
r∈R

T∑
z=1

∑
b∈B

g(b)drx
z∗
r (b).

Thus, we have proved that (27) holds on G when G1 and G2 are connected in series.

(Case 2) Series-parallel Network G is formed by connecting two series-parallel networks G1

and G2 in parallel. Same as case 1, we denote R1 (resp. R2) as the set of routes in G1 (resp.

G2). Then, the set of all routes in G is R = R1 ∪R2.

Given any f̂ , we compute x∗ from the re-assignment procedure in network G. We denote

f t,1∗(b) =
∑

r1∈R1 x
t−dr1∗
r1 (b) (resp. f t,2∗(b) =

∑
r2∈R2 x

t−dr2∗
r2 (b)) as the total flow of agent

group b that arrives at the destination at time t using routes in the subnetwork G1 (resp.

G2) given the organization vector x∗. We now denote x1∗ (resp. x2∗) as the trip vector x∗

restricted on sub-network G1 (resp. G2), i.e. x1∗ =
(
xz∗
r1(b)

)
r1∈R1,b∈B,z=1,...,T

(resp. x2∗ =(
xz∗
r2(b)

)
r2∈R2,b∈B,z=1,...,T

). We can check that x1∗ (resp. x2∗) is the trip vector obtained by

the re-assignment procedure given the total flow f t,1∗ (resp. f t,2∗) on network G1 (resp. G2).

Consider any arbitrary split of the total flow f̂ to the two sub-networks, denoted as(
f̂ 1, f̂ 2

)
, such that f̂ t,1(b) + f̂ t,2(b) = f̂ t(b) for all b ∈ B and all t = 1, 2, . . . , T . Given

f̂ 1 (resp. f̂ 2), we denote the trip vector obtained by the re-assignment procedure on sub-

network G1 (resp. G2) as x̂1∗ (resp. x̂2∗). We also define the set of feasible trip vectors

on sub-network G1 (resp. G2) that induce the total flow f̂ 1 (resp. f̂ 2) given by (27) as

X1(f̂ 1) (resp. X2(f̂ 2)). Then, the set of all trip vectors that induce f̂ on network G is

X(f̂) = ∪(f̂1,f̂2)(X
1(f̂ 1), X2(f̂ 2)).

Under our assumption that (27) holds on sub-network G1 and G2 with any total flow, we
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know that given any flow split
(
f̂ 1, f̂ 2

)
,

∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr1x̂
z∗
r1(b) +

∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr2x̂
z∗
r2(b)

≤
∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr1x̂
z
r1(b) +

∑
r∈R

T∑
z=1

∑
b∈B

g(b)dr2x̂
z
r2(b), ∀x̂1 ∈ X(f̂ 1), ∀x̂2 ∈ X(f̂ 2).

Therefore, the optimal solution of (27) must be a trip vector (x̂1∗, x̂2∗) associated with a

flow split
(
f̂ 1, f̂ 2

)
. It thus remains to prove that any (x̂1∗, x̂2∗) associated with flow split(

f̂ 1, f̂ 2
)
̸= (f 1∗, f 2∗) cannot be an optimal solution (i.e. can be improved by re-arranging

flows).

For any
(
f̂ 1, f̂ 2

)
̸= (f 1∗, f 2∗), we can find a group bj and a time t such that f̂ t,1(bj) ̸=

f t,1∗(bj) (henceforth f̂ t,2(bj) ̸= f t,2∗(bj)). We denote bĵ as one such group with the maximum

g(b), and t̂ as minimum of such time step, i.e. f̂ t,i(bj) = f t,i∗(bj) for any i = 1, 2, any

j = 1, . . . , ĵ − 1 and any t = 1, . . . , T . Additionally, f̂ t,i(bĵ) = f t,i∗(bĵ) for i = 1, 2, and

t = 1, . . . t̂−1. Since groups b1, . . . , bĵ−1 are assigned before group bĵ, we know that x̂z∗
r1(bj) =

xz∗
r1(bj) and x̂z∗

r2(bj) = xz∗
r2(bj) for all r

1 ∈ R1, all r2 ∈ R2 and all j = 1, . . . , ĵ − 1.

Without loss of generality, we assume that f̂ t̂,1(bĵ) > f t̂,1∗(bĵ) and f̂ t̂,2(bĵ) < f t̂,2∗(bĵ).

Then, there must exist routes r̂1 ∈ R1 and r̂2 ∈ R2, and departure time z1, z2 such that

dr̂1 + z1 ≤ t̂, dr̂2 + z2 ≤ t̂, x̂z1∗
r̂1 (bĵ) > xz1∗

r̂1 (bĵ) and x̂z2∗
r̂2 (bĵ) < xz2∗

r̂2 (bĵ). Moreover, since x∗

assigns group bĵ to routes with the minimum travel time cost that are unsaturated after

assigning groups b1, . . . , bĵ−1 with all arrival time t and group bĵ with arrival time earlier

than t̂, we have dr̂2 < dr̂1 . If the total flow on route r̂2 with departure time z2 is less

than k∗
r2 (unsaturated) given x̂2∗, then we decrease x̂z1∗

r̂1 (bĵ) and increase x̂z2∗
r̂2 (bĵ) by a small

positive number ϵ > 0. We can check that the objective function of (27) is reduced by

ϵ(dr̂1 − dr̂2)ϵg(bĵ) > 0. On the other hand, if route r̂2 with departure time z2 is saturated,

then another group bĵ′ with ĵ′ > ĵ must be assigned to r̂2 with departure time z2. Then, we

decrease xz1∗
r̂1 (bĵ) and xz2∗

r̂2 (bĵ′) by ϵ > 0, increases xz1∗
r̂1 (bĵ′) and xz2∗

r̂2 (bĵ) by ϵ (i.e. exchange a

small fraction of group bĵ with group bĵ′). Note that g(bĵ) > g(bĵ′) and dr̂1 > dr̂2 . We can

thus check that the objective function of (27) is reduced by ϵ(dr̂1g(bĵ) − dr̂2g(bĵ+1))ϵ > 0.

Therefore, we have found an adjustment of trip vector (x̂1∗, x̂2∗) that reduces the objective

function of (27). Hence, for any flow split
(
f̂ 1, f̂ 2

)
̸= (f t,1∗, f t,2∗), the associated trip

vector (x̂1∗, x̂2∗) is not the optimal solution of (27). The optimal solution of (27) must be

constructed by the re-assignment procedure with flow split (f t,1∗, f t,2∗), i.e. must be x∗.

We have shown from cases 1 and 2 that if the solutions derived from the re-assignment

40



procedure minimizes (27) on the two series-parallel sub-networks, then x∗ derived from the

re-assignment procedure must also minimize (27) on the connected series-parallel network.

Moreover, since (27) is minimized trivially when the network is a single edge, and any series-

parallel network is formed by connecting series-parallel sub-networks in series or parallel,

we can conclude that x∗ obtained from the re-assignment procedure minimizes the objective

function in (27) for any flow vector f̂ on any series-parallel network.

From (25), (26) and (27), we can conclude that S(x∗) ≥ S(x̂). Since x∗ is a feasible

solution of (LPk∗), the optimal value of (LPk∗) must be no less than that of (LP). On

the other hand, since the constraints in (LP) are less restrictive than that in (LPk∗), the

optimal value of (LPk∗) is no higher than that of (LP). Therefore, the optimal value of

(LPk∗) equals to that of (LP), and any optimal solution of (LPk∗) must also be an optimal

solution of (LP). □

Proof of Lemma 2. The augmented value function satisfies monotonicity condition since for

any b̄ ⊆ b̄′, we have:

V̄ z
r (b̄) = max

b⊆b̄, b∈B
V z
r (b) ≤ max

b⊆b̄′, b∈B
V z
r (b) = V̄ z

r (b̄
′).

We next prove that V̄ z
r satisfies gross substitutes condition. Since all agents have homoge-

neous disutility of trip sharing, we can simplify the trip value function V̄ z
r (b̄) as follows:

V̄ z
r (b̄) =

∑
m∈hz

r(b̄)

ηzm,r − θ(|hz
r(b̄)|),

where

ηzm,r
∆
= αm − βmdr − ℓm((z + dr − θm)+),

ξr(|hz
r(b̄)|)

∆
=
(
π(|hz

r(b̄)|) + σ
)
|hz

r(b̄)|+
(
γ(|hz

r(b̄)|) + δ
)
|hz

r(b̄)|dr.

Before proving that the augmented trip value function V̄ z
r (b̄) satisfies (a) and (b) in

Definition 4, we first provide the following statements that will be used later:

(i) The function θ(|hz
r(b̄)|) is non-decreasing in |hz

r(b̄)| because the marginal disutility of

trip sharing is non-decreasing in the group size.

(ii) The representative agent group for any trip can be constructed by selecting agents

from b̄ in decreasing order of ηzm,r. The last selected agent m̂ (i.e. the agent in hz
r(b̄) with

the minimum value of ηzm,r) satisfies:

ηzm̂,r ≥ θ(|hz
r(b̄)|)− θ(|hz

r(b̄)| − 1). (30)
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That is, adding agent m̂ to the set hz
r(b̄) \ {m̂} increases the trip valuation. Additionally,

ηzm,r < θ(|hz
r(b̄)|+ 1)− θ(|hz

r(b̄)|), ∀m ∈ b̄ \ hz
r(b̄). (31)

Then, adding any agent in b̄ \ hz
r(b̄) to hz

r(b̄) no longer increases the trip valuation.

(iii) |hz
r(b̄

′)| ≥ |hz
r(b̄)| for any two agent groups b̄′, b̄ ∈ B such that b̄′ ⊇ b̄.

Proof of (iii). Assume for the sake of contradiction that |hz
r(b̄

′)| < |hz
r(b̄)|. Consider the

agent m̂ ∈ argminm∈hz
r(b̄)

ηzm,r. The value ηzm̂,r satisfies (30). Since |hz
r(b̄

′)| < |hz
r(b̄)|, b̄′ ⊇ b̄,

and we know that agents in the representative agent group hz
r(b̄

′) are the ones with |hz
r(b̄

′)|
highest ηzm,r in b̄′, we must have m̂ /∈ hz

r(b̄
′). From (31), we know that ηzm̂,r < θ(|hz

r(b̄
′)| +

1) − θ(|hz
r(b̄

′)|). Since the marginal disutility of trip sharing is non-decreasing in the agent

group size, we can check that θ(|hz
r(b̄)| + 1) − θ(|hz

r(b̄)|) is non-decreasing in |hz
r(b̄)|. Since

|hz
r(b̄

′)| < |hz
r(b̄)|, we have |hz

r(b̄
′)| ≤ |hz

r(b̄)| − 1. Therefore,

ηzm̂,r < θ(|hz
r(b̄

′)|+ 1)− θ(|hz
r(b̄

′)|) ≤ θ(|hz
r(b̄)|)− θ(|hz

r(b̄)| − 1),

which contradicts (30) and the fact that m̂ ∈ hz
r(b̄). Hence, |hz

r(b̄
′)| ≥ |hz

r(b̄)|.
We now prove that V̄ z

r satisfies (i) in Definition 4. For any b̄, b̄′ ⊆M and b̄ ⊆ b̄′, consider

two cases:

Case 1: i /∈ hz
r({i}∪ b̄′). In this case, hz

r(b̄
′∪i) = hz

r(b̄
′), and V̄ z

r (i|b̄′) = V̄ z
r (b̄

′∪i)−V̄ z
r (b̄

′) = 0.

Since V̄ z
r satisfies monotonicity condition, we have V̄ z

r (i|b̄) ≥ 0. Therefore, V̄ z
r (i|b̄) ≥ V̄ z

r (i|b̄′).
Case 2: i ∈ hz

r({i} ∪ b̄′). We argue that i ∈ hz
r({i} ∪ b̄). From (30), ηzi,r ≥ θ(|hz

r(b̄
′)|) −

θ(|hz
r(b̄

′)| − 1). Since b̄′ ⊇ b̄, we know from (iii) that |hz
r(b̄

′)| ≥ |hz
r(b̄)|. Hence, ηzi,r ≥

θ(|hz
r(b̄)|)− θ(|hz

r(b̄)| − 1), and thus i ∈ hz
r({i} ∪ b̄).

We define m̂′ ∆
= argminm∈hz

r(b̄
′) η

z
m,r and m̂

∆
= argminm∈hz

r(b̄)
ηzm,r. We also consider two

thresholds µ′ = θ(|hz
r(b̄

′)|+ 1)− θ(|hz
r(b̄

′)|), and µ = θ(|hz
r(b̄)|+ 1)− θ(|hz

r(b̄)|). Since b̄′ ⊇ b̄,

from (iii), we have |hz
r(b̄

′)| ≥ |hz
r(b̄)| and thus µ′ ≥ µ. We further consider four sub-cases:

(2-1) ηzm̂′,r ≥ µ′ and ηzm̂,r ≥ µ. From (30) and (31), hz
r({i} ∪ b̄′) = hz

r(b̄
′) ∪ {i} and

hz
r({i}∪ b̄) = hz

r(b̄)∪{i}. The marginal value of i is V̄ z
r (i|b̄′) = ηzi,r−µ′, and V̄ z

r (i|b̄) = ηzi,r−µ.

Since µ′ ≥ µ, V̄ z
r (i|b̄′) ≤ V̄ z

r (i|b̄).
(2-2) ηzm̂′,r < µ′ and ηzm̂,r ≥ µ. Since i ∈ hz

r({i} ∪ b̄′) in Case 2, we know from (30)

and (31) that hz
r({i} ∪ b̄′) = hz

r(b̄
′) \ {m̂′} ∪ {i} and hz

r({i} ∪ b̄) = hz
r(b̄) ∪ {i}. Therefore,

V̄ z
r (i|b̄′) = ηzi,r − ηzm̂′,r and V̄ z

r (i|b̄) = ηzi,r − µ. We argue in this case, we must have |hz
r(b̄

′)| >
|hz

r(b̄)|. Assume for the sake of contradiction that |hz
r(b̄

′)| = |hz
r(b̄)|, then µ′ = µ and

ηzm̂′,r ≥ ηzm̂,r because b̄′ ⊇ b̄. However, this contradicts the assumption of this subcase that

ηzm̂′,r < µ′ = µ ≤ ηm̂r . Hence, we must have |hz
r(b̄

′)| ≥ |hz
r(b̄)| + 1. Then, from (30), we have
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ηzm̂′,r ≥ θ(|hz
r(b̄

′)|)− θ(|hz
r(b̄

′)| − 1) ≥ µ. Hence, V̄ z
r (i|b̄′) ≤ V̄ z

r (i|b̄).
(2-3) ηzm̂′,r ≥ µ′ and ηzm̂,r < µ. From (30) and (31), hz

r(i ∪ b̄′) = hz
r(b̄

′) ∪ {i} and

hz
r({i} ∪ b̄) = hz

r(b̄) \ {m̂′} ∪ {i}. Therefore, V̄ z
r (i|b̄′) = ηzi,r − µ′ and V̄ z

r (i|b̄) = ηzi,r − ηzm̂,r.

Since µ′ ≥ µ ≥ ηzm̂,r, we know that V̄ z
r (i|b̄′) ≤ V̄ z

r (i|b̄).
(2-4) ηzm̂′,r < µ′ and ηzm̂,r < µ. From (30) and (31), hz

r({i}∪ b̄′) = hz
r(b̄

′) \ {m̂′}∪ {i}, and
hz
r({i}∪ b̄) = hz

r(b̄) \ {m̂}∪ {i}. Therefore, V̄ z
r (i|b̄′) = ηzi,r− ηzm̂′,r and V̄ z

r (i|b̄) = ηzi,r− ηzm̂,r. If

|hz
r(b̄

′)| = |hz
r(b̄)|, then we must have ηzm̂′,r ≥ ηzm̂,r, and hence V̄ z

r (i|b̄′) ≤ V̄ z
r (i|b̄). On the other

hand, if |hz
r(b̄

′)| ≥ |hz
r(b̄)| + 1, then from (30) we have ηzm̂,r ≥ θ(|hz

r(b̄
′)|) − θ(|hz

r(b̄
′)| − 1) ≥

µ > ηzm̂,r. Therefore, we can also conclude that V̄ z
r (i|b̄′) ≤ V̄ z

r (i|b̄).
From all four subcases, we can conclude that in case 2, V̄ z

r (i|b̄) ≥ V̄ z
r (i|b̄′).

We now prove that V̄ z
r satisfies condition (ii) of Definition 4 by contradiction. Assume

for the sake of contradiction that Definition 4 (ii) is not satisfied. Then, there must exist a

group b̄ ∈ B̄, and i, j, k ∈M \ b̄ such that:

V̄ z
r (i, j|b̄) + V̄ z

r (k|b̄) > V̄ z
r (i|b̄) + V̄ z

r (j, k|b̄), ⇒ V̄ z
r (j|i, b̄) > V̄ z

r (j|k, b̄), (32a)

V̄ z
r (i, j|b̄) + V̄ z

r (k|b̄) > V̄ z
r (j|b̄) + V̄ z

r (i, k|b̄), ⇒ V̄ z
r (i|j, b̄) > V̄ z

r (i|k, b̄). (32b)

We consider the following four cases:

Case A: hz
r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
∪{j} and hz

r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {k}

)
∪{j}. In this

case, if |hz
r

(
b̄ ∪ {i}

)
| ≥ |hz

r

(
b̄ ∪ {k}

)
|, then V̄ z

r (j|i, b̄) ≤ V̄ z
r (j|k, b̄), which contradicts (32a).

On the other hand, if |hz
r

(
b̄ ∪ {i}

)
| < |hz

r

(
b̄ ∪ {k}

)
|, then we must have hz

r

(
b̄ ∪ {i}

)
= hz

r(b̄)

and hz
r

(
b̄ ∪ {k}

)
= hz

r(b̄) ∪ {k}. Therefore, V̄ z
r (i|j, b̄) = 0, and (32b) cannot hold. We thus

obtain the contradiction.

Case B: |hz
r

(
b̄ ∪ {i, j}

)
| = |hz

r

(
b̄ ∪ {i}

)
| and |hz

r

(
b̄ ∪ {j, k}

)
| = |hz

r

(
b̄ ∪ {k}

)
|. We fur-

ther consider the following four sub-cases:

(B-1). hz
r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
and hz

r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {k}

)
. In this case,

V̄ z
r (j|i, b̄) = V̄ z

r (j|k, b̄) = 0. Hence, we arrive at a contradiction against (32a).

(B-2). hz
r

(
b̄ ∪ {i, j}

)
̸= hz

r

(
b̄ ∪ {i}

)
and hz

r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {k}

)
. In this case, when

j is added to the set b̄∪{i}, j replaces an agent, denoted as m̂ ∈ b̄∪{i}. Since m̂ is replaced,

we must have ηzm̂,r ≤ ηzm,r for any m ∈ hz
r(b̄∪{j}). If m̂ = i, then hz

r(b̄∪{i, j}) = hz
r(b̄∪{j}).

Hence, V̄ z
r (i|j, b̄) = 0, and we arrive at a contradiction with (32b). On the other hand, if

m̂ ̸= i, then m̂ is an agent in group b̄. This implies that m̂ ∈ b̄ should be replaced by

j when j is added to the set {k} ∪ b̄, which contradicts the assumption of this case that

hz
r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {k}

)
.

(B-3). hz
r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
and hz

r

(
b̄ ∪ {j, k}

)
̸= hz

r

(
b̄ ∪ {k}

)
. Analogous to

case B-2, we know that hz
r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {j}

)
and ηzj,r ≥ ηzk,r. Moreover, since
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hz
r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
, we must have ηzj,r ≤ ηzi,r. Therefore, V̄

z
r (b̄∪{i, j}) = V̄ z

r (b̄∪{i}),
and V̄ z

r (i|j, b̄) = V̄ z
r (b̄ ∪ {i}) − V̄ z

r (b̄ ∪ {j}). Since ηzj,r ≤ ηzi,r and ηzj,r ≥ ηzk,r, we know that

V̄ z
r (i|k, b̄) = V̄ z

r (b̄ ∪ {i}) − V̄ z
r (b̄ ∪ {k}) ≥ V̄ z

r (b̄ ∪ {i}) − V̄ z
r (b̄ ∪ {j}) = V̄ z

r (i|j, b̄), which
contradicts (32b).

(B-4). hz
r

(
b̄ ∪ {i, j}

)
̸= hz

r

(
b̄ ∪ {i}

)
and hz

r

(
b̄ ∪ {j, k}

)
̸= hz

r

(
b̄ ∪ {k}

)
. In this case, if

hz
r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {j}

)
, then V̄ z

r (i|j, b̄) = V̄ z
r (i, j, b̄)− V̄ z

r (j, b̄) = V̄ z
r (j, b̄)− V̄ z

r (j, b̄) = 0,

which contradicts (32b). On the other hand, if hz
r

(
b̄ ∪ {i, j}

)
̸= hz

r

(
b̄ ∪ {j}

)
, then one agent

m̂ ∈ b̄ must be replaced by j when j is added into the set b̄ ∪ {i}, i.e. hz
r

(
b̄ ∪ {i, j}

)
=

hz
r

(
b̄ \ {m̂} ∪ {i, j}

)
. Hence, ηzm̂,r ≤ ηzi,r and ηzm̂,r ≤ ηzj,r. If ηzm̂,r ≤ ηzk,r, then under the

assumption that |hz
r

(
b̄ ∪ {j, k}

)
| = |hz

r

(
b̄ ∪ {k}

)
| and hz

r

(
b̄ ∪ {j, k}

)
̸= hz

r

(
b̄ ∪ {k}

)
, we

must have hz
r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ \ {m̂} ∪ {j, k}

)
. Then, we can check that V̄ z

r (j|i, b) =

V̄ z
r (j|k, b), which contradicts (32a).

On the other hand, if ηzm̂,r > ηzk,r, then hz
r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {j}

)
. In this case,

V̄ z
r (i|j, b̄) is the change of trip value by replacing m̂ with i, and V̄ z

r (i|k, b̄) is the change of

trip value by replacing k with i. Since ηzk,r < ηzm̂,r, we must have V̄ z
r (i|j, b̄) < V̄ z

r (i|k, b̄),
which contradicts (32b).

Case C: hz
r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
∪ {j} and |hz

r

(
b̄ ∪ {j, k}

)
| = |hz

r

(
b̄ ∪ {k}

)
|. We

further consider the following sub-cases:

(C-1). hz
r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {k}

)
. In this case, ηzj,r ≤ ηzm,r for all m ∈ hz

r(b̄ ∪ {k}),
and ηzj,r < θ(|hz

r(b̄∪{k})+1|)−θ(|hz
r(b̄∪{k})|). Since hz

r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
∪{j}, we

know that ηzj,r ≥ θ(|hz
r(b̄∪{i})+ 1|)− θ(|hz

r(b̄∪{i})|). Since disutility of trip sharing is non-

decreasing in agent group size, for ηzj,r to satisfy both inequalities, we must have |hz
r(b̄∪{i})| <

|hz
r(b̄ ∪ {k})|. Then, we must have hz

r(b̄ ∪ {i}) = hz
r(b̄) and hz

r(b̄ ∪ {k}) = hz
r(b̄) ∪ {k}.

Therefore, V̄ z
r (i, j, b̄) = V̄ z

r (j, b̄) and V̄ z
r (i, k, b̄) = V̄ z

r (k, b̄). Hence, V̄
z
r (i|j, b̄) = V̄ z

r (i|k, b̄) = 0,

which contradicts (32b).

(C-2). hz
r

(
b̄ ∪ {j, k}

)
̸= hz

r

(
b̄ ∪ {k}

)
. Since |hz

r

(
b̄ ∪ {j, k}

)
| = |hz

r

(
b̄ ∪ {k}

)
|, j replaces

an agent m̂ in b̄ ∪ {k}, and ηzm̂,r ≤ ηzm,r for all m ∈ b̄ ∪ k. If m̂ = k, then hz
r

(
b̄ ∪ {j, k}

)
=

hz
r

(
b̄ ∪ {j}

)
. Therefore, V̄ z

r (j|i, b̄) = ηzj,r−
(
θ(|hz

r(b̄ ∪ {i})|+ 1)− θ(|hz
r(b̄ ∪ {i})|)

)
and V̄ z

r (j|k, b̄) =
ηzj,r − ηkr . If ηzk,r ≤ θ(|hz

r(b̄ ∪ {i})| + 1) − θ(|hz
r(b̄ ∪ {i})|), then (32a) is contradicted. Thus,

ηzk,r > θ(|hz
r(b̄ ∪ {i})| + 1) − θ(|hz

r(b̄ ∪ {i})|). Since k is replaced by j when j is added to

b̄ ∪ {k}, we must have ηzk,r < θ(|hz
r(b̄ ∪ {j})|+ 1)− θ(|hz

r(b̄ ∪ {j})|). For ηzk,r to satisfy both

inequalities, we must have |hz
r(b̄∪{j})| > |hz

r(b̄∪{i})|. Hence, hz
r(b̄∪{j}) = hz

r(b̄)∪{j} and
hz
r(b̄ ∪ {i}) = hz

r(b̄). Then, V̄ z
r (i|j, b̄) = V̄ z

r (b̄ ∪ {i, j}) − V̄ z
r (b̄ ∪ {j}) = 0, which contradicts

(32b).

On the other hand, if m̂ ∈ b̄, then we know from (31) that ηzm̂,r < θ(|hz
r

(
b̄ ∪ {k}

)
| +

1)− θ(|hz
r

(
b̄ ∪ {k}

)
|). Additionally, since hz

r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
∪ {j}, we know from
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(30) that ηzm̂,r ≥ θ(|hz
r

(
b̄ ∪ {i}

)
| + 1) − θ(|hz

r

(
b̄ ∪ {i}

)
|). If ηzm̂,r satisfies both inequalities,

then we must have |hz
r

(
b̄ ∪ {i}

)
| < |hz

r

(
b̄ ∪ {k}

)
|. Therefore, hz

r

(
b̄ ∪ {i}

)
= hz

r(b̄). Then,

V̄ z
r (i|j, b̄) = 0, which contradicts (32b).

Case D: |hz
r

(
b̄ ∪ {i, j}

)
| = |hz

r

(
b̄ ∪ {i}

)
| and hz

r

(
b̄ ∪ {j, k}

)
= hz

r

(
b̄ ∪ {k}

)
∪ {j}. We

further consider the following sub-cases:

(D-1). hz
r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
. In this case, analogous to (C-1), we know that

|hz
r(b̄ ∪ {k})| < |hz

r(b̄ ∪ {i})|. Therefore, hz
r(b̄ ∪ {k}) = hz

r(b̄) and hz
r(b̄ ∪ {i}) = hz

r(b̄) ∪ {i}.
Therefore, ηzk,r < ηzi,r. Additionally, since hz

r

(
b̄ ∪ {i, j}

)
= hz

r

(
b̄ ∪ {i}

)
, ηzj,r < ηzi,r. Then,

V̄ z
r (i|j, b̄) = V̄ z

r (i, b̄) − V̄ z
r (j, b̄) and V̄ z

r (i|k, b̄) = V̄ z
r (i, b̄) − V̄ z

r (b̄). Since V̄ z
r is monotonic,

V̄ z
r (j, b̄) ≥ V̄ z

r (b̄) so that V̄ z
r (i|j, b̄) ≤ V̄ z

r (i|k, b̄), which contradicts (32b).

(D-2). hz
r

(
b̄ ∪ {i, j}

)
̸= hz

r

(
b̄ ∪ {i}

)
. Since |hz

r

(
b̄ ∪ {i, j}

)
| = |hz

r

(
b̄ ∪ {i}

)
|, j replaces

the agent m̂ ∈ b̄∪{i} such that ηzm̂,r ≤ ηzm,r for all m ∈ hz
r(b̄∪{i}). If m̂ = i, then analogous

to case C-2, we know that if (32b) is satisfied, then |hz
r(b̄ ∪ {j})| < |hz

r(b̄ ∪ {k})|. Hence,

hz
r(b̄ ∪ {j}) = hz

r(b̄) and V (j|i, b̄) = 0, which contradicts (32a).

On the other hand, if m̂ ∈ b̄, then again analogous to case C-2, we know that |hz
r

(
b̄ ∪ {k}

)
| <

|hz
r

(
b̄ ∪ {i}

)
|. Therefore, hz

r

(
b̄ ∪ {k}

)
= hz

r(b̄), and hz
r

(
b̄ ∪ {i}

)
= hz

r(b̄) ∪ {i}. Then,

V̄ z
r (j|i, b̄) = V̄ z

r (b̄ \ {m̂} ∪ {i, j}) − V̄ z
r (i, b̄), and V̄ z

r (j|k, b̄) = V̄ z
r (b̄ ∪ {j}) − V̄ z

r (b̄). Since

m̂ ̸= i, V̄ z
r (i|j, b̄) = V̄ z

r (b̄ \ {m̂} ∪ {i, j}) − V̄ z
r (j, b̄) = ηzi,r − ηzm̂,r. Additionally, since

hz
r(i, b̄) = hz

r(b̄)∪{i}, V̄ z
r (i|k, b̄) = V̄ z

r (i, b̄)− V̄ z
r (b̄) = ηzi,r− (θ(|hz

r(b̄)|+1)− θ(|hz
r(b̄)|)). Since

hz
r(b̄∪{i}) = hz

r(b̄)∪{i} and m̂ ∈ b̄, we know from (30) that ηzm̂,r ≥ θ(|hz
r(b̄)|+1)−θ(|hz

r(b̄)|).
Therefore, V̄ z

r (i|j, b̄) ≤ V̄ z
r (i|k, b̄), which contradicts (32b).

From all above four cases, we can conclude that condition (ii) of Definition 4 is satisfied.

We can thus conclude that V̄ z
r satisfies gross substitutes condition. □

Proof of Lemma 3. For any route r ∈ R∗ = {R|w∗
r > 0} and any z = 1, . . . , T −dr, we denote

Lz
r as the set of slots that correspond to departing at time z and using route r. From the

temporally repeated flow vector k∗, we know that |Lz
r| = kz∗

r . We denote L = ∪r∈R∗∪T−dr
z=1 Lz

r.

Given any optimal integer solution x∗ of (LPk∗), we denote {b̄l}l∈Lz
r
as the set of augmented

groups in B̄ such that x̄z∗
r (b̄) = 1. In particular, if the number of agent groups that take

route r with departure time z is less than kz∗
r , then b̄l = ∅ for some of l ∈ Lz

r.

We first show that x̄∗ is an integer optimal solution of (LPk∗) if and only if ((b̄l)l∈L, u
∗) is

a Walrasian equilibrium of the equivalent economy with good set M and buyer set L. Here,

u∗ is the optimal dual variable in the dual program of (LPk∗) associated with constraint

(LPk∗.a). If ((b̄l)l∈L, u
∗) is a Walrasian equilibrium of the equivalent economy, then the

associated x̄∗ must be a feasible solution of (LPk∗). We define λz∗
r = V̄l(b̄l) −

∑
m∈b̄l u

∗
m =

maxb̄∈B̄{V̄l(b̄) −
∑

m∈b̄ u
∗
m} for l ∈ Lz

r, where the second equality follows from the defini-

tion of Walrasian equilibrium. We can check that (u∗, τ ∗) satisfies the dual constraints of
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(LPk∗), and (x∗, u∗, τ ∗) satisfies the complementary slackness conditions associated with all

the primal and dual constraints. Thus, x∗ is an optimal integer solution of (LPk∗). On the

other hand, we can analogously argue that if x∗ is an optimal integer solution of (LPk∗),

then the associated (b̄l)l∈L and the dual optimal solution u∗ is a Walrasian equilibrium in

the equivalent economy.

From Lemma 4, we know that when the augmented value function V̄l = V̄ z
r satisfies the

monotonicity and gross substitutes conditions, Walrasian equilibrium exists in the equivalent

economy. As a result, we know that the associated x̄∗ is an optimal integer solution in (LPk∗).

Finally, in (18), we select one representative agent group hz
r(b̄) for each b̄ that is assigned

to (r, z) as the true feasible agent group that takes route r at time z. Such x∗ achieves the

same social welfare as that in x̄∗, and thus is an optimal solution of (LPk∗). □

E Proof of Statements in Section 3.2

We define U∗ ∆
= {u|∃τ such that (u, τ) is optimal solution of (D)} as the equilibrium utility

set.

Lemma 9. If the network is series-parallel, a utility vector u∗ ∈ U∗ if and only if there exists

a vector λ∗ such that (u∗, λ∗) is an optimal solution of (Dk∗).

We can check that for any optimal solution (u∗, τ ∗) of (D), the vector (u∗, λ∗) – where

λz∗
r =

∑
e∈r τ

z+θr,e∗
e for each r ∈ R – must also be optimal in (Dk∗). That is, any u∗ ∈ U∗

is also an optimal utility vector in (Dk∗). On the other hand, we show that any optimal

utility vector of (Dk∗) is also an equilibrium utility vector in U∗ in that we can find an edge

price vector τ ∗ such that (u∗, τ ∗) is an optimal solution of (D). We prove this argument by

mathematical induction using the series-parallel network condition: If such an equilibrium

edge price vector exists on two series parallel networks, then the combined edge price vector

is also an equilibrium edge price vector when the two networks are connected in series or in

parallel.

Lemma 9 enables us to characterize the riders’ equilibrium utility set U∗ using the dual

program (Dk∗) associated with the optimal trip organization problem under the capacity

constraint with k∗. The following lemma further shows that U∗ is a lattice with u† being the

maximum element.

Lemma 10. If the network is series-parallel, and riders have homogeneous carpool disutili-

ties, then the set U∗ is a complete lattice with u† ∈ U∗, and u†
m ≥ u∗

m for any u∗ ∈ U∗.
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The proof of Lemma 10, utilizes the equivalence between the trip organization problem

with the augmented trip value function V̄ and the economy constructed in Sec. 3. In

particular, we can show that U∗ characterized by (Dk∗) is identical to set of good prices in

Walrasian equilibrium of the economy. From Lemma 2, we know that V̄ satisfy monotonicity

and gross substitutes conditions when riders have homogeneous carpool disutilities. Building

on the theory of Walrasian equilibrium (Gul and Stacchetti [1999], also included in Lemma

5 in Appendix B), we can show that U∗ is a lattice, and u† is the maximum element in U∗.

Combining Lemmas 9 and 10, we know that (x∗, p†, τ †) is a market equilibrium. We con-

clude Theorem 2 by noticing that (x∗, p†), where p† is the VCG price as in (19), implements

the same outcome as a VCG mechanism, and thus (x∗, p†, τ †) must be strategyproof.

Proof of Lemma 9. We first show that for any optimal utility vector u∗ ∈ U∗, there exists

a vector λ∗ such that (u∗, λ∗) is an optimal solution of (Dk∗). Since u∗ ∈ U∗, there must

exist an edge price vector τ ∗ such that (u∗, τ ∗) is an optimal solution of (D). Consider

λ∗ = (λz∗
r )r∈R∗,z=1,...,T as follows:

λz∗
r =

∑
e∈r

τ z+dr,e∗
e , ∀r ∈ R, ∀z = 1, . . . T. (33)

Since (u∗, τ ∗) is feasible in (D), we can check that (u∗, λ∗) is also a feasible solution of (Dk∗).

Moreover, since (x∗, u∗, τ ∗) satisfies complementary slackness conditions with respect to (LP)

and (D), (x∗, u∗, λ∗) also satisfies complementary slackness conditions with respect to (LPk∗)

and (Dk∗). Therefore, (u∗, λ∗) is an optimal solution of (Dk∗).

We next show that for any optimal solution (u∗, λ∗) of (Dk∗), we can find an edge price

vector τ ∗ such that (u∗, τ ∗) is an optimal solution of (D) (i.e. u∗ ∈ U∗). We prove this

argument by mathematical induction. To begin with, if the network only has a single edge

E = {e}, then for any optimal solution (u∗, λ∗), we can check that (u∗, τ ∗) where τ z∗e = λz∗
e is

an optimal solution of (D). We now prove that if this argument holds on two series-parallel

networks G1 and G2, then it also holds on the network constructed by connecting G1 and

G2 in parallel or in series. We prove the case of parallel connection and series connection

separately as follows:

(Case 1). The network G is constructed by connecting G1 and G2 in parallel. In each

network Gi (i = 1, 2), we define Ei as the set of edges, Ri as the set of routes. We also define

ki∗ as the optimal temporally repeated flow vector computed from Alg. 1 in Gi. Since G1

and G2 are connected in parallel, we have E1 ∪ E2 = E, R1 ∪R2 = R, and k∗ = (k1∗, k2∗).

For each i = 1, 2, we consider the sub-problem, where riders organize trips on the

sub-network Gi. For any (x∗, u∗, λ∗) on the original network G, we define the trip vec-
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tor xi∗ =
(
xzi∗
ri (b)

)
ri∈Ri,b∈B,zi=1,...T

and the route price vector λi∗ =
(
λzi∗
ri

)
ri∈Ri,zi=1,...T

for

the subnetwork Gi. We can check that the vector xi∗ is a feasible solution of (LPk∗) for

the subproblem, where k∗ in the original problem (LPk∗) is replaced by ki∗. Additionally,

the vector (u∗, λi∗) is a feasible solution of (Dk∗). Since the original optimal solutions x∗

and (u∗, λ∗) satisfy the complementary slackness conditions of constraints (LPk∗.a)-(LPk∗.b)

and (Dk∗.a) for all m ∈ M and all r ∈ R = R1 ∪ R2, we know that xi∗ and (u∗, λi∗) must

also satisfy the complementary slackness conditions of these constraints in each subproblem.

Therefore, xi∗ is an optimal integer solution of (LPk∗) and (u∗, λi∗) is an optimal solution of

(Dk∗) in the subproblem.

From our assumption of mathematical induction, there exists an edge price vector τ i∗ =

(τ t,i∗e )e∈Ei,t=1,...,T such that (u∗, τ i∗) is an optimal solution of (D) in each subproblem i with

subnetwork Gi. Thus, (u∗, τ i∗) satisfies the feasibility constraints in (D) of each subproblem

i, and xi∗ and (u∗, τ i∗) satisfy the complementary slackness conditions with respect to con-

straints (LP.a) for each m ∈ M , (LP.b) for each e ∈ Ei, (D.a) for each ri ∈ Ri. Consider

the edge price vector τ ∗ = (τ 1∗, τ 2∗). Since R = R1 ∪ R2 and E = E1 ∪ E2, (u∗, τ ∗) must

be feasible in (D) on the original network, and x∗, (u∗, τ ∗) must satisfy the complementary

slackness conditions with respect to constraints (LP.a) – (LP.b), and (D.a). Therefore, we

can conclude that for any optimal solution (u∗, λ∗) of (Dk∗), there exists an edge price vector

τ ∗ such that (u∗, τ ∗) is an optimal solution of (D) in network G.

(Case 2). The network G is constructed by connecting G1 and G2 in series, where G1 is the

subnetwork connected to the origin. Same as that in case 1, we define Ei as the set of edges

in the subnetwork Gi (i = 1, 2), and Ri as the set of routes. Since G1 and G2 are connected

in series, we have E = E1 ∪ E2, and R = R1 ×R2.

We define a sub-trip (zi, b, ri) as the trip in the sub-network Gi where rider group b takes

route ri ∈ Ri, and departs from the origin of network Gi at time zi. Analogous to the value

of trip defined in (3), we define the value of each sub-trip (zi, b, ri) as follows:

V z1

r1 (b) =
∑
m∈b

(
α1
m − βmdr1

)
− |b| (π(|b|) + γ(|b|)dr1 + σ + δdr1) , ∀b ∈ B, ∀r1 ∈ R1, ∀z1 = 1, . . . , T,

(34)

V z2

r2 (b) =
∑
m∈b

(
α2
m − βmdr2 − ℓm((z

2 + dr2 − θm)+
)
− |b| (π(|b|) + γ(|b|)dr2 + σ + δdr2) ,

∀b ∈ B, ∀r2 ∈ R2, ∀z2 = 1, . . . , T. (35)

where αi
m is the value for riderm to travel from the origin to the destination of the subnetwork

Gi. The value of αi
m can be any number in [0, αm] as long as α1

m + α2
m = αm. We note that
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the delay cost of the original trip is included entirely in the second sub-trip in G2. We can

check that V z1

r1 (b) + V
z1+dr1
r2 (b) = V z1

r1r2(b) is the value of the entire trip (z1, b, r1r2) of the

original network.

We denote the trip organization vector on Gi as xi =
(
xzi

ri(b)
)
ri∈Ri,b∈B,zi=1,...,T

, where

xzi

ri(b) = 1 if the sub-trip (zi, b, ri) is organized in Gi, and 0 otherwise. The optimal trip

organization problem (LP) can be equivalently presented by (x1, x2) as follows:

max
x1,x2

S(x1, x2) =
T∑

z1=1

∑
b∈B

∑
r1∈R1

V z1

r1 (b)x
z1

r1(b) +
T∑

z2=1

∑
b∈B

∑
r2∈R2

V z2

r2 (b)x
z2

r2(b)

s.t.
∑
ri∈Ri

T∑
zi=1

∑
b∋m

xzi

ri(b) ≤ 1, ∀m ∈M, ∀i = 1, 2, (36a)

∑
ri∋e

∑
b∈B

x
t−dri,e
ri

(b) ≤ qe, ∀e ∈ Ei, ∀i = 1, 2, ∀t = 1, . . . T, (36b)∑
r1∈R1

xt−dr1 (b) =
∑
r2∈R2

xt
r2(b), ∀b ∈ B, ∀t = 1, . . . , T, (36c)

xzi

ri(b) ≥ 0, ∀b ∈ B, ∀ri ∈ Ri, ∀i = 1, 2, ∀zi = 1, . . . , T, (36d)

where (36a) and (36b) are the constraints of xi in the trip organization sub-problem on Gi.

The constraint (36c) ensures that any rider group that arrive at the destination of G1 at

time t must depart from the origin of G2 at time t to complete a trip in the original network

G.

We denote k∗ as the optimal capacity vector computed from Alg. 1. Since Alg. 1

allocates capacity on routes in increasing order of their travel time, and the total travel time

of each route is dr1r2 = dr1 + dr2 , we know that kz1∗
r1 =

∑
r2∈R2 kz1∗

r1r2 for all r1 ∈ R1 and

kz2∗
r2 =

∑
r1∈R1 k

z2−dr1∗
r1r2 for all r2 ∈ R2. Analogous to the proof of Lemma 1, any optimal

integer solution of the following linear program is an optimal solution of (36):

max
x1,x2

S(x1, x2) =
T∑

z1=1

∑
b∈B

∑
r1∈R1

V z1

r1 (b)x
z1

r1(b) +
T∑

z2=1

∑
b∈B

∑
r2∈R2

V z2

r2 (b)x
z2

r2(b)

s.t.
∑
ri∈Ri

T∑
zi=1

∑
b∋m

xzi

ri(b) ≤ 1, ∀m ∈M, ∀i = 1, 2, (37a)∑
b∈B

xzi

ri(b) ≤ kzi∗
ri , ∀ri ∈ Ri, ∀i = 1, 2, ∀t = 1, . . . T, (37b)∑

r1∈R1

x
t−dr1
r1 (b) =

∑
r2∈R2

xt
r2(b), ∀b ∈ B, ∀t = 1, . . . , T, (37c)

xzi

ri(b) ≥ 0, ∀b ∈ B, ∀ri ∈ Ri, ∀i = 1, 2, ∀zi = 1, . . . , T, (37d)
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We note that a trip (z, b, r1r2) is organized if and only if both xz
r1(b) = 1 and x

z+dr1
r2 (b) = 1.

Thus, any (x1, x2) is feasible in (36) (resp. (37)) if and only if there exists a feasible x in

(LP) (resp. (LPk∗)) such that xz1

r1(b) =
∑

r2∈R2 xz1

r1r2(b) and xz2

r2(b) =
∑

r1∈R1 x
z2−dr1
r1r2 (b) for

all b ∈ B, all r1 ∈ R1, r2 ∈ R2 and all z1, z2 = 1, . . . , T . Moreover, the value of the objective

function S (x1, x2) equals to S(x) with the corresponding x:

S(x) =
T∑

z=1

∑
b∈B

∑
r∈R

V z
r (b)x

z
r(b) =

T∑
z=1

∑
b∈B

∑
r1∈R1

∑
r2∈R2

(
V z
r1(b) + V

z+dr1
r2 (b)

)
xz
r1r2(b)

=
T∑

z1=1

∑
b∈B

∑
r1∈R1

V z1

r1 (b)

(∑
r2∈R2

xz1

r1r2(b)

)
+

T∑
z2=1

∑
b∈B

∑
r2∈R2

V z2

r2 (b)

(∑
r1∈R1

x
z2−dr1
r1r2 (b)

)
= S(x1, x2).

Therefore, given any optimal solution x∗ of (LPk∗), the corresponding (x1∗, x2∗) is an

optimal integer solution of (37). Additionally, (x1∗, x2∗) is also an optimal solution of (36).

Hence, the optimal values of (LP), (36), (LPk∗) and (37) are the same.

We introduce the dual variables ui = (ui
m)m∈M,i=1,2 for constraints (36a), τ

i = (τ t,ie )e∈Ei,t=1,...,T

for (36b) of each i = 1, 2, and χ = (χt(b))b∈B,t=1,...,T for (36c). Then, the dual program of

(36) can be written as follows:

min
u,τ

U(u, τ) =
∑
i=1,2

∑
m∈M

ui
m +

T∑
t=1

∑
i=1,2

∑
e∈Ei

qeτ
t,i
e

s.t.
∑
m∈b

u1
m +

∑
e∈r1

τ
z1+dr1,e
e + χz1+dr1 (b) ≥ V z1

r1 (b), ∀z1 = 1, . . . , T, ∀b ∈ B, ∀r1 ∈ R1,

(38a)∑
m∈b

u2
m +

∑
e∈r2

τ
z2+dr2,e
e − χz2(b) ≥ V z2

r2 (b), ∀z2 = 1, . . . , T, ∀b ∈ B, ∀r2 ∈ R2,

(38b)

um ≥ 0, τ te ≥ 0, ∀m ∈M, ∀e ∈ E, ∀t = 1, . . . , T. (38c)

Similarly, we obtain the dual program of (37) with the same dual variables except for

the route price vector λi =
(
λt,i
ri

)
ri∈Ri∗,t=1,...,T,i=1,2

for (37b):

min
u1,u2,λ1,λ2,χ

U =
∑
i=1,2

∑
m∈M

ui
m +

∑
i=1,2

T∑
zi=1

∑
ri∈Ri

kzi∗
ri λzi

ri ,
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s.t.
∑
m∈b

u1
m + λz1

r1 + χz1+dr1 (b) ≥ V z1

r1 (b), ∀z1 = 1, . . . , T, ∀b ∈ B, ∀r1 ∈ R1,

(39a)∑
m∈b

u2
m + λz2

r2 − χz2(b) ≥ V z2

r2 (b), ∀z2 = 1, . . . , T, ∀b ∈ B, ∀r2 ∈ R2,

(39b)

ui
m, λzi

ri ≥ 0, ∀m ∈M, ∀ri ∈ Ri, ∀zi = 1, . . . , T, i = 1, 2. (39c)

From strong duality, we know that the optimal value of (39) (resp. (Dk∗)) is the same as

that of (37) (resp. (LPk∗)). Since the optimal values of (LPk∗) and (37) are identical,

we know that the optimal values of (39) must be equal to that of (Dk∗). Additionally,

we can check that for any feasible solution (u1, u2, λ1, λ2, χ) of (39) must correspond to

a feasible solution (u, λ) of (Dk∗) such that um = u1
m + u2

m and λz
r1r2 = λz

r1 + λ
z+dr1
r2 .

Then, for each (u∗, λ∗), we consider the optimal solution (u1∗, u2∗, λ1∗, λ2∗, χ∗) of (39), and

define Ṽ 1
r1(b) = V z1

r1 (b) − χz1+dr1∗(b), Ṽ z2

r2 (b) = V z2

r2 (b) + χz2∗(b) for each r1 ∈ R1, r2 ∈ R2,

z1, z2 = 1, . . . , T and b ∈ B. Then, for each i = 1, 2, (ui∗, λi∗) is an optimal solution of the

following linear program:

min
ui,λi

U i =
∑
m∈M

ui
m +

T∑
zi=1

∑
ri∈Ri

kzi∗
ri λzi

ri ,

s.t.
∑
m∈b

ui
m + λzi

ri ≥ Ṽ zi

ri (b), ∀b ∈ B, ∀ri ∈ Ri, ∀zi = 1, . . . , T, (40a)

ui
m, λzi

ri ≥ 0, ∀m ∈M, ∀ri ∈ Ri, ∀zi = 1, . . . , T. (40b)

From the assumption of the mathematical induction, there exists edge price vector τ i∗ such

that (ui∗, τ i∗) is an optimal dual solution of the trip organization problem on the sub-network

given Ṽ value function for each i = 1, 2:

min
ui,λi

U =
∑
m∈M

ui
m +

T∑
t=1

∑
e∈Ei

qeτ
t
e,

s.t.
∑
m∈b

ui
m +

∑
e∈ri

τ
zi+dri,e
e ≥ Ṽ zi

ri (b), ∀b ∈ B, ∀ri ∈ Ri, ∀zi = 1, . . . , T,

ui
m, τ t,ie ≥ 0, ∀m ∈M, ∀e ∈ Ei.

(41)

Since the objective function (38) is the sum of the objective functions in (41) for i = 1, 2, and

the constraints are the combination of the constraints in the two linear programs, we know

that (u1∗, u2∗, τ 1∗, τ 2∗, χ∗) must be an optimal solution of (38). We consider the edge price
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vector τ ∗ = (τ 1∗, τ 2∗). Since (u1∗, u2∗, τ 1∗, τ 2∗, χ∗) satisfies constraints (38a) and (38b) and

u∗
m = u1∗

m + u2∗
m for all m ∈ M , (u∗, τ ∗) is a feasible solution of (D) on the original network

G. Furthermore, since (u∗, τ ∗) achieves the same objective value as the optimal solution

(u1∗, u2∗, τ 1∗, τ 2∗, χ∗) in (39), (u∗, τ ∗) must be an optimal solution of (D) on the network G.

Finally, we conclude from cases 1 and 2 that in any series-parallel network, for any

optimal solution (u∗, λ∗) of (Dk∗), there must exist a edge price vector τ ∗ such that (u∗, τ ∗)

is an optimal solution of (D). □

Proof of Lemma 10. We first proof that a utility vector u∗ ∈ U∗ if and only if u∗ is an

optimal utility vector of the following linear program:

min
u,λ

∑
m∈M

um +
∑
r∈R

T−dr∑
z=1

kz∗
r λz

r,

s.t.
∑
m∈b̄

um + λz
r ≥ V

z

r(b̄), ∀(b̄, r, z) ∈ Trip, (D̄k∗.a)

um ≥ 0, λz
r ≥ 0, ∀m ∈M, ∀z = 1, . . . T − dr, ∀r ∈ R. (D̄k∗.b)

We note that (u∗, λ∗) is a feasible solution of (D̄k∗) since for any (b̄, r, z) ∈ Trip,∑
m∈b̄

um + λz
r ≥

∑
m∈hz

r(b̄)

um + λz
r ≥ V z

r (h
z
r(b̄)) = V

z

r(b̄),

where hz
r(b̄) is a representative rider group of b̄ given r and z.

Note that any (u∗, λ∗) is an optimal solution of (Dk∗) if and only if there exists any

optimal solution x∗ of (LPk∗), (x∗, u∗, λ∗), that satisfies the primal feasibility, dual feasibility,

and complementary slackness conditions corresponding to (LPk∗) and (Dk∗). Given such x∗,

we can construct x̄∗ such that for any r ∈ R and any z = 1, . . . , T − dr, x̄
z∗
r (b̄) = xz∗

r (b̄) for

all b̄ ∈ B, and x̄z∗
r (b̄) = 0 for all b̄ ∈ B̄ \B. Such x̄∗ is an optimal solution of (LPk∗) since it

achieves the same total social value as x∗. It remains to show that (x̄∗, u∗, λ∗) satisfies the

complementary slackness conditions associated with (LPk∗.a), (LPk∗.b), and (D̄k∗.a):

(1) We note that
∑

(b̄,z,r)∈{Trip|b̄∋m} x̄
z∗
r (b̄) =

∑
(b,z,r)∈{Trip|b∋m} x

z∗
r (b) for any m ∈M . From

the complementary slackness condition associated with (LPk∗.a), we know that

u∗
m ·

1−
∑

(b̄,z,r)∈{Trip|b̄∋m}

x̄z∗
r (b̄)

 = u∗
m ·

1−
∑

(b,z,r)∈{Trip|b∋m}

xz∗
r (b)

 = 0, ∀m ∈M.

Thus, the complementary slackness condition associated with (LPk∗.a) is satisfied.
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(2) We note that
∑

b̄∈B̄ x̄z∗
r (b̄) =

∑
b∈B xz∗

r (b̄). From the complementary slackness condition

associated with (LPk∗.b), λ∗
r ·
(
kz∗
r −

∑
b̄∈B̄ x̄z∗

r (b̄)
)
= λ∗

r ·
(
kz∗
r −

∑
b∈B xz∗

r (b̄)
)
= 0.

Therefore, the complementary slackness condition associated with (LPk∗.b) is satisfied.

(3) Since x̄∗ is 0 for any b̄ ∈ B̄ \ B, we only need to check that (x∗, u∗, λ∗) satisfies the

complementary slackness conditions associated with (D̄k∗.a) for (b̄, r, z) ∈ Trip. Since

x̄z∗
r (b̄) = xz∗

r (b̄) for all b̄ ∈ B, such complementary slackness conditions directly follow

from that with respect to (x∗, u∗, λ∗).

We next show that any (u∗, λ∗) that is an optimal solution of (D̄k∗) is also an optimal

solution of (Dk∗). We note that x̄∗ constructed from the optimal solution x∗ in (LP) is also

an optimal solution of (LPk∗), and thus (x̄∗, u∗, λ∗) satisfies the complementary slackness

conditions with respect to (LPk∗.a), (LPk∗.b), and (D̄k∗.a). From the complementary slack-

ness condition associated with (LPk∗.a), we know that for any rider that is not assigned to

a trip in x̄∗, the utility is zero. Since the rider group assigned in x∗ is the same as those in

x̄∗, we know that any rider that is not assigned to trips in x∗ also has zero utility. We have∑
m∈b̄ u

∗
m =

∑
m∈hz

r(b̄)
u∗
m for all b̄ ∈ B̄, where hz

r(b̄) is the representative rider group that is

organized given b̄. Thus, (u∗, λ∗) is a feasible solution of (Dk∗).

Following the analogous argument as in (1) – (3), we can prove that (x∗, u∗, λ∗) also

satisfies the complementary slackness conditions associated with (LPk∗.a), (LPk∗.b), and

(D̄k∗.a), where x∗ is the optimal solution in (LPk∗) that is used to construct x̄∗.

Finally, following the proof of Lemma 3, we know that U∗ is the set of equilibrium prices

of goods in the equivalent economy. From Lemma 5, we know that the set of Walrasian

equilibrium price is a lattice, and the maximum element is u†. Consequently, we can conclude

that the set U∗ is a lattice, and u† is the maximum element. Since the optimal value of the

objective function for all (u∗, τ ∗) equals to S(x∗), we can conclude that the total edge price

given by τ † is no higher than that of any other equilibrium. □

Proof of Proposition 2. Following the proofs of Theorem 1, we know that the socially optimal

trip vector is computed in two steps: we first compute the temporally repeated flow following

Algorithm 1, and then we compute the Walrasian equilibrium allocation in an equivalent

economy. From Lemma 7, the Walrasian equilibrium allocation can be computed by the

Kelso-Crawford algorithm. In Algorithm 3, we tackle the problem that the augmented trip

value function V̄ z
r (b̄) as well as the representative rider group hz

r(b̄) are not readily known,

and need to be iteratively computed.

In each iteration of Algorithm 1, the shortest route of the network is computed by Dijkstra

algorithm in time O(|N |2), where |N | is the number of nodes in the network. Since the

capacity of at least one edge is completely allocated to the shortest route of every iteration,
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the number of iterations in Algorithm 1 is less than or equal to E. Therefore, the time

complexity of step 1 is O(|E||N |2).
Additionally, in Algorithm 3, the time complexity of each iteration is O(|M ||L|), where

|L| =
∑

r∈R∗ k∗
r(T − dr). In each iteration, riders’ utilities are non-decreasing and at least

one rider increases their utility by ϵ. Since riders’ utilities as in (2) can not exceed Vmax =

maxm∈M αm, Algorithm 3 must terminate in |M |Vmax/ϵ iterations. The time complexity of

Algorithm 3 is O
(
Vmax

ϵ
|M |2|L|

)
. □

F Supplementary material for Section 5

Proof. Proof of Proposition 3 In the edge-disjoint path problem, one is given a networkG, and

k origin-destination pairs (o1, d1), . . . , (ok, dk); the objective is to determine whether there

exists a collection of k edge-disjoint paths r1, . . . , rk where ri is an oi-di path in G. Vygen

[1995] proved that the edge-disjoint path problem on directed graphs is NP complete. We

show that solving (IPmult) is NP-hard, via a reduction from the edge-disjoint path problem.

Given an edge-disjoint path instance (G, {(oi, di)}ki=1), define k populationsM1, . . . ,Mk; each

population Mi has (oi, di) as its origin-destination pair, and consists of a single agent who

has αi = 1 and all other parameters equal to 0. If T = 1 and all edges have unit-capacity and

0 travel time cost, the optimal solution has a social welfare of k if and only if there exists k

edge-disjoint paths r1, . . . , rk, where ri is an oi-di path. Thus, solving the edge-disjoint path

problem becomes a special case of computing an optimal solution to (IPmult), and hence the

latter problem is NP-hard.

Proof. Proof of Proposition 4 Garg et al. [1993] proved that the integrality gap of the multi-

commodity flow IP is Ω(max{k,
√
|E|}); we adapt their proof to show that (IPmult) also has

an integrality gap of Ω(max{k,
√
|E|}). Consider the following grid network, with origin-

destination pairs {(s1, t1), . . . , (sk, tk)}; each point of intersection (marked as the red dot) is

connected by an edge with capacity 1. All black edges in the following figure have a tran-

sit time of ε (which is a small positive number). While there are multiple routes for each

origin-destination pair, let Ri be the route consisting of the line segment from si to vi,i, the

connecting edge at vi,i, and the line segment from vi,i to ti.
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t1

tk−1

tk

sk sk−1 s1

v1,k

vk−1,k−1

Rk−1

· · ·

...

Figure 4: Example of a route Rk−1 in the Grid network

We consider that A = 1 so that no trip sharing is allowed. Agents in the same population

have the same origin and destination pair. For all agent m, θm = T , αm = 2, and all other

(unspecified) parameters are set to 0. The number of agents in each population i is larger

or equal to T .

We next show that this problem instance has an integrality gap of Ω(k) = Ω(
√
|E|).

First, we construct a feasible solution of the linear relaxation: For each population i, we

send 1/2 agent to take route Ri at each time step t = 1, . . . , ⌊T − kε⌋. This is a feasible

solution since the flow on each edge of the grid is less than or equal to 1/2, and the flow on

the edge of the intersection is less than or equal to 1. This solution has a total value of all

trips = k · ⌊T − kε⌋. So, the optimal value of the linear relaxation is at least k · ⌊T − kε⌋.
Then, we construct an upper bound on the integer optimal value of trip organization. To

begin with, we introduce a common origin s′, and a common destination t′ such that each si

is connected to s′ and each ti is connected to t′. The transit time and capacity of each (s′, si)

and (ti, t
′) edge is ε and 1, respectively. Consider the modified instance where all agents have

the same origin s′ and destination t′, and the time horizon is increased to be T + 2ε, and

the latest preferred arrival time θm = T +2ε for all agents m. We argue that the value of an

optimal integer solution of this modified problem instance is an upper bound on the optimal

value of the original problem. Since all trips (when organized) have the same value of 2, the

maximum trip value is achieved when the total number of trips that arrive before T + 2ε is

maximized. Therefore, the problem of computing the optimal trip organization reduces to

the problem of computing the maximum integral flow over time that arrive before T + 2ε.

Since the revised problem instance has a single o-d pair, we know that there exists an

optimal flow over time that is a temporally repeated flow (Ford Jr and Fulkerson [1958]). In

our setting, this optimal temporally repeated flow is simply sending the maximum integral
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flow of the static problem for each time step t = 1, . . . , ⌊T+2ϵ⌋, i.e. sending one traveler in the

population i through route Ri at each time step t = 1, . . . , ⌊T − kε⌋. Therefore, the optimal

value of the integer solution in the modified problem instance is 2(T − kε). Furthermore, we

note that this optimal value is an upper bound of the optimal value of integral solution in the

original problem since any integral flow that is feasible in the modified instance must also be

feasible in the original problem instance, and adding the time cost ε to the edges (s′, si), (ti, t
′)

is canceled with augmenting the time horizon by 2ε. Therefore, we can conclude that the

integrality gap of the original problem instance is at least k·⌊T−kε⌋
2⌊T−kε⌋ = Ω(k) = Ω(

√
|E|).

Furthermore, consider the following series-parallel network, with origin-destination pairs

{(s1, t1), (s2, t2), (s3, t3), (s4, t4)}. All black edges have a travel time of ε, and a capacity of

1. The red edges, (t1, t2) and (s1, s2) have a travel time of T and a capacity of 1. Again,

we assume that A = 1. Agents in the same population have the same origin and destination

pair. Furthermore, θm = T for all agents m, αm = 2 for all m ∈ M1 ∪M2, αm = 1 for all

m ∈M3∪M4, where Mi is the set of agents associated with (si, ti) for i = 1, . . . , 4. All other

(unspecified) parameters are set to 0. Finally, we assume that the number of agents in each

population Mi is at least T .

t2

t1
s2

s1

s3t3s4t4

Figure 5: A Series-Parallel network with an integrality gap of 3(T−3ε)
2T

Observe that for each population i, there is a unique route Ri that with travel time less

than or equal to T . We note that the following fractional solution is feasible: For each

population Mi, we send 1/2 of traveler to take route Ri at each time t = 1, . . . , ⌊T − 5ε⌋ for
i = 1, 2 and t = 1, . . . , ⌊T−ε⌋ for i = 3, 4. This solution has a value of 1·⌊T−ε⌋+2·⌊T−5ε⌋.

Following analogous procedure as that for the above grid network, we can show that

the optimal integral solution is to organize one trip at each time step t = 1, . . . , ⌊T − ε⌋
for population 3 and 4. No other trip can be further organized on this network. This

optimal integral solution has a total trip value of 2⌊T − ε⌋. From this problem instance, we

can conclude that the integrality gap is at least (⌊T − ε⌋ + 2 · ⌊T − 5ε⌋)/2⌊T − ε⌋, which
approaches 3

2
as T →∞. □

We now provide a formal description of the Branch-and-Price algorithm described in
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Section 5.

ALGORITHM 4: Branch and price algorithm for solving (IPmult)

Compute x∗, q∗ as an optimal solution to the LP-relaxation of (IPmult).
if q∗ is integral then

for i ∈ I do
Compute the optimal trip organization of submarket i with respect to
capacity q∗ using Algorithm 2.

return the optimal trip organization
else

Choose an arbitrary i ∈ I, r ∈ Ri, t ∈ {1, . . . , T} such that q∗i,tr is fractional
Recursively call Algorithm 4 to compute x(1) as the optimal integer solution
when constraint qi,zr ≤ ⌊q∗i,zr ⌋ is added, and x(2) as the optimal integer solution
when constraint qi,zr ≥ ⌈q∗i,zr ⌉ is added.
return argmax{S(x(1)), S(x(2))}

The branch and price algorithm start by computing an optimal solution of the linear

relaxation of (IPmult) (Line 1). If the optimal solution has an integral capacity allocation

vector q∗, then we know that by using algorithm 3, we can compute the integral equilibrium

trip organization vector and the associated edge prices and payments for each submarket

(Line 3-6). If there exists at least one (i, r, z) such that q∗i,zr (the capacity allocated to pop-

ulation i on route r at time z) is fractional, we branch on the variable qi,zr to create two

sub-problems, where either qi,zr ≤ ⌊q∗i,zr ⌋ or qi,zr ≥ ⌈q∗i,zr ⌉ is added as an additional constraint.

We resolve the linear relaxation associated with each subproblem, and continue to add addi-

tional constraints until we obtain an integer solution (Line 8-10). In our implementation, we

also incorporate a pruning step – if the optimal value of the linear relaxation of a subproblem

is smaller than the best integer solution that has been found, then we stop branching on

that subproblem.

The key step of Algorithm (4) is to repeatedly compute the linear relaxation of the

integer trip organization problem with additional constraints on q that has been added in

the branching process. Any such linear program has exponential number of variables –

the trip vector x. We compute the optimal (fractional) solution using column generation

method. That is, we start by solving a restricted linear program that only includes a (small)

subset of trips. Whether or not such solution is an optimal solution of the original LP can

be verified by the dual feasibility. Recall that a violated dual constraint can be found in

polynomial time using the greedy algorithm as in (Line 5-14 in Algorithm 2) due to the

property that the augmented trip valuation function in each sub-market satisfies the gross

substitutes condition. If we detect a violated constraint, we add the corresponding trip
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variable and resolve the primal problem; otherwise, we terminate with an optimal solution

of the original LP.

F.1 Carpooling and toll pricing in San Francisco Bay Area

The parameters of populations L, M, H are presented in the table below.

Parameter Low Medium

αm Uniformly distributed on [30, 70] Uniformly distributed on [80, 120]
βm

10
60

30
60

θm Uniformly distributed on [40, 60] Uniformly distributed on [40, 60]
ℓm ℓm((z + dr − θm)+) = (z + dr − θm)+ ℓm((z + dr − θm)+) = (z + dr − θm)+

πm(|b|) + γm(|b|)dr
πL(|b|) =


0.25(|b| − 1), |b| ≤ 5

0.5(|b| − 1), 5 < |b| ≤ 10

∞, |b| > 10

γm(|b|) = 0

πM(|b|) =


2(|b| − 1), |b| ≤ 3

4(|b| − 1), |b| = 4

∞, |b| > 4

γm(|b|) = 0

Parameter High

αm Uniformly distributed on [180, 220]
βm

90
60

θm Uniformly distributed on [40, 60]
ℓm ℓm((z + dr − θm)+) = (z + dr − θm)+

πm(|b|) + γm(|b|)dr
πH(|b|) =


4(|b| − 1), |b| ≤ 2

8(|b| − 1), |b| = 3

∞, |b| > 3

γm(|b|) = 0

Five origin-destination pairs are considered in this instance, namely (Oakland, San Fran-

cisco), (South San Francisco, San Francisco), (Hayward, San Francisco), (San Mateo, San

Francisco), and (San Leandro, San Francisco). We summarize the demand distribution,

carpool sizes, and payments in the following figures:
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(a) Distribution of Demand

(b) Distribution of Carpool Sizes

(c) Distribution of Payments

Figure 6
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