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Decision-makers often have access to a machine-learned prediction about demand, referred to as advice,

which can potentially be utilized in online decision-making processes for resource allocation. However, exploit-

ing such advice poses challenges due to its potential inaccuracy. To address this issue, we propose a framework

that enhances online resource allocation decisions with potentially unreliable machine-learned (ML) advice.

We assume here that this advice is represented by a general convex uncertainty set for the demand vector.

We introduce a parameterized class of Pareto optimal online resource allocation algorithms that strike

a balance between consistent and robust ratios. The consistent ratio measures the algorithm’s performance

(compared to the optimal hindsight solution) when the ML advice is accurate, while the robust ratio captures

performance under an adversarial demand process when the advice is inaccurate. Specifically, in a C-Pareto

optimal setting, we maximize the robust ratio while ensuring that the consistent ratio is at least C. Our

proposed C-Pareto optimal algorithm is an adaptive protection level algorithm, which extends the classical

fixed protection level algorithm introduced in Littlewood (2005) and Ball and Queyranne (2009). Solving a

complex non-convex continuous optimization problem characterizes the adaptive protection level algorithm.

To complement our algorithms, we present a simple method for computing the maximum achievable consis-

tent ratio, which serves as an estimate for the maximum value of the ML advice. Additionally, we present

numerical studies to evaluate the performance of our algorithm in comparison to benchmark algorithms. The

results demonstrate that by adjusting the parameter C, our algorithms effectively strike a balance between

worst-case and average performance, outperforming the benchmark algorithms.

Key words : Online Resource Allocation, Machine-learned Advice, Convex Uncertainty Set, Pareto Optimal

Algorithms, Robust Ratio, Consistent Ratio

1. Introduction

The problem of allocating a limited inventory of a single resource to sequentially arriving requests

can be examined within the framework of revenue management, a significant discipline in opera-
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tions research. Originally developed within the airline industry, revenue management has gained

widespread recognition and applicability across various sectors, including retail, hospitality, online

advertising, and more.

In the context of resource allocation, revenue management aims to optimize a firm’s revenue

by implementing effective policies to control quantities. This concept finds application in various

applications, such as flight seat allocation, online event ticketing, car rental inventory management,

and hotel room reservation. To illustrate this concept, let’s consider an example involving an

airline. Airlines often offer different fare classes to cater to various customer types, including price-

sensitive leisure travelers and business travelers. Each fare class comes with distinct prices and

additional perks, such as seat selection and flexibility in cancellation. In this scenario, the airline

must strategically determine the optimal number of seats to allocate to customers from different

fare classes in order to maximize their overall revenue.

However, firms face the challenge of making real-time decisions to allocate their limited resources

to incoming demand while lacking precise knowledge of future demand. This challenge arises due

to the inherent trade-off between allocating resources, such as seats, to low-reward demand, such

as leisure travelers, and reserving resources for potential high-reward demand, such as business

travelers.

To address this trade-off, researchers have extensively studied two main models. The first model

is the adversarial arrival model (Ball and Queyranne (2009)), which assumes no forecast about

demand is available. However, in practice, the demand process is typically not the worst-case

scenario and may exhibit some level of predictability. Consequently, the resulting algorithms under

this regime tend to be overly conservative as we also show in Section 7. The second model is the

stochastic model, which assumes perfect knowledge of the demand process, with the assumption

that low-reward demand arrives before high-reward demand (Littlewood 2005). However, demand

prediction is often challenging, especially in new and non-stationary settings that arise due to

factors like seasonality or natural crises.

In this work, we aim to bridge the gap between the two models by augmenting the adversarial

model with a demand forecast in the form of a convex uncertainty set. This uncertainty set that

we refer to as machine-learned advice is obtained through machine learning or data-driven robust

optimization algorithms. Despite the success and ubiquity of these techniques across many domains,

leveraging them in online decision-making, such as the aforementioned resource allocation problem,

presents significant challenges. The key challenge lies in effectively managing errors and biases
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in the forecast that inevitably exist, ensuring robust and reliable decision-making in the face of

uncertain demand.

To account for this challenge, we go beyond having a point estimate for the demand vector

(i.e., the number of customers of different types) as done in Balseiro et al. (2022). (For a detailed

comparison between our work and Balseiro et al. (2022), refer to Sections 1.2 and 7.) Instead, we

adopt the approach of utilizing an uncertainty set for the demand vector. This modeling choice

that also covers a point estimate as its special case offers several advantages:

• First, it allows us to harness biases that exist in a single point estimate, resulting in a robust

algorithm that does not overfit to a single point estimate. Please refer to our numerical studies

in Section 7 for comparison between resource allocation algorithms with a single point estimate

and those we propose with an uncertainty set.

• Second, the framework of uncertainty sets allows for the consideration of inaccuracies within

the set itself. In other words, the realized demand may fall outside the bounds defined by

the uncertainty set. This level of flexibility greatly enhances the resilience of the allocation

process, empowering it to effectively handle unforeseen variations in demand that may deviate

from initial expectations.

• Third, the introduction of the uncertainty set allows us to capture the variance in demand

process and potential positive or negative correlations between different types of demand. For

example, if the uncertainty set establishes bounds on the total number of demands, we can

account for the expected correlation between high-reward and low-reward customers. In this

case, a large influx of low-reward customers would suggest a corresponding decrease in the

number of high-reward customers.

1.1. Our Contributions and Results

A New Resource Allocation Model with a Convex Uncertainty Set. We introduce a novel

online resource allocation model with machine-learned (ML) advice (Section 2) that addresses the

challenge of allocating m identical units of a resource to arriving requests, categorized as either

low-reward or high-reward.

At the onset of the allocation period, the decision-maker receives ML advice in the form of

a convex uncertainty set R. This uncertainty set characterizes the total number of high-reward

or low-reward requests expected to arrive during the allocation period. For instance, the advice

may indicate that the total number of requests falls within a specific interval while ensuring that
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the total number of high-reward requests remains below a certain threshold. Importantly, the ML

advice does not provide any information regarding the order of arrivals.

Our choice of utilizing a convex uncertainty set is motivated by related works in the robust

optimization literature, such as Bertsimas and Brown (2009), Bertsimas et al. (2018). These studies

leverage offline historical data to construct convex uncertainty sets. Additionally, publications like

Cheramin et al. (2021), Bertsimas et al. (2016), Jalilvand-Nejad et al. (2016) have explored the

application of convex uncertainty sets in offline robust optimization problems.

In this work, we do not make any assumptions about the accuracy of the ML advice. Instead,

we present a class of algorithms that demonstrate robust performance regardless of the accuracy

of the advice.

Pareto optimal Algorithms (Section 4). As previously mentioned, our objective is to incor-

porate ML advice in a robust manner, accounting for potential inaccuracies. To achieve this, we

introduce two performance measures: consistent ratio and robust ratio, which are analogous to the

traditional competitive ratio used in the analysis of online algorithms.

The consistent ratio of an algorithm represents the worst-case ratio of its expected reward to

the optimal hindsight solution under any arrival sequence consistent with the ML advice. On the

other hand, the robust ratio is the worst-case ratio of its expected reward to the optimal hindsight

solution under any arrival sequence that is not consistent with the advice. The formal definitions of

these ratios can be found in Section 2. As one of our main contributions, we present a parameterized

class of Pareto optimal algorithms that strike a balance between robust and consistent ratios.

Let C‹pRq denote the maximum consistent ratio achievable by any algorithm under the ML

advice R (see the formal definition in Section 6). For any C ď C‹pRq, a C-Pareto optimal algorithm

maximizes the robust ratio among all deterministic or randomized online algorithms, while ensuring

that its consistent ratio is at least C. By adjusting the parameter C, we can emphasize achieving a

higher consistent ratio when we have greater confidence in the accuracy of the advice. Conversely,

decreasing C reflects concern about potential inaccuracies, leading to a focus on obtaining a higher

robust ratio.

Our main result fully characterizes C-Pareto optimal algorithms, demonstrating that they belong

to a class of (adaptive) protection level algorithms (PLAs). An adaptive PLA extends the classical

fixed protection level algorithms studied in seminal works of Littlewood (2005), Ball and Queyranne

(2009). In fixed protection level algorithms, a certain amount of resources is reserved or protected

for potential high-reward requests that may arrive later, with the protection level remaining fixed
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throughout the allocation period. In the adaptive version introduced formally in Section 3, the

protection level is represented by a function that maps the total received low-reward demand so

far to a protection level. In adaptive PLAs, the protection level can vary or decrease over time,

as long as the reduction is not too steep (see the formal definition in Definition 1). Our designed

C-Pareto optimal algorithms fall within this class, simplifying their implementation.

Theorem 1 (Informal Result: C-Pareto optimal Algorithms). For any convex ML

advice R and C ď C‹pRq, there exists a C-Pareto optimal algorithm belonging to the class

of (adaptive) PLAs (as defined in Definition 1). Furthermore, the protection level function

characterizing the C-Pareto optimal algorithm can be computed in polynomial time.

To fully characterize the C-Pareto optimal algorithm, we present an optimization problem

(referred to as Problem C-Pareto) that optimizes over the protection level function, assuming the

algorithm is a PLA. Importantly, our results demonstrate that this assumption is not restrictive,

as the designed algorithm is optimal among all deterministic and randomized algorithms, not just

the PLAs. However, solving the optimization problem is challenging due to its non-convex and

continuous nature.

Problem (C-Pareto)

Left Problem

(Problem (C-Pareto) for x P r0, x̄s)

Right Problem

(Problem (C-Pareto) for x ě x̄)

Algorithm 3 Algorithm 2

Algorithm 1

Figure 1 Decomposition of Problem (C-Pareto) into the right and left problems. Here, x is the total

low-reward demand and x̄ is the maximum total low-reward demand under the ML advice.

Technical Contributions Regarding C-Pareto optimal Algorithms. One of our main

contributions is the development of a polynomial time scheme to solve Problem (C-Pareto) for
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any convex ML advice R. We achieve this by transforming the consistency constraints into bounds

on the protection level (PL) function and applying similar transformations for the robustness

constraints. This allows us to decompose the problem into “right” and “left” subproblems. The

optimal solution to the right problem coincides with the original problem’s solution when the total

low-reward demand exceeds a certain threshold, while the left problem considers cases where the

demand is below the threshold. The optimal solutions to both subproblems can be fully charac-

terized, resulting in an efficient algorithm for Problem (C-Pareto) with guaranteed performance

guarantees. See Figure 1 for an outline of our approach.

Characterizing the Maximum Consistent Ratio C‹pRq (Section 6). In Section 6, we

introduce polynomial-time methods to compute the maximum consistent ratio C‹pRq, which repre-

sents the highest value achievable with the ML advice. For general convex ML regions, we propose a

bisection method (Algorithm 4) that provides an ϵ-accurate estimate of C‹pRq in polynomial time,

where ϵ can be chosen within the range p0,1{2s. When the ML region is a polyhedron, we present

a faster approach (Algorithm 5) based on enumerating the polyhedron vertices. This method com-

putes C‹pRq exactly by identifying the worst vertices (bottlenecks) of Problem (C-max) that

determine C‹pRq.

Theorem 2 (Informal Result: Maximum Consistent Ratio). Consider any convex ML

advice R. For any ϵ P p0,1{2s, there exists a bisection method that returns an ϵ-accurate estimate

of C‹pRq in polynomial time. When the ML advice is a polyhedron, there exists a polynomial time

enumeration method that computes C‹pRq exactly.

Technical Contributions Regarding Maximum Consistent Ratio C‹pRq. For any poly-

hedron R, we propose a novel enumeration approach to identify the maximum consistent ratio

C‹pRq. We assert that the worst over- and under-protected points for any protection level function

correspond to the vertices of R. Subsequently, we enumerate each pair of vertices to determine

if: (i) they represent the worst over- and under-protected points, and (ii) a feasible protection

level function exists if they indeed represent these extreme points. Furthermore, based on the rel-

ative positions of each vertex pair, we construct a distinct protection level function. The reasoning

behind formulating diverse protection level functions is rooted in our comprehensive understand-

ing of where the protection level function should remain constant and where it should exhibit a

decreasing trend.
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Numerical Studies (Section 7). We perform numerical studies to assess the performance

of our proposed algorithms when the ML advice is derived from a limited number of samples.

Our findings demonstrate that, in the presence of ML advice, our algorithms enhance both the

average and worst-case performance, surpassing other benchmark algorithms. One such benchmark

pertains to resource allocation algorithms based on a single point estimate, which exhibit average

and worst-case compatible ratios that are up to 14% and 40% lower than those achieved by our

resource allocation algorithms considering convex uncertainty sets.

1.2. Other Related Works

Online Decision-making with ML Advice. Our class of algorithms contributes to a recent

literature on using ML advice in the online algorithm design. Examples include Lykouris and

Vassilvtiskii (2018) and Rohatgi (2020) for online caching problems, Antoniadis et al. (2020) for

online secretary problems, Jin and Ma (2022) for online matching problems, Lattanzi et al. (2020)

for online scheduling with job weight advice, and Balseiro et al. (2022) for an online resource

allocation problem.1

In the context of single-leg revenue management, the work most related to ours is Balseiro et al.

(2022), which also explores the impact of ML advice. Specifically, Balseiro et al. (2022) focuses on

a single point demand prediction and ML advice and presents a class of Pareto optimal algorithms.

However, the LP-based algorithm introduced in Balseiro et al. (2022) suffers from non-monotonicity

of the protection levels. This means that it may reject a customer of a certain fare type while

accepting another customer of the same fare type at a later time step. Such non-monotonic behavior

can lead to strategic actions by customers or third parties aiming to exploit inter-temporal fare

arbitrage opportunities. To address this issue, Balseiro et al. (2022) suggests a fixed protection

level algorithm, but it is not always optimal.

In our work, there are important distinctions. Firstly, we focus on ML advice in the form of

an uncertainty set, rather than a single point estimate. This choice is motivated by the desire

to mitigate potential biases inherent in point estimates, such as outliers, asymmetric errors, or

incomplete data. Additionally, uncertainty sets provide valuable information about the demand,

including variance and correlation between different demand types. Moreover, in some cases, it

is impossible to obtain a point estimate for the demand vector (e.g., from a dataset that only

contains the total number of arrivals, rather than the number of arrivals of each type). We discuss

1 See (Mahdian et al. 2012, Esfandiari et al. 2015, Hwang et al. 2021, Golrezaei et al. 2014, 2022) for other works
that explore the partially known demand models.
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this aspect further in Section 7, supported by numerical studies. Another key difference is the

adaptive protection level algorithm we propose, which effectively eliminates the non-monotonicity

issues observed in Balseiro et al. (2022). Consequently, our approach offers a more practical and

improved solution. Lastly, as stated earlier, our framework can handle the case of a point estimate

as ML advice, providing flexibility to accommodate different types of advice.

Online Resource Allocation. The allocation of scarce resources in an online setting has been

a subject of research for many years. In the past, researchers have examined this issue under the

assumption of stochastic arrival sequences in various works, such as Devanur and Hayes (2009),

Feldman et al. (2010), and Agrawal et al. (2014). A popular method for solving this problem is the

primal-dual technique, which is known for designing algorithms with sub-linear regret. Addition-

ally, the primal-dual technique can be used not only for stochastic demand arrivals, but also for

adversarial demand arrivals, as demonstrated in Mehta et al. (2007), Buchbinder et al. (2007), and

Golrezaei et al. (2014). In contrast, our work does not use the primal-dual technique, instead we

utilize the protection-level framework, which is a well-established approach in the field of single-leg

revenue management.

Single-leg Revenue Management. In this work, we study the single-leg revenue management

problem in the presence of ML advice. Single-leg revenue management is a well-established model

in the field of revenue management. Littlewood (2005) proposed an optimal policy for the single-leg

revenue management problem involving two types of customers under stochastic arrival processes.

Brumelle and McGill (1993) extended this problem to include multiple types of customers and

designed an optimal policy using dynamic programming. Ball and Queyranne (2009) was the first

to address the single-leg revenue management problem under adversarial arrival sequences. They

proposed an optimal protection-level policy for the two types of customers case and then introduced

the concept of “nesting” to generalize to the multiple types case. See also Jasin (2015), Hwang

et al. (2021), Ma et al. (2021), Golrezaei and Yao (2021) for more recent works on single-leg revenue

management. Our work contributes to this literature by presenting a new model for single-leg

revenue management that bridges the gap between the adversarial and stochastic models.

2. Model

Consider a scenario where a firm has been endowed with m identical units of a divisible resource

to allocate over T rounds, but the number of rounds T is unknown to the firm. In each round t,

a request with size st ą 0 and type zt P tℓ,hu arrives, where the size of the request s demands at
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most s units of the resource. Requests can be categorized into two types based on the normalized

reward or revenue they generate upon receiving one unit of the resource, namely low-reward and

high-reward requests. (See our discussion in Section 8 about handling more than two types of

requests.)

Let the reward for type z P tℓ,hu upon receiving one unit of the resource be denoted as rz.

Without loss of generality, it is assumed that 0 ă rℓ ă rh.
2 Upon the arrival of a request pst, ztq, the

firm observes the size and type of the request and must make an irrevocable decision to allocate

at P r0, sts units of the resource to request pst, ztq, and collect a total reward of at ¨ rzt . At the time

of the decision, the firm has no knowledge of the type and size of future requests.

The goal is to design online allocation algorithms that maximize the cumulative reward of the

firm over the course of T rounds. The performance of an algorithm is evaluated by comparing it

to the optimal clairvoyant solution, which has complete knowledge of the arrival sequence of the

requests pst, ztqtPrT s in advance. Further details on the evaluation process will be provided later.

2.1. ML Advice

Let I “ pst, ztqtPrT s be the arrival sequence of requests, where the type and size of requests, the order

of the requests, and the number of requests T are chosen by an adversary. For an input sequence

I “ pst, ztqtPrT s, we define the total low-reward and high-reward demand in the input sequence I as

ℓpIq “
ř

tPrT s,zt“ℓ st and hpIq “
ř

tPrT s,zt“h st, respectively. We assume that at the beginning of round

1, the firm has access to partial knowledge about the arrival sequence I and, more specifically,

about ℓpIq and hpIq. This partial knowledge, which we refer to as ML advice, is represented by

a convex region R P R2. The ML advice enforces the demand vector, i.e., pℓpIq, hpIqq, to fall into

region R. Throughout the manuscript, we refer to region R as the ML region. Then, the set of

arrival sequences that is consistent with the ML advice (denoted by SpRq) is given by:

SpRq “ tI : pℓpIq, hpIqq P Ru . (1)

We refer to the set SpRq as the ML-consistent set. For example, when R “ tpx, yq : x P ra1, b1s, y P

ra2, b2su for some a1, a2, b1, b2 ě 0, the ML advice provides lower and upper bounds on the low-

reward and high-reward demands. As another example, when R “ tpx, yq;x ` y P ra, bsu for some

a, b ě 0, the ML advice gives lower and upper bounds on the total demand. The ML advice does

not provide any information on the order of requests. See Section 2.4 for further notation related

to ML advice.

2 Without loss of generality, one can normalize rh to one.
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The ML advice we examine is general and encompasses any convex uncertainty region. As a

specific instance, the ML advice can be represented by a single point, as studied in Balseiro et al.

(2022). However, our numerical studies reveal that relying solely on a single point estimate as ML

advice can result in suboptimal performance due to inherent biases in a single point estimate.

2.2. Performance Measures

In this work, we consider two metrics to measure the performance of any online resource allocation

algorithm that has access to the ML advice R. These two metrics, which are called the consistent

ratio and the robust ratio, are inspired by the fact that the ML advice may not be completely

accurate.

The consistent ratio of algorithm A, denoted by consispAq, measures how well algorithm A

performs when the ML advice is completely accurate. That is, it measures the performance of

algorithm A on all arrival sequences in the set SpRq that are consistent with the ML advice R.

Similarly, the robust ratio of algorithm A, denoted by robustpAq, measures the performance of

algorithm A on all arrival sequences. The robust ratio can evaluate the robustness of the algorithm

when the ML advice is misleading.

Mathematically speaking, for any arrival sequence I and an online algorithm A, let rewpA, Iq be

the expected cumulative reward of the algorithm under the arrival sequence I. Further, let optpIq

be the optimal clairvoyant solution under arrival sequence I. Note that the optimal clairvoyant

solution, which has knowledge of the arrival sequence in advance, starts by allocating resources to

the type h that has the highest reward. If there is any resource remaining after that, it allocates

resources to type ℓ requests. Then, we define:

consispAq “ inf
I:IPSpRq

rewpA, Iq

optpIq
and robustpAq “ inf

I:IPSpRqYSpRqC

rewpA, Iq

optpIq
. (2)

It is worth noting that when the set SpRq contains all possible arrival sequences, the consistent

ratio is equivalent to the traditional worst-case competitive ratio notion for online algorithm design

in the absence of ML advice. In this case, the algorithm’s performance is evaluated based on its

worst-case performance over all possible arrival sequences. Similarly, when the ML-consistent set

SpRq is empty, the robust ratio is also equivalent to the traditional competitive ratio notion, where

the algorithm’s performance is measured against the optimal clairvoyant solution that has full

knowledge of the arrival sequence.

In the absence of ML advice, it has been shown in Ball and Queyranne (2009) that the optimal

competitive ratio for online resource allocation algorithms is 1{p2´ rℓ{rhq, where rℓ and rh are the

rewards associated with the low- and high-reward types, respectively.
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2.3. Objectives

When the ML advice is completely accurate, maximizing the consistent ratio would lead to an

optimal algorithm with the highest worst-case competitive ratio on set SpRq. See the details in

Section 6. However, such an algorithm may perform poorly when the ML advice is inaccurate (i.e.,

when the ML-consistent set SpRq does not occur). To balance this trade-off, our main goal in this

work is to present a class of parameterized Pareto optimal algorithms.

In a C-Pareto optimal algorithm, we design an algorithm that achieves the highest possible

robust ratio while obtaining a consistent ratio of at least C for any C ď C‹pRq. Here, C‹pRq is the

highest possible consistent ratio for a convex ML region R, in the absence of any constraint on

the robust ratio. We formally characterize C‹pRq in Section 6 and suggest an Op|V|3q complexity

algorithm to find the value of C‹pRq when R is a polyhedron, where V is the set containing all the

vertices of R.

Mathematically, let Π be the set of all online deterministic and randomized algorithms. Then,

the C-Pareto optimal algorithm A solves the following optimization problem:

max
APΠ

robustpAq s.t. consispAq ě C . (3)

Observe that by setting C to C‹pRq, we can design an optimal ML-consistent algorithm under

which the ML advice is fully trusted. When R “ tpx, yq : x, y ě 0u—i.e., the ML arrival set SpRq

contains all possible arrival sequences— the protection-level algorithm of Ball and Queyranne

(2009) is ML-consistent optimal. In this algorithm, type h requests are always accepted while at

most m
2´rh{rℓ

type ℓ requests are accepted. In other words, we protect m´ m
2´rℓ{rh

of the resources

for high-reward requests, and by doing so, we obtain C‹pRq of ρ :“ 1
2´rℓ{rh

. Overall, the design of

Pareto optimal algorithms lead to a Pareto curve (e.g., Figure 3) that helps us balance the trade-off

between the consistent and robust ratios.

2.4. Notation

In this section, we present a few definitions regarding the ML region R (refer to the figure below

for illustration).
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x

y

m

m
R

h̄p.q

hp.q

x x̄

y

ȳ

R̄

R

H

L
R0

Let

x “ inf
px,yqPR

x , x̄ “ sup
px,yqPR

x , y “ inf
px,yqPR

y , and ȳ “ sup
px,yqPR

y . (4)

Define

sR “ tpx, yq P R : y “ sup
px1,y1qPR

minty1,muu

as a subset of region R under which the total high-reward demand (more precisely minty1,mu for

any point px1, y1q P R) is maximized. Similarly, we define

R “ tpx, yq P R : y “ inf
px1,y1qPR

minty1,muu

to be a subset of region R under which the total high-reward demand (more precisely minty1,mu

for any point px1, y1q P R) is minimized. We then define point L “ pxL, yLq P R as the point in set

R that has the lowest total low-reward demand. We further define H “ pxH , yHq P sR as the point

in set sR that has the highest total low-reward demand. Mathematically speaking, we let

L “ inf
x

tpx, yq : px, yq P Ru and H “ sup
x

tpx, yq : px, yq P Ru.

Observe that point L has the lowest reward among all the points in set R and point H has the

highest reward among all the points in set sR. Further note that while by definition we have yL ď yH ,

we can have xL less than or greater than xH .

Then, we define the upper and lower envelop of R as h̄p¨q and hp¨q, where

h̄pxq “ supty : px, yq P Ru and hpxq “ infty : px, yq P Ru (5)

for x P rx, x̄s. As R is a convex set, we have hpxq is convex and h̄pxq is concave.
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Finally, let

R0 “ tpx,hpxqq : x P rx, x̄su X tpx, yq : x` y “ mu

be the intersection of the lower envelop hpxq of the region R and line x ` y “ m. Note than for

any point above (below respectively) this line, the total demand is greater (less respectively) than

the number of resources m. As hp¨q is a convex function, we have |R0| P t0,1,2u because a convex

function and a line can have at most two intersection points.

3. Adaptive Protection Level Algorithms

The algorithms we have designed have a simple structure, making them easy to implement. We refer

to these algorithms as (adaptive) protection level algorithms, which can be viewed as an extension

of the protection level algorithms (PLA) introduced in Littlewood (2005), Ball and Queyranne

(2009). The definition of the (adaptive) protection level algorithm is provided below.

Definition 1 (Adaptive Protection Level Algorithms). A PLA is defined by a contin-

uous non-increasing Protection Level (PL) function p : R` Ñ r0,ms, with p1pxq ě ´1 and ppxq “

ppmaxtm, x̄uq for any x ě maxtm, x̄u. Under a PLA with a PL of pp¨q,

• high-reward requests are fully fulfilled unless we do not have enough resources left. That is, for

any request ps, z “ hq, we set the allocation a to the minimum of s and the remaining resources

at the time of the decision.

• For low-reward requests, let s̄ be the sum of the sizes of the low-reward requests received so far

(excluding the current one) and define ā as the total amount of resources we have allocated to

low-reward requests so far. Further, let s be the size of the current low-reward request. Under a

PLA with a PL of pp¨q, we allocate a P r0, ss amount of the resource to the current low-reward

request, where

a “ min
`

pm, Projr0,ss

`

m´ pps̄` sq ´ ā
˘˘

.

Here, Projr0,yspxq “ minpmaxpx,0q, yq and pm is the remaining number of resources at the time

of the decision. Then, it is guaranteed that ā ` a ď m ´ pps̄ ` sq, meaning we protect pps̄ ` sq

resources for the high-reward requests.

To gain a better understanding of the definition of PLAs, let us consider a scenario where the size

of all requests is 1, and m´ ppxq is an integer. In this case, a PLA will always accept high-reward
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agents as long as we have the necessary resources. Moreover, the PLA will reject the x-th low-

reward agent if either the number of low-reward agents already accepted is equal to m´ ppxq, or

there are no resources left.

It is worth noting that in a PLA, the number of units that we protect for high-reward requests

is solely dependent on the total low-reward demand we have observed so far, which is represented

by s̄ ` s in Definition 1. This property makes PLA a practical and easy-to-implement approach.

Another important observation is that the PLA introduced in Ball and Queyranne (2009) can be

represented by a fixed protection level function: ppxq “ m´ m
2´rℓ{rh

for any x ě 0. For a discussion

on the necessity of the validity conditions for the PL functions listed in Definition 1, please refer

to Appendix A.

3.1. A Property of PLAs

The following lemma shows that under PLAs, the consistent and robust ratios get minimized under

ordered arrival sequences under which all low-reward requests arrive before high-reward requests.

See Appendix B for the proof.

Lemma 1 (Ordered Sequences). Suppose that we use a valid PLA A with a PL function pp¨q

(per Definition 1). Let Ipx, yq be the set of all arrival instances that contain x low-reward requests

and y high-reward requests in any order, and we let Ĩpx, yq be the ordered sequence such that all x

low-reward requests arrive first and are followed with all y high-reward requests. For any I P Ipx, yq,

we then have rewpA,Iq

optpIq
ě

rewpA,Ĩpx,yqq

optpĨpx,yqq
.

In light of Lemma 1, we finish this section with a few definitions. For any point A “ px, yq, let

CPpp;A “ px, yqq be the compatible ratio of point A “ px, yq under a PL of p when a total of x

low-reward requests arrive first, followed by y high-reward requests. That is, CPpp; px, yqq is the

ratio of the obtained reward under ordered arrivals associated with point A “ px, yq and a fixed PL

of p to the optimal clairvoyant solution. When p ě mintm,yu, we over-protect high-reward requests

and hence

CPopp;A “ px, yqq “
minty,murh `mintx, pm´ pq`urℓ
minty,murh `mintx, pm´ yq`urℓ

, if p ě mintm,yu . (6)

Here, the subscript “o” in CPo stands for over-protection. Note that in the definition of CPo,

minty,murh `mintx,m´ purℓ is the reward at the ordered point A “ px, yq with protection level

p ě mintm,yu. Observe that we accept minty,mu ď p high-reward request and mintx,m´ pu low-

reward requests.
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On the other hand, when p ă mintm,yu, we under-protect high-reward requests, and hence

CPupp;A “ px, yqq “
maxtp,minty, pm´xq`uurh `mintx,m´ purℓ

minty,murh `mintx, pm´ yq`urℓ
, if p ă mintm,yu . (7)

Here, the subscript “u” in CPu stands for under-protection. We allocate mintx,m ´ pu to low-

reward requests. Then, if the total request is less than m, that is, y ă pm´xq`, we will accept all y

high-reward type requests. Otherwise, we will accept maxtp, pm´xq`u high-reward type requests.

In summary, the total reward is maxtp,minty, pm´xq`uurh `mintx,m´ purℓ.

When it is not clear whether we are in under- or over-protecting case, we simply use CPpp;A “

px, yqq to denote compatible ratio of point A “ px, yq. Note that in the definition of CPpp;Aq we

considered ordered arrivals where low-reward agents arrive first. This is because of Lemma 1 where

we show for any point A, the compatible ratio is minimized by considering its ordered sequence.

Then, by definition, the consistent ratio and robust ratio of a PLA A with PL function pp¨q are

given by

consispAq “ inf
px,yqPR

CPpppxq; px, yqq, robustpAq “ inf
px,yqě0

CPpppxq; px, yqq. (8)

4. Optimization Problems to Characterize Pareto Optimal Algorithms

In this section, we outline an optimization problem that characterizes a class of parameterized

Pareto optimal algorithms. We proceed by transforming the constraints of this optimization, result-

ing in a more tractable problem. The solution to this modified optimization problem is then

presented in Section 5.

A C-Pareto optimal algorithm achieves the highest possible robust ratio while obtaining a con-

sistent ratio of at least C for any C ď C‹pRq, where C‹pRq is the highest possible consistent ratio

for a convex ML region R (in the absence of any constraint on the robust ratio); see Section 6 for

more details about C‹pRq. Suppose that the C-Pareto optimal algorithm is a PLA. Then, to design

a C-Pareto optimal algorithm, by Equation (8), we consider the following optimization problem:

max
RPr0,1s,ppxq:xPr0,maxtm,x̄us

R

s.t. CPpppxq; px, yqq ě C, px, yq P R, (9)

CPpppxq; px, yqq ě R, x, y ě 0, (10)

ppxq ě 0 is continuous x P r0,maxtm, x̄us, (11)

´ 1 ď p1pxq ď 0 a.e., x P r0,maxtm, x̄us (12)

(C-Pareto)
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Recall that x̄ is defined in Equation (4). The first set of constraints ensures that the compatible

ratio of any point px, yq P R at ppxq is at least C. The second set of constraints ensures that the

compatible ratio of any point px, yq in the first quadrant at ppxq is at least R. The third and

fourth sets of constraints, which we refer to as validity constraints, ensure that the protection level

is valid per Definition 1. Note that the optimal solution to Problem (C-Pareto) only determines

the PL function ppxq for x P r0,maxm, x̄s. As per the definition of PLAs in Definition 1, for any

x ą maxtm, x̄u, we set ppxq “ ppmaxtm, x̄uq.

As we will show later in Theorem 3, the optimal solution to Problem (C-Pareto) leads to a PLA

that is an optimal C-Pareto algorithm among any deterministic and randomized non-anticipating

algorithms (not only the PLAs).

To solve Problem (C-Pareto), we first transform its first and second sets of constraints (i.e., the

consistency and robustness constraints). This transformation, which is done in Sections 4.1 and

4.2, plays a key role in our design. We then solve Problem (C-Pareto) using the properties of the

transformed constraints.

4.1. Transforming the Consistency Constraints

Here, we transform the consistency constraints in Problem (C-Pareto) that require

CPpppxq; px, yqq ě C for any px, yq P R. To do so, let us fix x P rx, x̄s and its protection level

ppxq. Then, the worst points with the minimum consistent ratio occur at the lower and upper

boundaries of the ML region. That is, as shown in Lemma 2 stated below, for any p P r0,ms,

minyPrhpxq,h̄pxqs CPpp; px, yqq is either CPpp; px,hpxqqq or CPpp; px, h̄pxqqq, where hpxq and h̄pxq are

defined in Equation (5). The lemma further shows that in the case of under-protection (i.e., the

protection level p less than high-reward requests y), the compatible ratio decreases as y increases

while in the case of over-protection (i.e., p ą y), the compatible ratio decreases as y decreases.

Lemma 2 (Monotonicity of the Compatible Ratio CPpp; px, yqq w.r.t. y). Consider any

x P rx, x̄s and mintm,y1u ď mintm,y2u. For any protection level p with p ď mintm,y1u, we have

CPupp; px, y1qq ě CPupp; px, y2qq, and for any protection level p with p ě mintm,y2u, we have

CPopp; px, y2qq ě CPopp; px, y1qq. This further implies that for any x P rx, x̄s and p ě 0, we have

min
yPrhpxq,h̄pxqs

tCPpp; px, yqqu “ min
␣

CPpp; px,hpxqqq,CPpp; px, h̄pxqqq
(

.

In light of Lemma 2, we define the following two functions upx;Cq and lpx;Cq. Roughly speaking,

under upx;Cq, (if possible) the compatible ratio at (the worst over-protected point) px,hpxqq is
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equal to C while under lpx;Cq, (if possible) the compatible ratio at (the worst under-protected

point) px, h̄pxqq is equal to C.

Definition 2 (Upper Bound Function). For any C P r0,1s, we define

upx;Cq “ sup
␣

p P r0,ms :CPopp; px,hpxqqq “ C
(

x P rxu, x̄us (13)

while we set upx;Cq “ m for any x P r0, xus and upx;Cq “ upx̄u;Cq for any x P rx̄u, x̄s. Here,

x̄u “

"

xL if xL ` yL ě m;
suptx P rxL, x̄s : p1´Cq

rh
rℓ
H1

px´q ´C ă 0u Otherwise , (14)

and xu “ suptx ă x ă x̄u :CPopm; px,hpxqqq ě Cu, where Hpxq “ minthpxq,mu. We set xu “ x when

its defining set is empty. 3

Definition 3 (Lower Bound Function). For any C P r0,1s, let

lpx;Cq “ inf
␣

p P r0,ms :CPupp; px,hpxqqq “ C
(

x P rxH , x̄ls , (15)

while we set lpx;Cq “ lpxH ;Cq for any x P r0, xHs and lpx;Cq “ 0 for x P rx̄l, x̄s. Here, x̄l “ inftxH ă

x ă x̄ :CPup0; px,hpxqqq ě Cu. We set x̄l to x̄ when its defining set is empty.

We now discuss the upper and lower bounds. As for the upper bound, at x P rx,xuq, even if we

set the protection level to m—which means rejecting all low-reward type requests—the compatible

ratio at point px,hpxqq exceeds C. Further, for any x P rxu, x̄us, if we set the protection level to

upx;Cq, the compatible ratio at (the worst over-protected point) px,hpxqq is exactly equal to C.

As we will show later in Lemma 6, function upx;Cq is convex and decreasing in x.

As for the lower bound, at x P px̄l, x̄s, even if we set the protection level to zero (i.e., we accept

all low-reward requests when there is resource available), the compatible ratio at point px, h̄pxqq

exceeds C. (See Lemma 13 for a formal argument.) Note that for any x P rxl, x̄ls, if we set the

protection level to lpx;Cq, the compatible ratio at (the worst under-protected point) px, h̄pxqq is

exactly equal to C. As we will show later in Lemma 6, function lpx;Cq is concave and decreasing

in x. Further, lpx;Cq ď upx;Cq for any x P r0, x̄s.

Lemma 6 in the appendix presents some key properties of the two functions up¨;Cq and lp¨;Cq.

It shows that while lpx;Cq is concave in x, upx;Cq is convex in x. The lemma also presents the

derivative of these functions w.r.t. x and shows that for any C ď C‹pRq, lpx;Cq is less than or equal

3 We note that x̄u is well defined because L is the lowest point, and hence H1
px´

Lq ď 0, and p1´Cq
rh
rℓ
H1

px´
Lq ´C ă 0.
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to upx;Cq for any x P rx, x̄s. In addition, it shows that both lpx;Cq and upx;Cq are also continuous

monotone function in C for any x P rx, x̄s.

We are now ready to present our transformation result.

Lemma 3 (Transforming the Consistency Constraints-I). For any C ď C‹pRq, Problem

(C-Pareto) is equivalent to the following optimization problem:

max
RPr0,1s,ppxq:xPr0,maxtm,x̄us

R s.t. lpx;Cq ď ppxq ď upx;Cq, x P r0, x̄s, and (10), (11), (12) ,

(16)

where lpx;Cq and upx;Cq are defined in Equations (15) and (13), respectively.

The proof of all lemmas in this section can be found in Appendix C. Lemma 3 demonstrates

that enforcing lower and upper bounds on the PL function pp¨q satisfies the consistency constraint

of Problem (C-Pareto). These bounds, denoted by lp¨;Cq and up¨;Cq, respectively, can be easily

computed and depend on the ML region. However, these bounds may not be tight since their slope

can be less than ´1. Recall that the optimal solution to Problem (C-Pareto) should be a valid

PL function, i.e., a non-increasing function with a slope greater than or equal to ´1. With this in

mind, the following lemma presents an alternative (valid) lower bound denoted by rlp¨;Cq, which is

a non-increasing function with a slope greater than or equal to ´1. This lower bound is defined as

follows:

rlpx;Cq “

"

lpx;Cq x P r0, x´1s

p´px´x´1q ` lpx´1;Cqq` x P rx´1, x̄s.
(17)

Note that x` “ maxtx,0u and x´1 “ suptx P rxH , x̄s : Blpx´;Cq

Bx
ď ´1u. When Blpx´;Cq

Bx
ě ´1 for any

x P rxH , x̄s, we set x´1 to x̄, and in this case, lpx;Cq “ rlpx;Cq for any x P rx, x̄s. We recall that

Blpx´;Cq

Bx
“ CH1

pxq by Lemma 6, and that Hp¨q “ minth̄p¨q,mu. We observe that rlpx;Cq is a non-

increasing continuous function whose slope is greater than or equal to ´1, due to the concavity of

lpx;Cq in x as shown in Lemma 6. Moreover, we have lpx;Cq ď rlpx;Cq for any x P rx, x̄s. Finally,

the following lemma shows that rlp¨;Cq is a tighter lower bound for the PL function pp¨q.

Lemma 4 (Transforming the Consistency Constraints-II). For any C ď C‹pRq, Problem

(C-Pareto) is equivalent to the following optimization problem:

max
RPr0,1s,ppxq:xPr0,maxtm,x̄us

R s.t. rlpx;Cq ď ppxq ď upx;Cq, x P r0, x̄s, and (10), (11), (12) ,

(18)

where rlpx;Cq and upx;Cq are defined in Equations (17) and (13), respectively.
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We finish this section by presenting an example.

Example 1. Figure 2 presents these upper and lower bounds for two ML regions

R1 “ t4 ď x ď 16u X t4 ď y ď 16u X t20 ď x` y ď 25u

and

R2 “ t4 ď x ď 16u X t4 ď y ď 16u X t0 ď y ´x ď 5u .

The first region represents a scenario where both the low-reward and high-reward requests are

between 4 and 16, and the total number of requests is between 20 and 25. The second ML region

represents a scenario where both the low-reward and high-reward requests are between 4 and 16,

and the difference between the high-reward and low-reward requests is between 0 and 5. The regions

R1 and R2 are illustrated as shaded grey areas in Figure 2. Here, m “ 20, rh “ 1, rℓ “ 1{3, and

C “ 0.8. Observe that while the lower and upper bounds are constant values for R1, this is not the

case for R2.

Figure 2 The upper bound up¨;Cq (Equation (13)), the lower bound lp¨;Cq “ rlp¨;Cq (Equation (17)), prightpxq

(Equations (23) and (25)), and pleftpxq (Equation (26)) for R1 and R2, where

R1 “ t4 ď x ď 16u X t4 ď y ď 16u X t20 ď x` y ď 25u and R2 “ t4 ď x ď 16u X t4 ď y ď 16u X t0 ď y ´x ď 5u. Here,

m “ 20, rh “ 1, rℓ “ 1{3, and C “ 0.8. In both figures, to be C-consistent, the optimal PL p‹, which is a

concatenation of pleft and pright, protects more resources for high-reward requests than the Ball and Queyranne

(2009)’s algorithm with the fixed PL of m 1´rℓ{rh
2´rℓ{rh

.

4.2. Transforming the Robustness Constraints

In this section, we aim to transform the robustness constraints of Problem (C-Pareto) which man-

date that CPpppxq; px, yqq ě R for any px, yq ě 0. Similar to the previous section, we replace this

constraint with lower and upper bound constraints on the (PL) function pp¨q. This enables us to

effectively address the robustness constraints while simplifying the optimization problem.
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Lemma 5 (Transforming the Robustness Constraints). For any R P p0, ρs with ρ “

1
2´rℓ{rh

, and for x P r0,ms, define

gpx;Rq “
mpR´ rℓ{rhq

1´ rℓ{rh
, ḡpx;Rq “ ´Rx`m. (19)

For x ą m, we have gpx;Rq “ gpm;Rq and ḡpx;Rq “ ḡpm;Rq. For any C ď C‹pRq, Problem

(C-Pareto) is equivalent to the following optimization problem:

max
RPr0,ρs,ppxq:xPr0,maxtm,x̄us

R

s.t. rlpx;Cq ď ppxq ď upx;Cq, x P r0, x̄s ,

gpx;Rq ď ppxq ď ḡpx;Rq, x P r0,maxtm, x̄us ,

Validity Constraints (11), (12) . (C-Pareto-Trans)

5. Pareto Optimal Algorithms

In Section we present an optimal solution to the transformed problem (C-Pareto-Trans), denoted

by p‹p¨q, which achieves the optimal robust ratio, denoted by R‹. To do so, as illustrated in Figure

1, we first focus on solving the transformed problem (C-Pareto-Trans) for any x ě x̄; see Section

(5.2). We refer to this problem as the right problem and denote it by (C-Pareto-right)4:

Rright “ max
RPr0,ρs,ppxq:xPrx̄,maxtm,x̄us

R

s.t. rlpx̄;Cq ď ppx̄q ď upx̄;Cq,

gpx;Rq ď ppxq ď ḡpx;Rq, x P rx̄,maxtm, x̄us ,

Validity Constraints (11), (12), x P rx̄,maxtm, x̄us

(C-Pareto-right)

In the right problem, it is sufficient to satisfy the consistency lower and upper bound con-

straints only at x̄, as indicated by the first constraint in Problem (C-Pareto-right). Let pright :

rx̄,maxm, x̄s ÞÑ r0,ms be the optimal solution to the right problem, and define Rright as the optimal

objective value of the right problem. Crucially, in Theorem 3, we prove that p‹pxq, which is the

optimal solution to Problem (C-Pareto-Trans), is equal to prightpxq for any x P rx̄,maxtm, x̄us. Note

that the PL function prightp¨q depends on C, but for the sake of simplicity, we omit this dependence

from our exposition.

After characterizing the optimal solution to p‹pxq for any x ě x̄, we then focus on solving the

transformed problem (C-Pareto-Trans) for any x P r0, x̄s. See Section 5.3. We refer to this problem

4 If x̄ ą m, we only need to optimize a single point ppx̄q.
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as the left problem and denote it by (C-Pareto-left). The left problem is the same as the transformed

problem (C-Pareto-Trans) for any x P r0, x̄s with one additional constraint that enforces ppx̄q to be

prightpx̄q, which is equal to p‹px̄q. The left problem can be written as

Rleft “ max
RPr0,ρs,ppxq:xPr0,x̄s

R

s.t. rlpx;Cq ď ppxq ď upx;Cq, x P rx, x̄s ,

gpx;Rq ď ppxq ď ḡpx;Rq, x P r0, x̄s ,

Validity Constraints (11), (12) x P r0, x̄s

ppx̄q “ prightpx̄q .

(C-Pareto-left)

Let pleft : r0, x̄s ÞÑ r0,ms be the optimal solution to the left problem and define Rleft as the optimal

objective value of the left problem. In Theorem 5, we will show that p‹pxq “ pleftpxq for any x P r0, x̄s.

That is, the optimal solution to the left problem fully characterizes the optimal solution to Problem

(C-Pareto-Trans) for any x P r0, x̄s. Further, we will show in Theorem 3 that the optimal objective

value of Problem (C-Pareto-Trans), R‹, is equal to mintRright,Rleftu.

5.1. Optimal Solution to Problem C-Pareto-Trans and C-Pareto Optimal Algorithm

Here is the main result of this section where we present the optimal solution to Problem

(C-Pareto-Trans) denoted by p‹p¨q. More importantly, we show that among any online algorithms

Π, the PLA with the PL function of p‹p¨q maximizes the robust ratio while ensuring its consistent

ratio is at least C. That is, it is an optimal solution to Problem (3).

Theorem 3 (Optimal Solution to (C-Pareto-Trans) and C-Pareto Optimal Algorithm).

Consider any 0 ď C ď C‹pRq.

1. The optimal objective value of Problem (C-Pareto-Trans), is R‹ “ mintRright,Rleftu,

where Rright and Rleft are the optimal objective value of Problem (C-Pareto-right) and

(C-Pareto-left), respectively.

2. Algorithm 1 presents an optimal solution to Problem (C-Pareto-Trans). That is, at the optimal

solution to Problem (C-Pareto-Trans), denoted by p‹p¨q, for any x P r0,ms, we set

p‹pxq “

"

pleftpxq x P r0, x̄s

prightpxq x P rx̄,maxtm, x̄us ,
(20)

where prightp¨q and pleftp¨q are the optimal solutions to the right and left problems, respectively.

3. A PLA with the PL function of p‹p¨q is an optimal solution to Problem (3). That is, among any

online algorithms Π, the aforementioned algorithm maximizes the robust ratio while ensuring

its consistent ratio is at least C.
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Algorithm 1 Optimal Solution to Problem (C-Pareto-Trans) and C-Pareto Optimal Algorithm.

Input: Convex set R, resource capacity m, and parameter C P r0,C‹pRqs.

Output: Optimal solution to Problem (C-Pareto-Trans), p‹p¨q : r0,maxtm, x̄us ÞÑ r0,ms, and

its optimal objective R‹.

For any x P r0,maxtm, x̄us, set

p‹pxq “

"

pleftpxq x P r0, x̄s

prightpxq x P rx̄,maxtm, x̄us ,
(21)

where prightp¨q and pleftp¨q are defined in Algorithms 2 and 3, respectively.

Let Rright “ mintCPopprightpx̄q; px̄,0qq,CPupprightpmq; pmaxtm, x̄u,mqq, and set

R‹ “ mintRright, inf
xPr0,x̄s

CPoppleftpxq; px,0qqu.

The proof of Theorem 3 is stated in Appendix D. To show the first statement, as the main step,

we need to argue that p‹px̄q “ prightpx̄q. To do so, we consider two cases, where in the first case

Rright ě Rleft, and in the second case, Rright ă Rleft. In the first case, the optimality of p‹px̄q can be

argued using Theorem 4, where we present an optimal solution to the right problem. Otherwise,

for the case where Rleft ă Rright, we show the result by contradiction while using properties of the

lower bound rlp¨;Cq. The proof of the second statement follows from Theorems 4 and 5 in which we

present an optimal solution to the left and right problems.

To show the third statement, we first note that the optimal robust ratio R‹

is the minimum of three terms: CPopprightpx̄q; px̄,0qq, CPupprightpmq; pmaxtm, x̄u,mqq, and

infxPr0,x̄s CPoppleftpxq; px,0qqu. Depending on which term attains the minimum, we construct worst-

case arrival sequences to show that no algorithm can perform better than R‹. For the purpose

of this discussion, let us assume that R‹ is equal to the compatible ratio of point pm,mq (i.e.,

CPupprightpmq; pmaxtm, x̄u,mqq), which is one of the three aforementioned terms.

For this case, we define two (ordered) input sequences. In the first input sequence, I1, low-reward

requests with x̄u ď x̄ arrive first, followed by high-reward requests with hpx̄uq. One can think of I1 as

an arrival sequence consistent with the ML advice. In the second input sequence, I2, m low-reward

requests arrive first, followed by m high-reward requests. Here, one can think of I2 as an arrival

sequence outside with the ML advice. Before receiving x̄u low-reward requests, any deterministic or

randomized algorithm cannot differentiate between the two input sequences and must decide how

many low-reward requests to accept in expectation. We then show that, on these input sequences,

to achieve a consistent ratio of C on I1, no algorithm can obtain a robust ratio greater than R‹ on
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I2. This is demonstrated by arguing that, on the arrival sequence I1, to achieve a consistent ratio

of at least C, the algorithm must accept at least m ´ upx̄u;Cq low-reward agents. This, in turn,

prevents any algorithm from performing better than R‹ on I2. For other cases, we also construct

two input sequences, but the contradiction point is different in each case. See Section D for details.

We finish this section by revisiting our running example and present the tradeoff between R‹ and

C. The left figure of Figure 3 displays the optimal robust ratio (i.e., the optimal value to Problem

(C-Pareto) or the optimal value to the original Problem (3)) versus C for the two ML regions,

R1 and R2. For each ML region Ri, i P r2s, we consider C ď C‹pRiq, as Problem (C-Pareto) is

infeasible for any C ą C‹pRiq.

As expected, for both ML regions, the optimal robust ratio decreases as C increases. The middle

and right figures of Figure 3 display p‹p¨q for C “ 0.8 and 0.89 under the two regions, respectively.

We observe that by increasing C, p‹p¨q increases as well, which results in protecting more resources

for high-reward requests.

Figure 3 The figure shows the optimal robust ratio (i.e., the optimal value to Problem (C-Pareto) or the

optimal value to the original Problem (3)) versus C for the two ML region R1 and R2. Here,

R1 “ t4 ď x ď 16u X t4 ď y ď 16u X t20 ď x` y ď 25u and R2 “ t4 ď x ď 16u X t4 ď y ď 16u X t0 ď y ´x ď 5u.

In the following sections, we begin by presenting prightp¨q, followed by a characterization of pleftp¨q.

5.2. Optimal Solution to the Right Problem (C-Pareto-right)

Algorithm (2) presents the optimal solution to the right problem (C-Pareto-right), prightp¨q, and the

optimal objective value of this problem Rright. First, the algorithm presents the optimal solution at

x̄, i.e., prightpx̄q, which then determines Rright. Second, the algorithm presents the optimal solution

at any x P px̄,maxtm, x̄us, using prightpx̄q and Rright. Notice that if x̄ ě m, px̄,maxtm, x̄us “ px̄, x̄s,

is not well-defined. So, we skip the second step, and we only need to solve for prightpx̄q.
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Algorithm 2 Optimal Solution to Problem (C-Pareto-right).

Input: Convex set R, resource capacity m, and parameter C P r0,C‹pRqs.

Output: Optimal solution to the right problem (C-Pareto-right), pright : rx̄,maxtm, x̄us ÞÑ

r0,ms, and optimal objective value of the right problem (C-Pareto-right), denoted by Rright.

• Optimal solution at x̄ Let

prightpx̄q “ argmin
pPrrlpx̄;Cq,upx̄;Cqs

|p´ gpx̄q| ,

where gpxq “ gpx;R “ 1
2´rℓ{rh

q “
1´rℓ{rh
2´rℓ{rh

m, and rlp¨;Cq and up¨;Cq are respectively defined in

Equations (17) and (13). Further, define

Rright “ min tCPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pmaxtm, x̄u,mqqu .

• Optimal Solution at x P px̄,maxtm, x̄us. For any x P px̄,maxtm, x̄us, define

prightpxq “

$

&

%

maxt´x` x̄` prightpx̄;Cq, gpxqu prightpx̄q P rgpxq, ḡpxqs

gpx;Rrightq prightpx̄q ă gpx̄q,
ḡpx;Rrightq prightpx̄q ą ḡpx̄q,

(22)

where gp¨;Rq, ḡp¨;Rq are respectively defined in Equation (19).

Return. prightpxq, x P rx̄,maxtm, x̄us, and Rright.

Recall that ρ “ 1
2´rℓ{rh

is the optimal consistent ratio (obtained by Ball and Queyranne (2009))

when the ML region is tpx, yq : x, y ě 0u. With a little abuse of notation, for x P rx̄,maxtm, x̄us, we

let

ḡpxq “ ḡpx;R “ ρq, and gpxq “ gpx;R “ ρq ,

where ḡpx;Rq and gpx;Rq are defined in Equation (19). Then, in Algorithm 2, we have

prightpx̄q “ argmin
pPrrlpx̄;Cq,upx̄;Cqs

|p´ gpx̄q| . (23)

Clearly, prightpx̄q satisfies the first constraint in the right problem; that is, prightpx̄q P

rrlpx̄;Cq, upx̄;Cqs, as desired. To set prightpx̄q, the algorithm compares the feasible interval

rrlpx̄;Cq, upx̄;Cqs with gpxq “ gpx;R “ ρq. Here, gpx;ρq “
1´rℓ{rh
2´rℓ{rh

m is the optimal PL in the setting

studied in Ball and Queyranne (2009) when the ML region is tpx, yq : x, y ě 0u. At a high level, if

we can set prightpx̄q to gpx̄q, the optimal (right) robust ratio Rright will be equal to ρ (which is the

maximum robust ratio for any ML region). However, setting prightpx̄q to gpx̄q is not always possible.

In such a case, we either set prightpx̄q to upx̄;Cq or rlpx̄;Cq. The PL prightpx̄q then determines Rright:

Rright “ min tCPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pmaxtm, x̄u,mqqu . (24)
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This shows that in the right problem, points px̄,0q or pmaxtm, x̄u,mq play a crucial role, determining

the optimal objective value.

Given the optimal objective value of Rright, if x̄ ă m, for any x P px̄,ms, we only need to make

sure that gpx;Rrightq ď ppxq ď ḡpx;Rrightq. This is achieved by setting

prightpxq “

$

&

%

maxt´x` x̄` prightpx̄;Cq, gpxqu prightpx̄q P rgpxq, ḡpxqs

gpx;Rrightq prightpx̄q ă gpx̄q,
ḡpx;Rrightq prightpx̄q ą ḡpx̄q.

(25)

As it becomes more clear in the proof of Theorem 4, when prightpx̄q P rgpx̄q, ḡpx̄qs, the optimal

objective value of the right problem Rright is indeed ρ “ 1{p2 ´ rℓ{rhq. For the other cases where

either prightpx̄q ă gpx̄q or prightpx̄q ą ḡpx̄q, we have Rright ă ρ. There, we set prightpxq such that the

compatible ratio at any points px,0q and px,mq (with x P px̄,ms) is greater than or equal to Rright,

defined in Equation (24).

Theorem 4 (Optimal Solution to the Right Problem). Algorithm 2 presents an optimal

solution to Problem (C-Pareto-right). That is, at the optimal solution to Problem (C-Pareto-right),

denoted by prightp¨q, we set prightpxq based on Equations (23) and (25). Furthermore, the optimal

objective value of Problem (C-Pareto-right), Rright, is given in Equation (24).

We finish this section by revisiting the examples in Figure 2 (Example 1). The figure displays

the optimal prightp¨q : r16,20s ÞÑ r0,20s for R1 and R2 respectively. Both regions have gpx̄q “ 8 and

ḡpx̄q “ 10.4. In R1, since prightpx̄q ěrlpx̄;Cq “ 10.8 ą ḡpx̄q, we cannot achieve ρ “ 1{p2´ rℓ{rhq “ 0.6

if the adversary chooses px̄,0q. Thus, we choose prightpx̄q “ rlpx̄;Cq “ 10.8 by Equation (23), and

for x P px̄,ms, we set prightpxq such that CPopprightpxq; px,0qq ě CPopprightpx̄q; px̄,0qq “ Rright. In R2,

since gpx̄q “ 8 P rrlpx̄;Cq, upx̄;Cqs, we can achieve ρ, and we set prightpxq “ gpxq for x P rx̄,ms.

5.3. Optimal Solution to Problem (C-Pareto-left)

In this section, we present an optimal solution to the left problem (C-Pareto-left), denoted by

pleftp¨q : r0, x̄s ÞÑ r0,ms. See Algorithm 3. The algorithm shows that at the optimal solution, we set

pleftpxq “ maxtrlpx;Cq, prightpx̄qu , x P r0, x̄s , (26)

where prightpx̄q is the optimal solution to Problem (C-Pareto-right) at x̄, and rlpx;Cq is defined in

Equation (17).

The optimal solution to the left problem is obtained by one observation. We show in the proof of

Theorem 5 that in this problem, one can ignore the lower bound constraint ppxq ě gpx;Rq, x P r0, x̄s.
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Algorithm 3 Optimal Solution to Problem (C-Pareto-left).

Input: Convex set R, resource capacity m, and parameter C P r0,C‹pRqs.

Output: Optimal solution to the right problem (C-Pareto-left), pleft : r0, x̄s ÞÑ r0,ms.

For any x P r0, x̄s, define

pleftpxq “ maxtrlpx;Cq, prightpx̄qu , x P r0, x̄s , (27)

where prightpx̄q is the optimal solution to Problem (C-Pareto-right) at x̄, and rlpx;Cq is defined

in Equation (17).

Return. pleftpxq, x P r0, x̄s.

Given this simplification, to present an optimal solution to Problem (C-Pareto-left), we need to find

the largest value of R that satisfies the conditions maxtrlpx;Cq, prightpx̄qu ď ppxq ď ḡpx;Rq, where

ḡpx;Rq is a decreasing function of R and ppxq is a non-increasing function. Then, considering the

fact that ḡpx;Rq is decreasing in R, to maximize R while ensuring maxtrlpx;Cq, prightpx̄qu ď ppxq ď

ḡpx;Rq, we set pleftpxq “ maxtrlpx;Cq, prightpx̄qu. See Figure 2 for pleftp¨q in our running example.

Theorem 5 (Optimal Solution to the Left Problem). Algorithm 3 presents an optimal

solution to Problem (C-Pareto-left). That is, at the optimal solution to Problem (C-Pareto-left),

denoted by pleftp¨q, we set pleftpxq based on Equation (26). The optimal objective value of Problem

(C-Pareto-left) is:

Rleft “ mintCPuppleftpx̄q; px̄,mqqq, inf
xPr0,x̄s

CPoppleftpxq; px,0qqu .

6. Optimal Consistent Ratio

In this section, using an optimization problem, we first characterize the optimal/maximum con-

sistent ratio (C‹pRq) that any algorithm can achieve under ML region R. (See Section 6.1.) For

any convex ML region R, in Section 6.2, we then present a simple bisection method that allows us

to obtain a good approximation for C‹pRq. Section 6.3 presents a simpler algorithm to obtain the

exact value of C‹pRq when the ML region R is a polyhedron.

6.1. Characterizing the Optimal Consistent Ratio

We begin by the following theorem:
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Theorem 6 (Characterizing Optimal Consistent Ratio). Consider any convex ML

region R. Then, the consistent ratio of any online algorithm under ML region R is at most C‹pRq

where

C‹pRq “ max
Cě0,ppxq:xPr0,x̄s

C

s.t. rlpx;Cq ď ppxq ď upx;Cq, x P rx, x̄s

Validity Constraints (11), (12) x P r0, x̄s .

(C-max)

Here, rlpx;Cq and upx;Cq are defined in Equations (17) and (13), respectively. Furthermore,

C‹pRq ě ρ, where ρ “ 1{p2´ rℓ{rhq.

Theorem 6 characterizes C‹pRq using an optimization problem (C-max) that bears resemblance

with Problem (C-Pareto-Trans). In Problem (C-max), we aim to characterize a valid PL function

under which the consistent ratio is maximized. Note that by the transformation Lemma 4, the first

constraint (i.e., rlpx;Cq ď ppxq ď upx;Cq) is equivalent to CPpppxq; px, yqq ě C for any px, yq P R.

The resulting PL function then leads an optimal PLA that obtains the consistent ratio of C‹pRq,

which is the maximum consistent ratio that any online algorithms can achieve.

6.2. A Bisection Method to Compute C‹pRq for a General Convex Region

Having characterized C‹pRq, here we present a simple bisection method that allows us to compute

an ϵ-accurate estimate of C‹pRq. The bisection method (Algorithm 4) crucially uses the first set

of constraints in Problem (C-max):

Necessary and Sufficient Conditions for C ď C‹pRq: By Lemma 4, we have for any C P

rρ,1s, C‹pRq ě C if and only if for any x P rx, x̄s, we have

rlpx;Cq ď upx;Cq ,

where we recall that rlpx;Cq and upx;Cq are defined in Equations (17) and (13), respectively.

Algorithm 4 A Bisection Method to Compute C‹pRq.

Input: Convex set R, resource capacity m, and accuracy parameter ϵ P r0,1{2s.

Output: An ϵ-accurate estimate of C‹pRq.

Initialize C0 “ ρ and C1 “ 1, where ρ “ 1{p2´ rℓ{rhq.

While |C1 ´C0| ě ϵ :

• Compute the mid point Cm “ pC0 `C1q{2.

• If rlpx;Cmq ď upx;Cmq for any x P rx, x̄s, set C0 to Cm.

• If rlpx;Cmq ą upx;Cmq for some x P rx, x̄s, set C1 to Cm.

Return: C0.
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In Algorithm 4, we use a bisection procedure that repeatedly checks if rlpx;Cq ď upx;Cq, x P rx, x̄s,

for some given C. Note that this condition can be easily checked considering the fact that we have

a closed form solution for rlpx;Cq and upx;Cq. Furthermore, checking this condition is equivalent to

check if minxPrx,x̄s upx;Cq ´rlpx;Cq ě 0, where we highlight this optimization can be easily solved.

This is because by Lemma 6, we know that upx;Cq is convex in x, and rlpx;Cq is concave in x. This

implies that upx;Cq ´rlpx;Cq is convex, and the aforementioned problem is a convex optimization

problem. The following proposition sheds light on the performance of Algorithm 4.

Proposition 1 (Bisection Method to Compute C‹pRq). Consider Algorithm 4 with an

accuracy parameter ϵ P r0,1{2s. Given a general convex set R, Algorithm 4 returns a C0 P rC‹pRq ´

ϵ,C‹pRq ` ϵs, where C‹pRq is the optimal solution to Problem (C-max). In addition, the compu-

tational complexity of Algorithm 4 is Oplogp1{ϵqq.

6.3. A Faster Method to Compute C‹pRq for Polyhedron Convex Regions

In the previous section, we present a bisection method to estimate C‹pRq for a general convex

ML region. Here, we present a faster method to compute C‹pRq when the ML region is a convex

polyhedron. This method relies on the following theorem.

Theorem 7 (Properties of C‹pRq under Polyhedron ML Regions). Let V be the set

containing the x value of all vertices of R and of the set R0, where R0 “ tpx,hpxq : x P rx, x̄su X

tpx, yq : x`y “ mu. Then, C‹pRq “ C for some C P rρ,1s if and only if the following two conditions

holds.

1. for any x P V, rlpx;Cq ď upx;Cq.

2. there exists px P V, such that rlppx;Cq “ uppx;Cq.

Here, we recall that rlpx;Cq and upx;Cq are defined in Equations (17) and (13), respectively.

Theorem 7 shows that when the ML region R is a polyhedron, for any x P V, we have

rlpx;C‹pRqq ď upx;C‹pRqq while there exists px P V under which the lower bound rlppx;C‹pRqq is

equal to the upper bound uppx;C‹pRqq. Here, V is the sets contain the x value of all vertices of R,

and the x value of R0. We refer to V as the set of x-vertices. This theorem shows that when the

ML region is a polyhedron, we can simplify the feasibility check in Algorithm 4 by checking the

condition rlpx;Cq ď upx;Cq only for any x-vertices x P V. While this is an improvement, we present

a faster algorithm that returns the exact value of C‹pRq by taking advantage of properties of the

lower and upper bounds rlp¨;Cq and up¨;Cq, presented in Lemma 6.
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Algorithm 5 An Algorithm to Compute C‹pRq for Polyhedron ML region R
Input: Polyhedron ML region R, resource capacity m.

Output: Optimal consistent ratio C‹pRq.

Initialization: Set S “ H.

• For any pair of x-vertices x1, x2 P V with h̄px1q ě hpx2q and x2 ď x1, find the following balancing

PL p P rhpx2q, h̄px1qqs such that

CPupp; px1, h̄px1qqq “ CPopp; px2, hpx2qq . (28)

(Note that x1 can be equal to x2.) Add CPupp; px1, h̄px1qqq to S.

• For any pair of x-vertices x1, x2 P V with h̄px1q´hpx2q ě x2 ´x1 and x2 ą x1, find the following

balancing PL p P rhpx2q ` px2 ´x1q, h̄px1qs such that

CPupp; px1, h̄px1qqq “ CPopp´ px2 ´x1q; px2, hpx2qqq . (29)

Add CPupp; px1, h̄px1qqq to S. That is, update S to S Y tCPupp; px1, h̄px1qqqu.

Return: Return the largest C P S under which rlpx;Cq ď upx;Cq for any x P V as C‹pRq:

C‹pRq “ maxtC P S :rlpx;Cq ď upx;Cq for any x P Vu .

In the faster algorithm, at a high level, we aim to find the x-vertex px under which rlppx;C‹pRqq “

uppx;C‹pRqq. To do so, we follow an enumeration technique that uses the property of px along with

the first condition in Theorem 7 that allows us to only focus on x-vertices to determine C‹pRq. To

explain the idea behind the algorithm, let us recall that in defining the upper bound upx;Cq, when

possible, we choose the protection level upx;Cq such that the compatible ratio at point px,hpxqq is

equal to C. That is, for any x P rxu, x̄us, we have upx;Cq “ sup
␣

p P r0,ms : CPopp; px,hpxqqq “ C
(

.

Similarly, in defining the upper bound lpx;Cq (which we later use to define rl), when possible, we

choose the protection level lpx;Cq such that the compatible ratio at point px, h̄pxqq is equal to C.

That is, for any x P rxH , x̄ls, we have lpx;Cq “ inf
␣

p P r0,ms : CPupp; px,hpxqqq “ C
(

.

Now suppose that at px, we have lppx;C‹pRqq “ rlppx;C‹pRqq. Then, if px P rxu, x̄us X rxH , x̄ls, the

condition rlppx;C‹pRqq “ uppx;C‹pRqq leads to balancing two compatible ratios. That is, we need to

find a protection level p P rhppxq, h̄ppxqqs such that

CPopp; ppx,hppxqqq “ CPupp; ppx, h̄ppxqqq .
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This balancing idea explains Equation (28) in Algorithm 5. Now, suppose that at px, we have

lppx;C‹pRqq ‰ rlppx;C‹pRqq, which only happens when px ě x´1, where x´1 “ suptx P rxH , x̄s :

Blpx´;C‹
pRqq

Bx
ď ´1u. By definition of rl in Equation (17), we then know that rlppx;C‹pRqq “

lpx´1;C
‹pRqq´ppx´x´1q. Then, the condition rlppx;C‹pRqq “ uppx;C‹pRqq leads to a slightly different

balancing procedure in which we need to find a protection level p P rhppxq, h̄ppxqqs (i.e., lppx;C‹pRqq)

such that

CPupp; px´1, h̄px´1qqq “ CPopp´ ppx´x´1q; ppx,hppxqqq .

This justifies Equation (29) in Algorithm 5. (Note that as we show in the proof of Theorem 8, for

any C, x´1 is a x-vertex.)

Theorem 8 (Optimal Consistent Ratio for Convex Polyhedron ML Regions).

Suppose that the ML region R is a convex polyhedron. Algorithm 5 returns the optimal consistent

ratio C‹pRq for any given polyhedron R in run time Op|V|3q.

7. Numerical Studies

In this section, we present the results of our numerical studies, which highlight the efficiency of

resource allocation achieved through the integration of our algorithms with ML advice. Specifically,

we investigate two distinct categories of uncertainty sets provided by ML advice: box advice and

ellipsoid advice. We will show that thanks to our algorithm, ML advice can significantly improve

the average and worst case performance, outperforming other benchmarks.

7.1. Setup

Demand/Arrival models. We conduct an analysis of two demand models, one with a uniform

distribution, and the other with a normal distribution. In both models, we introduce random noise

to the demand process using a uniform distribution. Specifically, denoting x and y as the number

of high reward arrivals and low reward arrivals, respectively, in the first demand model, we have:

x, y „

"

Uniformp10,20q with probability 0.9,
Uniformp0,30q with probability 0.1.

(30)

Similarly, in the second model, we have:

x, y „

"

Normalp15,3q with probability 0.9,
Uniformp0,30q with probability 0.1 .

(31)

We set m “ 20, rh “ 1, and rℓ “ 1{3. We analyze both worst-case and uniform arriving orders in

each demand model.
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Construction of ML advice. For the uniform demand distribution in Equation (30), as shown

in Figure 4, constructing a box advice is a natural choice. However, for the normal demand dis-

tribution in Equation (31), an ellipsoid advice is more appropriate, as shown in Figure 4. We use

n “ t10,25u as the number of samples used to construct the box and ellipsoid advice. To construct

the box (ellipsoid) advice, we identify the smallest rectangle (ellipsoid) that encompasses at least

z% of the sample points, where z% P t80%,90%u. For the ellipsoid advice, we apply the method in

Gärtner and Schönherr (1997) to construct such an ellipsoid. The left plot of Figure 4 illustrates an

example of how we construct the box advice, while the right plot of Figure 4 displays an example

of the ellipsoid advice.

To construct the ML advice, we sample n P t10,25u data points K “ 1000 times from the demand

models in Equations (30) and (31). For each sample set, with size n, we then construct ML region

in the shape of a box or an ellipsoid, depending on the demand model. Let Sk, k P rKs, be the

sample dataset and Rk be the ML advice associated with it.

Figure 4 Constructing the box and ellipsoid advice with n “ 25 samples for the uniform and normal demand

model in Equations (30) and (31) , respectively. Here, z “ 90% fraction of the samples fall into the constructed

box.

Performance evaluation. To evaluate the performance of our algorithm and the benchmark

algorithms that we will define shortly, we generate a test set which contains 100 instances. Each test

instance corresponds to a point px, yq drawn from the demand models described in Equation (30)

(for box advice) and Equation (31) (for ellipsoid advice). We assess the algorithm’s performance

using these test instances under two different scenarios: worst-case (ordered) arrival sequences and

stochastic (uniform order) arrival sequences.



32

Let T denote the set of test instances. Then, the worst CP and Avg. CP of an algorithm A are

respectively defined as:

worst cp “
1

K

K
ÿ

k“1

min
px,yqPT

CPApx, y;Skq avg. cp “
1

K

K
ÿ

k“1

1

|T |

ÿ

px,yqPT

CPApx, y;Skq . (32)

Here, CPApx, y;Skq is the compatible ratio of algorithm A under the sample set Sk, which is used

to construct the ML advice when algorithm A is, for example, Algorithm 1.

For the stochastic arrival sequences, for each instance px, yq P T , we generate 100 random per-

mutations. Similarly, we define:

worst cp “
1

K

K
ÿ

k“1

min
px,yqPT

ErCPApx, y;Skqs avg. cp “
1

K

K
ÿ

k“1

1

|T |

ÿ

px,yqPT

ErCPApx, y;Skqs ,

where the expectation is taken with respect to the randomness in arrival permutations.

Benchmarks. To further assess the effectiveness of our algorithms, we propose several bench-

marks for comparison with Algorithm 5.

1. Point estimate benchmark. Under this benchmark, we consider a sample set Sk with a

size of n P t10,25u. To estimate the central location, we use the point estimate ppxk, pykq “

1
n

p
ř

iPSk
xi,

ř

iPSk
yiq. We then use this point estimate to construct a convex set Rk, which

serves as an input for Algorithm 1. Upon observation, we note that when pyk ď 8, Algorithm

1 produces a fixed PL. In our specific case, the value 8 corresponds to the fixed PL proposed

in Ball and Queyranne (2009). On the other hand, when pyk ą 8, although the protection level

function remains constant for x ď x̂, Algorithm 1 produces a decreasing PL for x ą x̂k.

2. The BQ benchmark (Ball and Queyranne 2009). This benchmark algorithm is the PLA with

a fixed PL function as proposed by Ball and Queyranne (2009). In this benchmark that we

refer to as the BQ, the PL is set to 1´rℓ{rh
2´rℓ{rh

m “ 8.

3. PLA with an ML-augmented fixed PL function (Perakis and Roels 2010). Under this bench-

mark, we again have a PLA with a fixed PL function ppxq “ p. This benchmark that we refer

to as PR is introduced by Perakis and Roels (2010) and is specifically designed for box ML

advice, assuming that the ML advice is completely accurate. To determine the value of p in

this benchmark, Perakis and Roels (2010) solve a mixed integer programming (MIP) problem

to obtain the optimal consistent ratio. However, their algorithm does not account for inaccu-

rate ML advice or accommodate ellipsoid advice. Thus, we will only consider this benchmark

for the uniform demand model with box ML advice.



33

Table 1 Results under box ML advice (demand model in Equation (30)) and adversarial order. The standard

error of all the numbers is less than 0.003.

# of samples n n=10 n=25
Consistent ratio C C‹

pRq 0.9 ¨C‹
pRq 0.8 ¨C‹

pRq C‹
pRq 0.9 ¨C‹

pRq 0.8 ¨C‹
pRq

Alg. 1 with input C Avg. CP 0.902 0.880 0.824 0.912 0.891 0.834
(z “ 90%) Worst CP 0.631 0.686 0.644 0.646 0.703 0.664

Alg. 1 with input C Avg. CP 0.899 0.877 0.823 0.914 0.899 0.845
(z “ 80%) Worst CP 0.632 0.685 0.649 0.629 0.705 0.673

Point ML Avg. CP 0.901 0.823 0.745 0.905 0.819 0.745
Advice Worst CP 0.454 0.520 0.604 0.459 0.523 0.606

BQ Avg. CP 0.762 - - 0.762 - -
Benchmark Worst CP 0.600 - - 0.600 - -

PR Benchmark Avg. CP 0.900 - - 0.907 - -
(z “ 90%) Worst CP 0.626 - - 0.641 - -

PR Benchmark Avg. CP 0.896 - - 0.909 - -
(z “ 80%) Worst CP 0.627 - - 0.628 - -

7.2. Results

Results under box advice. Tables 1 and 2 present the average CP (Avg. CP) and worst CP (Worst

CP) metrics, as defined in Equation (32), with the box ML advice associated with demand model

in Equation (30) under adversarial and stochastic arrival sequences, respectively. In these tables,

we show the performance of Algorithm 1 with different settings (specifically, z P t80%,90%u and

C P tC‹pRq,0.9 ¨ C‹pRq,0.8 ¨ C‹pRqu), along with our benchmarks: point ML advice (with C P

tC‹pRq,0.9 ¨ C‹pRq,0.8 ¨ C‹pRqu), BQ, and PR (with z P t80%,90%u). Here, we recall that the

parameter z is used to determine the ML advice for both Algorithm 1 and the PR benchmark.

As a general observation, all algorithms demonstrate a better performance under stochastic

arrivals, compared with adversarial arrivals. For both adversarial and stochastic arrivals, we observe

that Algorithm 1, with a fixed number of samples n used in constructing the ML advice, effectively

achieves a balance between the average and worst case CP. To illustrate this, let’s consider some

examples.

Under adversarial setting, when n “ 10 and z “ 90%, Algorithm 1 with C “ 0.9 ¨C‹pRq surpasses

the PR benchmark in terms of worst case CP by 10%, with values of 0.686 and 0.626 respectively.

However, there is a slight sacrifice in the average CP, with Algorithm 1 achieving 0.880 compared

to the PR benchmark’s 0.900.

Another scenario to consider is when n “ 25 and z “ 80% and we have stochastic arrival model.

In this case, Algorithm 1 with C “ 0.9 ¨ C‹pRq outperforms the point ML advice benchmark sig-

nificantly. It surpasses the point ML advice benchmark in terms of worst case CP by a remarkable

24% (0.736 versus 0.592), while also excelling in terms of average CP by 9% (0.934 versus 0.857).

This demonstrates the limitations of the point ML advice approach in effectively extracting and
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Table 2 Results under box ML advice (demand model in Equation (30)) and stochastic order. The standard

error of all the numbers is less than 0.003.

# of samples n n=10 n=25
Consistent ratio C C‹pRq 0.9 ¨C‹pRq 0.8 ¨C‹pRq C‹pRq 0.9 ¨C‹pRq 0.8 ¨C‹pRq

Alg. 1 with input C Avg. CP 0.943 0.929 0.901 0.951 0.937 0.904
(z “ 90%) Worst CP 0.676 0.733 0.741 0.677 0.741 0.744

Alg. 1 with input C Avg. CP 0.936 0.922 0.893 0.944 0.934 0.899
(z “ 80%) Worst CP 0.667 0.726 0.732 0.678 0.736 0.734
Point ML Avg. CP 0.910 0.853 0.814 0.914 0.857 0.817
Advice Worst CP 0.555 0.584 0.673 0.554 0.592 0.674
BQ Avg. CP 0.823 - - 0.823 - -

Benchmark Worst CP 0.674 - - 0.674 - -
PR Benchmark Avg. CP 0.933 - - 0.941 - -

(z “ 90%) Worst CP 0.666 - - 0.688 - -
PR Benchmark Avg. CP 0.926 - - 0.935 - -

(z “ 80%) Worst CP 0.658 - - 0.668 - -

exploiting valuable information in the past (training) dataset. The result is slightly worse for the

BQ benchmark as it does not consider any ML advice and aims to hedge against the worst case

scenario.

Table 3 Results under ellipsoid ML advice (demand model in Equation (31)) and adversarial order. The

standard error of all the numbers is less than 0.003.

# of samples n n=10 n=25
Input consistent ratio C C‹pRq 0.9 ¨C‹pRq 0.8 ¨C‹pRq C‹pRq 0.9 ¨C‹pRq 0.8 ¨C‹pRq

Alg. 1 with input C Avg. CP 0.921 0.894 0.830 0.933 0.914 0.850
(z “ 90%) Worst CP 0.646 0.661 0.613 0.660 0.705 0.647

Alg. 1 with input C Avg. CP 0.914 0.877 0.810 0.923 0.889 0.832
(z “ 80%) Worst CP 0.633 0.653 0.605 0.650 0.677 0.639
Point ML Avg. CP 0.906 0.822 0.733 0.912 0.823 0.734
Advice Worst CP 0.539 0.566 0.599 0.523 0.575 0.600
BQ Avg. CP 0.725 - - 0.725 - -

Benchmark Worst CP 0.600 - - 0.600 - -

Table 4 Results under ellipsoid ML advice (demand model in Equation (31)) and stochastic order. The

standard error of all the numbers is less than 0.005.

# of samples n n=10 n=25
Consistent ratio C C‹pRq 0.9 ¨C‹pRq 0.8 ¨C‹pRq C‹pRq 0.9 ¨C‹pRq 0.8 ¨C‹pRq

Alg. 1 with input C Avg. CP 0.947 0.922 0.891 0.952 0.935 0.909
(z “ 90%) Worst CP 0.679 0.698 0.703 0.689 0.713 0.722

Alg. 1 with input C Avg. CP 0.934 0.918 0.880 0.949 0.929 0.892
(z “ 80%) Worst CP 0.664 0.683 0.692 0.669 0.691 0.701
Point ML Avg. CP 0.909 0.852 0.819 0.911 0.858 0.818
Advice Worst CP 0.551 0.583 0.639 0.535 0.592 0.649
BQ Avg. CP 0.834 - - 0.834 - -

Benchmark Worst CP 0.670 - - 0.670 - -
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Results under ellipsoid advice. Tables 3 and 4 present the results obtained using ellipsoid advice,

specifically with the demand model described by Equation (31), under both adversarial and stochas-

tic arrival models. Note that the PR benchmark is not included in these tables, as it is specifically

designed for box advice.

Once again, we observe that Algorithm 1 achieves a balance between the average and worst

case CP, outperforming the existing benchmarks for both adversarial and stochastic arrivals. For

instance, when considering both values of n and selecting C “ 0.9 ¨ C‹pRq, Algorithm 1 achieves

the best worst CP under adversarial arrivals while there is a small sacrifice of approximately 2-3%

in the worst CP when compared to the maximum average CP obtained under the same algorithm

with input C “ C‹pRq.

8. Concluding Remarks and Future Directions

In this work, we have proposed a novel online resource allocation model that addresses the challenge

of integrating machine learned predictions into resource allocation decisions in a robust and efficient

manner. Efficient online resource allocation is essential for entities such as hospitals, governments,

and various industries that often face a trade-off between meeting low-reward and high-reward

demands without precise knowledge of future demand. However, factors such as environmental

fluctuations, data biases, and insufficient data points can impede consistent accuracy, making it

challenging to allocate resources efficiently.

The proposed model is based on the concept of convex uncertainty sets, which use historical data

to construct sets of plausible demand scenarios, allowing for flexibility and robustness in decision-

making. We examine the benefits of utilizing ML advice in online resource allocation problems

by proposing C-Pareto PLAs that balance the robust and the consistent ratios. Compared to

traditional fixed protection level algorithms, we find that adaptive PLAs often manage to obtain

high consistent and robust ratios, highlighting the significance and advantages of adjusting the

protection level.

This work highlights the substantial advantages of employing uncertainty set ML advice, as

opposed to point estimate advice, in sequential decision-making under uncertainty. It also paves

the way for further exploration in other sequential decision-making problems. One such problem

is single-leg revenue management with K ě 3 types.

When dealing with more than two types of requests, relying on a single protection level function

may not suffice for making decisions. One approach to address this challenge is to consider an
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adaptive nested PLA that incorporates n ´ 1 protection level functions pip¨qiPrK´1s
. In this case,

given rewards r1 ě r2 ě . . . ě rK , the protection level pipsjq is applied to type i once we observe sj

type j requests for all i` 1 ď j ď K. As a potential future research direction, it would be valuable

to explore the effectiveness of the nested PLA in this context. However, further investigation is

required to explore this direction, which we leave for future research.
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Appendix A: More on Validity Conditions of Protection Level Algorithms

Here, we justify the necessity of the validity conditions of PLAs in Definition 1.

The PL function belongs to PLAs should be non-increasing with p1pxq ě ´1. We refer to these conditions

as validity conditions and we say a PLA is valid if its PL function is non-increasing with p1pxq ě ´1. First, it

is clear that the PL function cannot be increasing. To see that, suppose when deciding about a low-reward

request with size s, we can allocate m´ pps̄` sq ´ ā resources to the request, and protect pps̄` sq units for

high-reward requests. Now, suppose that we have already allocated pps̄ ` sq units to high-reward requests

and hence we fully utilize the m units of resources. Then, if the PL function pp¨q increases at s̄ ` s, upon

the arrival of the next low-reward request, we would like to protect more than pps̄` sq units for high-reward

requests which is not possible as all resources are allocated.

Second, the derivative of the PL function pp¨q should be always greater than equal to ´1. This condition

ensures that PLAs can be implemented. Recall that under a PLA, upon the arrival of a low-reward request

with size s, we set a “ min
␣

pm,Projr0,ss

`

m´ pps̄` sq ´ ā
˘(

. Suppose that we can set a “ m´pps̄`sq ´ ā and

contrary to our assumption, suppose that p1ps̄` sq ă ´1. Then, assume that we receive a low-reward request

with size s1 ą 0, where s1 is an arbitrary small number. Suppose that we can set a1 “ m´pps̄`s`s1q´ ā1 ď

s1, where ā1, which is the total accepted low-reward request, is equal to ā` a. Then, we have

a1 ´ a “ pps̄` sq ´ pps̄` s` s1q ´ a ą s1 ´ a,

where the inequality is because p1ps̄` sq ă ´1 and s1 is an arbitrary small positive number. This equation

implies that a1 ą s1, which cannot happen because we can accept at most s1 low-reward requests. Therefore,

the derivative of the PL function p cannot be less than ´1.

Appendix B: Proof of Lemma 1

Let px, yq be fixed, and let I be the ordered sequence of arrivals such that x low-reward requests arrive first,

followed by y high-reward requests. For any adaptive protection level algorithm A, let x̃pAq be the total

number of low-reward requests that are accepted under the ordered sequence I. Then, the algorithm accepts

minty,m´ x̃pAqu high-reward requests. Observe that algorithm A rejects the x-th low-reward request if and

only if

• condition (1) the number of low-reward requests accepted so far is not less than m´ ppxq, where pp¨q

is the protection level function, or

• condition (2) all the resources have been used.

We split the proof into two cases.

Case 1: y ă m´ x̃pAq. In this case, we claim that under any other ordering of the arrivals, the number

of high-reward requests that are accepted cannot be smaller than y. We also claim that under any other

ordering of the arrivals, the number of low-reward requests that are accepted cannot be smaller than x̃pAq.

Showing these claims, complete the proof of this case.

We begin with the first part. First note that x̃pAq is an upper bound on the total number of low-reward

requests that algorithm A accepts under any ordering of the arrivals. This is because condition (2) never
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fails as y ď m´ x̃pAq, and hence with even accepting y high-reward requests, there are resources left for x̃pAq

low-reward requests, and condition (1) is independent of the order of high-reward requests. Moreover, since

y ď m´ x̃pAq, any arriving high-reward request is accepted. Thus, for any ordering of the arrivals, algorithm

A can accept y high-reward requests.

We now show the second part. Here, we want to show that under any other ordering of the arrivals, the

number of low-reward requests that are accepted is greater than or equal to x̃pAq. Contrary to our claim,

suppose that the total number of low-reward requests that algorithmA accepts under any unordered sequence

is strictly less than x̃pAq. This means that at some point, condition (2) is not satisfied. Therefore, there

exists a time t such that xptq ` yptq “ m, where xptq and yptq denote the number of low- and high-reward

requests accepted up to time t, respectively. However, we know that xptq ă x̃pAq, yptq ď y, and x̃pAq `y ď m.

Therefore, xptq ` yptq “ m cannot hold, which contradicts the assumption that algorithm A has accepted

fewer than x̃pAq low-reward requests. This completes the proof of the first case.

Case 2: y ě m´ x̃pAq. In this case, we claim that under any other ordering of the requests, the number of

high-reward requests accepted cannot be smaller than m´ x̃pAq. Additionally, we claim that if the number

of low-reward requests accepted under any other ordering is less than x̃pAq, then the total reward generated

by the algorithm is larger than the case where the number of low-reward requests accepted is x̃pAq.

We begin with the first part. We will show that under any other ordering of the requests, the number

of high-reward requests accepted cannot be smaller than m ´ x̃pAq. As we know, high-reward requests are

rejected only when all resources are used up. Therefore, the later a high-reward request arrives, the less

chance we accept the request. Compare any unordered arrival sequence with the ordered arrival sequence,

each high-reward request arrives earlier, which implies that the number of high-reward requests accepted

cannot be smaller than m´ x̃pAq.

Next, we show the second part, which is if the number of low-reward requests accepted under any other

ordering is less than x̃pAq, then the total reward generated by the algorithm is larger than the case where the

number of low-reward requests accepted is x̃pAq. If the total number of low-reward requests the algorithm

A accepts is strictly less than x̃pAq, then at some point, condition (2) is not satisfied. This means that for

some time t, xptq `yptq “ m, where xptq and yptq denote the number of low-reward and high-reward requests

accepted before time t, respectively. Since xptq ă x̃pAq, we have yptq ą m ´ x̃pAq. Therefore, the reward

generated by the algorithm is

yptqrh `xptqrℓ “ yptqrh ` pm´ yptqqrℓ ą pm´ x̃pAqqrh ` x̃pAqrℓ,

which implies that the algorithm generates a larger reward.

Therefore, we conclude that the adversary should choose the first instance where all x low reward requests

arrive first and follow with all y high reward requests.

Appendix C: Proof of Statements in Section 4

Throughout the proofs, we make use of some preliminary lemmas that are presented in Section F.
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C.1. Proof of Lemma 2

We first show that for any p ď mintm,y1u, we have CPupp; px, y1qq ě CPupp; px, y2qq, where we recall that

y1 ď y2. Observe that when p ď y1 and x ` y1 ă m, by Lemma 8, we have CPupp; px, y1qq “ 1, and hence

1 “ CPupp; px, y1qq ě CPupp; px, y2qq trivially holds. Now suppose that x` y1 ě m. By definition, we have

CPupp; px, y1qq “
maxtp, pm´xq`urh `mintx,m´ purℓ
minty1,murh `mintx, pm´ y1q`urℓ

ě
maxtp, pm´xq`urh `mintx,m´ purℓ
minty2,murh `mintx, pm´ y2q`urℓ

“ CPupp; px, y2qq ,

where the inequality holds because y2 ě y1 and y ÞÑ yrh ` pm´ yqrℓ is increasing in y as rh ą rℓ.

Second, we show that any protection level p with p ě mintm,y2u, we have CPopp; px, y2qq ě CPopp; px, y1qq.

To show this, first consider the case where x ` y1 ă m and x ` y2 ă m. Then, by the definition of CPo in

Equation (6), we have

CPopp; px, y2qq “
minty2,murh `mintx,m´ purℓ

minty2,murh `mintx, pm´ y2q`urℓ
“

y2rh `mintx,m´ purℓ
y2rh `xrℓ

(33)

ě
y1rh `mintx,m´ purℓ

y1rh `xrℓ
“ CPopp; px, y1qq , (34)

where the inequality holds because y ÞÑ
yrh`mintx,m´purℓ

yrh`xrℓ
is increasing in y.

Now consider the case where x`y2 ě m. Next, we show that by fixing an x, for any y such that x`y ą m,

CPopp; px, yqq is increasing in y. Observe that for any y with x` y ě m and p ě y, we have

CPopp; px, yqq “
minty,murh `mintx,m´ purℓ

minty,murh `mintx, pm´ yq`urℓ
,

If y ě m, the statement is trivial. Otherwise,

BCPopp; px, yqq

By
“

rhpyrh ` pm´ yqrℓq ´ prh ´ rℓqpyrh `mintm´ p,xurℓq

pyrh ` pm´ yqrℓq2

ě
rhpyrh ` pm´ yqrℓq ´ prh ´ rℓqpyrh ` pm´ pqrℓq

pyrh ` pm´ yqrℓq2

ě
prh ´ rℓqpyrh ` pm´ yqrℓq ´ prh ´ rℓqpyrh ` pm´ pqrℓq

pyrh ` pm´ yqrℓq2

“
prh ´ rℓqpyrh ` pp´ yqrℓq

pyrh ` pm´ yqrℓq2
ě 0,

where the last inequality is because p ě y. The chain of inequalities shows that CPopp; px, yqq is increasing

in y when x` y ě m and p ě y. This implies that we have CPopp; px, y2qq ě CPopp; px, y1qq when x` yi ě m,

i P t1,2u, as desired.

For the case where x` y2 ě m and x` y1 ă m, we have

CPopp; px, y2qq ě CPopp; px,m´xqq ě CPopp; px, y1qq ,

where the first inequality holds because BCPopp;px,yqq

By
ě 0 when x ` y ě m, and the second inequality holds

because of Equation (33).

Finally, we show that any x P rx, x̄s and p ě 0, we have minyPrhpxq,h̄pxqstCPpp; px, yqqu “

min
␣

CPpp; px,hpxqqq,CPpp; px, h̄pxqqq
(

. Suppose that p ď hpxq. Then, CPpp; px, yqq “ CPupp; px, yqq for any

y P rhpxq, h̄pxqs, and hence by the first result of this lemma, we have

min
yPrhpxq,h̄pxqs

tCPpp; px, yqqu “ CPupp; px, h̄pxqqq ,
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as desired. Now, suppose that p ě h̄pxq. Then, CPpp; px, yqq “ CPopp; px, yqq for any y P rhpxq, h̄pxqs, and

hence by the second result of this lemma, we have

min
yPrhpxq,h̄pxqs

tCPpp; px, yqqu “ CPopp; px,hpxqqq ,

as desired. Now, suppose the final case where p P phpxq, h̄pxqq. Then,

min
yPrhpxq,h̄pxqs

tCPpp; px, yqqu “ min

"

min
yPrhpxq,ps

tCPopp; px, yqqu, min
yPrp,h̄pxqs

tCPupp; px, yqqu

*

“ min
␣

CPopp; px,hpxqqq,CPupp; px, h̄pxqqq
(

,

where the last inequality follows from the first and second results of this lemma.

˝

C.2. Properties of functions up¨;Cq and lp¨;Cq: Lemma 6 and its Proof

Lemma 6 (Properties of functions up¨;Cq and lp¨;Cq). The functions up¨;Cq and lp¨;Cq, which are

respectively defined in Equations (13) and (15), have the following properties.

1. For any x P pxu, x̄uq and C P r0,1s, let Hpxq “ minthpxq,mu. When H1
pxq exists, we have

Bupx;Cq

Bx
“

"

pp1´Cq
rh
rℓ

`CqH1
pxq if x`Hpxq ě m;

p1´Cq
rh
rℓ
H1

pxq ´C if x`Hpxq ă m.
(35)

2. For any x P pxH , x̄lq and C P r0,1s, let Hpxq “ minth̄pxq,mu. When H1
pxq exists, we have

Blpx;Cq

Bx
“ CH1

pxq. (36)

3. For any C P r0,1s, upx;Cq is non-increasing in x P r0, x̄s and is convex for x P rxu, x̄s.

4. For any C P r0,1s, lpx;Cq is non-increasing in x P r0, x̄s and is concave for x P rx, x̄ℓs.

5. For any C ď C‹pRq and any x P r0, x̄s , we have lpx;Cq ď upx;Cq.

6. For any x P r0, x̄s, lpx;Cq is continuously increasing in C and upx;Cq is continuously decreasing in C.

Proof of Lemma 6 Here, we will show the following six properties.

C.2.1. Property 1 We first show Equation (50). We split the analysis into two cases: Case 1: x`Hpxq ě

m and Case 2: x`Hpxq ă m.

Case 1: (x ` Hpxq ě m). By Lemma 12, we have for any x P pxu, x̄uq, Hpxq “ hpxq, which implies

that hpxq ď m. Then, we take an arbitrary point px1, hpx1qq with x1 P pxu, x̄uq. By definition of up¨;Cq, we

should have CPopupx1;Cq; px1, hpx1qqq “ C, and by Lemma 14, we have such upx1;Cq always exists and

upx1;Cq ě hpx1q. By Equation (6),

CPopupx1;Cq; px1, hpx1qqq “
hpx1qrh `mintx1,m´upx1;Cqurℓ
hpx1qrh `mintx1,m´hpx1qurℓ

“ C. (37)

As in this case, if x1 `hpx1q ě m, we have mintx1,m´hpx1qu “ m´hpx1q. We then argue that mintx1,m´

upx1;Cqu “ m´upx1;Cq. Suppose that contrary to our claim, mintx1,m´upx1;Cqu “ x1. We then have

CPopupx1;Cq; px1, hpx1qqq “
hpx1qrh `x1rℓ

hpx1qrh ` pm´hpx1qqrℓ
“ CPopm; px1, hpx1qqq,
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which implies that x1 ď xu. However, we define x1 P pxu, x̄uq, therefore, this is a contradiction, and we can

only have mintx1,m´upx1;Cqu “ m´upx1;Cq. Then, by Equation (37), we have

hpx1qrh ` pm´upx1;Cqqrℓ
hpx1qrh ` pm´hpx1qqrℓ

“ C,

which is equivalent to

upx1;Cq “ pp1´Cq
rh
rℓ

`Cqhpx1q `mp1´Cq.

This implies that Bupx;Cq

Bx
“ pp1´Cq

rh
rℓ

`Cqh1
pxq when x`hpxq ě m. As we have Hpxq “ hpxq for x P rxu, x̄us,

this implies the desired result.

Case 2 (x`Hpxq ă m). In this case, as x`Hpxq ă m, we haveHpxq ă m, which implies thatHpxq “ hpxq.

Let us take a point px1, hpx1qq with x1 P pxu, x̄uq. By definition of up¨;Cq, we have CPopupx1;Cq; px1, hpx1qqq “

C and by Lemma 14, we have such upx1;Cq always exists and upx1;Cq ě hpx1q. By Equation (6),

CPopupx1;Cq; px1, hpx1qqq “
hpx1qrh `mintx1,m´upx1;Cqurℓ
hpx1qrh `mintx1,m´hpx1qurℓ

“ C.

As in this case x1 `hpx1q ă m, we have mintx1,m´hpx1qu “ x1. Here, we argue that mintx1,m´upx1;Cqu “

m´upx1;Cq. Contrary to our claim, suppose that mintx1,m´upx1;Cqu “ x1. We then have

CPopupx1;Cq; px1, hpx1qqq “
hpx1qrh `x1rℓ
hpx1qrh `x1rℓ

“ 1 ą C,

which is a contradiction. Therefore, we can only have mintx1,m´upx1;Cqu “ m´upx1;Cq. Then, we have

hpx1qrh ` pm´upx1;Cqqrℓ
hpx1qrh `x1rℓ

“ C,

which is equivalent as

upx1;Cq “ p1´Cq
rh
rℓ
hpx1q ´Cx1 `m.

This implies that Bupx;Cq

Bx
“ p1´Cq

rh
rℓ
h1

pxq ´C when x`hpxq ă m. As we have Hpxq “ hpxq for x P rxu, x̄us,

this implies the desired result.

C.2.2. Property 2 We take a point px1,Hpx1qq with x1 P pxH , x̄ℓq. By definition of lp¨;Cq,

we have CPuplpx1;Cq; px1, h̄px1qqq “ C. As Hpx1q “ mintm,hpx1qu, by Lemma 10, we have

CPuplpx1;Cq; px1,Hpx1qqq “ CPuplpx1;Cq; px1, h̄px1qqq “ C. By Lemma 14, such lpx1;Cq always exists and

lpx1;Cq ď Hpx1q. By Equation (7),

CPuplpx1;Cq; px1,Hpx1qqq “
maxtlpx1;Cq,mintHpx1q,m´x1uurh `mintx1,m´ lpx1;Cqurℓ

Hpx1qrh `mintx1,m´Hpx1qurℓ
“ C.

If mintx1,m´Hpx1qu “ x1, by Lemma 8 and the fact that lpx1;Cq ď Hpx1q, CPuplpx1;Cq; px1,Hpx1qqq “

1 ‰ C, which cannot happen, and hence mintx1,m´Hpx1qu “ m´Hpx1q. If mintx1,m´ lpx1;Cqu “ x1, then

CPuplpx1;Cq; px1,Hpx1qqq “
pm´x1qrh `x1rℓ

Hpx1qrh ` pm´Hpx1qqrℓ
“ CPup0; px1,Hpx1qqq,

which implies that x1 ě x̄ℓ. However, we define x1 P pxH , x̄ℓq, therefore, this is a contradiction, and we can

only have mintx1,m´Hpx1qu “ m´Hpx1q and mintx1,m´ lpx1;Cqu “ m´ lpx1;Cq. Then, we have

lpx1;Cqrh ` pm´ lpx1;Cqqrℓ

Hpx1qrh ` pm´Hpx1qqrℓ
“ C,

which is equivalent to

lpx1;Cq “ CHpx1q ´
p1´Cqmrℓ

rh ´ rℓ
,

and verifies Equation (36).
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C.2.3. Property 3 We first show that upx;Cq is non-increasing for x P rx, x̄s. First, by the definition of

xu, we have upx;Cq “ m for x P rx,xus, which is non-increasing.

For x P pxu, x̄uq, first recall that

x̄u “

"

xL if xL ` yL ě m;
suptx P rxL, x̄s : p1´Cq

rh
rℓ
H1

px´q ´C ă 0u Otherwise ,

Case 1 – xL `yL ě m. If xL `yL ě m, we have x̄u “ xL. Since point L “ pxL, yLq is the lowest point, hpxq

decreases for x ă xL, increases for x ą xL, which implies that h1
pxq ď 0 for x ă xL and h1

pxq ě 0 for x ą xL.

Now, recall Property 1 that we just showed:

Bupx;Cq

Bx
“

"

pp1´Cq
rh
rℓ

`CqH1
pxq if x`Hpxq ě m;

p1´Cq
rh
rℓ
H1

pxq ´C if x`Hpxq ă m.

where by Lemma 12, we have Hpxq “ hpxq for x P pxu, x̄uq. This property and the fact that h1
pxq ď 0 for

x ă xL and h1
pxq ě 0 for x ą xL imply that upx;Cq decreases for x ă xL and increases for x ą xL. As we force

upx;Cq “ upxL;Cq for x ą x̄u “ xL, we have upx;Cq is always non-increasing.

Case 2 – xL `yL ă m. If xL ` yL ă m, we have x̄u “ suptx P rxL, x̄s : p1 ´ Cq
rh
rℓ
h1

pxq ´ C ă 0u. For x P

pxu, x̄uq, by Lemma 12, we have Hpxq “ hpxq. As hpxq is convex, we have its subderivative is increasing. Then,

for x ă x̄u, we have p1 ´ Cq
rh
rℓ
H1

pxq ´ C ă 0. Therefore, Property (1) that we just showed (i.e., Equation

(50)) implies that upx;Cq decreases for x P rxu, x̄us. As we force upx;Cq to be a constant for x P rx̄u, x̄s, we

have upx;Cq is non-increasing for x P rx, x̄s.

Finally, we show that upx;Cq is convex for x P rxu, x̄s by proving that its subderivative is increasing.

As hpxq is convex, we have the subderivative of hpxq is increasing for x P rxu, x̄us. By Lemma 12, we have

Hpxq “ hpxq for x P rxu, x̄us. Then, we have the subderivative of Hpxq is increasing for x P rxu, x̄us. Therefore,

Equation (50) implies that upx;Cq has increasing subderivative, and upx;Cq is convex for x P rxu, x̄us. As

upx;Cq is non-increasing and convex for x P rxu, x̄us and constant for x P rx̄u, x̄s, we have upx;Cq is convex

for x P rxu, x̄s.

C.2.4. Property 4 Because H is the highest point and R is convex, h̄pxq increases for x ă xH and

decreases for x ą xH , which implies that h̄1pxq ě 0 a.e. for x ă xH and h̄1pxq ď 0 a.e. for x ą xH . (Recall that

h̄p¨q is concave and point H “ pxH , yHq P sR, which lies on the upper envelope h̄p¨q, is the point in set sR that

has the highest low-reward demand, where sR “ tpx, yq P R : y “ suppx1,y1qPRminty1,muu is a subset of region

R under which the high-reward demand (more precisely minty1,mu for any point px1, y1q P R) is maximized.)

Therefore, Property (2) that we just showed, (i.e., Blpx;Cq

Bx
“ CH1

pxq) implies that lpx;Cq increases for x ă xH .

As we force lpx;Cq “ lpxH ;Cq for x ě xH , we have lpx;Cq is always non-increasing.

Next, we show that lp¨;Cq is concave. As stated earlier, because R is a convex set, we have h̄pxq is concave.

Since both h̄pxq and y “ m are concave, we haveHpxq “ minth̄pxq,mu is concave. Therefore, the subderivative

of Hpxq is decreasing. By Equation (36), we have the subderivative of lpx;Cq decreases for x P rxℓ, x̄ℓs, which

implies that lpx;Cq is concave for x P rxℓ, x̄ℓs. As lpx;Cq is a constant for x P rx,xℓs and lpx;Cq is concave

and non-increasing for x P rxℓ, x̄ℓs, we have lpx;Cq is concave for x P rx, x̄ℓs.
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C.2.5. Property 5 Here, we want to show that for any C ď C‹pRq and any x P rx, x̄s, we have lpx;Cq ď

upx;Cq. For x P rx, x̄s, let pbpxq be a function that

CPoppbpxq; px,hpxqqq “ CPuppbpxq; px, h̄pxqqq.

Lemma 17 shows that such pbpxq always exists, and CPoppbpxq; px,hpxqqq “ CPuppbpxq; px, h̄pxqqq ě C‹pRq.

Then, by Lemma 9, for any C ď C‹pRq, we have CPoplpx;Cq; px,hpxqqq “ C implies that lpx;Cq ď pbpxq,

and CPupupx;Cq; px, h̄pxqqq “ C ď C‹pRq implies that upx;Cq ě pbpxq. Therefore, we have lpx;Cq ď pbpxq ď

upx;Cq.

C.2.6. Property 6 Here, we would like to show for any x P rx, x̄s, lpx;Cq is continuously increasing in

C and upx;Cq is continuously decreasing in C. This is because we have showed

lpx1;Cq “ CHpx1q ´
p1´Cqmrℓ

rh ´ rℓ
,

and

upx1;Cq “ p1´Cq
rh
rℓ
hpx1q ´Cx1 `m.

From these two equations, we can simply find that for any x P rx, x̄s, lpx;Cq is continuously increasing in

C and upx;Cq is continuously decreasing in C.

˝

C.3. Proof of Lemma 3

First Direction. We first show that if lpx;Cq ď ppxq ď upx;Cq, we have CPpppxq;xq ě C for any x P rx, x̄s,

where we define

CPpppxq;xq “ mintCPopppxq; px,hpxqqq,CPupppxq; px, h̄pxqqqu. (38)

This gives us the desired result because by Lemma 2, for any x P rx, x̄s and p ě 0, we have

min
yPrhpxq,h̄pxqs

tCPpp; px, yqqu “ min
␣

CPpp; px,hpxqqq,CPpp; px, h̄pxqqq
(

.

Part 1: CPopppppppxqqq; pppx,hpppxqqqqqqqqq ěěě C if ppppxqqq ďďď upppx;Cqqq. Here, we show that for any x P rx, x̄s,

CPopppxq; px,hpxqqq is greater than or equal to C as long as ppxq ď upx;Cq. Let us first focus on x P rx,xus

and x P rx̄u, x̄s. By Lemma 13, for any x ă x ď xu, we have CPopm; px,hpxqqq ě C. By Lemma 15, for any

x P rx̄u, x̄s, we have CPopm; px,hpxqqq ě C. By Lemma 9, for any ppxq ď m “ upx;Cq for x P rx,xus and rx̄u, x̄s,

we have

CPopppxq; px,hpxqqq ě CPopm; px,hpxqqq ě C.

Next, we consider x P rxu, x̄us. By Lemma 14, we have

CPopupx;Cq; px,hpxqqq “ C,

and by Lemma 9, we have for any ppxq ď upx;Cq,

CPopppxq; px,hpxqqq ě CPopupx;Cq; px,hpxqqq “ C ,

which is the desired result.
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Part 2: CPupppppppxqqq; pppx, h̄pppxqqqqqqqqq ěěě C if ppppxqqq ěěě lpppx;Cqqq. Here, we show that for any x P rx, x̄s,

CPupppxq; px, h̄pxqqq is greater than or equal to C as long as ppxq ě lpx;Cq. Let us first consider any x P rx,xHs

and x P rx̄l, x̄s. By the definition of xH and Lemma 13, for x P rx,xHs and rx̄ℓ, x̄s, we have CPup0; px, h̄pxqqq ě

C. By Lemma 9, for any ppxq ě 0 “ lpx;Cq for x P rx,xHs and rx̄ℓ, x̄s, we then have

CPupppxq; px, h̄pxqqq ě CPup0; px, h̄pxqqq ě C ,

which is the desired result. Now, let us consider any x P rxH , x̄ℓs, By Lemma 14, we have

CPuplpx;Cq; px, h̄pxqqq “ C, and by Lemma 9, we have for any ppxq ě lpx;Cq,

CPupppxq; px, h̄pxqqq ě CPuplpx;Cq; px, h̄pxqqq “ C ,

which is the desired result.

Second Direction. So far we have established that if ppxq P rlpx;Cq, upx;Cqs, we have CPpppxq;xq ě C

for any px, yq P R. Next, we show that if ppxq ą upx;Cq or ppxq ă lpx;Cq, we have CPpppxq;xq ă C.

Part 1: CPopppppppxqqq; pppx,hpppxqqqqqqqqq ăăă C if ppppxqqq ąąą upppx;Cqqq. First, as upx;Cq “ m for x P rx,xus and rx̄u, x̄s,

and ppxq ď m, we cannot have ppxq ą upx;Cq. Thus, we need to only consider x P rxu, x̄us. For any x P rxu, x̄us,

by definition, upx;Cq is the largest PL value such that

CPopupx;Cq; px,hpxqqq “ C,

and by Lemma 9, if ppxq ą upx;Cq, we have

CPopppxq; px,hpxqqq ă CPopupx;Cq; px,hpxqqq “ C ,

which is the desired result.

Part 2: CPupppppppxqqq; pppx, h̄pppxqqqqqqqqq ăăă C if ppppxqqq ăăă lpppx;Cqqq. As lpx;Cq “ 0 for x P rx,xHs and rx̄ℓ, x̄s, and

ppxq ě 0, we cannot have ppxq ă lpx;Cq. Thus, we consider x P rxH , x̄ℓs. For any x P rxH , x̄ℓs, by definition,

lpx;Cq is the smallest PL value such that

CPuplpx;Cq; px, h̄pxqqq “ C,

and by Lemma 9, if ppxq ă lpx;Cq, we have

CPupppxq; px, h̄pxqqq ă CPuplpx;Cq; px, h̄pxqqq “ C ,

which is the desired result.

C.4. Proof of Lemma 4

To show the result, we show the optimization problem in Equation (18) is equivalent to that in Equation

(16). Since the only difference between these two problems is their first set of constraints, we only need

to show that the feasible regions of these two problems are identical. To do so, we show that any feasible

solution to Problem (18) is a feasible solution to Problem (16) and vice versa.

Considering a feasible solution to Problem (18) with ppxq P rrlpx;Cq, upx;Cqs for any x P rx, x̄s. By Equation

(17), we know that for any C P r0,1s and x P rx, x̄s, rlpx;Cq ě lpx;Cq. Therefore, rlpx;Cq ď ppxq ď upx;Cq
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implies that lpx;Cq ď ppxq ď upx;Cq, as desired. Recall that lpx;Cq ď ppxq ď upx;Cq is the first constraint in

Problem (16), and hence the above argument shows that any feasible solution to Problem (18) is a feasible

solution to Problem (16).

Next, we show the opposite direction. Contrary to our claim, suppose that there exists a feasible solution

ppxq to Problem (16) with lpx1;Cq ď ppx1q ă rlpx1;Cq for some x1 P rx, x̄s. (This shows that there exists a

feasible solution to Problem (16), which is not a feasible solution to Problem (18).) By Equation (17), we

must have x1 ą x´1, where x´1 is defined in Equation (17). As lpx´1;Cq “ rlpx´1;Cq, we have ppx´1q ě

lpx´1;Cq “rlpx´1;Cq. Then, we have

ppx1q ´ ppx´1q

x1 ´x´1

ă
rlpx1;Cq ´rlpx´1;Cq

x1 ´x´1

“ ´1,

where the equation holds because by definition of rlpx;Cq, the slope of rlpx;Cq w.r.t. x is ´1 for any x P

rx´1, x1s. That
ppx1q´ppx´1q

x1´x´1
ă ´1 implies that p1pxq ă ´1 on a positive measure set, and hence, ppxq is not a

valid PL function, which is a contradiction.

C.5. Proof of Lemma 5

First Direction. We first show the ‘if’ statement. That is, if gpx;Rq ď ppxq ď ḡpx;Rq, we have CPpppxq;xq ě

R for any x P r0,maxtm, x̄us, where with a slight abuse of notation, we define

CPpppxq;xq “ mintCPopppxq; px,0qq,CPupppxq; px,mqqu. (39)

Notice that by Lemma 10, we have CPupppxq; px,mqq “ CPupppxq; px, yqq for any y ě m. Then, by Lemma 2,

it suffices to show CPpppxq;xq ě R when gpx;Rq ď ppxq ď ḡpx;Rq.

Part 1: CPopppppppxqqq; pppx,0qqqqqq ěěě R if ppppxqqq ďďď ḡpppx;Rqqq. First observe that, by Definition of CPo in Equation

(6), if we set ppxq “ ḡpx;Rq, we have

CPopḡpx;Rq; px,0qq “
0 ¨ rh `mintx,m´ ḡpx;Rqurℓ

0 ¨ rh `mintx,m´ 0urℓ
“

mintx,m´ ḡpx;Rqurℓ
mintx,murℓ

.

If x ď m, we have ḡpx;Rq “ ´Rx`m, and we can obtain

mintx,m´ ḡpx;Rqurℓ
mintx,murℓ

“
mintx,m´ p´Rx`mqurℓ

xrℓ
“

Rxrℓ
xrℓ

“ R.

Otherwise, if x ą m, we have ḡpx;Rq “ ḡpm;Rq “ ´Rm`m, and we can obtain

mintx,m´ ḡpx;Rqurℓ
mrℓ

“
mintx,m´ p´Rm`mqurℓ

mrℓ
“

Rmrℓ
mrℓ

“ R.

Then, by Lemma 9, we have for any ppxq ď ḡpx;Rq, we have

CPopppxq; px,0qq ě CPopḡpx;Rq; px,0qq “ R,

which is the desired result.

Part 2: CPupppppppxqqq; pppx,mqqqqqq ěěě R if ppppxqqq ěěě gpppx;Rqqq. By Definition of CPu in Equation (7), we have

CPupppxq; px,mqq “
maxtppxq,mintm,m´xuurh `mintx,m´ ppxqurℓ

mrh `mintx,m´murℓ

“
maxtppxq,m´xurh `mintx,m´ ppxqurℓ

mrh
.
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We would like to show that if ppxq ě gpx;Rq, we have CPupppxq; px,mqq ě R, where gpx;Rq “
mpR´rℓ{rhq

1´rℓ{rh
for

x P r0,maxtm, x̄us. If ppxq ě m´x, we have

CPupppxq; px,mqq “
ppxqrh ` pm´ ppxqqrℓ

mrh
ě

mpR´rℓ{rhq

1´rℓ{rh
rh ` pm´

mpR´rℓ{rhq

1´rℓ{rh
qrℓ

mrh
“ R,

where the inequality holds because ppxq ě gpx;Rq “
mpR´rℓ{rhq

1´rℓ{rh
. Otherwise, if ppxq ă m´x, as ppxq ě gpx;Rq,

we have gpx;Rq ă m´x. Then,

CPupppxq; px,mqq “
pm´xqrh `xrℓ

mrh
ě

ppxqrh ` pm´ ppxqqrℓ
mrh

ě R,

where the first inequality is because pm´xqrh`xrℓ
mrh

is decreasing in x and x ă m ´ ppxq. The last inequality,

which is the desired result, is because

ppxqrh ` pm´ ppxqqrℓ “ ppxqprh ´ rℓq `mrℓ ě gpx;Rqprh ´ rℓq `mrℓ ,

and by some calculations, we have
gpx;Rqprh´rℓq`mrℓ

mrh
“ R.

Second Direction. So far, we have established that if ppxq P rgpx;Rq, ḡpx;Rqs, we have CPpppxq;xq ě R

for any px, yq P R. Next, we show that if ppxq ą ḡpx;Rq or ppxq ă gpx;Cq, we have CPpppxq;xq ă R.

If ppxq ą ḡpx;Rq for some x P r0,maxtm, x̄us, by Equation (19), we have if x P r0,ms, ḡpx;Rq “ ´Rx`m ě

´x`m and hence ppxq `x ą m. If x ą m, we have ḡpx;Rq “ ḡpm;Rq. Then, we have

CPopppxq; px,0qq “
0 ¨ rh `mintx,m´ ppxqurℓ
0 ¨ rh `mintx,m´ 0urℓ

“
mintx,m´ ppxqurℓ

mintx,murℓ
.

If x ď m, we have

mintx,m´ ppxqurℓ
mintx,murℓ

“
mintx,m´ ppxqurℓ

xrℓ
ă

pm´ ḡpx;Rqq rℓ
xrℓ

“ R,

where the inequality is because ppxq ą ḡpx;Rq. Otherwise, if x ą m, we have

mintx,m´ ppxqurℓ
mintx,murℓ

“
pm´ ppxqqrℓ

mrℓ
“

m´ ppxq

m
ă

m´ ḡpm;Rq

m
“ R.

If ppxq ă gpx;Rq for some x P r0,maxtm, x̄us, as a valid PL function ppxq is non-increasing, we have

ppmaxtm, x̄uq ă gpx;Rq. Therefore,

CPupppmaxtm, x̄uq; pmaxtm, x̄u,mqq “
ppmaxtm, x̄uqrh ` pm´ ppmaxtm, x̄uqqrℓ

mrh

ă

mpR´rℓ{rhq

1´rℓ{rh
rh ` pm´

mpR´rℓ{rhq

1´rℓ{rh
qrℓ

mrh
“ R.

C.6. Proof of Theorem 4

Algorithm 2 presents an optimal solution to Problem (C-Pareto-right). That is, at the optimal solution to

Problem (C-Pareto-right), denoted by prightp¨q, we set prightpxq based on Equations (23) and (25). Further-

more, the optimal objective value of Problem (C-Pareto-right), Rright, is given in Equation (24).

We split the proof into three cases, in each case, we first figure out the robust ratio under the PL function

prightp¨q and check the feasibility and optimality of prightp¨q:



48

• Case 1: rrlpx̄;Cq, upx̄;Cqs X rgpx̄q, ḡpx̄qs ‰ H. In this case, if rlpx̄;Cq ă gpx̄q,

prightpx̄q “ arg min
pPrrlpx̄;Cq,upx̄;Cqs

|p´ gpx̄q| “ gpx̄q.

If rlpx̄;Cq ě gpx̄q, we have prightpx̄q “ rlpx̄;Cq. If x̄ ě m, then as the right problem is only defined on x̄,

by definition, we have gpx̄q “ ḡpx̄q “
1´rℓ{rh
2´rℓ{rh

m. Then, prightpx̄q “
1´rℓ{rh
2´rℓ{rh

m, which is feasible. By Lemma

10, we have

Rright “ min tCPopprightpx̄q; px̄,0qq,CPupprightpx̄q; px̄,mqqu

“ min

"

CPop
1´ rℓ{rh
2´ rℓ{rh

m; pm,0qq,CPup
1´ rℓ{rh
2´ rℓ{rh

m; pm,mqq

*

“
1

2´ rℓ{rh
,

which matches the upper bound of the robust ratio in the absence of ML advice. Therefore, prightpx̄q is

optimal in this case.

Otherwise, if x̄ ă m, by Equation (22), prightpxq “ maxt´x ` x̄ ` prightpx̄;Cq, gpxqu for x P rx̄,ms. By

definition, we have gpxq ď prightpxq. For the part where prightpxq “ gpxq, we have prightpxq ď ḡpxq because

by Equation (19), gpxq ď ḡpxq for any x P r0,ms. Then, we check that ´x ` x̄ ` prightpx̄;Cq ď ḡpxq

for x P rx̄,ms. Notice that ´x ` x̄ ` prightpx̄;Cq is a line with slope ´1 and by Equation (19), ḡpxq

is a line with slope ´R ě ´1. Moreover, ´x̄ ` x̄ ` prightpx̄;Cq “ prightpx̄;Cq “ maxtgpx̄q,rlpx̄;Cqu ď

ḡpxq since rrlpx̄;Cq, upx̄;Cqs X rgpx̄q, ḡpx̄qs ‰ H. We have prightpxq ď ḡpxq. By taking R “ ρ in Prob-

lem (C-Pareto-Trans), we can find prightp¨q is a feasible solution, and therefore, it achieves a robust

ratio of at least ρ. By Ball and Queyranne (2009), we know ρ is the upper bound among all algo-

rithms, and therefore, prightp¨q is optimal. In addition, notice that prightpmq “ gpmq and we can check

CPupprightpx̄q; pm,mqq “ ρ, and hence Rright “ min tCPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pm,mqqu.

• Case 2: upx̄;Cq ă gpx̄q. In this case, we first show prightp¨q achieves a robust ratio of Rright “

CPupprightpx̄q; pmaxtm, x̄u,mqq and CPopprightpx̄q; px̄,0qq ě CPupprightpx̄q; pmaxtm, x̄u,mqq. Then, we

show prightp¨q is feasible, and finally, we show it is optimal among all PL functions.

In this case, prightpxq “ argminpPrrlpx̄;Cq,upx̄;Cqs |p ´ gpx̄q| “ upx̄;Cq, and by definition,

prightpxq “ prightpx̄q for x P rx̄,maxtm, x̄us. By Lemmas 2 and 10, we know the worst

case is achieved on px,0q or px,mq for some x P rx̄,maxtm, x̄us; that is, Rright “

infxPrx̄,maxtm,x̄us mintCPupprightpxq; px,mqq,CPopprightpxq; px,0qqu. As we have prightpxq ď m, by Lemma

7, we have

CPupprightpxq; px,mqq ě CPupprightpmaxtm, x̄uq; pmaxtm, x̄u,mqq.

As prightpmaxtm, x̄uq “ prightpx̄q ă gpx̄q “ gpmaxtm, x̄uq “ mp1 ´ rℓ{rhq{p2 ´ rℓ{rhq, where the first

inequality is because prightpx̄q ď upx̄;Cq ă gpx̄q, by Lemma 9, we have

CPupprightpmaxtm, x̄uq; pmaxtm, x̄u,mqq ă CPupgpmaxtm, x̄uq; pmaxtm, x̄u,mqq “ ρ.

As prightpx̄q ă gpx̄q, we also have prightpxq ă ḡpx̄q for any x P rx̄,ms. This is because by definition, for

any x P rx̄,ms, gpxq ď ḡpxq. Then, by Lemma 9, for x P rx̄,ms, we have

CPopprightpxq; px,0qq ě CPopḡpxq; px,0qq “ ρ ą CPupprightpmq; pm,mqq,
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where the equality is because ḡpxq “ ´ρx ` m and one can easily check CPop´ρx ` m; px,0qq “ ρ for

any x P r0,ms.

Therefore, the robust ratio of prightpxq for x P rx̄,ms is Rright “ CPupprightpmq; pm,mqq, and by Lemma

5, we have gpx;Rrightq ď prightpxq ď ḡpx;Rrightq. Also, prightp¨q is a constant function and is valid. We

obtain prightp¨q is feasible.

Finally, we show that prightp¨q is optimal among all PL algorithms. We prove by contradiction. Suppose

that a valid p1pxq can achieve a robust ratio greater than Rright. Then, we have

inf
xPrx̄,ms

mintCPopp1pxq; px,0qq,CPupp1pxq; px,mqqu ą CPupprightpmq; pm,mqq,

which implies that CPupp1pmq; pm,mqq ą CPupprightpmq; pm,mqq. By Lemma 9, we have p1pmq ą

prightpmq. As p1p¨q is valid, it is non-increasing, we have p1px̄q ě p1pmq ą prightpmq “ upx̄;Cq, which is

a contradiction because p1px̄q ą upx̄;Cq means it is infeasible.

• Case 3: rlpx̄;Cq ą ḡpx̄q. In this case, prightpx̄q “ argminpPrrlpx̄;Cq,upx̄;Cqs |p ´ gpx̄q| “ rlpx̄;Cq, and

we have prightpxq “ ḡpx;Rrightq for x P rx̄,maxtm, x̄us where Rright “ CPoprlpx̄;Cq; px̄,0qq. Observe

that prightp¨q is continuous at x̄ because prightpx̄q “ ḡpx̄;Rrightq “ ḡpx̄;CPoprlpx̄;Cq; px̄,0qqq, and

if x̄ ď m, we have ḡpx̄;CPoprlpx̄;Cq; px̄,0qqq “ ´
m´rlpx̄;Cq

x̄
x̄ ` m “ rlpx̄;Cq. Similarly, if x̄ ą m,

we have ḡpx̄;CPoprlpx̄;Cq; px̄,0qqq “ ´
m´rlpx̄;Cq

m
m ` m “ rlpx̄;Cq. By Lemmas 2 and 10, for x P

rx̄,maxtm, x̄us, the worst over- and under-protected points are px,0q and px,mq, respectively; that

is, Rright “ infxPrx̄,maxtm,x̄us mintCPopprightpxq; px,0qq,CPupprightpxq; px,mqqu. So, we first claim that

prightp¨q achieves a robust ratio ofRright “ CPoprlpx̄;Cq; px̄,0qq by showing that for any x P rx̄,maxtm, x̄us,

CPopprightpxq; px,0qq ě Rright and CPupprightpxq; px,mqq ě Rright. Then, we show its feasibility and opti-

mality.

By Equation (6), we have for any x P rx̄,maxtm, x̄us,

CPopprightpxq; px,0qq “
0 ¨ rh `mintx,m´ prightpxqurℓ

0 ¨ rh `mintx,m´ 0urℓ
“

mintx,m´ prightpxqurℓ
mintx,murℓ

.

If x ď m, we have

mintx,m´ prightpxqurℓ
mintx,murℓ

“
pm´ prightpxqqrℓ

xrℓ

“
pm´ ḡpx;Rrightqqrℓ

xrℓ

“
m´ ḡpx;Rrightq

x
“ Rright,

where the second equality is because prightpxq “ ḡpx;Rrightq “ ´Rrightx`m and m´ p´Rrightx`mq “

Rrightx ď x. If x ą m, we have

mintx,m´ prightpxqurℓ
mintx,murℓ

“
pm´ prightpxqqrℓ

mrℓ

“
pm´ ḡpx;Rrightqqrℓ

mrℓ

“
m´ ḡpm;Rrightq

m
“ Rright.
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For any x P rx̄,maxtm, x̄us, by Lemma 7, we have

CPupprightpxq; px,mqq ě CPupprightpmaxtm, x̄uq; pmaxtm, x̄u,mqq.

As we have CPupgpmaxtm, x̄uq; pmaxtm, x̄u,mqq “ ρ, and prightpmaxtm, x̄uq “ ḡpmaxtm, x̄uq ě

gpmaxtm, x̄uq, by Lemma 9, we have

CPupprightpmaxtm, x̄uq; pmaxtm, x̄u,mqq ě ρ ě Rright.

Therefore, the robust ratio of prightpxq is Rright. As prightpxq “ ḡpx;Rrightq, we have gpx;Rrightq ď

prightpxq ď ḡpx;Rrightq. Also, since prightpx̄q “ ˜¯;Cx, we have ˜¯;Cx ď prightpx̄q ď upx̄;Cq. In addition,

prightpxq has slope ´Rright ď ´1, which means it is valid. We have prightp¨q is a feasible solution.

Finally, we show that prightp¨q is optimal among all PL algorithms. We prove by contradiction. Suppose

that a valid p1pxq can achieve a robust ratio greater than Rright. Then, we have

inf
xPrx̄,maxtm,x̄us

mintCPopp1pxq; px,0qq,CPupp1pxq; px,mqqu ą CPopprightpx̄q; px̄,0qq,

which implies that CPopp1px̄q; px̄,0qq ą CPopprightpx̄q; px̄,0qq. By Lemma 9, we have p1px̄q ă prightpx̄q.

However, as we have prightpx̄q “ rlpx̄;Cq, we obtain p1px̄q ă rlpx̄;Cq, which means p1p¨q is infeasible and

forms a contradiction.

˝

C.7. Proof of Theorem 5

We first show that ppleftp¨q,Rleftq is a feasible solution to Problem (C-Pareto-left), where pleftpxq “

maxtrlpx;Cq, prightpx̄qu , x P r0, x̄s and Rleft “ mintCPuppleftpx̄q; px̄,mqqq, infxPr0,x̄s CPoppleftpxq; px,0qqu. Under

the PL pleftp¨q, we first note that by Lemma 2, we only need to consider the points px,0q and px,mq for any

x P r0, x̄s. That is,

Rleft “ min

"

inf
xPr0,x̄s

CPoppleftpxq; px,0qq, inf
xPr0,x̄s

CPuppleftpxq; px,mqq

*

,

By Lemma 7, we then have

CPuppleftpxq; px,mqq ě CPuppleftpx̄q; px̄,mqq ñ inf
xPr0,x̄s

CPuppleftpxq; px,mqq “ CPuppleftpx̄q; px̄,mqq.

This implies that Rleft “ mintCPuppleftpx̄q; px̄,mqq, infxPr0,x̄s CPoppleftpxq; px,0qqu, as desired.

Rleft is feasible because the range of compatible ratio is r0,1s. To show that pleftpxq is feasible, first, as we

have shown it achieves a robust ratio of Rleft, by Lemma 5, we have gpx;Rleftq ď pleftpxq ď ḡpx;Rleftq. Second,

we show that pleftp¨q is a valid PL function and pleftpxq P rrlpx;Cq, upx;Cqs. Observe that rlpx;Cq is a valid PL

function by definition, and hence we have pleftpxq is also valid. Third, we show that rlx;C ď pleftpxq ď upx;Cq

for x P r0, x̄s. As pleftpxq “ maxtrlpx;Cq, prightpx̄qu, we have rlpx;Cq ď pleftpxq for any x P r0, x̄s. In addition, we

have pleftpx̄q “ prightpx̄q ď upx̄;Cq, and by Lemma 6, we have upx;Cq is a non-increasing function in x. This

implies that upx;Cq ě pleftpx̄q for any x P r0, x̄s. Also, as C is assumed to be less than C‹pRq, by Lemma 4,

we have rlpx;Cq ď upx;Cq for x P r0, x̄s. Therefore, we have pleftpxq “ maxtpleftpx̄q,rlpx;Cqu ď upx;Cq, which

is the desired result.
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Second, we show that pleftp¨q is optimal. To do so, we argue that (i) by Lemma 5, we have

gpx;Rleftq ď pleftpxq ď ḡpx;Rleftq ,

and (ii) there does not exist any other valid PL function that achieves a higher robust ratio than Rleft while

satisfying the consistency lower and upper bounds.

Recall that Rleft “ mintCPuppleftpx̄q; px̄,mqq, infxPr0,x̄s CPoppleftpxq; px,0qqu. As Problem (C-Pareto-left)

restricts the value of ppx̄q, we have any PL algorithm has the same worst under-protected ratio, i.e.

CPuppleftpx̄q; px̄,mqq. Then, we show that any PL algorithm cannot get a larger worst over-protected ratio.

For over-protected case, we let

ĆRleft “ inf
xPr0,x̄s

CPoppleftpxq; px,0qq,

and let the infimum is achieved on x1, i.e. CPoppleftpx1q; px1,0qq “ ĆRleft. If there exists a PL algorithm ppxq

such that infxPr0,x̄s CPopppxq; px,0qq ą Rleft, then CPopppx1q; px1,0qq ą CPoppleftpx1q; px1,0qq. By Lemma 9,

we have ppx1q ă pleftpx1q. This implies that either ppx1q ă prightpx̄q or ppx1q ă ℓ̃px;Cq. However, if ppx1q ă

prightpx̄q, as pp¨q is non-increasing, we have ppx̄q ă prightpx̄q, which implies pp¨q is infeasible. If ppx1q ă ℓ̃px;Cq,

this immediately contradicts to ℓ̃px;Cq ď ppxq ď upx;Cq. Therefore, such ppxq does not exist.

˝

Appendix D: Proof of Theorem 3

The proof is naturally divided into three parts.

D.1. Result 1: R‹ “ mintRright,Rleftu

First, we show that R‹ “ mintRright,Rleftu, where Theorems 4 and 5 show that

Rleft “ mintCPuppleftpx̄q; px̄,mqq, inf
xPr0,x̄s

CPoppleftpxq; px,0qqu .

and

Rright “ min tCPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pmaxtm, x̄u,mqqu .

Let us denote ĆRleft “ infxPr0,x̄s CPoppleftpxq; px,0qq, and note that by Lemma 7, we have

CPupprightpx̄q; px̄,mqq ě CPupprightpx̄q; pmaxtm, x̄u,mqq, where by construction, we have

CPupprightpx̄q; px̄,mqq “ CPuppleftpx̄q; px̄,mqq. Therefore, we have

mintRright,Rleftu

“ min
!

CPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pmaxtm, x̄u,mqq,CPuppleftpx̄q; px̄,mqq, inf
xPr0,x̄s

CPoppleftpxq; px,0qq

)

“ min
!

CPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pmaxtm, x̄u,mqq,CPupprightpx̄q; px̄,mqq, inf
xPr0,x̄s

CPoppleftpxq; px,0qq

)

“ min
!

CPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pmaxtm, x̄u,mqq, inf
xPr0,x̄s

CPoppleftpxq; px,0qq

)

“ mintRright,ĆRleftu,

where the second equality is because prightpx̄q “ pleftpx̄q, and the third equality is because

CPupprightpx̄q; px̄,mqq ě CPupprightpx̄q; pmaxtm, x̄u,mqq.

Therefore, showing R‹ “ mintRright,Rleftu is equivalent to show that R‹ “ mintRright,ĆRleftu. As Theorems

4 and 5 show, if we set ppx̄q optimally, our p‹p¨q, presented in Algorithm 1, achieves an optimal robust ratio.
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Therefore, it suffices to show that for any valid pppxq such that pppx̄q ‰ prightpx̄q, we have robustppp¨qq ď

robustpp‹p¨qq. Here, with a slight abuse of notation, robustppp¨qq is the robust ratio of a PLA with PL of

pp¨q. We split the analysis into two cases based on the value of ĆRleft and Rright, where in case 1, we have

Rright ď ĆRleft, and in case 2, we have Rright ą ĆRleft.

• Rright ď ĆRleft. In this case, robustpp‹p¨qq “ mintĆRleft,Rrightu “ Rright. By Theorem 4, we know that

no PL can achieve a robust ratio greater than Rright for x P rx̄,maxtm, x̄us. Therefore, we have

robustpppp¨qq ď robustpp‹p¨qq “ Rright, which is the desired result.

• ĆRleft ă Rright. As is shown in Theorem 5, by fixing p‹px̄q “ prightpx̄q, no PL can achieve a robust ratio

greater than ĆRleft. Then, in this part, we show that if a valid and feasible PL function p̂pxq for x P r0, x̄s

does not have restriction on x̄, it can still not achieve a robust ratio greater than ĆRleft. To show this,

we define px P r0, x̄s as such that rlppx;Cq “ prightpx̄q. We start with showing that such px always exists,

and then we show that pleftp¨q achieves ĆRleft in r0, pxs and no PL function p̂pxq can outperform ĆRleft in

r0, pxs.

To show the existence, we use a contradiction argument. Contrary to our claim, suppose that there

does not exist any px P r0, x̄s such that rlppx;Cq “ prightpx̄q. Observe that prightpx̄q is a constant and is

greater than rlpx̄;Cq by feasibility of prightp¨q. Further, note that by Lemma 16, rlpx;Cq is non-increasing

in x. Then, when px does not exist, we must have prightpx̄q ą rlpx;Cq for any x P r0, x̄s. By Theorem 5,

in this case, pleftpxq “ prightpx̄q is a constant function. (Recall that pleftpxq “ maxtrlpx;Cq, prightpx̄qu for

any x P r0, x̄s.) By Lemma 18, we have

ĆRleft “ inf
xPr0,x̄s

CPopprightpx̄q; px,0qq “ CPopprightpx̄q; px̄,0qq.

However, as CPopprightpx̄q; px̄,0qq ě mintCPopprightpx̄q; px̄,0qq,CPupprightpx̄q; pmaxtm, x̄u,mqqu, we have

ĆRleft ě Rright, which is a contradiction. Therefore, such px exists.

Then, pleftpxq “ prightpx̄q for x P rpx, x̄s and pleftpxq “rlpx;Cq for x P r0, pxs. By definition of ĆRleft, we have

ĆRleft “ mint inf
xPr0,pxs

CPoprlpx;Cq; px,0qq, inf
xPrpx,x̄s

CPopprightpx̄q; px,0qqu.

By Lemma 18, we have

inf
xPrpx,x̄s

CPopprightpx̄q; px,0qq “ CPopprightpx̄q; px̄,0qq ě Rright.

Given that ĆRleft ă Rright, we have

ĆRleft “ inf
xPr0,pxs

CPoprlpx;Cq; px,0qq.

Finally, we show that no valid and feasible PL p̂pxq can outperform ĆRleft in r0, pxs. Suppose that x1 “

argminxPr0,pxs CPoprlpx;Cq; px,0qq, which means that CPoprlpx1;Cq; px1,0qq “ ĆRleft. If p̂pxq outperforms

ĆRleft, we have

inf
xPr0,pxs

CPopp̂pxq; px,0qq ą ĆRleft,

which implies that CPopp̂px1q; px1,0qq ą ĆRleft. By Lemma 9, we have p̂px1q ărlpx1;Cq, which shows that

p̂ is not a feasible PL function and forms a contradiction.

˝
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D.2. Result 2: p‹ is an Optimal Solution

Second, it is trivial that Algorithm 1 presents an optimal solution to Problem (C-Pareto-Trans). The reason

is by Theorem 4, we have prightpxq achieves Rright for Problem (C-Pareto-right) and by Theorem 5, we

have pleftpxq achieves Rleft for Problem (C-Pareto-left). By Equation (20), we know that robustpp‹p¨qq “

mintRright,Rleftu, and we just showed that mintRright,Rleftu “ R‹. The remaining thing is to show that p‹p¨q

is feasible and valid. As we have shown in Theorems 4 and 5 that prightp¨q and pleftp¨q are both feasible

and valid for any x ě x̄ and x P r0, x̄s, respectively. Further, prightpx̄q “ pleftpx̄q, which means that p‹p¨q is

continuous. Therefore, p‹p¨q is feasible.

D.3. Result 3: No Algorithm Can Outperform p‹

Here, we show that a PLA with the PL function of p‹p¨q is an optimal solution to Problem (3). That is,

among any online algorithms Π, the aforementioned algorithm maximizes the robust ratio while ensuring its

consistent ratio is at least C. Recall that we just showed

R‹ “ mintRright,Rleftu “ mintCPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq,CPopp‹px̄q, px̄,0qq, inf
xPr0,x̄s

CPopp‹pxq; px,0qqu.

(40)

Then, we split the proof into three parts, where in each parts, we discuss each term in Equation (40) is the

minimum value.

Part 1: R‹ “ CPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq. Here, we show that no deterministic or randomized

algorithm can achieve a robust ratio more than CPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq. We define two (ordered)

input sequences: In the first input sequence, I1, x̄u ď x̄ low-reward requests arrive first, followed with hpx̄uq

high-reward requests. In the second input sequence, I2, maxtm, x̄u low-reward requests arrive first, followed

m high-reward requests. Before receiving x̄u low reward requests, any deterministic or randomized algorithm

cannot differentiate the two input sequences and has to decide to accept how many low-reward requests in

expectation. If there exists a deterministic or randomized algorithm A, which can achieve a consistent ratio

of at least C, and a robust ratio higher than CPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq, it should satisfy

ErRewpA, I1qs

optpI1q
ě C,

Let the expected total amount of high-reward, low-reward requests being accepted by A be hpA, I1q, ℓpA, I1q,

respectively. Then,
ErRewpA, I1qs

optpI1q
“

hpA, I1qrh ` ℓpA, I1qrℓ
hpx̄uqrh `mintx̄u,m´hpx̄uqurℓ

ě C.

By the definition of upx̄u;Cq, we have upx̄u;Cq “ suptp : CPopp; px̄u, hpx̄uqqq “ Cu, and by Equation (6),

minthpx̄uq,murh`mintx̄u,m´upx̄u;Cqurℓ
minthpx̄uq,murh`mintx̄u,pm´hpx̄uqq`urℓ

“ C, and by Lemma 19, we have minthpx̄uq,murh`pm´upx̄u;Cqqrℓ
minthpx̄uq,murh`mintx̄u,pm´hpx̄uqq`urℓ

“ C.

Therefore, we have

hpA, I1qrh ` ℓpA, I1qrℓ
minthpx̄uq,murh `mintx̄u, pm´hpx̄uqq`urℓ

ě
minthpx̄uq,murh ` pm´upx̄u;Cqqrℓ

minthpx̄uq,murh `mintx̄u, pm´hpx̄uqq`urℓ
,

as hpA, I1q ď minthpx̄uq,mu, we have ℓpA, I1q ě m´ upx̄u;Cq, which implies that we should accept at least

m´upx̄u;Cq low-reward requests in expectation.
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However, to achieve a robust ratio higher than CPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq for sequence I2, we

have
ErRewpA, I2qs

optpI2q
ą CPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq.

By Equation (7), we have

ErRewpA, I2qs

optpI2q
“

hpA, I2qrh ` ℓpA, I2qrℓ
mrh

ą CPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq

“
p‹pmaxtm, x̄uqrh ` pm´ p‹pmaxtm, x̄uqqrℓ

mrh
,

as hpA, I2q ď pm ´ ℓpAq, I2q, we have ℓpA, I2q ă m ´ p‹pmaxtm, x̄uq, which implies that we should

accept less than m ´ p‹pmaxtm, x̄uq low-reward requests in expectation. However, when R‹ “

CPupp‹pmaxtm, x̄uq; pmaxtm, x̄u,mqq, Part 1 of the proof of Theorem 4 shows that p‹pmaxtm, x̄uq “

prightpmaxtm, x̄uq “ upx̄;Cq. By Equation (13), we have upx̄;Cq “ upx̄u;Cq. Therefore, under sequence I2,

we have ℓpA, I2q ă m´upx̄u;Cq, which is a contradiction because once we observed x̄u low-reward requests,

we have already accept at least m´upx̄u;Cq of them in expectation.

˝

Part 2: R‹ “ CPopp‹px̄q, px̄,0qq. To show the result, we split the analysis into two sub parts based on the

value of p‹px̄q and rlpx´1;Cq. First, we show that when lpx´1;Cq ą p‹px̄q, no deterministic or randomized

algorithm can achieve a robust ratio more than CPopp‹px̄q, px̄,0qq. Here, we recall that x´1 “ suptx P rxH , x̄s :

Blpx´;Cq

Bx
ď ´1u. Then, we show the same result when lpx´1;Cq ď p‹px̄q.

For the case where lpx´1;Cq ą p‹px̄q, we again define two (ordered) input sequences: In the first input

sequence, I1, x´1 low-reward requests arrive first, followed with h̄px´1q high-reward requests. In the second

input sequence, I2, x̄ low-reward requests arrive first, followed by 0 high-reward requests. Before receiving x´1

low reward requests, any deterministic or randomized algorithm cannot differentiate the two input sequences

and has to decide to accept how many low-reward requests in expectation. If there exists a deterministic or

randomized algorithm A, which can achieve a consistent ratio of at least C, and a robust ratio more than

CPopp‹px̄q, px̄,0qq, it should satisfy
ErRewpA, I1qs

optpI1q
ě C,

Let the expected total amount of high-reward, low-reward requests being accepted by A be hpA, I1q, ℓpA, I1q,

respectively. Then,
ErRewpA, I1qs

optpI1q
“

hpA, I1qrh ` ℓpA, I1qrℓ
h̄px´1qrh `mintx´1,m´ h̄px´1qurℓ

ě C.

By Equation (15), we have CPuplpx´1;Cq; px´1, h̄px´1qq “ C. By Equation (7), we have

CPuplpx´1;Cq; px´1, h̄px´1qq “
maxtlpx´1;Cq,minth̄px´1q,m´x´1uurh `mintx´1,m´ lpx´1;Cqurℓ

h̄px´1qrh `mintx̄u,m´ h̄px´1qurℓ
.

By Lemma 19, we have maxtlpx´1;Cq,minth̄px´1q,m ´ x´1uu “ lpx´1;Cq and mintx´1,m ´ lpx´1;Cqu “

m´ lpx´1;Cq. Therefore, we have

CPuplpx´1;Cq; px´1, h̄px´1qq “
lpx´1;Cqrh ` pm´ lpx´1;Cqqrℓ

h̄px´1qrh `mintx̄u,m´ h̄px´1qurℓ
“ C,
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which implies that

hpA, I1qrh ` ℓpA, I1qrℓ
h̄px´1qrh `mintx̄u,m´ h̄px´1qurℓ

ě
lpx´1;Cqrh ` pm´ lpx´1;Cqqrℓ

h̄px´1qrh `mintx̄u,m´ h̄px´1qurℓ
.

As hpA, I1q ď m ´ ℓpA, I1q, we have ℓpA, I1q ď m ´ lpx´1;Cq, which implies that it should accept no more

than m ´ lpx´1;Cq low-reward requests in expectation. However, to achieve a robust ratio more than

CPopp‹px̄q, px̄,0qq for sequence I2, we have

ErRewpA, I2qs

optpI2q
ą CPopp‹px̄q, px̄,0qq.

Let the expected total amount of low-reward requests being accepted under I2 by A be ℓpA, I2q, respectively.

Then,
ErRewpA, I1qs

optpI1q
“

ℓpAq

x̄
ą CPopp‹px̄q, px̄,0qq.

By Equation (6), we have

CPopp‹px̄q, px̄,0qq “
mintx̄,m´ p‹px̄qu

x̄
.

If x̄ ď m´p‹px̄q, we have CPopp‹px̄q, px̄,0qq “ 1, which means no algorithm can achieve a higher robust ratio.

Otherwise, we have

CPopp‹px̄q, px̄,0qq “
m´ p‹px̄q

x̄
,

and we have
ErRewpA, I1qs

optpI1q
“

ℓpA, I2q

x̄
ą

m´ p‹px̄q

x̄
,

which implies that ℓpAq ą m ´ p‹px̄q, and we should accept more than m ´ p‹px̄q low-reward requests in

expectation. However, when R‹ “ CPopp‹px̄q, px̄,0qq, by the proof of Theorem 4, we have in this case p‹px̄q “

prightpx̄q “rlpx̄;Cq. However, given that lpx´1;Cq ą p‹px̄q “rlpx̄;Cq, we have x´1 ă x̄. Otherwise, lpx´1;Cq “

lpx̄;Cq “ rlpx̄;Cq. Between x´1 and x̄, there are at most x̄ ´ x´1 low-reward requests arriving, and any

algorithm can accept at most x̄ ´ x´1 low-reward requests. But we accept no more than m ´ lpx´1;Cq

low-reward requests in expectation under I1 and more than m ´ p‹px̄q low-reward requests in expectation

under I2, and since rlpx;Cq is a line with slope ´1 for x ě x´1, we have m ´ p‹px̄q ´ pm ´ lpx´1;Cqq “

rlpx´1;Cq ´rlpx̄;Cq “ x̄´x´1, which is a contradiction.

Now, let us consider the case where lpx´1;Cq ď p‹px̄q, where we recall that here by assumption R‹ “

CPopp‹px̄q, px̄,0qq. By the proof of Theorem 4, when Rright “ CPopp‹px̄q, px̄,0qq, we have p‹px̄q “ prightpx̄q “

rlpx̄;Cq. In addition, we have lpx´1;Cq “rlpx´1;Cq, and lpx´1;Cq ď p‹px̄q is equivalent to rlpx´1;Cq ďrlpx̄;Cq.

Due to rlp¨;Cq is non-increasing, we have x´1 “ x̄ in this case.

To show the result, we again define two (ordered) input sequences: In the first input sequence, I1, x̄

low-reward requests arrive first, followed by h̄px̄q high-reward requests. In the second input sequence, I2,

x̄ low-reward requests arrive first, followed by 0 high-reward requests. If there exists a deterministic or

randomized algorithm A, which can achieve a consistent ratio of at least C, and a robust ratio more than

CPopp‹px̄q, px̄,0qq, it should satisfy
ErRewpA, I1qs

optpI1q
ě C.
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Let the expected total amount of high-reward, low-reward requests being accepted by A be hpA, I1q, ℓpA, I1q,

respectively. Then,
ErRewpA, I1qs

optpI1q
“

hpA, I1qrh ` ℓpA, I1qrℓ
h̄px̄qrh `mintx̄,m´ h̄px̄qurℓ

ě C.

By Equation (17), we have CPuplpx̄;Cq; px̄, h̄px̄qqq “ C. By Equation (7),

CPuplpx̄;Cq; px̄, h̄px̄qqq “
maxtlpx̄;Cq,minth̄px̄q,m´ x̄urh `mintx̄,m´ lpx̄;Cqurℓ

h̄px̄qrh `mintx̄,m´ h̄px̄qurℓ
.

As we have shown x̄ “ x´1 at the beginning of this case, by Lemma 19, we have

maxtlpx̄;Cq,minth̄px̄q,m´ x̄u “ lpx̄;Cq and mintx̄,m´ lpx̄;Cqu “ m´ lpx̄;Cq. Therefore, we have

lpx̄;Cqrh ` pm´ lpx̄;Cqqrℓ
h̄px̄qrh `mintx̄,m´ h̄px̄qurℓ

“ C,

and this implies
hpA, I1qrh ` ℓpA, I1qrℓ

h̄px̄qrh `mintx̄,m´ h̄px̄qurℓ
ě

lpx̄;Cqrh ` pm´ lpx̄;Cqqrℓ
h̄px̄qrh `mintx̄,m´ h̄px̄qurℓ

.

As hpA, I1q “ m ´ ℓpA, I1q, we have ℓpA, I1q ď m ´ lpx̄;Cq, which implies that we should accept no more

than m ´ lpx̄;Cq low-reward requests in expectation. However, to achieve a robust ratio more than the

CPopp‹px̄q, px̄,0qq for sequence I2, we have

ErRewpA, I2qs

optpI2q
ą CPopp‹px̄q, px̄,0qq.

This implies that we should accept more than m´p‹px̄q low-reward requests in expectation, which is shown

in the previous case. However, as is shown at the beginning of this case, here, x̄ “ x´1, and p‹px̄q “ lpx̄;Cq,

which shows that upon receiving x̄ low-reward requests, we should accept no more than m´p‹px̄q low-reward

requests and more than m´ p‹px̄q low-reward requests, which is obviously a contradiction.

Part 3: R‹ “ infxPr0,x̄s CPopp‹pxq; px,0qq. Define px “ argminxPr0,x̄sCPopp‹pxq; px,0qq. If px is not unique,

we randomly the one with smallest x value. Let us first consider the case where lpx´1;Cq ą p‹px̄q and

px P rx´1, x´1 ` lpx´1;Cq ´ p‹px̄qs. In this case, we replace I2 in the proof of Part 2 under the case where

lpx´1;Cq ą p‹px̄q by: we define I2 as px low-reward requests arrive first, followed 0 high-reward requests, and

we can have p‹pxq is optimal among all algorithms in this case.

For any other cases, we replace I1, I2 in the proof of Part 2 under the case where lpx´1;Cq ď p‹px̄q by:

we define I1 as px low-reward requests arrive first, followed hppxq high-reward requests; we define I2 as px

low-reward requests arrive first, followed 0 high-reward requests, and we can have p‹pxq is optimal among

all algorithms in this case.

Therefore, we have p‹pxq for x P r0,ms is optimal among all deterministic and randomized algorithms.

˝

D.4. Lemma 7 and its Proof

Lemma 7. Given an arbitrary valid PL function pp¨q, we have for any x P r0,maxtm, x̄us, CPupppxq; px,mqq

is a non-incresing function in x. That is, for any x P r0,maxtm, x̄us, with ppxq ď m,

CPupppmq; pmaxtm, x̄u,mqq ď CPupppxq; px,mqq.
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Proof of Lemma 7 Take any valid PL function ppxq for x P r0,ms, by Equation (7),

CPupppxq; px,mqq “
maxtppxq,mintm,m´xuurh `mintx,m´ ppxqurℓ

mrh `mintx,m´murℓ

“
maxtppxq,m´xurh `mintx,m´ ppxqurℓ

mrh
.

Let x1 “ suptx : ppxq ` x ď mu, first, as a valid PL function satisfies that p1pxq ě ´1 a.e., and the line

x ` y “ m has slope ´1, once x ` ppxq ě m, we have for all x1 ą x, we have x1 ` ppx1q ě m. Therefore, for

x P r0, x1s, we have ppxq `x ď m, and

CPupppxq; px,mqq “
pm´xqrh `xrℓ

mrh
,

which is a monotone decreasing function with x.

For x P rx1,ms,

CPupppxq; px,mqq “
ppxqrh ` pm´ ppxqqrℓ

mrh
,

which is also a non-increasing function with x due to ppxq is non-increasing. Therefore, it is monotone

decreasing, and we have for any valid PL function ppxq,

CPupppmq; pm,mqq ď CPupppxq; px,mqq,

for x P r0,ms. If x̄ ą m, by Lemma 10, we have CPupppx̄q; px̄,mqq “ CPupppxq; px,mqq. Therefore, we have

CPupppmq; pmaxtm, x̄u,mqq ď CPupppxq; px,mqq,

for any x P r0,maxtm, x̄us. ˝

Appendix E: Proof of Statements in Section 6

In this section, we provide the proof of statements in Section 6.In Section E.1, we prove Proposition 1

and shows the computational complexity and accuracy of the bisection algorithm. In Section E.2, we prove

Theorem 7, which provides several properties of an optimal C‹pRq. In Section E.3, we prove Theorem 8,

which states that Algorithm 5 returns C‹pRq. Finally, in Section E.4, we prove Theorem 6, which shows that

the optimal PL function is optimal among all deterministic and randomized algorithms.

E.1. Proof of Proposition 1

We first show that the feasibility (i.e., determining if for any x P rx, x̄s, and a given C, we have upx;Cq ě

rlpx;Cq) check can be performed by a polynomial time algorithm. For any C P r0,1s, checking whether for

any x P rx, x̄s, upx;Cq ěrlpx;Cq is equivalent to checking the following condition

min
xPrx,x̄s

upx;Cq ´rlpx;Cq ě 0. (41)

Notice that by definition, for x P rx,xus, upx;Cq “ m and upx;Cq ´ rlpx;Cq is always non-negative and for

x P rx̃ℓ, x̄s, rlpx;Cq “ 0 and upx;Cq ´rlpx;Cq is always non-negative, where x̃ℓ “ inftx´1 ă x ă x̄ :rlpx;Cq “ 0u.

Therefore, in Equation (41), we can ignore these two intervals. For any x P rxu, x̃ℓs, by Lemmas 6 and 16,

up¨;Cq is convex and rlp¨;Cq is concave, which implies that upx;Cq ´rlpx;Cq is convex. Therefore, Problem

(41) is a convex optimization problem on a compact set, which can be solved by polynomial-time algorithms.
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With this result, Algorithm 4 has exactly the same structure with the classical bisection method which

is a root-finding method that applies to any continuous function. Here, we make an analogy to the classical

bisection method for finding the root (a single zero point). Compare to the classical bisection method

for finding a single zero point, we can treat C‹pRq as the zero point, and treat the feasibility check as

whether the value is positive or negative. It is well known that the classical bisection method can return a

x P rx0 ´ ϵ, x0 ` ϵs in Oplogp1{ϵqq time, where x0 is the zero point. Therefore, we have Algorithm 4 can return

a C0 P rC‹pRq ´ ϵ,C‹pRq ` ϵs in Oplogp1{ϵqq time.

E.2. Proof of Theorem 7

We split the proof into three parts. In part 1, we show that if for any x P V, we have rlpx;Cq ď upx;Cq, then

such a C is feasible. That is, C‹pRq ď C. In part 2, we show that a feasible C “ C‹pRq is optimal if and only

if there exists px P rx, x̄s, such that rlppx;C‹pRqq “ uppx;C‹pRqq. In part 3, we show that such px must belong to

V.

Part 1: Feasibility of C. By Lemma 4, C is feasible if and only if upx;Cq ě rlpx;Cq for any x P rx, x̄s.

Here, we show that by only checking upx;Cq and rlpx;Cq on x P V is enough to check the feasibility of C given

that R is a polyhedron. As R is a polyhedron, we have both h̄p¨q and hp¨q are piece-wise linear functions. By

the first two properties of Lemma 6 and Equation (17), we have both rlp¨;Cq and up¨;Cq are also piece-wise

linear functions. We want to show that rlpx;Cq ď upx;Cq for any x P V, implies that rlpx;Cq ď upx;Cq for any

x P rx, x̄s

Suppose that for all x P V, rlpx;Cq ď upx;Cq. We take any x1 P rx, x̄s ´ V. Let rx1, x̄1s be the smallest

interval contains x1 such that x1, x̄1 P V. As it is the smallest interval, it does not contain any other x-

vertices, which implies that for any x P rx1, x̄1s, both rlpx;Cq and upx;Cq are linear. As rlpx1;Cq ď upx1;Cq

and rlpx̄1;Cq ď upx̄1;Cq, we have rlpx1;Cq ď upx1;Cq due to linearity and continuity of rlpx;Cq and upx;Cq.

Part 2: Optimality of C. We first prove the ‘if’ statement. That is, if there exists px P rx, x̄s and C P rρ,1s,

such that rlppx;Cq “ uppx;Cq, then we have C “ C‹pRq is optimal. We prove by contradiction. Contrary to our

claim, suppose that there exists a feasible pC ą C under which for any x P rx, x̄s, we have rlpx; pCq ď upx; pCq.

By the sixth property of Lemma 6 and Lemma 16, we have rlppx; pCq ěrlppx;Cq “ uppx;Cq ě uppx; pCq.

First, consider the case where px P rx,xus, where we recall that xu “ suptx ă x ă x̄u : CPopm; px,hpxqqq ě Cu;

that is, we have uppx;Cq “ m if and only if x P rx,xus. We then have

rlppx; pCq ěrlppx;Cq “ uppx;Cq “ m ě uppx; pCq ,

which implies that rlppx; pCq “ rlppx;Cq “ m. However, by definition, we have CPuprlppx; pCq; ppx, h̄ppxqqq ě pC and

CPuprlppx;Cq; ppx, h̄ppxqqq ě C, and to be in the under-protecting case, given that rlppx; pCq “ rlppx;Cq “ m, we

must have h̄ppxq ě m. By putting p “ m and y “ m into Equation (7), we have CPuprlppx; pCq; ppx, h̄ppxqqq “

CPuprlppx;Cq; ppx, h̄ppxqqq “ 1, which implies that C “ pC “ 1, which contradicts to C ą

widehatC.

Now consider the case where px P rxu, x̄s. We have uppx;Cq ă m and rlppx; pCq ě rlppx;Cq “ uppx;Cq ą uppx; pCq,

where the last strict inequality is by Lemma 20 which states that uppx; pCq “ uppx;Cq only happens when both

of them equals m. This forms a contradiction because the chain of inequalities implies rlppx; pCq ą uppx; pCq.
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Next, we prove the ‘only if’ statement. That is, if rlpx;Cq ă upx;Cq for all x P rx, x̄s, then C is not optimal.

That is, there exists pC ą C such that rlpx;Cq ď upx;Cq for all x P rx, x̄s

In this case, by the sixth property of Lemma 6 and Lemma 16, for any x P rx, x̄s, rlpx;Cq is continuously

increasing in C and upx;Cq is continuously decreasing in C. Therefore, by continuity of C, there exists δ ą 0

such that with pC “ C ` δ, we have rlpx; pCq ă upx; pCq for all x P rx, x̄s. By Lemma 4, we have C is feasible and

C is not optimal.

Part 3: px P V. . As we defined, V is the set containing the x value of all vertices of R (i.e., hp¨q and h̄p¨q)

and the set R0, where R0 “ tpx,hpxq : x P rx, x̄su X tpx, yq : x ` y “ mu. In Lemma 25, we show that all of

x-vertices of up¨;Cq and rlp¨;Cq are a subset of V and the elements of R0 might be x-vertices of up¨;Cq. By

Lemma 27, we have there exists px P V such that uppx;C‹pRqq ěrlppx;C‹pRqq, which completes the proof.

˝

E.3. Proof of Theorem 8

Given a polyhedron R, let C‹pRq be the optimal consistent ratio among all PLAs. First, it is easy to see that

the computational complexity is Op|V|3q because we enumerate at most |V|p|V| ´ 1q{2 pairs of x-vertices,

and recall that

C‹pRq “ maxtC P S :rlpx;Cq ď upx;Cq for any x P Vu ,

for each pair of vertices, if rlpx;Cq ď upx;Cq, for any x P V, we will add C into the set S. By doing this, for

each pair of vertices, we compare the value of rlpx;Cq and upx;Cq for x P V with at most |V| complexity. To

summarize, the total complexity is bounded by |V|p|V| ´ 1q{2 ¨ |V|, which is Op|V|3q.

Second, Algorithm 5 cannot return an output C ą C‹pRq. This is because it will return

C‹pRq “ maxtC P S :rlpx;Cq ď upx;Cq for any x P Vu .

and by Theorem 7, any C such that rlpx;Cq ď upx;Cq for any x P V implies C ď C‹pRq.

Finally, we show that by enumerating vertices as in Algorithm 5, we can find C‹pRq. To show this, we

need to split the proof into three cases according to the location of px, where px is the intersection point of

up¨;C‹pRqq and rlp¨;C‹pRqq. By Theorem 7, such px always exists. If there are multiple intersection points,

we take the one with the smallest x value. Before we divide into three cases, we highlight that enumerating

vertices is only for reduce computational complexity, and all the following statements not related to V is

correct for any general convex set R.

• Case 1: px ď xH In this case, we first show that px “ x̄u and x̄u ď xH . Second, as H is a vertex, we have

xH P V, and by Lemma 22, we have x̄u P V. We show that by balancing H and px̄u, hpx̄uqq, we obtain a

C1 in Algorithm 5 according to Equation (28).

For any C1 ď C‹pRq, by the definition of rlp¨;C1q, we have rlpx;C1q “ rlpxH ;C1q for x P rx,xHs. As

uppx;C1q “rlppx;C1q “rlpxH ;C1q and upx;C1q ěrlpx;C1q for any x P rx, x̄s, we have

px P argminxPrx,x̄supx;C1q.

By Lemma 21, we have px P rx̄u, xHs. As we have defined that if there are multiple intersection points,

we take px as the one with the smallest x value. That is, px “ x̄u. Moreover, we must have x̄u ď xH in
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this case because otherwise, if x̄u ą xH , we have upx;C1q “ m for any x P rx,xHs, and as rlpx;C1q ă m,

we have there does not exist px such that uppx;C1q “rlppx;C1q, which is a contradiction.

Next, we show that by balancing H and px̄u, hpx̄uqq according to Equation (28), we can get C1. Recall

that in Equation (28), given two points x1 and x2 (here xH and x̄u), we find p (here rlpxH ;C1q) such

CPupp; px1, h̄px1qqq “ CPopp; px2, hpx2qq. This is because, by definition, we have CPuprlpxH ;C1q;Hq “ C1,

and CPoprlpx̄u;C1q; px̄u, hpx̄uqqq “ C1, which implies that

CPuprlpxH ;C1q;Hq “ CPoprlpx̄u;C1q; px̄u, hpx̄uqqq “ C1.

Finally, as rlppx;C1q “rlpxH ;C1q, we have rlppx;C1q “ uppx;C1q, and by Theorem 7, we know C1 is optimal.

• Case 2: xH ď px ď x´1 In this case, by Theorem 7, we have px P V. We first show that by balancing

ppx, h̄ppxqq and ppx,hppxqq, we obtain a C1 in Algorithm 5 according to Equation (28). Moreover, by

definition, we have uppx;C1q “rlppx;C1q, which shows the optimality of C1 and the algorithm can return

such a C1. That is, let

pp “ tp : CPupp; ppx, h̄ppxqqq “ CPopp; ppx,hppxqqqu and C1 “ CPuppp; ppx, h̄ppxqqq.

We will show that pp “rlppx;C1q.

As xH ď px ď x´1, by definition, we have CPuprlppx;C1q; ppx, h̄ppxqqq “ C1. In addition, by Lemma 23, we

have px P rxu, x̄us, and by definition, CPopuppx;C1q; ppx,hppxqqq “ C1, which implies that

CPuprlppx;C1q; ppx, h̄ppxqqq “ CPopuppx;C1q; ppx,hppxqqq “ C1.

This shows that pp “rlppx;C1q “ uppx;C1q, as desired.

• Case 3: px ą x´1 In this case, by Theorem 7, we have px P V, and by Lemma 24, we have x´1 P V. First,

we show that by balancing ppx,hppxqq and px´1, h̄px´1qq, we obtain a C1 in Algorithm 5 according to

Equation (29). Finally, we show that under this C1, uppx;C1q “rlppx;C1q, which shows the optimality of

C1 and the algorithm can return such a C1. Let

pp “ tp : CPupp; px´1, h̄px´1qqq “ CPopp´ ppx´x´1q; ppx,hppxqqqu and CPuppp; px´1, h̄px´1qqq “ C1 .

We will show that pp “ uppx;C1q ` ppx´x´1q “rlppx;C1q ` ppx´x´1q “rlpx´1;C1q.

By Lemma 23, we have px P rxu, x̄us, and by definition, CPopuppx;C1q; ppx,hppxqqq “ C1. We futher observe

that, by Equation (17), we have rlpx´1;C1q “ lpx´1;C1q, and we have

CPuplpx´1;C1q; px´1, h̄px´1qqq “ CPuprlpx´1;C1q; px´1, h̄px´1qqq “ C1,

which implies that

CPuprlpx´1;C1q; px´1, h̄px´1qqq “ CPopuppx;C1q; ppx,hppxqqq “ C1.

Finally, as rlppx;C1qq “ rlpx´1;C1q ´ ppx ´ x´1q “ uppx;C1q, we have pp “ uppx;C1q ` ppx ´ x´1q “ rlppx;C1q `

ppx´x´1q “rlpx´1;C1q.
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E.4. Proof of Theorem 6

To show that the optimal consistent ratio among all PLAs is optimal among any deterministic and randomized

algorithm, we still split the proof into three cases which are the same three cases as in the Proof of Theorem

8. Before presenting the proof, we highlight that although we used many properties from Theorem 7, here

in the proof of Theorem 8, we do NOT assume R is a polyhedron.

Case 1: px ď xH In this case, in case 1 of the Proof of Theorem 8, we have established that px “ x̄u, and

C‹pRq “ CPupp;Hq “ CPopp; ppx,hppxqqq, where p “ lpxH ;C
‹pRqq “ upx̄u;C

‹pRqq. Our goal here is to show

that there does not exist any deterministic or randomized algorithm with a consistent ratio greater than

C‹pRq. Let us define two (ordered) input sequences: In the first input sequence, I1, x̄u low-reward requests

arrive first, followed with hpx̄uq high-reward requests. In the second input sequence, I2, xH low-reward

requests arrive first, followed yH high-reward requests. We note that px “ x̄u ă xH and hppxq ă yH because H

is the highest point of R.

Observe that before receiving px low-reward requests, any algorithm cannot differentiate the two input

sequences. Hence, any algorithm should decide how many low-reward requests to accept in expectation among

the first px ones.

Next, we prove by contradiction. Suppose that there exists an algorithm A, which can be either determin-

istic or randomized, and has a consistent ratio larger than C‹pRq. Then, we have

ErRewpA, I1qs

optpI1q
ą C‹pRq,

where the expectation is taken on the randomization of the algorithm. Let the expected total amount of

high-reward, low-reward requests being accepted by A be hpA, I1q, ℓpA, I1q, respectively. Replace C by

C‹pRq in Part 1 of Section D.3 where we show that any algorithm facing this instance should accept at least

m´upx̄u;Cq low-reward requests, we have ℓpA, I1q ą m´upx̄u;C
‹pRqq.

Next, if A achieves a consistent ratio greater than C‹pRq, it should also satisfy that

ErRewpA, I2qs

optpI2q
ą C‹pRq.

Let the expected total amount of high-reward, low-reward requests being accepted by A be hpA, I2q, ℓpA, I2q,

respectively. Then,
ErRewpA, I2qs

optpI2q
“

hpA, I2qrh ` ℓpA, I2qrℓ
yHrh `mintxH ,m´ yHurℓ

ą C‹pRq.

Recall that by the definition of lp¨;C‹pRqq, we have CPuplpxH ;C
‹pRqq;Hq “ C‹pRq because xH P rxH , x´1s.

Then, by Equation (7), we have

CPuplpxH ;C
‹pRqq;Hq “

maxtlpxH ;C
‹pRqq,mintyH ,m´xHuurh `mintxH ,m´ lpxH ;C

‹pRqqurℓ
yHrh `mintxH ,m´ yHurℓ

,

and by Lemma 19, we have mintxH ,m ´ lpxH ;C
‹pRqqu “ m ´ lpxH ;C

‹pRqq and

maxtlpxH ;C
‹pRqq,mintyH ,m´xHu “ lpxH ;C

‹pRqq. Therefore, we have

lpxH ;C
‹pRqqrh ` pm´ lpxH ;C

‹pRqqqrℓ
yHrh `mintxH ,m´ yHurℓ

“ C‹pRq.
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This implies that

hpA, I2qrh ` ℓpA, I2qrℓ
yHrh `mintxH ,m´ yHurℓ

ą
lpxH ;C

‹pRqqrh ` pm´ lpxH ;C
‹pRqqqrℓ

yHrh `mintxH ,m´ yHurℓ
.

As hpA, I2q ď m´ ℓpA, I2q, we have ℓpA, I2q ă m´ lpxH ;C
‹pRqq. Recall that as mentioned at the beginning,

we have lpxH ;C
‹pRqq “ upx̄u;C

‹pRqq. Therefore, we have

ℓpA, I2q ă m´ lpxH ;C
‹pRqq “ m´upx̄u;C

‹pRqq ă ℓpA, I1q,

which is a contradiction, because before receiving px low-reward requests, any algorithm cannot differentiate

the two input sequences, and this implies that ℓpA, I2q ě ℓpA, I1q.

Case 2: xH ď px ď x´1. We replace the instances in the proof of case 1 to get the proof for this case. We

replace the first instance by: px low-reward requests arrive first, followed with hppxq high-reward requests. We

replace the second instance by: px low-reward requests arrive first, followed with h̄ppxq high-reward requests.

Then, we use similar arguments in case 1 to show the result.

Case 3: px ą x´1. In this case, as we showed in case 3 of the Proof of Theorem 8, we have that

C‹pRq “ CPupp; px´1, h̄px´1qqq “ CPopp´ ppx´x´1q; ppx,hppxqqq,

where p “ lpx´1;C
‹pRqq, and uppx;C‹pRqq “ p´ppx´x´1q. Let us define two (ordered) input sequences: In the

first input sequence, I1, x´1 low-reward requests arrive first, followed with h̄px´1q high-reward requests. In

the second input sequence, I2, px low-reward requests arrive first, followed hppxq high-reward requests. In this

case, we have x´1 ă px. Before receiving x´1 low-reward requests, any deterministic or randomized algorithm

cannot differentiate the two input sequences. Hence, any algorithm should decide how many low-reward

requests to accept among the first x´1 ones in expectation.

Next, we prove by contradiction. Suppose that there exists an algorithm A which has a consistent ratio

larger than C‹pRq. As
ErRewpA, I1qs

optpI1q
ą C‹pRq,

we have A should accept less than m´rlpx´1;C
‹pRqq low-reward requests in expectation. Let the expected

total amount of high-reward, low-reward requests being accepted by A be hpA, I1q, ℓpA, I1q, respectively.

Replace C by C‹pRq in Part 2 of Section D.3 which shows that any algorithm facing this instance should

accept less than m´ lpx´1;Cq low-reward requests, we have ℓpA, I1q ă m´ lpx´1;C
‹pRqq.

Next, if A achieves a consistent ratio greater than C‹pRq, it should also satisfy that

ErRewpA, I2qs

optpI2q
ą C‹pRq.

Let the expected total amount of high-reward, low-reward requests being accepted by A be hpA, I2q, ℓpA, I2q,

respectively. Then,
ErRewpA, I2qs

optpI2q
“

hpA, I2qrh ` ℓpA, I2qrℓ
hppxqrh `mintpx,m´hppxqurℓ

ą C‹pRq.

As is mentioned at the beginning of this case, we have CPopuppx;C‹pRqq; ppx,hppxqqq “ C‹pRq. By Equation

(6), we have

CPopuppx;C‹pRqq; ppx,hppxqqq “
hppxqrh `mintpx,m´uppx;C‹pRqqurℓ

hppxqrh `mintpx,m´hppxqurℓ
.
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Here, we must have mintpx,m ´ uppx;C‹pRqqu “ m ´ uppx;C‹pRqq because otherwise, if mintpx,m ´

uppx;C‹pRqqu “ px, then due to uppx;C‹pRqq ě hppxq, we have mintpx,m´hppxqu “ px, and

CPopuppx;C‹pRqq; ppx,hppxqqq “ 1 ‰ C‹pRq. Therefore, by taking mintpx,m´uppx;C‹pRqqu “ m´uppx;C‹pRqq,

we obtain
hppxqrh ` pm´uppx;C‹pRqqqrℓ
hppxqrh `mintpx,m´hppxqurℓ

“ C‹pRq.

This implies that
hpA, I2qrh ` ℓpA, I2qrℓ

hppxqrh `mintpx,m´hppxqurℓ
ą

hppxqrh ` pm´uppx;C‹pRqqqrℓ
hppxqrh `mintpx,m´hppxqurℓ

.

As hpA, I2q ď hppxq, we have ℓpA, I2q ą m´ uppx;C‹pRqq. However, in this case px ą x´1, between x´1 and px,

there are at most px´x´1 low-reward requests arriving, and this implies that ℓpA, I2q ´ ℓpA, I1q ď px´x´1.

However, as is mentioned at the beginning, we have uppx;C‹pRqq “ lpx´1;C
‹pRqq ´ ppx´x´1q. This implies

that

ℓpA, I2q ´ ℓpA, I1q ą m´uppx;C‹pRqq ´ pm´ lpx´1;C
‹pRqqq (42)

“ m´ plpx´1;C
‹pRqq ´ ppx´x´1qq ´ pm´ lpx´1;C

‹pRqqq (43)

“ px´x´1, (44)

which is a contradiction.

Appendix F: Preliminary Lemmas

Here, we introduce several small lemmas which will be used in several proofs in this paper.

F.1. Lemma 8 and its Proof

Lemma 8 (Not Enough Demand). For any A “ px, yq with x` y ă m and p ă y, we have CPupp;A “

px, yqq “ 1.

Proof of Lemma 8 By Equation (7), we have

CPupp;A “ px, yqq “
maxtp,minty,m´xuurh `mintx,m´ purℓ

yrh `mintx,m´ yurℓ

“
maxtp, yurh `mintx,m´ purℓ

yrh `xrℓ
“

yrh `xrℓ
yrh `xrℓ

“ 1 ,

where in the first equation, we used the assumption that x`y ă m, and in the second equation, we used the

assumption that x` y ă m and p ă y. The last equation is the desired result.

F.2. Lemma 9 and its Proof

Lemma 9 (Monotonicity of the Compatible Ratio CPpp; px, yqq w.r.t. p). For any 0 ď y ď p1 ď

p2, and any x ě 0, we have

CPopp1; px, yqq ě CPopp2; px, yqq.

Further, for any p1 ď p2 ď y, and any x ě 0, we have

CPupp2; px, yqq ě CPupp1; px, yqq.

That is, the compatible ratio of a point px, yq increases when the gap between the protection level p and y,

i.e., |p´y|, gets smaller. In addition, if p ą m´x, we have the strong monotonicity for both of CPopp; px, yqq

and CPupp; px, yqq.
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Proof of Lemma 9 By the definition of CPo in Equation (6) and the assumption that y ď p1 ď p2, we

have

CPopp1; px, yqq “
minty,murh `mintx,m´ p1urℓ
minty,murh `mintx, pm´ yq`urℓ

ě
minty,murh `mintx,m´ p2urℓ
minty,murh `mintx, pm´ yq`urℓ

“ CPopp2; px, yqq .

The last inequality is the desired result. Moreover, if p2 ą p1 ą m´x, we have the strong monotonicity.

By the definition of CPu in Equation (7) and the assumption that p1 ď p2 ď y, we have

CPupp2; px, yqq “
maxtp2,minty, pm´xq`uurh `mintx,m´ p2urℓ

minty,murh `mintx, pm´ yq`urℓ

ě
maxtp1,minty, pm´xq`uurh `mintx,m´ p1urℓ

minty,murh `mintx, pm´ yq`urℓ
“ CPupp1; px, yqq,

where the inequality holds because for p2 ě p1, maxtp2,minty,m ´ xuu ě maxtp1,minty,m ´ xuu and

mintx,m´ p2u ě mintx,m´ p1u. Moreover, if p2 ą p1 ą m´x, we have the strong monotonicity.

F.3. Lemma 10 and its Proof

Lemma 10. For any y ą m and p P r0,ms, we have

CPupp; px, yqq “ CPupp; px,mqq.

For any x ą m and p P r0,ms, we have

CPopp; px, yqq “ CPopp; pm,yqq,

and

CPupp; px, yqq “ CPupp; pm,yqq.

Proof of Lemma 10 We first prove that CPupp; px, yqq “ CPupp; px,mqq for any y ą m. By Equation (7),

we have

CPupp; px, yqq “
maxtp,minty, pm´xq`uurh `mintx,m´ purℓ

minty,murh `mintx, pm´ yq`urℓ

“
maxtp,mintm, pm´xq`uurh `mintx,m´ purℓ

mrh
“ CPupp; px,mqq.

Next, we show that CPopp; px, yqq “ CPopp; pm,yqq for any x ą m. By Equation (6), we have

CPopp; px, yqq “
minty,murh `mintx,m´ purℓ

minty,murh `mintx, pm´ yq`urℓ

“
minty,murh `mintm,m´ purℓ

minty,murh `mintm, pm´ yq`urℓ
“ CPopp; pm,yqq.

By Equation (7), we have

CPupp; px, yqq “
maxtp,minty, pm´xq`uurh `mintx,m´ purℓ

minty,murh `mintx, pm´ yq`urℓ

“
maxtp,minty,0uurh `mintm,m´ purℓ
minty,murh `mintm, pm´ yq`urℓ

“ CPupp; pm,yqq.

˝
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F.4. Lemma 11 and its Proof

Lemma 11. Recall that hpxq, defined in Equation (5), is the lower envelop of R. Let Hpxq “ minthpxq,mu.

If there exists x0 P rx, x̄s such that hpx0q ă m, then either Hpxq “ hpxq for all x P rx, x̄s or there exists

x ď x1 ă x2 ď x̄ such that Hpxq “ m for x P rx,x1s Y rx2, x̄s and Hpxq “ hpxq for x P rx1, x2s. In other words,

Hpxq “ hpxq on a connected interval.

Proof of Lemma 11 We will prove this statement by contradiction. Let us suppose that Hpxq “ hpxq on

rx3, x4s Y rx5, x6s. Then, let us randomly pick x7 P px4, x5q. We recall that Hpxq “ minthpxq,mu.

Now, we observe that hpx4q ă m, hpx5q ă m, and hpx7q ě m. However, this contradicts the fact that hp¨q

is a convex function. Therefore, our initial assumption that Hpxq “ hpxq on rx3, x4s Y rx5, x6s is false

˝

F.5. Lemma 12 and its Proof

Lemma 12. Recall that x̄u is defined in Equation (14), and xu “ suptx ă x ă x̄u :CPopm; px,hpxqqq ě Cu.

Then, for x P pxu, x̄uq, we have Hpxq “ hpxq.

Proof of Lemma 12 By Lemma 11, we have either Hpxq “ hpxq for all x P rx, x̄s or there exists x ď x1 ă

x2 ď x̄ such that Hpxq “ m for x P rx,x1s Y rx2, x̄s and Hpxq “ hpxq for x P rx1, x2s. In the first case, the

statement is trivial.

In the second case, we prove by contradiction. Consider any x P pxu, x̄uq and assume that x P rx,x1s. We

then have Hpxq “ m, which implies that hpxq ě m. By Equation (6), we have

CPopm; px,hpxqqq “ 1 ě C,

which implies that x ă xu, which contradicts the fact that x P pxu, x̄uq.

Now, consider any x P pxu, x̄uq and assume that x P rx2, x̄s. We then have Hpxq “ m, which implies that

hpxq ě m. Recall that

x̄u “

"

xL if xL ` yL ě m;
suptx P rxL, x̄s : p1´Cq

rh
rℓ
H1

px´q ´C ă 0u Otherwise , (45)

In this case, as hpxq ă m for x P rx1, x2s, we have xL P rx1, x2s. Therefore, x̄u ‰ xL because otherwise, we

have x̄u “ xL ď x2, and there does not exist x P pxu, x̄uq and x P rx2, x̄s. Then, we have x̄u “ suptx P rxL, x̄s :

p1 ´ Cq
rh
rℓ
H1

px´q ´ C ă 0u. As we assume that hpxq ě m for x P rx2, x̄s, then we have H1
px̄´q “ 0 because

Hpxq “ m for x P rx2, x̄s. Therefore, x̄u “ x̄. In addition, as we have hpx̄q ě m, by Equation (6), we have

CPopm; px̄, hpx̄qqq “ 1 ě C,

which implies that xu “ x̄u. Therefore, there does not exist x P pxu, x̄uq, which is a contradiction. ˝
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F.6. Lemma 13 and its Proof

Lemma 13. Fix any C P p0,1q. Recall that xu “ suptx ă x ă x̄u : CPopm; px,hpxqqq ě Cu, and x̄l “

inftxH ă x ă x̄ :CPup0; px,hpxqqq ě Cu. Then, for x P rx̄ℓ, x̄s, we have

CPup0; px,hpxqqq ě C.

Similarly, for any x ă x ď xu, we have

CPopm; px,hpxqqq ě C.

Proof of Lemma 13 Part 1: We first define the region R1 such that for any px, yq P R1, CPupppxq “

0; px, yqq “ C. Obviously, tx ` y ď mu Ć R1 because if x ` y ď m and ppxq “ 0, by Lemma 8, CPupppxq “

0; px, yqq “ 1. Next, we find px, yq P tx` y ą mu, which belongs to R1.

We solve the following equation: for x` y ą m

CPup0; px, yqq “ C.

Notice that for x ą xH , by the definition of H, we have y ă m, so we can obtain

pm´xqrh `xrℓ
yrh ` pm´ yqrℓ

“ C,

which is equivalent as

pm´xqrh `xrℓ “ Cpyrh ` pm´ yqrℓq. (46)

We take derivative on both side of Equation (46), and we get

y1pxq “ ´1{C.

Let Lpxq be the line with slope ´1{C and across px̄ℓ, h̄px̄ℓqq. We have CPup0; px,Lpxqqq “ C. Recall that

x̄ℓ “ inftxH ă x ă x̄ : CPup0; px,hpxqqq ě Cu. Then, for any x ă x̄ℓ, we have CPup0; px, h̄pxqqq ă C. By Lemma

2, we have h̄pxq ą Lpxq, and by Lemma 26, we have for x ą x̄ℓ, h̄pxq ă Lpxq. By Lemma 2 again, we have

CPup0; px, h̄pxqq ě C.

Part 2: We define the region R2 such that for any px, yq P R2, CPopppxq “ m; px, yqq “ C. For px, yq P

tx` y ě mu, we solve

CPopm; px, yqq “ C.

Notice that we must have y ă m because otherwise, CPopm; px, yqq “ 1 ‰ C. Then, we can obtain

yrh
yrh ` pm´ yqrℓ

“ C,

and we can get y “
Crℓ

rh´Cprh´rℓq
m. Therefore, in the area tx` y ě mu, R2 is a line with slope 0.

Next, we explore the part px, yq P tx` y ă mu, this time

CPopm; px, yqq “ C,

implies that
yrh

yrh `xrℓ
“ C,
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which is equivalent as

yp1´Cqrh “ Crℓx. (47)

Then, we take derivative on both side of Equation (47), and we get

y1pxq “
Crℓ

p1´Cqrh
,

which means that, in the area tx`y ă mu, R2 is a line with positive slope Crℓ
p1´Cqrh

, for x ă m´
Crℓ

rh´Cprh´rℓq
m,

and across pm´
Crℓ

rh´Cprh´rℓq
m, Crℓ

rh´Cprh´rℓq
mq.

Combined with the results above, we start to prove this lemma. Let Lpxq be a piecewise linear line segment

such that px,Lpxqq P R2 for all x P r0,ms. That is, for x P r0,m´
Crℓ

rh´Cprh´rℓq
ms, Lpxq has slope Crℓ

p1´Cqrh
and

across pm´
Crℓ

rh´Cprh´rℓq
m, Crℓ

rh´Cprh´rℓq
mq. For x P pm´

Crℓ
rh´Cprh´rℓq

m,ms, Lpxq “
Crℓ

rh´Cprh´rℓq
m. Moreover, for

any x P r0,ms, we have CPopm; px,Lpxqqq “ C.

Recall that xu “ suptx ă x ă x̄u : CPopm; px,hpxqqq ě Cu. We first show the case where xu ď xL. As L is an

non-decreasing function, and for x ď xL, hp¨q is a decreasing function. Therefore, as we have hpxuq “ Lpxuq,

we have hpxq ą Lpxq for any x P rx,xus. Therefore, by Lemma 2, we have for any x P rx,xus,

CPopm; px,hpxqqq ě C.

Second, we show the case where xu ą xL. In this case, hp¨q is decreasing for x ă xL, and increasing for

x ą xL. If there exists x1 P rx,xus such that CPopm; px1, hpx1qqq ă C, then, by Lemma 2, this implies that

hpx1q ă Lpx1q. As the lowest point L is below the line L and hpxq is convex, we have there are at most two

intersections of hpxq and L. One is in the left of L and the other is pxu, hpxuq. As hpxq is convex increasing

for x P rxL, x̄us and given that Lpxq is concave increasing for x P rxL, x̄us, we have

h1
px`

u q ě h1
px´

u q ě Lpx`

u q,

which implies that there exists ϵ ą 0, such that hpxu ` ϵq ě Lpxu ` ϵq. By Lemma 2, we have

CPopm; pxu ` ϵ, hpxu ` ϵqqq ě CPopm; pxu ` ϵ, ⟨pxu ` ϵqqq “ C,

which contradicts to the definition of xu. Therefore, for any x P rx,xus,

CPopm; px,hpxqqq ě C.

˝

F.7. Lemma 14 and its Proof

Lemma 14. Fix any C ą 0. For any x P rxu, x̄us, CPopp; px,hpxqqq “ C has a solution p ě minthpxq,mu.

For any x P rxH , x̄ℓs, CPupp; px, h̄pxqqq “ C has a solution p ď minth̄pxq,mu.

Proof of Lemma 14 Fix any C ą 0. Take p “ minthpxq,mu, by Equation (6), we have CPopp; px,hpxqqq “

1. If hpxq ě m, then we claim that x R rxu, x̄us. This is because take p “ m, by Lemma 10, we have

CPopm; px,hpxqqq “ CPopm; px,mqq “ 1, which contradicts the definition of xu. Otherwise, if hpxq ă m, we

have CPopm; px,hpxqqq ă C and CPophpxq; px,hpxqqq “ 1. Therefore, by mean value theorem, we have there

exists p1 P rhpxq,ms such that CPopp1; px,hpxqqq “ C.
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Similarly, take p “ minth̄pxq,mu, by Equation (7), we have CPupp; px, h̄pxqqq “ 1. Take p “ 0, by the

definition of xℓ “ suptx ă x ă xH : CPup0; px,hpxqqq “ Cu, x̄l “ inftxH ă x ă x̄ : CPup0; px,hpxqqq ě Cu, we

have CPupp; px, h̄pxqqq ă C. From Equation (7), we can simply check that CPupp; px, h̄pxqqq is continuous

in p for any x. Therefore, by mean value theorem, we have there exists p1 P r0,minth̄pxq,mus such that

CPupp1; px, h̄pxqqq “ C.

F.8. Lemma 15 and its Proof

Lemma 15. Recall that

x̄u “

"

xL if xL ` yL ě m;
suptx P rxL, x̄s : p1´Cq

rh
rℓ
H1

px´q ´C ă 0u Otherwise. (48)

Then, for any x P rx̄u, x̄s, we have CPopupx;Cq; px,hpxqqq ě C.

Proof of Lemma 15 Define ûpx;Cq as the original upx;Cq without forcing to be constant after x̄u. More

precisely, for any C P r0,1s, we define

ûpx;Cq “ sup
␣

p P r0,ms : CPopp; px,hpxqqq “ C
(

x P rxu, x̄s (49)

while we set ûpx;Cq “ m for any x P r0, xus. Note while upx;Cq ‰ ûpx;Cq for any x P px̄u, x̄s, we have

upx;Cq “ ûpx;Cq for any x P r0, x̄us. Then, we can check that for any x P rxu, x̄s, Equation (50) is satisfied,

which means for any x P rxu, x̄q and C P r0,1s, when H1
pxq exists, we have

Bûpx;Cq

Bx
“

"

pp1´Cq
rh
rℓ

`CqH1
pxq if x`Hpxq ě m;

p1´Cq
rh
rℓ
H1

pxq ´C if x`Hpxq ă m,
(50)

where Hpxq “ minthpxq,mu. By the definition of x̄u, as
Bûpx;Cq

Bx
|x“x̄´

u
ă 0 and Bûpx;Cq

Bx
|x̄`

u
ě 0, we obtain

inf
xPrx,x̄s

ûpx;Cq “ ûpx̄u;Cq,

which is because the derivative of ûpx;Cq is linear, and Bûpx;Cq

Bx
|x“x̄´

u
ă 0 and Bûpx;Cq

Bx
|x̄`

u
ě 0 implies that

Bûpx;Cq

Bx
ě 0 for all x ě x̄u. Therefore, by any x ě x̄u, ûpx;Cq ě upx;Cq as we force upx;Cq to be a constant

value of upx̄u;Cq. The definition of ûp¨;Cq implies that CPopûpx;Cq; px,hpxqqq “ C. By Lemma 9, for x ě x̄u,

as ûpx;Cq ě upx;Cq, we have

CPopupx;Cq; px,hpxqqq ě CPopûpx;Cq; px,hpxqqq ě C.

F.9. Lemma 16 and its Proof

Lemma 16. For any C P r0,1s, rlpx;Cq is decreasing and is concave for x P rx, x̃ℓs, where x̃ℓ “ inftx´1 ă

x ă x̄ :rlpx;Cq “ 0u. For any x P rx, x̄s, rlpx;Cq is continuously increasing in C.

Proof of Lemma 16 By Equation (17), as lpx;Cq is decreasing for any C P r0,1s, we have rlpx;Cq is also

decreasing for any C P r0,1s. Next, by Lemma 6, we have lpx;Cq is concave for x P rx, x̄ℓs. Therefore,
Blpx`;Cq

Bx

is non-increasing. As rlpx;Cq “ lpx;Cq for x P rx,x´1s, we have Brlpx`;Cq

Bx
is non-increasing for x P rx,x´1s. By

the definition of x´1, we have
Brlpx´

´1
;Cq

Bx
ě

Brlpx`
´1

;Cq

Bx
“ ´1, and for x´1 ă x ď x̃, we have rlpx;Cq is a line with

slope ´1 and Brlpx`;Cq

Bx
“ ´1, which is non-increasing. Therefore, rlpx;Cq is concave for x P rx, x̃ℓs.

Fix any x1 P rx, x̄s, by Lemma 6, we know that lpx1;Cq is a continuous increasing function in C. If

x1 P rx,x´1s, as rlpx1;Cq “ lpx1;Cq, we have rlpx1;Cq is also continuously increasing in C. Otherwise, define

Lpx;Cq “ p´x`x´1 ` lpx´1;Cq,0q`. Then, rlpx1;Cq “ maxtLpx1;Cq, lpx1;Cqu. As both Lpx1;Cq and lpx1;Cq

are increasing continuous in C, we have rlpx1;Cq is increasing and continuous in C.
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F.10. Lemma 17 and its Proof

Lemma 17. Define pbpxq as a function which balances the compatible ratio of two points px,hpxqq and

px, h̄pxqq for any x P rx, x̄s; that is,

CPoppbpxq; px,hpxqqq “ CPuppbpxq; px, h̄pxqqq .

Then, pbpxq exists for any x P rx, x̄s, and

CPoppbpxq; px,hpxqqq “ CPuppbpxq; px, h̄pxqqq ě C‹pRq ,

where C‹pRq is the maximum consistent ratio among all PLAs given that the ML advice R.

Proof of Lemma 17 Fix any x P rx, x̄s, define fppq “ CPopp; px,hpxqqq ´ CPupp; px, h̄pxqqq. As

CPopp; px,hpxqqq and CPupp; px, h̄pxqqq are both continuous in p, we have fppq is continuous in p. Next, take

p “ mintm,hpxqu, then CPopp; px,hpxqqq “ 1 and CPupp; px, h̄pxqqq ď 1, and hence we have fpmintm,hpxquq ě

0. Take p “ mintm, h̄pxqu, then CPupp; px, h̄pxqqq “ 1 and CPopp; px,hpxqqq ď 1, and hence we have

fpmintm, h̄pxquq ď 0. Therefore, by mean value theorem, there must exist p P rmintm,hpxqu,mintm, h̄pxqus

such that fppq “ 0, i.e. CPoppbpxq; px,hpxqqq “ CPuppbpxq; px, h̄pxqqq.

Next, we prove that CPoppbpxq; px,hpxqqq “ CPuppbpxq; px, h̄pxqqq ě C‹pRq for any x P rx, x̄s. We prove by

contradiction. Suppose that there exists x1 P rx, x̄s such that CPoppbpxq; px,hpxqqq “ CPuppbpxq; px, h̄pxqqq ă

C‹pRq, then, if we set any p ă pbpxq, by Lemma 9, we have

CPupp; px, h̄pxqqq ă CPuppbpxq; px, h̄pxqqq ă C‹pRq .

Similarly, if we set any p ą pbpxq, by Lemma 9, we have

CPopp; px,hpxqqq ă CPoppbpxq; px,hpxqqq ă C‹pRq .

Therefore, there does not exist a PL function such that the consistent ratio is C‹pRq, which is a contradiction.

This is because here C‹pRq in is defined as an upper bound on the consistent ratio of any PLA.

F.11. Lemma 18 and its Proof

Lemma 18. For any fixed PL function p, we have CPopp; px,0qq is a decreasing function in x. That is, for

any x1 ď x2, we have

CPopp; px1,0qq ě CPopp; px2,0qq.

Proof of Lemma 18 If x1 ď x2 ď m, by Equation (6), we have

CPopp;A “ px,0qq “
0 ¨ rh `mintx,m´ purℓ
0 ¨ rh `mintx,m´ 0urℓ

“
mintx,m´ pu

x
.

Take any x1 ď x2, if mintx2,m´ pu “ x2, then mintx1,m´ pu “ x1, and we have

mintx1,m´ pu

x1

“
mintx2,m´ pu

x2

“ 1.

If mintx2,m´ pu “ m´ p and mintx1,m´ pu “ m´ p, we have

mintx2,m´ pu

x2

“
m´ p

x2

ď
m´ p

x1

“
mintx1,m´ pu

x1

.
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If mintx2,m´ pu “ m´ p and mintx1,m´ pu “ x1, we have

mintx2,m´ pu

x2

“
m´ p

x2

ď 1 “
x1

x1

“
mintx1,m´ pu

x1

.

Therefore, we have for any x1 ď x2 ď m, we have

CPopp; px1,0qq ě CPopp; px2,0qq.

Next, for x1 ď m ď x2, by Lemma 10, we have

CPopp; px1,0qq ě CPopp; pm,0qq “ CPopp; px2,0qq.

For m ď x1 ď x2, again, by Lemma 10, we have

CPopp; pm,0qq “ CPopp; px1,0qq “ CPopp; px2,0qq.

F.12. Lemma 19 and its Proof

Lemma 19. For any C P p0,1q. Let x̄u be defined in Equation (14), we have

mintx̄u,m´upx̄u;Cqu “ m´upx̄u;Cq.

Recall that H is the point in set sR that has the highest low-reward demand, where sR “ tpx, yq P R : y “

suppx1,y1qPRminty1,muu Further, we have

mintxH ,m´ lpxH ;C
‹pRqqu “ m´ lpxH ;C

‹pRqq.

Let x´1 “ suptx P rxH , x̄s : Blpx´;Cq

Bx
ď ´1u. We have

x´1 ě m´ lpx´1;Cq

.

Proof of Lemma 19 We prove by contradiction. If mintx̄u,m´upx̄u;Cqu “ x̄u, then by Equation (6), we

have

CPopupx̄u;Cq; px̄u, hpx̄uqqq “
minthpx̄uq,murh `mintm´upx̄u;Cq, x̄u, urℓ
minthpx̄uq,murh `mintpm´hpx̄uqq`, x̄uurℓ

.

Given that mintx̄u,m´ upx̄u;Cqu “ x̄u, as upx̄u;Cq ě minthpx̄uq,mu, we have mintpm´ hpx̄uqq`, x̄uu “ x̄u,

and we have

CPopupx̄u;Cq; px̄u, hpx̄uqqq “
minthpx̄uq,murh ` x̄urℓ
minthpx̄uq,murh ` x̄urℓ

“ 1 ą C,

which contradicts to the definition of up¨;Cq.

Next, to show the second statement, We still prove by contradiction. If mintxH ,m´ lpxH ;C
‹pRqqu “ xH ,

then by Equation (7), we have

CPuplpxH ;C
‹pRqq;Hq “

maxtlpxH ;C
‹pRqq,mintyH , pm´xHq`uurh `mintxH ,m´ lpxH ;C

‹pRqqurℓ
yHrh `mintxH ,m´ yHurℓ

.

Given that mintxH ,m´ lpxH ;C
‹pRqqu “ xH , we have

CPuplpxH ;C
‹pRqq;Hq “

mintyH , pm´xHq`urh `xHrℓ
yHrh `mintxH ,m´ yHurℓ

“ CPup0;Hq,
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which implies that xH ě x̄ℓ, and this contradicts to the definition of x̄ℓ since xH ď x´1 ă x̄ℓ.

Finally, we show that x´1 ě m ´ lpx´1;Cq. We still prove by contradiction. Suppose that x´1 ă m ´

lpx´1;Cq. By Equation (7), we have

CPuplpx´1;Cq; px´1, h̄px´1qqq “
maxtlpx´1;Cq,minth̄px´1q, pm´x´1q`uurh `mintx´1,m´ lpx´1;Cqurℓ

minth̄px´1q,murh `mintx´1, pm´ h̄px´1qq`urℓ
.

If we have x´1 ă m´ lpx´1;Cq, then we have

C “ CPuplpx´1;Cq; px´1, h̄px´1qqq “
minth̄px´1q, pm´x´1q`urh `x´1rℓ

minth̄px´1q,murh `mintx´1, pm´ h̄px´1qq`urℓ
“ CPup0; px´1, h̄px´1qqq,

which implies that x´1 ě x̄ℓ, which is a contradiction.

F.13. Lemma 20 and its Proof

Lemma 20. Let C‹pRq be the optimal consistent ratio of R. Take any C ą C‹pRq, then upx̂;Cq “

upx̂;C‹pRqq only if both of them are equal to m.

Proof of Lemma 20 If upx̂;C‹pRqq ă m, then by definition of xu, we have x̂ P rxu, x̄s. For x̂ P rxu, x̄us,

by Equation (13), we have upx̂;C‹pRqq “ sup
␣

p P r0,ms : CPopp; px̂, hpx̂qqq “ C‹pRq
(

. For C ą C‹pRq, if

upx̂;Cq “ upx̂;C‹pRqq, then we have

sup
␣

p P r0,ms : CPopp; px̂, hpx̂qqq “ C
(

“ upx̂;Cq “ upx̂;C‹pRqq

“ sup
␣

p P r0,ms : CPopp; px̂, hpx̂qqq “ C‹pRq
(

,

which implies that CPopupx̂;Cq; px,hpx̂qqq “ C and CPopupx̂;Cq; px,hpx̂qqq “ C‹pRq, which is a contradiction.

For x̂ P rx̄u, x̄s, we have upx̂;C‹pRqq “ upx̄u;C
‹pRqq and upx̂;Cq “ upx̄u;Cq. By the similar statement above,

we have

sup
␣

p P r0,ms : CPopp; px̂, hpx̂qqq “ C
(

“ upx̄u;Cq “ upx̄u;C
‹pRqq

“ sup
␣

p P r0,ms : CPopp; px̂, hpx̂qqq “ C‹pRq
(

,

which implies that CPopupx̄u;Cq; px̂, hpx̂qqq “ C and CPopupx̄u;Cq; px̂, hpx̂qqq “ C‹pRq, which is a contradic-

tion.

F.14. Lemma 21 and its Proof

Lemma 21. Recall that up¨;Cq is defined in Equation (13), and x̄u is defined in Equation (14). We have

upx;Cq gets its minimum value at x P rx̄u, x̄s.

Proof of Lemma 21 By the first property of Lemma 6, we have

Bupx;Cq

Bx
“

"

pp1´Cq
rh
rℓ

`CqH1
pxq if x`Hpxq ě m;

p1´Cq
rh
rℓ
H1

pxq ´C if x`Hpxq ă m.
(51)

Recall that

x̄u “

"

xL if xL ` yL ě m;
suptx P rxL, x̄s : p1´Cq

rh
rℓ
H1

px´q ´C ă 0u Otherwise. (52)

Therefore, if xL ` yL ě m, we have x̄u “ xL. As L is the lowest point, which implies that h1
px´

Lq ă 0 and

h1
px`

Lq ą 0. Recall that Hpxq “ minth,mu, we have H1
px´

Lq ď 0 and H1
px`

Lq ě 0. For x ` Hpxq ě m, as we
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have Bupx;Cq

Bx
“ pp1´Cq

rh
rℓ

`CqH1
pxq, we have Bupx;Cq

Bx
ă 0 for x ă xL and Bupx;Cq

Bx
ą 0 for x ą xL, which implies

that x̄u “ xL is the point such that upx;Cq achieves its lowest value. As we force upx;Cq “ upx̄u;Cq, we have

upx;Cq gets its minimum value at x P rx̄u, x̄s.

In other cases, by taking x̄u “ suptx P rxL, x̄s : p1 ´ Cq
rh
rℓ
H1

px´q ´ C ă 0u, we have Bupx;Cq

Bx
ă 0 for x ă x̄u

and Bupx;Cq

Bx
ą 0 for x ą x̄u, which implies that x̄u is the point such that upx;Cq achieves its lowest value. As

we force upx;Cq “ upx̄u;Cq, we have upx;Cq gets its minimum value at x P rx̄u, x̄s.

F.15. Lemma 22 and its Proof

Lemma 22. Recall that x̄u is defined in Equation (14), and V is the x-vertices set of a polyhedron R plus

all elements of R0, where R0 “ tpx,hpxq : x P rx, x̄su X tpx, yq : x` y “ mu, then x̄u P V.

Proof of Lemma 22 Recall that

x̄u “

"

xL if xL ` yL ě m;
suptx P rxL, x̄s : p1´Cq

rh
rℓ
H1

px´q ´C ă 0u Otherwise , (53)

That is, x̄u equals to either xL or suptx P rxL, x̄s : p1´Cq
rh
rℓ
H1

px´q ´C ă 0u. As L is a vertex of R, we have

xL P V.

Then, we claim that x̄u “ suptx P rxL, x̄s : p1 ´ Cq
rh
rℓ
H1

px´q ´ C ă 0u P V. As R is a polyhedron, we have

hp¨q is a piecewise linear function. As Hpxq “ minthpxq,mu, we have Hp¨q is also a piecewise linear function.

If x̄u is not a x-vertex, then there exists ϵ ą 0 such that H1
px´q “ H1

ppx` ϵq´q, and we have

p1´Cq
rh
rℓ
H1

ppx` ϵq´q ´C ă 0,

which contradicts the definition of x̄u.

F.16. Lemma 23 and its Proof

Lemma 23. If rlpx̂;C‹pRqq “ upx̂;C‹pRqq for xH ď x̂ ď x´1, we have x̂ P rxu, x̄us.

Proof of Lemma 23 As upx̂;C‹pRqq “ rlpx̂;C‹pRqq ă m, we have x̂ ą xu. Then, we show that x̂ ď x̄u by

contradiction. If x̂ ą x̄u, as up¨;C‹pRqq is constant between rx̄u, x̂s and rlp¨;C‹pRqq is a decreasing function for

x P rxH , x̂s, we have there exists ϵ ą 0 such that rlpx̂´ ϵ;C‹pRqq ą upx̂´ ϵ;C‹pRqq, which is a contradiction.

Therefore, we have x̂ P rxu, x̄us,

F.17. Lemma 24 and its Proof

Lemma 24. Recall that x´1 “ suptx P rxH , x̄s : Blpx´;C‹pRqq

Bx
ď ´1u. Given a polyhedron R, recall that V is

the x-vertices set of R plus all elements in R0, then x´1 P V.

Proof of Lemma 24 As R is a polyhedron, we have h̄p¨q is a piecewise linear function. By the second

property of Lemma 6, we have lp¨;Cq is also a piecewise linear function. Then, we prove by contradiction.

Suppose that x´1 R V. Then, there exists ϵ ą 0 such that
Blpx´

´1
;C‹pRqq

Bx
“

Blppx´1`ϵq´;C‹pRqq

Bx
. Then, we have

Blppx´1`ϵq´;C‹pRqq

Bx
ď ´1, which contradicts to the definition of x´1.
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F.18. Lemma 25 and its Proof

Lemma 25. Suppose that R is a polyhedron. Recall that up¨;Cq and rlp¨;Cq are defined in Equations (13)

and (17) respectively. Then, we have up¨;Cq and rlp¨;Cq are piecewise linear functions and all of their x-

vertices are a subset of V. In addition, the elements of R0 are x-vertices of up¨;Cq, where R0 “ tpx,hpxq :

x P rx, x̄su X tpx, yq : x` y “ mu.

Proof of Lemma 25 As R is a polyhedron, we have both h̄p¨q and hp¨q are piecewise linear. Since Hpxq “

mintm, h̄pxqu and Hpxq “ mintm,hpxqu, we have both Hp¨q and Hp¨q are piecewise linear and both H1
p¨q and

H1
p¨q are piecewise constant.

Recall that by Lemma 6, we have for any x P pxH , x̄lq and C P r0,1s,

Blpx;Cq

Bx
“ CH1

pxq.

Therefore, Blpx;Cq

Bx
is piecewise constant and lpx;Cq is piecewise linear. In addition, we can find that the

x-vertices of lp¨;Cq are also ones of h̄p¨q. By Equation (17) and Lemma 24, we have rlp¨;Cq is also piecewise

linear with x-vertices belong to ones of h̄p¨q.

Recall that by Lemma 6, we have for any x P pxu, x̄uq and C P r0,1s,

Bupx;Cq

Bx
“

"

pp1´Cq
rh
rℓ

`CqH1
pxq if x`Hpxq ě m;

p1´Cq
rh
rℓ
H1

pxq ´C if x`Hpxq ă m.
(54)

Therefore, we have Bupx;Cq

Bx
is piecewise constant and upx;Cq is piecewise linear. In addition, the x-vertices

of upx;Cq for x`Hpxq ě m is a subset to x-vertices of Hpxq. The x-vertices of upx;Cq for x`Hpxq ă m is

also a subset to x-vertices of Hpxq. Moreover, any point x such that x ` Hpxq “ m, which is we defined as

an element of R0, is also a vertex, and by our definition, V contains all elements of R0.

F.19. Geometric Lemmas

Lemma 26. Suppose that we have a line Lpxq with any negative slope on an interval I. fpxq is a concave

decreasing function which intersects Lpxq at px0, fpx0qq. If there exists x1 ă x0 such that fpx1q ą fpx0q, then

for all x ą x0, we have fpxq ă Lpxq.

Proof of Lemma 26 Suppose that there exists x2 ą x0 such that fpx2q ě Lpx2q. As px1, fpx1q, px2, fpx2qq

are both above the line L, if we connect px1, fpx1q, px2, fpx2qq by a line L1pxq, we have L1pxq ą Lpxq for

x P rx1, x2s. Therefore, L1px0q ą Lpx0q “ fpx0q since x0 P rx1, x2s.

However, as fpxq is a concave function, if we take x1 ă x2 and connect px1, fpx1q, px2, fpx2qq by a line

L1pxq, we should always have fpxq ě L1pxq, which is a contradiction to L1px0q ą Lpx0q “ fpx0q.

˝

Lemma 27. Let fpxq and gpxq be two piecewise linear functions defined on an interval I, with fpxq ě gpxq

for any x P I. If tx : fpxq “ gpxqu is not empty, we have there exists x0 P V, which is an x-vertex of either

fpxq or gpxq, such that fpx0q “ gpx0q.
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Proof of Lemma 27 We prove by contradiction. Suppose that any x1 P tx : fpxq “ gpxqu is not an x-vertex

of either fpxq or gpxq. Then, we have f 1px`

1 q “ f 1px´

1 q and g1px`

1 q “ g1px´

1 q. As fpxq ě gpxq everywhere and

fpx1q “ gpx1q, we have f 1px´

1 q ď g1px´

1 q.

If f 1px´

1 q ă g1px´

1 q, we have f 1px`

1 q ă g1px`

1 q and by fpx1q “ gpx1q, we have there exists ϵ ą 0 such that

fpx1 ` ϵq ă gpx1 ` ϵq, which is a contradiction to fpxq ě gpxq everywhere.

If f 1px´

1 q “ g1px´

1 q, we define x2 as x2 “ inftx : fpxq “ gpxq for any x P rx,x1su. Then, we have f 1px`

2 q “

g1px`

2 q. By the definition of x2, we know that for any ϵ1 ą 0, we have fpx2 ´ ϵ1q ą gpx2 ´ ϵ1q, which implies

that fpx´

2 q ‰ gpx´

2 q. As f 1px`

2 q “ g1px`

2 q, we have either fpx´

2 q ‰ f 1px`

2 q or gpx´

2 q ‰ g1px`

2 q, which implies that

x2 is an x-vertex for f or g, which is a contradiction.

˝
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