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Abstract

We propose a family of recursive cutting-plane algorithms to solve feasibility problems with con-
strained memory, which can also be used for first-order convex optimization. Precisely, in order to find a
point within a ball of radius ǫ with a separation oracle in dimension d—or to minimize 1-Lipschitz con-

vex functions to accuracy ǫ over the unit ball—our algorithms use O( d
2

p
ln 1

ǫ
) bits of memory, and make

O((C d

p
ln 1

ǫ
)p) oracle calls, for some universal constant C ≥ 1. The family is parametrized by p ∈ [d] and

provides an oracle-complexity/memory trade-off in the sub-polynomial regime ln 1
ǫ
≫ ln d. While several

works gave lower-bound trade-offs (impossibility results) [29, 5]—we explicit here their dependence with
ln 1

ǫ
, showing that these also hold in any sub-polynomial regime—to the best of our knowledge this is

the first class of algorithms that provides a positive trade-off between gradient descent and cutting-plane
methods in any regime with ǫ ≤ 1/

√
d. The algorithms divide the d variables into p blocks and optimize

over blocks sequentially, with approximate separation vectors constructed using a variant of Vaidya’s
method. In the regime ǫ ≤ d−Ω(d), our algorithm with p = d achieves the information-theoretic optimal
memory usage and improves the oracle-complexity of gradient descent.

1 Introduction

Optimization algorithms are ubiquitous in machine learning, from solving simple regressions to training
neural networks. Their essential roles have motivated numerous studies on their efficiencies, which are
usually analyzed through the lens of oracle-complexity: given an oracle (such as function value, or subgra-
dient oracle), how many calls to the oracle are needed for an algorithm to output an approximate optimal
solution? [32]. However, ever-growing problem sizes have shown an inadequacy in considering only the oracle-
complexity, and have motivated the study of the trade-off between oracle-complexity and other resources
such as memory [49, 29, 5] and communication[23, 38, 40, 43, 31, 50, 48, 47].

In this work, we study the oracle-complexity/memory trade-off for first-order non-smooth convex opti-
mization, and the closely related feasibility problem, with a focus on developing memory efficient (determin-
istic) algorithms. Since [49] formally posed as open problem the question of characterizing this trade-off,
there have been exciting results showing what is impossible: for convex optimization in R

d, [29] shows that
any randomized algorithm with d1.25−δ bits of memory needs at least Ω̃(d1+4δ/3) queries, and this has later
been improved for deterministic algorithms to d1−δ bits of memory or Ω̃(d1+δ/3) queries by [5]; in addition
[5] shows that for the feasibility problem with a separation oracle, any algorithm which uses d2−δ bits of
memory needs at least Ω̃(d1+δ) queries.

Despite these recent results on the lower bounds, all known first-order convex optimization algorithms that
output an ǫ-suboptimal point fall into two categories: those that are quadratic in memory but can potentially
achieve the optimal O(d ln 1

ǫ ) query complexity, as represented by the center-of-mass method, and those that
have O( 1

ǫ2 ) query complexity but only need the optimal O(d ln 1
ǫ ) bits of memory, as represented by the

classical gradient descent [49]. In addition, the above-mentioned memory bounds apply only between queries,
and in particular the center-of-mass method [49] is allowed to use infinite memory during computations.

We propose a family of memory-constrained algorithms for the stronger feasibility problem in which one
aims to find a point within a set Q containing a ball of radius ǫ, with access to a separation oracle. In
particular, this can be used for convex optimization since the subgradient information provides a separation
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vector. Our algorithms use O(d2p ln 1
ǫ ) bits of memory (including during computations) and O((C d

p ln
1
ǫ )
p)

queries for some universal constant C ≥ 1, and a parameter p ∈ [d] that can be chosen by the user.
Intuitively, in the context of convex optimization, the algorithms are based on the idea that for any function
f(x,y) convex in the pair (x,y), the partial minimum miny f(x,y) as a function of x is still convex and,
using a variant of Vaidya’s method proposed in [25], our algorithm can approximate subgradients for that
function miny f(x,y), thereby turning an optimization problem with variables (x,y) to one with just x.
This idea, applied recursively with the variables divided into p blocks, gives our family of algorithms and
the above-mentioned memory and query complexity.

When p = 1, our algorithm is a memory-constrained version of Vaidya’s method [46, 25], and improves
over the center-of-mass [49] method by a factor of ln 1

ǫ in terms of memory while having optimal oracle-
complexity. The improvements provided by our algorithms are more significant in regimes when ǫ is very
small in the dimension d: increasing the parameter p can further reduce the memory usage of Vaidya’s
method (p = 1) by a factor ln 1

ǫ/ ln d, while still improving over the oracle-complexity of gradient descent.
In particular, in a regime ln 1

ǫ = poly(ln d), these memory improvements are only in terms of ln d factors.
However, in sub-polynomial regimes with potentially ln 1

ǫ = dc for some constant c > 0, these provide
polynomial improvements to the memory of standard cutting-plane methods.

As a summary, this paper makes the following contributions.

• Our class of algorithms provides a trade-off between memory-usage and oracle-complexity whenever
ln 1

ǫ ≫ ln d. Further, taking p = 1 improves the memory-usage from center-of-mass [49] by a factor
ln 1

ǫ , while preserving the optimal oracle-complexity.

• For ln 1
ǫ ≥ Ω(d ln d), our algorithm with p = d is the first known algorithm that outperforms gradient

descent in terms of the oracle-complexity, but still maintains the optimal O(d ln 1
ǫ ) memory usage.

• We show how to obtain a ln 1
ǫ dependence in the known lower-bound trade-offs [29, 5], confirming that

the oracle-complexity/memory trade-off is necessary for any regime ǫ . 1√
d
.

2 Setup and Preliminaries

In this section, we precise the formal setup for our results. We follow the framework introduced in [49], to
define the memory constraint on algorithms with access to an oracle O : S → R which takes as input a
query q ∈ S and outputs a response O(q) ∈ R. Here, the algorithm is constrained to update an internal
M -bit memory between queries to the oracle.

Definition 2.1 (M -bit memory-constrained algorithm [49, 29, 5]). Let O : S → R be an oracle. An M -bit
memory-constrained algorithm is specified by a query function ψquery : {0, 1}M → S and an update function
ψupdate : {0, 1}M × S × R → {0, 1}M . The algorithm starts with the memory state Memory0 = 0M and
iteratively makes queries to the oracle. At iteration t, it makes the query qt = ψquery(Memoryt−1) to the
oracle, receives the response rt = O(qt) then updates its memory Memoryt = ψupdate(Memoryt−1, qt, rt).

The algorithm can stop at any iteration and the last query is its final output. Importantly, this model
does not enforce constraints on the memory usage during the computation of ψupdate and ψquery . This is
ensured in the stronger notion of a memory-constrained algorithm with computations. These are precisely
algorithms that have constrained memory including for computations, with the only specificity that they
need a decoder function φ to make queries to the oracle from their bit memory, and a discretization function
ψ to write a discretized response into the algorithm’s memory.

Definition 2.2 (M -bit memory-constrained algorithm with computations). Let O : S → R be an oracle.
We suppose that we are given a decoding function φ : {0, 1}⋆ → S and a discretization function ψ : R×N→
{0, 1}⋆ such that ψ(r, n) ∈ {0, 1}n for all r ∈ R. An M -bit memory-constrained algorithm with computations
is only allowed to use an M -bit memory in {0, 1}M even during computations. The algorithm has three
special memory placements Q,N,R. Say the contents of Q and N are q and n respectively. To make a
query, R must contain at least n bits. The algorithm submits q to the encoder which then submits the query
φ(q) to the oracle. If r = O(φ(q)) is the oracle response, the discretization function then writes ψ(r, n) in
the placement R.

2



Feasibility problem. In this problem, the goal is to find a point x ∈ Q, where Q ⊂ Cd := [−1, 1]d is
a convex set. We choose the cube [−1, 1]d as prior bound for convenience in our later algorithms, but the
choice of norm for this prior ball can be arbitrary and does not affect our results. The algorithm has access
to a separation oracle OS : Cd → {Success} ∪Rd, that for a query x ∈ R

d either returns Success if x ∈ Q, or
a separating hyperplane g ∈ R

d, i.e., such that g⊤x < g⊤x′ for any x′ ∈ Q. We suppose that the separating
hyperplanes are normalized, ‖g‖2 = 1. An algorithm solves the feasibility problem with accuracy ǫ if the
algorithm is successful for any feasibility problem such that Q contains an ǫ-ball Bd(x

⋆, ǫ) for x⋆ ∈ Cd.
As an important remark, this formulation asks that the separation oracle is consistent over time: when

queried at the exact same point x, the oracle always returns the same separation vector. In this context,
we can use the natural decoding function φ which takes as input d sequences of bits and outputs the vector
with coordinates given by the sequences interpreted in base 2. Similarly, the natural discretization function
ψ takes as input the separation hyperplane g and outputs a discretized version up to the desired accuracy.
From now, we can omit these implementation details and consider that the algorithm can query the oracle
for discretized queries x, up to specified rounding errors.

Remark 2.1. An algorithm for the feasibility problem with accuracy ǫ/(2
√
d) can be used for first-order

convex optimization. Suppose one aims to minimize a 1-Lipschitz convex function f over the unit ball, and
output an ǫ-suboptimal solution, i.e., find a point x such that f(x) ≤ miny∈Bd(0,1) f(y) + ǫ. A separation
oracle for Q = {x : f(x) ≤ miny∈Bd(0,1) f(y) + ǫ} is given at a query x by the subgradient information

from the first-order oracle: − ∂f(x)
‖∂f(x)‖ . Its computation can also be carried memory-efficiently up to rounding

errors since if ‖∂f(x)‖ ≤ ǫ/(2
√
d), the algorithm can return x and already has the guarantee that x is an

ǫ-suboptimal solution (Cd has diameter 2
√
d). Notice that because f is 1-Lipschitz, Q contains a ball of radius

ǫ/(2
√
d) (the factor 1/(2

√
d) is due to potential boundary issues). Hence, it suffices to run the algorithm for

the feasibility problem while keeping in memory the queried point with best function value.

2.1 Known trade-offs between oracle-complexity and memory

Known lower-bound trade-offs. All known lower bound apply to the more general class of memory-
constrained algorithms without computational constraints given in Definition 2.1. [32] first showed that
O(d ln 1

ǫ ) queries are needed for solving convex optimization to ensure that one finds an ǫ-suboptimal solution.
Further, O(d ln 1

ǫ ) bits of memory are needed even just to output a solution in the unit ball with ǫ accuracy
[49]. These historical lower bounds apply in particular to the feasibility problem and are represented in the
pictures of Fig. 1 as the dashed pink region.

More recently, [29] showed that achieving both optimal oracle-complexity and optimal memory is impos-
sible for convex optimization. They show that a possibly randomized algorithm with d1.25−δ bits of memory
makes at least Ω̃(d1+4δ/3) queries. This result was extended for deterministic algorithms in [5] which shows
that a deterministic algorithm with d1−δ bits of memory makes Ω̃(d1+δ/3) queries. For the feasibility prob-
lem, they give an improved trade-off: any deterministic algorithm with d2−δ bits of memory makes Ω̃(d1+δ)
queries. These trade-offs are represented in the left picture of Fig. 1 as the pink, red, and purple solid region,
respectively.

Known upper-bound trade-offs. Prior to this work, to the best of our knowledge only two algorithms
were known in the oracle-complexity/memory landscape. First, cutting-plane algorithms achieve the opti-
mal oracle-complexity O(d ln 1

ǫ ) but use quadratic memory. The memory-constrained (MC) center-of-mass

method analyzed in [49] uses in particular O(d2 ln2 1
ǫ ) memory. Instead, if one uses Vaidya’s method which

only needs to store O(d) cuts instead O(d ln 1
ǫ ), we show that one can achieve O(d2 ln 1

ǫ ) memory. These
algorithms only use the separation oracle and hence apply to both convex optimization and the feasibility
problem. On the other hand, the memory-constrained gradient descent for convex optimization [49] uses the
optimal O(d ln 1

ǫ ) memory but makes O( 1
ǫ2 ) iterations. While the analysis in [49] is only carried for convex

optimization, we can give a modified proof showing that gradient descent can also be used for the feasibility
problem.
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2.2 Other related works

Vaidya’s method [46, 36, 1, 2] and the variant [25] that we use in our algorithms, belong to the family of
cutting-plane methods. Perhaps the simplest example of an algorithm in this family is the center-of-mass
method, which achieves the optimal O(d ln 1

ǫ ) oracle-complexity but is computationally intractable, and
the only known random walk-based implementation [4] has computational complexity O(d7 ln 1

ǫ ). Another
example is the ellipsoid method, which has suboptimal O(d2 ln 1

ǫ ) query complexity, but has an improved
computational complexity O(d4 ln 1

ǫ ). [8] pointed out that Vaidya’s method achieves the best of both worlds
by sharing the O(d ln 1

ǫ ) optimal query complexity of the center-of-mass, and achieving a computational
complexity of O(d1+ω ln 1

ǫ )
1. In a major breakthrough, this computational complexity was improved to

O(d3 ln3 1
ǫ ) in [25], then to O(d3 ln 1

ǫ ) in [20]. We refer to [8, 25, 20] for more detailed comparisons of these
algorithms.

Another popular convex optimization algorithm that requires quadratic memory is the Broyden– Fletcher–
Goldfarb– Shanno (BFGS) algorithm [41, 7, 18, 19], which stores an approximated inverse Hessian matrix as
gradient preconditioner. Several works aimed to reduce the memory usage of BFGS; in particular, the limited
memory BFGS (L-BFGS) stores a few vectors instead of the entire approximated inverse Hessian matrix [35,
28]. However, it is still an open question whether even the original BFGS converges for non-smooth convex
objectives [27].

Lying at the other extreme of the oracle-complexity/memory trade-off is gradient descent, which achieves
the optimal memory usage but requires significantly more queries than center-of-mass or Vaidya’s method
in the regime ǫ . 1√

d
. There is a rich literature of works aiming to speed up gradient descent, such as

the optimized gradient method [15, 14], Nesterov’s Acceleration [33], the triple momentum method [39],
geometric descent [9], quadratic averaging [16], the information-theoretic exact method [44], or Big-Step-
Little-Step method [21]. Interested readers can find a comprehensive survey on acceleration methods in [10].
However, these acceleration methods usually require additional smoothness or strong convexity assumptions
(or both) on the objective function, due to the known Ω( 1

ǫ2 ) query lower bound in the large-scale regime
ǫ & 1√

d
for any first order method where the query points lie in the span of the subgradients of previous

query points [34].
Besides accelerating gradient descent, researchers have investigated more efficient ways to leverage sub-

gradients obtained in previous iterations. Of interest are bundle methods [3, 22, 26], that have found a wide
range of applications [45, 24]. In their simplest form, they minimize the sum of the maximum of linear lower
bounds constructed using past oracle queries, and a regularization term penalizing the distance from the
current iteration variable. Although the theoretical convergence rate of the bundle method is the same as
that of gradient descent, in practice, bundle methods can benefit from previous information and substantially
outperform gradient descent [3].

The increasing size of optimization problems has also motivated the development of communication-
efficient optimization algorithms in distributed settings such as [23, 38, 40, 43, 31, 50, 48, 47]. Moreover,
recent works have explored the trade-off between sample complexity and memory/communication complexity
for learning problems under the streaming model, with notable contributions including [6, 11, 12, 37, 42, 30].

2.3 Organization of the paper

In Section 3 we state our main results, in particular, we give the oracle-complexity and memory guarantees of
our algorithms. Although these are also memory-constrained for computations, we first consider in Section 4
simpler algorithms for memory-constrained optimization without computational concerns. We show how
to constrain the memory usage during computations as well in Section 5. In Section 6 we describe how to
improve by a ln 1

ǫ factor the known lower-bound trade-offs. For completeness, we give a convergence proof for
the memory-constrained gradient descent for feasibility problems Section 7. Last, we conclude in Section 8.

1
ω < 2.373 is the exponent of matrix multiplication
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3 Main results

We first check that the memory-constrained gradient descent method solves feasibility problems. This was
known for convex optimization [49] and the same algorithm with a modified proof gives the following result.

Proposition 3.1. The memory-constrained gradient descent algorithm solves the feasibility problem with
accuracy ǫ ≤ 1√

d
using O(d ln 1

ǫ ) bits of memory and O( 1
ǫ2 ) calls to the separation oracle.

Our main contribution is a class of algorithms based on Vaidya’s cutting-plane method that provide a
query-complexity / memory tradeoff. More precisely, we show the following.

Theorem 3.2. For any 1 ≤ p ≤ d, there is a deterministic first-order algorithm that solves the feasibil-

ity problem for accuracy ǫ ≤ 1√
d
, using O(d2p ln 1

ǫ ) bits of memory (including during computations), with

O((C d
p ln

1
ǫ )
p) calls to the separation oracle, and computational complexity O((C(dp )1+ω ln 1

ǫ )
p), where C ≥ 1

is a universal constant.

To better understand the implications of this result, it is useful to compare the provided class of algo-
rithms to the only two algorithms known in the oracle-complexity/memory tradeoff landscape: the memory-
constrained center-of-mass method and the memory-constrained gradient descent [49].

We begin with a comparison to the center-of-mass-based method. For p = 1, the resulting procedure,
which is essentially a memory-constrained Vaidya’s algorithm has optimal oracle-complexity O(d ln 1

ǫ ) and
uses O(d2 ln 1

ǫ ) bits of memory. This improves by a ln 1
ǫ factor the memory usage of the center-of-mass-based

algorithm provided in [49], which used O(d2 ln2 1
ǫ ) memory and had the same optimal oracle-complexity.

Next, we recall that the memory-constrained gradient descent method used the optimal number O(d ln 1
ǫ )

bits of memory (including for computations), and a sub-optimal O( 1
ǫ2 ) oracle-complexity. While our class

of algorithms uses less memory for increasing value of p, the oracle-complexity is exponential in p. This
significantly restricts the values of p for which our results are advantageous compared to the oracle-complexity
of gradient descent. The range of application of Theorem 3.2 is given in the next result.

Corollary 3.1. The algorithms given in Theorem 3.2 effectively provide a tradeoff for p ≤ O( ln
1
ǫ

ln d ∨ d).
Precisely, this provides a tradeoff between

1. using O(d2 ln 1
ǫ ) memory with optimal O(d ln 1

ǫ ) oracle-complexity, and

2. using O(d2 ln d ∧ d ln 1
ǫ ) memory with O( 1

ǫ2 ∨ (C ln 1
ǫ )
d) oracle-complexity.

Proof. Suppose ǫ ≥ 1
dd . Then, for some pmax = Θ(

C ln 1
ǫ

2 ln d ) ≤ d, the algorithm from Theorem 3.2 yields aO( 1
ǫ2 )

oracle-complexity. On the other hand, if ǫ ≤ 1
dd
, we can take pmax = d, which gives an oracle-complexity

O((C ln 1
ǫ )
d).

Importantly, for ǫ ≤ 1
dO(d) , taking p = d yields an algorithm that uses the optimal memory O(d ln 1

ǫ )
and has an improved query complexity over gradient descent. In this regime of small (virtually constant)
dimension, for the same memory usage, gradient descent has a query complexity that is polynomial in ǫ,
O( 1

ǫ2 ), while our algorithm has poly-logarithmic dependence in ǫ, Od(lnd 1
ǫ ), where Od hides an exponential

constant in d. It remains open whether this lnd 1
ǫ dependence in the oracle-complexity is necessary.

To the best of our knowledge, this is the first example of an algorithm that improves over gradient descent
while keeping its optimal memory usage in any regime where ǫ ≤ 1√

d
. While this improvement holds only

in the exponential regime ǫ ≤ 1
dO(d) , Theorem 3.2 still provides a non-trivial trade-off whenever ln 1

ǫ ≫ ln d,

and improves over the known memory-constrained center-of-mass in the standard regime ǫ ≤ 1√
d
[49]. Fig. 1

depicts the trade-offs in the two regimes mentioned earlier.
Last, we note that the lower-bound trade-offs presented in [29, 5] do not show an explicit dependence in

the accuracy ǫ. Especially in the regime when ln 1
ǫ ≫ ln d, this yields sub-optimal lower bounds (in fact even

in the regime ǫ = 1/poly(d), our more careful analysis improves the lower bound on the memory by a ln d
factor). We show with simple arguments that one can extend their results to include a ln 1

ǫ factor for both
memory and query complexity.
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Oracle

complexity

d ln 1
ǫ

d5/4

ln d
ln 1

ǫ
d2 ln d

d ln 1
ǫ

d4/3

ln4/3 d
ln 1

ǫ

d2

ln2 d
ln 1

ǫ

1/ǫ2

MC-GD [49]

MC-Center

of Mass [49]

MC-Vaidya

d2 ln2 1
ǫ

d2 ln 1
ǫ

d2

ln2 d
ln 1

ǫ

Memory (bits)

Regime

lnd ≪ ln 1

ǫ
≪ d lnd

d ln 1
ǫ

d ln 1
ǫ

1/ǫ2

d2 ln2 1
ǫ

d2 ln 1
ǫ

(C ln 1
ǫ
)d

Regime

ln 1

ǫ
= Ω(d ln d)

Figure 1: Trade-offs between available memory and first-order oracle-complexity for the feasibility problem
over the unit ball. MC=Memory-constrained. GD=Gradient Descent. The left picture corresponds to the
regime ǫ ≫ d−Ω(d) and ǫ ≤ 1/poly(d) and the right picture represents the regime ǫ ≤ d−O(d). For both
figures, the dashed pink ”L” (resp. green inverted ”L”) region corresponds to historical lower (resp. upper)
bounds for randomized algorithms. The solid pink (resp. red) lower bound tradeoff is due to [29] (resp. [5])
for randomized algorithms (resp. deterministic algorithms). The purple region is a lower bound tradeoff
for the feasibility problem for accuracy ǫ and deterministic algorithms [5]. All these lower-bound trade-offs
are represented with their ln 1

ǫ dependence (Theorem 3.3). We use memory-constrained Vaidya’s method
to gain a factor ln 1

ǫ in memory compared to memory-constrained center-of-mass [49], which gives the light
green region, and a class of algorithms represented in dark green, that allows trading query-complexity for
an extra ln 1

ǫ/ lnd factor saved in memory (Theorem 3.2). The dark green dashed region in the left figure
emphasizes that the area covered by our class of algorithms depends highly on the regime for the accuracy
ǫ: the resulting improvement in memory is more significant as ǫ is smaller. In the regime when ǫ ≤ d−O(d)

(right figure), our class of algorithms improves over the oracle-complexity of gradient descent while keeping
the optimal memory O(d ln 1

ǫ ).

Theorem 3.3. For ǫ ≤ 1/poly(d) and any δ ∈ [0, 1],

1. any (potentially randomized) algorithm guaranteed to minimize 1-Lipschitz convex functions over the
unit ball with accuracy ǫ uses at least d5/4−δ ln 1

ǫ bits of memory or makes at least Ω̃(d1+4δ/3 ln 1
ǫ )

queries,

2. any deterministic algorithm guaranteed to minimize 1-Lipschitz convex functions over the unit ball with
accuracy ǫ uses at least d2−δ ln 1

ǫ bits of memory or makes at least Ω̃(d1+δ/3 ln 1
ǫ ) queries,

3. any deterministic algorithm guaranteed to solve the feasibility problem over the unit ball with accuracy
ǫ uses at least d2−δ ln 1

ǫ bits of memory or makes at least Ω̃(d1+δ ln 1
ǫ ) queries,

where Ω̃ hides lnO(1) d factors.

To get these improvements, we use simple arguments to adapt the proofs from [29, 5], and that can be
readily used to exhibit a ln 1

ǫ dependence in both memory and oracle-complexity for potential future works
improving over these lower bounds trade-offs. Fig. 1 presents these improved lower bounds.
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4 Memory-constrained feasibility problem without computation

In this section, we present a class of algorithms that are memory-constrained according to Definition 2.1
and achieve the desired memory and oracle-complexity bounds. We emphasize that the memory constraint
is only applied between calls to the oracle and as a result, the algorithm is allowed infinite computation
memory and computation power between calls to the oracle.

We start by defining discretization functions that will be used in our algorithms. We first define the
discretization in one dimension Discretize1 as follows. For ξ > 0 and x ∈ [−1, 1],

Discretize1(x, ξ) = sign(x) · ξ⌊|x|/ξ⌋.

Next, we define the discretization Discretized for general dimensions d ≥ 1. For any x ∈ C and ξ > 0,

Discretized(x, ξ) =

{

Discretize1

(

xj ,
ξ√
d

)}

j∈[d]

.

One can easily check that for any x ∈ C,

‖x− Discretized(x, ξ)‖ ≤ ξ and ‖Discretized(x, ξ)‖ ≤ ‖x‖. (1)

Further, one can easily check that to represent any output of Discretized(·, ξ), one needs at most d ln 2
√
d
ξ =

O(d ln d
ξ ) bits.

4.1 Memory-constrained Vaidya’s method

Our algorithm recursively uses Vaidya’s cutting-plane method [46] and subsequent works expanding on this
method. We briefly describe the method. Given a polyhedron P = {x : Ax ≥ b}, we define si(x) = a⊤

i x−bi
and Sx = diag(si(x), i ∈ [d]). We will also use the shorthand Ax = S−1

x A. The volumetric barrier is defined
as

VA,b(x) =
1

2
ln det(A⊤

xAx).

At each step, Vaidya’s method queries the volumetric center of the polyhedron, which is the point minimizing
the volumetric barrier. For convenience, we denote by VolumetricCenter this function, i.e., for any A ∈ R

m×d

and b ∈ R
d defining a non-empty polyhedron,

VolumetricCenter(A, b) = arg min
x:Ax≥b

VA,b(x).

When the polyhedron is unbounded, we can for instance take VolumetricCenter(A, b) = 0. Vaidya’s method
makes use of leverage scores for constraints of the polyhedron, defined as follows.

σi = (AxH
−1A⊤

x )i,i where H = A⊤
xAx.

We are now ready to define the update procedure for the polyhedron considered by Vaidya’s volumetric
method. We will denote by Pt the polyhedron stored in memory after making t queries. The method keeps
in memory the constraints defining the current polyhedron and the iteration index when these constraints
were added, which will be necessary for our next procedures. Hence, the polyhedron will be stored in
the form Pt = {(ki,ai, bi), i ∈ [m]}, and the associated constraints are given via {x : Ax ≥ b} where
A⊤ = [a1, . . . ,am] and b⊤ = [b1, . . . , bm]. By abuse of notation, we will write VolumetricCenter(P) for the
volumetric center of the polyhedron VolumetricCenter(A, b) where A and b define the constraints stored in
P .

Initially the polyhedron is simply Cd, these constraints are given −1 index for convenience, and they will
not play a role in the next steps. At each iteration, if the constraint i ∈ [m] with minimum leverage score σi
falls below a given threshold σmin, it is removed from the polyhedron. Otherwise, we query the volumetric
center of the current polyhedron and add the separation hyperplane as a constraint to the polyhedron. We
bound the number of iterations of the procedure by

T (δ, d) =

⌈

c · d
(

1.4 ln
1

δ
+ 2 lnd+ 2 ln(1 + 1/σmin)

)⌉

,

7



where σmin and c are parameters that will be fixed shortly.
Instead of making a call directly to the oracle OS , we suppose that one has access to an oracleO : Id → R

d

where Id = (Z×R
d+1)⋆ has exactly the shape of the memory storing the information from the polyhedron.

This form of oracle will be crucial in our recursive calls Vaidya’s method. For intuition, an important example
of such an oracle is simply O : P ∈ Id 7→ OS(VolumetricCenter(P)).

Last, in our recursive method, we will not assume that oracle responses are normalized. As a result, we
specify that if the norm of the response is too small, we can stop the algorithm. We suppose however that
the oracle already returns discretized separation oracle, which will be ensured in the following procedures.
The cutting-plane algorithm is formally described in Algorithm 1.

Input: O : Id → R
d, δ, ξ ∈ (0, 1)

1 Let Tmax = T (δ, d) and initialize P0 := {(−1, ei,−1), (−1,−ei,−1), i ∈ [d]}
2 for t = 0, . . . , Tmax do
3 if {x : Ax ≥ b} = ∅ then return Pt;
4 if mini∈[m] σi < σmin then
5 Pt+1 = Pt \ {(kj ,aj , bj)} where j ∈ argmini∈[m] σi
6 else if ω := VolumetricCenter(Pt) /∈ Cd then
7 Pt+1 = Pt ∪ {(−1,−sign(ωj)ej ,−1)} where j ∈ [d] has |ωj| > 1
8 else

9 g = O(Pt) and b = ξ
⌈

g⊤ω
ξ

⌉

, where ω = VolumetricCenter(Pt)
10 Pt+1 = Pt ∪ {(t, g, b)}
11 if ‖g‖ ≤ δ/(2

√
d) then return Pt+1 ;

12 end
13 return PTmax+1.

Algorithm 1: Memory-constrained Vaidya’s volumetric method

Given a feasibility problem, with an appropriate choice of parameters, this procedure finds an approximate
solution. We base the constants out of the paper [2].

Lemma 4.1. Fix σmin = 0.04 and c = 1
0.0014 ≈ 715. Let δ, ξ ∈ (0, 1) and O : Id → R

d. Write P =
{(ki,ai, bi), i ∈ [m]} as the output of Algorithm 1 run with O, δ and ξ. Suppose that the responses of the
oracle O have norm bounded by one. Then,

min
λi≥0, i∈[m],∑

i∈[m] λi=1

max
y∈Cd

m
∑

i=1

λi(a
⊤
i y − bi) = max

x∈Cd

min
i∈[m]

(a⊤
i x− bi) ≤ δ.

Proof. We first consider the case when the algorithm terminates because of a query g = O(Pt) such that
‖g‖ ≤ δ/(2

√
d). Then, for any x ∈ Cd, one directly has

g⊤x− b ≤ g⊤(x− ω) ≤ 2
√
d‖g‖ ≤ δ.

where ω is the volumetric center of the resulting polyhedron. In the second inequality we used the fact that
ω ∈ Cd, otherwise the algorithm would not have terminated at that step.

We next turn to the other cases and start by showing that the output polyhedron does not contain a
ball of radius δ. This is immediate if the algorithm terminated because the polyhedron was empty. We then
suppose this was not the case, and follow the same proof as given in [2]. Algorithm 1 and the one provided in
[2] coincide when removing a constraint of the polyhedron. Hence, it suffices to consider the case when we add

a constraint. We use the notation Ã
⊤
= [A⊤,a⊤m+1], b̃

⊤
= [b⊤, bm+1] for the updated matrixA and vector b

after adding the constraint. We also denote ω = VolumetricCenter(A, b) (resp. ω̃ = VolumetricCenter(Ã, b̃))
the volumetric center of the polyhedron before (resp. after) adding the constraint. Next, we consider the
vector (b′)⊤ = [b⊤,a⊤m+1ω], which would have been obtained if the cut was performed at ω exactly. We

then denote ω′ = VolumetricCenter(Ã, b′). Then proof of [2] shows that

VÃ,b′(ω′) ≥ VA,b(ω) + 0.0340.
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We now observe that by construction, we have b̃m+1 ≥ a⊤
m+1ω, so that the polyhedron associated to (Ã, b̃)

is more constrained than the one associated to (Ã, b′). As a result, we have VÃ,b̃(x) ≥ VÃ,b′(x), for any

x ∈ R
d such that Ãx ≥ b̃. Therefore,

VÃ,b̃(ω̃) ≥ VÃ,b′(ω̃) ≥ VÃ,b′(ω′) ≥ VA,b(ω) + 0.0340.

This ends the modifications in the proof of [2]. With the notations of this paper, we still have ∆V + = 0.340
and ∆V − = 0.326, so that ∆V = 0.0014. Then, because c = 1

∆V , the same proof shows that the procedure
is successful for precision δ: the final polyhedron (A, b) returned by Algorithm 1 does not contains a ball
of radius > δ. As a result, whether the algorithm performed all Tmax iterations or not, {x : Ax ≥ b} does
not contain a ball of radius > δ′, where A and b define the constraints stored in the output P . Now letting
m be the objective value of the right optimization problem, there exists x ∈ Cd such that for all t ≤ T ,
g⊤t (x− ct) ≥ m. Therefore, for any x′ ∈ Bd(x,m) one has

∀i ∈ [m],a⊤i x
′ − bi ≥ m+ a⊤t (x

′ − x) ≥ m− ‖x′ − x‖ ≥ 0.

In the last inequality we used ‖at‖≤1. This implies that the polyhedron contains Bd(x,m). Hence, m ≤ δ.
This ends the proof of the right inequality. The left equality is a direct application of strong duality for

linear programming.

From now, we use the parameters σmin = 0.04 and c = 1/0.0014 as in Lemma 4.1. Since the memory
of both Vaidya’s method and center-of-mass consists primarily of the constraints, we recall an important
feature of Vaidya’s method that the number of constraints at any time is O(d).

Lemma 4.2 ([46, 1, 2]). At any time while running Algorithm 1, the number of constraints of the current
polyhedron is at most d

σmin
+ 1.

4.2 A recursive algorithm

The algorithm we use is recursive in the following sense. We can write Cm+n = Cm × Cn and aim to apply
Vaidya’s method to the first m coordinates. To do so, we need to approximate a separation oracle on these
m coordinates only, which corresponds to giving separation hyperplanes with small values for the last n
coordinates. This can be achieved using the following auxiliary linear program. For P ∈ In, we define

min
λi≥0, i∈[m],∑

i∈[m] λi=1

max
y∈Cn

m
∑

i=1

λi(a
⊤
i y − bi), m = |P| (Paux(P))

where as before, A and b define the constraints stored in P . The procedure to obtain an approximate
separation oracle on the first n coordinates Cn is given in Algorithm 2.

Input: δ, ξ, Ox : In → R
m and Oy : In → R

n

1 Run Algorithm 1 with δ, ξ and Oy to obtain polyhedron P⋆
2 Solve Paux(P⋆) to get a solution λ⋆

3 Store k⋆ = (ki, i ∈ [m]) where m = |P⋆|, and λ⋆ ← Discretize(λ⋆, ξ)
4 Initialize P0 := {(−1, ei,−1), (−1− ei,−1), i ∈ [d]} and u = 0 ∈ R

m

5 for t = 0, 1, . . . ,maxi ki do
6 if t = k⋆i for some i ∈ [m] then
7 gx = Ox(Pt)
8 u← Discretizem(u+ λ⋆i gx, ξ)

9 Update Pt to get Pt+1 as in Algorithm 1

10 end
11 return u

Algorithm 2: ApproxSeparationVectorδ,ξ(Ox, Oy)
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The next step involves using this approximation recursively. We write d =
∑p

i=1 ki, and interpret Cd
as Ck1 × · · · × Ckp . In particular, for x ∈ Cd, we write x = (x1, . . . ,xp) where xi ∈ Cki for i ∈ [p].
Applying Algorithm 2 recursively, we will be able to obtain an approximate separation oracle for the first i
coordinates Ck1 × · · · × Cki . However, storing such separation vectors would be too memory-expensive, e.g.,
for i = p, that would correspond to storing the separation hyperplanes from OS directly. Instead, given
j ∈ [i], Algorithm 3 recursively computes the xj component of an approximate separation oracle for the first
i variables (x1, . . . ,xi), via the procedure ApproxOracle(i, j). Then ApproxOracle(1, 1) will be used to run
the standard memory-constrained Vaidya’s method (Algorithm 1) to solve the feasibility problem.

Input: δ, ξ, 1 ≤ j ≤ i ≤ p, P(r) ∈ Ikr for r ∈ [i], OS : Cd → R
d

1 if i = p then

2 xr = VolumetricCenter(Ar, br) where (Ar, br) defines the constraints stored in P(r) for r ∈ [p]
3 (g1, . . . , gp) = OS(x1, . . . ,xp)

4 return Discretizekj (gj , ξ)

5 end

6 Define Ox : Iki+1 → R
kj as ApproxOracleδ,ξ,Of

(i + 1, j,P(1), , . . . ,P(i), ·)
7 Define Oy : Iki+1 → R

ki+1 as ApproxOracleδ,ξ,Of
(i+ 1, i+ 1,P(1), . . . ,P(i), ·)

8 return ApproxSeparationVectorδ,ξ(Ox, Oy)

Algorithm 3: ApproxOracleδ,ξ,OS
(i, j,P(1), . . . ,P(i))

We are ready to describe our final algorithm that uses ApproxOracleδ,ξ,OS
(1, 1, ·) to solve the original

problem with the memory-constrained Vaidya’s method, given in Algorithm 4.

Input: δ, ξ, and OS : Cd → R
d a separation oracle

Check: Throughout the algorithm, if OS returned Success to a query x, return x
1 Run Algorithm 1 with parameters δ and ξ and oracle ApproxOracleδ,ξ,OS

(1, 1, ·)
Algorithm 4: Memory-constrained algorithm for convex optimization

4.3 Proof of the query complexity and memory usage of Algorithm 4

We first describe the recursive calls of Algorithm 3 in more detail. To do so, consider running the procedure
ApproxOracle(i, j,P(1), . . . ,P(i)) where i < p, which corresponds to running Algorithm 2 for specific oracles.
We say that this is a level-i run. Then, the algorithm performs at most 2T (δ, ki+1) calls to ApproxOracle(i+
1, i + 1,P(1), . . . ,P(i), ·), where the factor 2 comes from the fact that Vaidya’s method Algorithm 1 is
effectively run twice in Algorithm 2. The solution to (Paux(P)) has as many components as constraints in

the last polyhedron, which is at most ki+1

σmin
+1 by Lemma 4.2. Hence, the number of calls to ApproxOracle(i+

1, j,P(1), . . . ,P(i), ·) is at most ki+1

σmin
+1. In total, that is O(ki+1 ln

1
δ ) calls to the level i+1 of the recursion.

We next aim to understand the output of running ApproxOracle(1, 1,P(1)). We denote by λ(P(1)) the
solution Paux(P⋆) computed at l.2 of the first call to Algorithm 2, where P⋆ is the output polyhedron of
the first call to Algorithm 1. Denote by S(P(1)) the set of indices of coordinates from λ(P(1)) for which
the procedure performed a call to ApproxOracle(2, 1,P(1), ·). In other words, S(P(1)) contains the indices
of all coordinates of λ(P(1)), except those for which the corresponding query lay outside of the unit cube,

or the initial constraints of the cube. For any index l ∈ S(P(1)), let P(2)
l denote the state of the current

polyhedron (Pt in l.7 of Algorithm 2) when that call was performed. Up to discretization issues, the output
of the complete procedure is

∑

l∈S(P(1))

λl(P(1))ApproxOracle(2, 1,P(1),P(2)
l ).

We continue in the recursion, defining λ(P(1)P(2)
l ) and S(P(1),P(2)

l ) for all l ∈ S(P(1)), until we define

all vectors of the form λ(P(1),P(2)
l2
, . . . ,P(r)

lr
) and sets of the form S(P(1),P(2)

l2
, . . . ,P(r)

lr
) for i+1 ≤ r ≤ p−1.
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G(1)

G(2,c1)

λ1

. . . G(2,cl2)

G(3,cl2 ,cl2,1)

λl2,1

. . . G(3,cl2 ,cl2,l3)

G(p− 1,cl2 , . . . ,cl2...,lp−1)

OS,j(c
l2 , . . . ,cl2,...,lp−1,1)

λl2,...,lp−1,1

. . . OS,j(c
l2 , . . . ,cl2,...,lp)

λl2,...,lp

. . . OS,j(c
l2 , . . . ,cl2,...,lp−1,mp)

λl2,...,lp−1,mp

...

λl2,l3

. . . G(3,cl2 ,cl2,m3)

λl2,m3

λl2

. . . G(2,cm2)

λm2

Figure 2: Computation tree representing the recursive calls to ApproxOracle starting from the calls to
ApproxOracle(1, 1, ·) from Algorithm 4

To simplify the notation and emphasize that all these polyhedra depend on the recursive computation path,
we adopt the notation

λl2,...,lr+1 := λlr+1(P(1),P(2)
l2
, . . . ,P(r)

lr
)

Sl2,...,lr := S(P(1),P(2)
l2
, . . . ,P(r)

lr
)

We recall that these polyhedron are kept in memory to query their volumetric center. For ease of notation,

we write x1 = VolumetricCenter(P(1)), and we write cl2,...,lr = VolumetricCenter(P(r)
lr

) for 2 ≤ r ≤ p,

where l2, . . . , lr−1 were the indices from the computation path leading up to P(r)
lr

. Last, we write OS =

(OS,1, . . . , OS,p), where OS,i : Cd → R
ki is the “xi” component of OS , for all i ∈ [p].

With all these notations, we will show that the output of ApproxOracle(i, j,P(1),P(2)
l2
, . . . ,P(i)

li
) is approx-

imately equal to the vector

G(i, j,x1, c
l2 , . . . , cl2,...,li) :=

∑

li+1∈S, li+2∈Sli+1 ,

... , lp∈Sli+1,...,lp−1

λli+1λli+1,li+2 · · ·λli+1,...,lp · OS,j(x1, c
l2 , . . . , cl2,...,lp),

with the convention that for i = p,

G(p, j,x1, c
l2 , . . . , cl2,...,lp) := OS,j(x1, c

l2 , . . . , cl2,...,lp).

The corresponding computation tree is represented in Fig. 2. For convenience, we omitted the term j = 1.
We start the analysis with a simple result showing that if the oracle OS returns separation vectors of

norm bounded by one, then the responses from ApproxOracle also lie in the unit ball.

Lemma 4.3. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → R
d. Suppose

that OS takes values in the unit ball. For any s ∈ [i] let P(s)
ls
∈ Iks represent a bounded polyhedron with

VolumetricCenter(P(s)
ls

) ∈ Cks . Then, one has

‖ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)‖ ≤ 1.
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Proof. We prove this by simple induction on i. For convenience, we define xk = VolumetricCenter(P(k)
lk

). If
i = p, we have

‖ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)‖ = ‖Discretizekj (OS,j(x1, . . . ,xp), ξ)‖ ≤ ‖OS,j(x1, . . . ,xp)‖ ≤ 1,

where in the first inequality we used Eq (1) and in the second inequality we used the fact that OS(x1, . . . ,xp)
has norm at most one. Now suppose that the result holds for i + 1 ≤ p. Then by construction, the output

ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
) is the result of iterative discretizations. Using Eq (1) and the previously

defined notations, we obtain

‖ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)‖

≤

∥

∥

∥

∥

∥

∥

∑

li+1∈Sl1,...,li

λl2,...,liApproxOracleδ,ξ,OS
(i+ 1, j,P(1)

l1
, . . . ,P(i)

li
,P(i+1)

li+1
)

∥

∥

∥

∥

∥

∥

≤ 1.

In the last inequality, we used the induction hypothesis together with the fact that
∑

li+1
λl2,...,li+1 ≤ 1 using

Eq (1). This ends the induction and the proof.

We are now ready to compare the output of Algorithm 3 to G(i, j,x1, c
l2 , . . . , cl2,...,li).

Lemma 4.4. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → R
d. Suppose

that OS takes values in the unit ball. For any s ∈ [i] let P(s)
ls
∈ Iks represent a bounded polyhedron with

VolumetricCenter(P(s)
ls

) ∈ Cks . Denote xr = c(P(r)
lr

) for r ∈ [i]. Then,

‖ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)−G(i, j,x1, . . . ,xi)‖ ≤

4

σmin
dξ.

Proof. We prove by simple induction on i that

‖ApproxOracleδ,ξ,OS
(i, j,P(1)

l1
, . . . ,P(i)

li
)−G(i, j,x1, . . . ,xi)‖ ≤

(

1 +
2

σmin
(ki+1 + . . .+ kp) + 2(p− i)

)

ξ.

First, for i = p, the result is immediate since the discretization is with precision ξ (l.4 of Algorithm 3). Now
suppose that this is the case for i ≤ p and any valid values of other parameters. For conciseness, we write

G = (P(1)
l1
, . . . ,P(i−1)

li−1
). Next, recall that by Lemma 4.2, |Sl2,...,li−1 | ≤ ki

σmin
+ 1. Hence, the discretizations

due to l.8 of Algorithm 2 can affect the estimate for at most that number of rounds. Then, we have
∥

∥

∥

∥

∥

∥

ApproxOracleδ,ξ,OS
(i − 1, j,G)−

∑

li∈Sl2,...,li−1

λ̃l2,...,liApproxOracleδ,ξ,OS
(i, j,G,P(i)

li
)

∥

∥

∥

∥

∥

∥

≤
(

ki
σmin

+ 1

)

ξ,

where λ̃l2,...,li are the discretized coefficients that are used during the computation l.8 of Algorithm 2. Now
using Lemma 4.3, we have

∥

∥

∥

∥

∥

∥

∑

li∈Sl2,...,li−1

(λ̃l2,...,li − λl2,...,li)ApproxOracleδ,ξ,OS
(i, j,G,P(i)

li
)

∥

∥

∥

∥

∥

∥

≤ ‖λ̃li+1,...,li−1 − λli+1,...,li−1‖1

≤ ξ
√

ki
σmin

+ 1.

In the last inequality we used the fact that λ has at most d non-zero coefficients. As a result, using the
induction for each term of the sum, and the fact that

∑

li
λl2,...,li ≤ 1, we obtain

‖ApproxOracleδ,ξ,Of
(i− 1, j,G)−G(i − 1, j,x1, . . . ,xi−1)‖ ≤

(

1 +
2

σmin
(ki+1 + . . .+ kp) + 2(p− i)

)

ξ

+

(

2ki
σmin

+ 2

)

ξ,
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which completes the induction. Noting that ki+1 + . . .+ kp ≤ k1 + . . .+ kp ≤ d and p− i ≤ d− 1 ends the
proof.

Next, we show that the outputs of Algorithm 3 provide approximate separation hyperplanes for the first
i coordinates (x1, . . . ,xi).

Lemma 4.5. Fix δ, ξ ∈ (0, 1), 1 ≤ j ≤ i ≤ p and an oracle OS = (OS,1, . . . , OS,p) : Cd → R
d for accuracy

ǫ > 0. Suppose that the responses of OS have norm one. For any s ∈ [i] let P(s)
ls
∈ Iks represent a

bounded polyhedron with VolumetricCenter(P(s)
ls

) ∈ Cks . Denote xr = c(P(r)
lr

) for r ∈ [i]. Suppose that

when running ApproxOracleδ,ξ,OS
(i, i,P(1)

l1
, . . . ,P(i)

li
), no successful vector was queried. Then, any vector

x⋆ = (x⋆1, . . . ,x
⋆
p) ∈ Cd such that Bd(x

⋆, ǫ) is contained in the successful set satisfies

∑

r∈[i]

ApproxOracleδ,ξ,OS
(i, r,P(1)

l1
, . . . ,P(i)

li
)⊤(x⋆r − xr) ≥ ǫ −

8d5/2

σmin
ξ − dδ.

Proof. For i ≤ r ≤ p and j ≤ r, we use the notation

g
li+1,...,lr
j = ApproxOracleδ,ξ,OS

(r, j,P(1)
l1
, . . . ,P(r)

lr
).

Using Lemma 4.4, we always have for j ∈ [r],

‖gli+1,...,lr
j −G(r, j,x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lr)‖ ≤ 4d

σmin
ξ. (2)

Also, observe that by Lemma 4.3 the recursive outputs of ApproxOracle always have norm bounded by one.
Next, let T li+1,...,lr−1 be the set of indices corresponding to coordinates of λli+1,...,lr−1 for which the

procedure ApproxOracle did not call for a level-r computation. These correspond to 1. constraints from the
initial cube P0, or 2. cases when the volumetric center was out of the unit cube (l.6-7 of Algorithm 1) and
as a result, the index of the added constraint was −1 instead of the current iteration index t. Similarly as

above, for any t ∈ T li+1,...,lr−1 , we denote by g
li+1,...,lr−1,t
r the corresponding vector at. We recall that by

construction, this vector is of the form ±ej for some j ∈ [kr]. Then, from Lemma 4.1, since the responses of
the oracle always have norm bounded by one, for all yr ∈ Ckr ,

∑

lr∈Sli+1,...,lr−1∪T li+1,...,lr−1

λli+1,...,lr (gli+1,...,lr
r )⊤(yr − cli+1,...,lr ) ≤ δ. (3)

For conciseness, we use the shorthand (S ∪ T )li+1,...,lr−1 := Sli+1,...,lr−1 ∪ T li+1,...,lr−1 , which contains all
indices from coordinates of λli+1,...,lr−1 . In particular,

∑

lr∈(S∪T )li+1,...,lr−1

λli+1,...,lr = 1. (4)

We now proceed to estimate the precision of the vectors G(i, j,x1, . . . ,xi) as approximate separation hyper-
planes for coordinates (x1, . . . ,xi). Let x⋆ ∈ Cd such that Bd(x

⋆, ǫ) is within the successful set. Then, for
any choice of li+1 ∈ S, . . . , lp ∈ Sli+1,...,lp−1 , since we did not query a successful vector, we have

OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(z − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp)) ≥ 0, ∀z ∈ Bd(x⋆, ǫ).

As a result, because the responses from OS have unit norm,

OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(x⋆ − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp)) ≥ ǫ. (5)

Now write x⋆ = (x⋆1, . . . ,x
⋆
p). In addition to the previous equation, for li+1 ∈ S, . . . , lr−1 ∈ Sli+1,...,lr−2

and any lr ∈ T li+1,...,lr−1 , one has (g
li+1,...,lr
r )⊤x⋆r + 1 ≥ ǫ, because x⋆ is within the cube Cd and at least

at distance ǫ from the constraints of the cube. Similarly as when lr ∈ Sli+1,...,lr−1 , for any lr ∈ T li+1,...,lr−1

we denote by cli+1,...,lr the volumetric center of the polyhedron P(r)
lr

along the corresponding computation
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path, if lr corresponded to an added constraints when cli+1,...,lr /∈ Ckr . Otherwise, if lr corresponded to the
constraint a = ±ej of the initial cube, we pose cli+1,...,lr = −a. Now by construction, in both cases one has

(g
li+1,...,lr
r )⊤cli+1,...,lr ≤ −1 (l.7 of Algorithm 1). Thus,

(gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr ) ≥ ǫ. (6)

Recalling Eq (4), we then sum all equations of the form Eq (5) and Eq (6) along the computation path, to
obtain

(A) :=
∑

li+1∈S,...,
lp∈Sli+1,...,lp−1

λli+1 · · ·λli+1,...,lp · OS(x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lp)⊤(x⋆ − (x1, . . . ,xi, c

li+1 , . . . , cli+1,...,lp))

+
∑

i+1≤r≤p

∑

li+1∈S,...,lr−1∈Sli+1,...,lr−2 ,

lr∈T li+1,...,lr−1

λli+1 · · ·λli+1,...,lr · (gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr) ≥ ǫ.

Now using the convention

G(r, r,x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lr ) := gli+1,...,lr

r , lr ∈ T li+1,...,lr−1 ,

for any li+1 ∈ S, . . . , lr−1 ∈ Sli+1,...,lr−2 , we can write

(A) =
∑

r≤i
G(i, r,x1, . . . ,xi)

⊤(x⋆r − xr) +
∑

i+1≤r≤p

∑

li+1∈S,...,
lr−1∈Sli+1,...,lr−2

λli+1 . . . λli+1,...,lr−1

×
∑

lr∈(S∪T )li+1,...,lr−1

λli+1,...,lrG(r, r,x1, . . . ,xi, c
li+1 , . . . , cli+1,...,lr )⊤(x⋆r − cli+1,...,lr ).

We next relate the terms G to the output of ApproxOracle. For simplicity, let us write G = (P(1)
l1
, . . . ,P(i)

li
),

which by abuse of notation was assimilated to (x1, . . . ,xi). Recall that by construction and hypothesis, all
points where the oracle was queried belong to Cd, so that for instance ‖x⋆r − cli+1,...,lr‖ ≤ 2

√
kr ≤ 2

√
d for

any lr ∈ Sli+1,...,lr−1 . Using the above equations together with Eq (2) and Lemma 4.4 gives

ǫ ≤
∑

r≤i

[

ApproxOracleδ,ξ,Of
(i, r,G)⊤(x⋆r − xr) +

8d3/2

σmin
ξ

]

+
∑

i+1≤r≤p

∑

li+1∈S,...,
lr−1∈Sli+1,...,lr−2

λli+1 · · ·λli+1,...,lr−1

∑

lr∈(S∪T )li+1,...,lr−1

λli+1,...,lr

[

(gli+1,...,lr
r )⊤(x⋆r − cli+1,...,lr) +

8d3/2

σmin
ξ

]

≤ 8pd3/2

σmin
ξ + (p− i)δ +

∑

r≤i
ApproxOracleδ,ξ,Of

(i, r,G)⊤(x⋆r − xr)

where in the second inequality, we used Eq (3). Using p ≤ d, this ends the proof of the lemma.

We are now ready to show that Algorithm 4 is a valid algorithm for convex optimization.

Theorem 4.1. Let ǫ ∈ (0, 1) and OS : Cd → R
d be a separation oracle such that the successful set contains a

ball of radius ǫ. Pose δ = ǫ
4d and ξ = σminǫ

32d5/2
. Next, let p ≥ 1 and k1, . . . , kp ≤ ⌈dp⌉ such that k1+ . . .+kp = d.

With these parameters, Algorithm 4 finds a successful vector with (C d
p ln

d
ǫ )
p queries and using memory

O(d2p ln d
ǫ ), for some universal constant C > 0.
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Proof. Suppose by contradiction that Algorithm 4 never queried a successful point. Then, with the chosen
parameters, Lemma 4.5 shows that, for any vector x⋆ = (x⋆1, . . . ,x

⋆
p) such that Bd(x

⋆, ǫ) is within the
successful set, with the same notations, one has

∑

r≤i
ApproxOracleδ,ξ,OS

(i, r,P(1)
l1
, . . . ,P(i)

li
)⊤(x⋆r − xr) ≥ ǫ−

8d5/2

σmin
ξ − dδ ≥ ǫ

2
.

Now denote by (at, bt) the constraints that were added at any time during the run of Algorithm 1 when
using the oracle ApproxOracle with i = j = 1. The previous equation shows that for all such constraints,

a⊤
t x

⋆
1 − bt ≥ a⊤t (x⋆1 − ωt)− ξ ≥

ǫ

2
− ξ,

where ωt is the volumetric center of the polyhedron at time t during Vaidya’s method Algorithm 1. Now,
since the algorithm terminated, by Lemma 4.1, we have that

min
t
(a⊤
t x

⋆
1 − bt) ≤ δ.

This is absurd since δ + ξ < ǫ
2 . This ends the proof that Algorithm 4 finds a successful vector.

We now estimate its oracle-complexity and memory usage. First, recall that a run of ApproxOracle of
level i makes O(ki+1 ln

1
δ ) calls to level-(i + 1) runs of ApproxOracle. As a result, the oracle-complexity

Qd(ǫ; k1, . . . , kp) satisfies

Qd(ǫ; k1, . . . , kp) =

(

Ck1 ln
1

δ

)

× . . .×
(

Ckp ln
1

δ

)

≤
(

C′ d

p
log

d

ǫ

)p

for some universal constants C,C′ ≥ 2.
We now turn to the memory of the algorithm. For each level i ∈ [p] of runs for ApproxOracle, we keep

memory placements for

1. the value j(i) of the corresponding call to ApproxOracle(i, j(i), ·) (for l.6-7 of Algorithm 3): O(ln d) bits,

2. the iteration number t(i) during the run of Algorithm 1 or within Algorithm 2: O(ln(ki ln 1
δ )) bits

3. the polyhedron constraints contained in the state of P(i): O(ki × ki ln 1
ξ ) bits,

4. potentially, already computed dual variables λ⋆ and their corresponding vector of constraint indices
k⋆ (l.3 of Algorithm 2): O(ki × ln 1

ξ ) bits,

5. the working vector u(i) (updated l.8 of Algorithm 2): O(ki ln 1
ξ ) bits.

The memory structure is summarized in Table 1.
We can then check that this memory is sufficient to run Algorithm 4. An important point is that for

any run of ApproxOracle(i, j, ·), in Algorithm 2, after running Vaidya’s method Algorithm 1 and storing the

dual variables λ⋆ and corresponding indices k⋆ within their placements (k⋆
(i)
,λ⋆

(i)
) (l.1-3 of Algorithm 2),

the iteration index t(i) and polyhedron P(i) memory placements are reset and can be used again for the
second run of Vaidya’s method (l.4-10 of Algorithm 2). During this second run, the vector u is stored in
its corresponding memory placement u(i) and updated along the algorithm. Once this run is finished, the
output of ApproxOracle(i, j, ·) is readily available in the placement u(i). For i = p, the algorithm does not
need to wait for the output of a level-(i+ 1) computation and can directly use the j(p)-th component of the
returned separation vector from the oracle OS . As a result, the number of bits of memory used throughout
the algorithm is at most

M =

p
∑

i=1

O
(

k2i ln
1

ξ

)

= O
(

d2

p
ln
d

ǫ

)

.

This ends the proof of the theorem.
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i 1 . . . p

j j(1) j(p)

Iteration index t(1) t(p)

Polyhedron P(1) =









k1,a1, b1
k2,a2, b2

. . .
km,am, bm









P(p)

Computed
dual variables

(k⋆
(1)
,λ⋆

(1)
) =





k⋆1 , λ
⋆
1

k⋆2 , λ
⋆
2

. . .



 (k⋆
(p)
,λ⋆

(p)
)

Working
separation vector

u(1) u(p)

Table 1: Memory structure for Algorithm 4

5 Memory-constrained feasibility problem with computations

In the last section we gave the main ideas that allow reducing the storage memory. However, Algorithm 4
does not account for memory constraints in computations as per Definition 2.2. For instance, computing
the volumetric center VolumetricCenter(P) already requires infinite memory for infinite precision. More
importantly, even if one discretizes the queries, the necessary precision and computational power may be
prohibitive with the classical Vaidya’s method Algorithm 1. Even finding a feasible point in the polyhedron
(let alone the volumetric center) using only the constraints is itself computationally intensive. There has
been significant work to make Vaidya’s method computationally tractable [46, 1, 2]. These works address
the issue of computational tractability, but the memory issue is still present. Indeed, the precision depends
among other parameters on the condition number of the matrix H in order to compute the leverage scores
σi for i ∈ [m], which may not be well-conditioned. Second, to avoid memory overflow, we also need to ensure
that the point queried have bounded norm, which is again not a priori guaranteed in the original version
Algorithm 1.

To solve these issues and also give a computationally-efficient algorithm, the cutting-plane subroutine
Algorithm 1 needs to be modified. In particular, the volumetric barrier needs to include regularization terms.
Fortunately, these have already been studied in [25]. In a major breakthrough, this paper gave a cutting-

plane algorithm with O(d3 lnO(1) d
ǫ ) runtime complexity, improving over the seminal work from Vaidya

and subsequent works which had O(d1+ω lnO(1) d
ǫ ) runtime complexity, where O(dω) is the computational

complexity of matrix multiplication. To achieve this result, they introduce various regularizing terms together
with the logarithmic barrier. While the main motivation of [25] was computational complexity, as a side
effect, these regularization terms also ensure that computations can be carried with efficient memory. We
then use their method as a subroutine.

For the sake of exposition and conciseness, we describe a simplified version of their method, that is also
deterministic. This comes at the expense of a suboptimal running time O(d1+ω lnO(1) 1

ǫ ). We recall that
our main concern is in memory usage rather than achieving the optimal runtime. The main technicality
of this section is to show that their simplified method is numerically stable, and we emphasize that the
original algorithm could also be shown to be numerically stable with similar techniques, leading to a time
improvement from Õ(d1+ω) to Õ(d3). The memory usage, however, would not be improved.

5.1 A memory-efficient Vaidya’s method for computations, via [25]

Fix a polyhedron P = {x : Ax ≥ b}. Using the same notations as for Vaidya’s method in Section 4.1, we
define the new leverage scores ψ(x)i = (Ax(A

⊤
xAx + λI)−1A⊤

x )i,i and Ψ(x) = diag(ψ(x)). Let µ(x) =

mini ψ(x)i. Last, let Q(x) = A⊤
x (ceI +Ψ(x))Ax + λI , where ce > 0 is a constant parameter to be defined.
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In [25], they consider minimizing the volumetric-analytic hybrid barrier function

p(x) = −ce
m
∑

i=1

ln si(x) +
1

2
ln det(A⊤

xAx + λI) +
λ

2
‖x‖22.

We can check [25] that
∇p(x) = −A⊤

x (ce · 1+ψ(x)) + λx,

where 1 is the vector of ones. The following procedure gives a way to minimize this function efficiently given
a good starting point.

Input: Initial point x(0) ∈ P = {x : Ax ≥ b}
Input: Number of iterations r > 0
Given: ‖∇p(x(0))‖Q(x(0))−1 ≤ 1

100

√

ce + µ(x(0)) := η.

1 for k = 1 to r do
2 if ‖∇p(x(k−1))‖Q(x(0))−1 ≤ 2(1− 1

64 )
rη then Break;

3 x(k) = x(k−1) − 1
8Q(x(0))−1∇p(x(k−1))

4 end

Output: x(k)

Algorithm 5: x(r) = Centering(x(0), r)

We then present their simplified cutting-plane method.

Input: ǫ, δ > 0 and a separation oracle O : Cd → R
d

Check: Throughout the algorithm, if si(x
(t)) < 2ǫ for some i then return (Pt,x(t))

1 Initialize x(0) = 0 and P0 := {(−1, ei,−1), (−1,−ei,−1), i ∈ [d]}
2 for t ≥ 0 do
3 if mini∈[m] ψ(x

(t))i ≤ cd then

4 Pt+1 = Pt \ {(kj ,aj , bj)} where j ∈ argmini∈[m] ψ(x
(t))i

5 else

6 if x(t) /∈ Cd then a = −sign(xi)ei where i ∈ argminj∈[d] |x(t)j | ;
7 else a = O(x(t)) ;

8 Let b = a⊤x(t) − c−1/2
a

√

a⊤(A⊤S−2
x(t)A+ λI)−1a

9 Pt+1 = Pt ∪ {(t,a, b)}
10 x(t+1) = Centering(x(t), 270, c∆)

11 end
Algorithm 6: An efficient cutting-plane method, simplified from [25]

In both Algorithm 5 and Algorithm 6, notice that the updates require to compute in particular the
leverage scoresψ(x), which can be computed inO(dω) time using their formula. To achieve theO(d3 lnO(1) 1

ǫ )
computational complexity, an amortized computational cost O(d2) is needed. The algorithm from [25]
achieves this through various careful techniques aiming to update estimates of these leverage scores. The
above cutting-plane algorithm is exactly that of [25] when these estimates are always exact (i.e. recomputed
at each iteration), which yields the dω−2 overhead time complexity. In particular, the original proof of
convergence and correctness of [25] directly applies to this simplified algorithm.

It remains to check whether one can implement this algorithm with efficient memory, corresponding to
checking this method’s numerical stability.

Lemma 5.1. Suppose that each iterate of the centering Algorithm 5, ‖∇p(x(k−1))‖Q(x(0))−1 is computed up

to precision (1 − 1
64 )

rη (l.2), and x(k) is computed up to an error ζ(k) with ‖ζ(k)‖Q(x(0)) ≤ 1
210r (1 − 1

64 )
rη

(l.3). Then, Algorithm 5 outputs x(k) such that ‖∇p(x(k))‖Q−1(x(k)) ≤ 3(1− 1
64 )

rη and all iterates computed

during the procedure satisfy ‖S−1
x(0)(s(x

(t))− s(x(0)))‖2 ≤ 1
10 .
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Proof. As mentioned above, without computation errors, the result from [25] would apply directly. Here,
we simply adapt the proof to the case with computational errors to show that it still applies. Denote
Q = Q(x(0)) for convenience. Let η = 1

100

√

ce + µ(x(0)). We prove by induction that ‖x(t) − x(0)‖Q ≤ 9η,

‖∇p(x(t))‖Q−1 ≤ (1− 1
64 )

tη for all t ≤ r. For a given iteration t, denote x̃(t+1) = x(k−1) − 1
8Q

−1∇p(x(k−1))

the result of the exact computation. The same arguments as in the original proof give ‖x̃(t+1)−x(0)‖Q ≤ 9η,
and

‖∇p(x̃(t+1))‖Q−1 ≤
(

1− 1

32

)

‖∇p(x(t))‖Q−1 .

Now because ‖x̃(t+1)−x(t+1)‖Q ≤ η, we have ‖x̃(t+1)−x(0)‖Q, ‖x(t+1)−x(0)‖Q ≤ 10η, so that [25, Lemma

11] gives ∇2p(y(u)) � 8Q(y(u)) � 16Q, where y(u) = x(t+1) + u(x̃(t+1) − x(t+1) for u ∈ [0, 1]. Thus,

‖∇p(x̃(t+1))−∇p(x(t+1))‖Q−1 ≤
∥

∥

∥

∥

∫ 1

0

∇
2p(y(u))(x̃(t+1) − x(t+1))

∥

∥

∥

∥

Q−1

≤ 16‖x̃(t+1) − x(t+1)‖Q.

Now by construction of the procedure, if the algorithm performed iteration t+ 1, we have ‖∇p(x(t))‖Q−1 ≥
(1− 1

64 )
rη. Combining this with the fact that ‖x̃(t+1) − x(t+1)‖Q ≤ 1

210r (1− 1
64 )

rη, obtain

‖∇p(x(t+1))‖Q−1 ≤ ‖∇p(x̃(t+1))−∇p(x(t+1))‖Q−1 + ‖∇p(x̃(t+1))‖Q−1 ≤
(

1− 1

64

)

‖∇p(x(t))‖Q−1 .

We now write

‖x(t+1) − x(0)‖Q ≤
t
∑

k=0

‖x̃(k+1) − x(k+1)‖Q +
1

8
‖Q−1∇p(x(k))‖Q ≤ η +

1

8

∞
∑

i=0

(

1− 1

64

)i

η ≤ 9η.

The induction is now complete. When the algorithm stops, either the r steps were performed, in which case
the induction already shows that ‖∇p(x(r))‖Q−1 ≤ (1 − 1

64 )
rη. Otherwise, if the algorithm terminates at

iteration k, because ‖∇p(x(k))‖Q−1 was computed to precision (1− 1
64 )

rη, we have (see l.2 of Algorithm 5)

‖∇p(x(k))‖Q−1 ≤ 2

(

1− 1

64

)r

η +

(

1− 1

64

)r

η = 3

(

1− 1

64

)r

η.

The same argument as in the original proof shows that at each iteration t,

‖S−1
x(0)(s(x

(t))− s(x(0)))‖2 = ‖x(t) − x(0)‖A⊤S
−2

x(0)
A ≤

‖x(t) − x(0)‖Q
√

µ(x(0)) + ce
≤ 1

10
.

This ends the proof of the lemma.

Because of rounding errors, Lemma 5.1 has an extra factor 3 compared to the original guarantee in [25,
Lemma 14]. To achieve the same guarantee, it suffices to perform 70 ≥ ln(3)/ ln(1/(1 − 1

64 )) additional
centering procedures at most. hence, instead of performing 200 centering procedures during the cutting
plane method, we perform 270 (l.10 of Algorithm 6). We next turn to the numerical stability of the main
Algorithm 6.

Lemma 5.2. Suppose that throughout the algorithm, when checking the stopping criterion mini∈[m] si(x) <
2ǫ, the quantities si(x) were computed with accuracy ǫ. Suppose that at each iteration of Algorithm 6, the
leverage scores ψ(x(t)) are computed up to multiplicative precision c∆/4 (l.3), that when a constraint is added,
the response of the oracle a (l.7) is stored perfectly but b (l.8) is computed up to precision Ω( ǫ√

n
). Further

suppose that the centering Algorithm 5 is run with numerical approximations according to the assumptions
in Lemma 5.1. Then, all guarantees for the original algorithm in [25] hold, up to a factor 3 for ǫ.

Proof. We start with the termination criterion. Given the requirement on the computational accuracy, we
know that the final output x satisfies mini∈[m] si(x) ≤ 3ǫ. Further, during the algorithm, if it does not stop,
then one has mini∈[m] si(x) ≥ ǫ, which is precisely the guarantee of the original algorithm in [25].
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We next turn to the computation of the leverage scores in l.4. In the original algorithm, only a c∆-estimate
is computed. Precisely, one computes a vector w(t) such that for all i ∈ [d], ψ(x(t))i ≤ wi ≤ (1+c∆)ψ(x

(t))i,

then deletes a constraint when mini∈[m(t)] w
(t)
i ≤ cd. In the adapted algorithm, let ψ̃(x(t))i denote the

computed leverage scores for i ∈ [d]. By assumption, we have

(1− c∆/4)ψ(x(t))i ≤ ψ̃(x(t))i ≤ (1 + c∆/4)ψ(x
(t))i.

Up to re-defining the constant cd as (1 − c∆/4)cd, ψ̃(x(t)) is precisely within the guarantee bounds of the
algorithm. For the accuracy on the separation oracle response and the second-term value b, [25] emphasizes
that the algorithm always changes constraints by a δ amount where δ = Ω( ǫ√

d
) so that an inexact separation

oracle with accuracy Ω( ǫ√
d
) suffices. Therefore, storing an Ω( ǫ√

d
) accuracy of the second term keeps the

guarantees of the algorithm. Last, we checked in Lemma 5.1 that the centering procedure Algorithm 5
satisfies all the requirements needed in the original proof [25].

For our recursive method, we need an efficient cutting-plane method that also provides a proof (certificate)
of convergence. This is also provided by [25] that provide a proof that the feasible region has small width in
one of the directions ai of the returned polyhedron.

Input: ǫ > 0 and a separation oracle O : Cd → R
d

1 Run Algorithm 6 to obtain a polyhedron encoded in P and a feasible point x

2 x⋆ = Centering(x, 64 ln 2
ǫ , c∆)

3 λi =
ce+ψi(x

⋆)
si(x⋆)

(

∑

j
ce+ψj(x

⋆)
sj(x⋆)

)−1

for all i

Output: (P ,x⋆, (λi)i)
Algorithm 7: Cutting-plane algorithm with certified optimality

Lemma 5.3. [25, Lemma 28] Let (P ,x, (λi)i) be the output of Algorithm 7. Then, x is feasible, ‖x‖2 ≤ 3
√
d,

λj ≥ 0 for all j and
∑

i λi = 1. Further,

∥

∥

∥

∥

∥

∑

i

λiai

∥

∥

∥

∥

∥

2

= O
(

ǫ
√
d ln

d

ǫ

)

, and
∑

i

λi(a
⊤
i x− bj) ≤ O

(

dǫ ln
d

ǫ

)

.

We are now ready to show that Algorithm 6 can be implemented with efficient memory and also provides
a proof of the convergence of the algorithm.

Proposition 5.1. Provided that the output of the oracle are vectors discretized to precision poly( ǫd ) and

have norm at most 1, Algorithm 7 can be implemented with O(d2 ln d
ǫ ) bits of memory to output a certified

optimal point according to Lemma 5.3. The algorithm performs O(d ln d
ǫ ) calls to the separation oracle and

runs in O(d1+ω lnO(1) d
ǫ ) time.

Proof. We already checked the numerical stability of Algorithm 6 in Lemma 5.2. It remains to check the next
steps of the algorithm. The centering procedure is stable again via Lemma 5.1. It also suffices to compute
the coefficients λj up to accuracy O(ǫ/(

√
d) ln(d/ǫ)) to keep the guarantees desired since by construction all

vectors ai have norm at most one.
It now remains to show that the algorithm can be implemented with efficient memory. We recall that

at any point during the algorithm, the polyhedron P has at most O(d) constraints [25, Lemma 22]. Hence,
since we assumed that each vector ai composing a constraint is discretized to precision poly( ǫd ), we can

store the polyhedron constraints with O(d2 ln d
ǫ ) bits of memory. The second terms b are computed up to

precision Ω(ǫ/
√
d) hence only use O(d ln d

ǫ ) bits of memory. The algorithm also keeps the current iterate x(t)

in memory. These are all bounded throughout the memory ‖x(t)‖2 = O(
√
d) [25, Lemma 23], hence only

require O(d ln d
ǫ ) bits of memory for the desired accuracy.

Next, the distances to the constraints are bounded at any step of the algorithm: si(x
(t)) ≤ O(

√
d) [25,

Lemma 24], hence computing si(x
(t)) to the required accuracy is memory-efficient. Recall that from the
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termination criterion, except for the last point, any point x during the algorithm satisfies si(x) ≥ ǫ for all
constraints i ∈ [m]. In particular, this bounds the eigenvalues of Q since λI � Q(x) � (λ+m(ce + 1)/ǫ2)I.
Thus, the matrix is sufficiently well-conditioned to achieve the accuracy guarantees from Lemma 5.1 using
O(d2 ln d

ǫ ) memory during matrix inversions (and matrix multiplications). Similarly, for the computation of

leverage scores, we use Ψ(x) = diag(Ax(A
⊤
xAx+λI)−1A⊤

x ), where λI � A⊤
xAx+λI � (λ+mǫ−2)I. This

same matrix inversion appears when computing the second term of an added constraint. Overall, all linear
algebra operations are well conditioned and implementable with required accuracy with O(d2 ln d

ǫ ) memory.

Using fast matrix multiplication, all these operations can be performed in Õ(dω) time per iteration of the
cutting-plane algorithm since these methods are also known to be numerically stable [13]. Thus, the total

time complexity is O(d1+ω lnO(1) d
ǫ ). The oracle-complexity still has optimal O(d ln d

ǫ ) oracle-complexity as
in the original algorithm.

Up to changing ǫ to c · ǫ/(d ln d
ǫ ), the described algorithm finds constraints given by ai and bi, i ∈ [m]

returned by the normalized separation oracle, coefficients λi, i ∈ [m], and a feasible point x⋆ such that for
any vector in the unit cube, z ∈ Cd, one has

min
i∈[m]

a⊤
i z − bi ≤

∑

i∈[m]

λi(a
⊤
i z − bi) ≤





∑

i∈[m]

λai





⊤

(x⋆ − z) +
∑

i∈[m]

λi(a
⊤
i x

⋆ − bi) ≤ ǫ.

This effectively replaces Lemma 4.1.

5.2 Merging Algorithm 7 within the recursive algorithm

Algorithms 2 to 4 from the recursive procedure need to be slightly adapted to the new format of the cutting-
plane method’s output. In particular, the oracles do not take as input polyhedrons (and eventually query
their volumetric center as before), but directly take as input an point (which is an approximate volumetric
center).

Input: δ, ξ, Ox : Cn → R
m and Oy : Cn → R

n

1 Run Algorithm 7 with parameter c · δ/(d ln d
δ ), ξ and Oy to obtain (P⋆,x⋆,λ)

2 Store k⋆ = (ki, i ∈ [m]) where m = |P⋆|, and λ⋆ ← Discretize(λ⋆, ξ)

3 Initialize P0 := {(−1, ei,−1), (−1− ei,−1), i ∈ [d]}, x(0) = 0 and let u = 0 ∈ R
m

4 for t = 0, 1, . . . ,maxi ki do
5 if t = k⋆i for some i ∈ [m] then
6 gx = Ox(x

(t))
7 u← Discretizem(u+ λ⋆i gx, ξ)

8 Update Pt to get Pt+1, and x
(t) to get x(t+1) as in Algorithm 6

9 end
10 return u

Algorithm 8: ApproxSeparationVectorδ,ξ(Ox, Oy)

Input: δ, ξ, 1 ≤ j ≤ i ≤ p, x(r) ∈ Ckr for r ∈ [i], OS : Cd → R
d

1 if i = p then
2 (g1, . . . , gp) = OS(x1, . . . ,xp)

3 return Discretizekj (gj , ξ)

4 end

5 Define Ox : Cki+1 → R
kj as ApproxOracleδ,ξ,Of

(i+ 1, j,x(1), , . . . ,x(i), ·)
6 Define Oy : Cki+1 → R

ki+1 as ApproxOracleδ,ξ,Of
(i+ 1, i+ 1,x(1), . . . ,x(i), ·)

7 return ApproxSeparationVectorδ,ξ(Ox, Oy)

Algorithm 9: ApproxOracleδ,ξ,OS
(i, j,x(1), . . . ,x(i))
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Input: δ, ξ, and OS : Cd → R
d a separation oracle

Check: Throughout the algorithm, if OS returned Success to a query x, return x
1 Run Algorithm 6 with parameters δ and ξ and oracle ApproxOracleδ,ξ,OS

(1, 1, ·)
Algorithm 10: Memory-constrained algorithm for convex optimization

The same proof as for Algorithm 4 shows that Algorithm 10 run with the parameters in Theorem 4.1 also
outputs a successful vector using the same oracle-complexity. We only need to analyze the memory usage in
more detail.

Proof of Theorem 3.2. As mentioned above, we will check that Algorithm 10 with the same parameters
δ = ǫ

4d and ξ = σminǫ
32d5/2

as in Theorem 4.1 satisfies the desired requirements. We have already checked
its correctness and oracle-complexity. Using the same arguments, the computational complexity is of the
form O(O(ComplexityCuttingPlanes)p) where ComplexityCuttingPlanes is the computational complexity
of the cutting-plane method used, i.e., here of Algorithm 7. Hence, the computational complexity is
O((C(d/p)1+ω lnO(1) d

ǫ )
p) for some universal constant C ≥ 2. We now turn to the memory. In addition

to the memory of Algorithm 4, described in Table 1, we need

1. a placement for all i ∈ [p] for the current iterate x(i): O(ki ln 1
ξ ) bits,

2. a placement for computations, that is shared for all layers (used to compute leverage scores, centering
procedures, etc. By Proposition 5.1, since the vectors are always discretized to precision ξ, this requires
O(maxi∈[p] k

2
i ln

d
ǫ ) bits,

3. the placement Q to perform queries is the concatenation of the placements (x(1), . . . ,x(p)): no addi-
tional bits needed.

4. a placement N to store the precision needed for the oracle responses: O(ln 1
ξ ) bits

5. a placement R to receive the oracle responses: O(d ln 1
ξ ) bits.

The new memory structure is summarized in Table 2.
With the same arguments as in the original proof of Theorem 4.1, this memory is sufficient to run the

algorithm and perform computations, thanks to the computation placement. The total number of bits used

throughout the algorithm remains the same, O(d2p ln d
ǫ ). This ends the proof of the theorem.

i 1 . . . p Oracle response Precision

j j(1) j(p) R = (R1, . . . , Rp) N

Iteration index t(1) t(p)

Polyhedron P(1) =









k1,a1, b1
k2,a2, b2

. . .
km,am, bm









P(p)

Computation
memory

Current
iterate

x(1) x(p)

Computed
dual variables

(k⋆,λ⋆) =





k⋆1 , λ
⋆
1

k⋆2 , λ
⋆
2

. . .



 (k⋆
(p)
,λ⋆

(p)
)

Working
separation vector

u(1) u(p)

Table 2: Memory structure for Algorithm 10
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6 Improved oracle-complexity/memory lower-bound trade-offs

We recall the three oracle-complexity/memory lower-bound trade-offs known in the literature.

1. First, [29] showed that any (including randomized) algorithm for convex optimization uses d1.25−δ

memory or makes Ω̃(d1+4δ/3) queries.

2. Then, [5] showed that any deterministic algorithm for convex optimization uses d2−δ memory or makes
Ω̃(d1+δ/3) queries.

3. Last, [5] show that any deterministic algorithm for the feasibility problem uses d2−δ memory or makes
Ω̃(d1+δ) queries.

Although these papers mainly focused on the regime ǫ = 1/poly(d) and as a result ln 1
ǫ = O(ln d), neither

of these lower bounds have an explicit dependence in ǫ. This can lead to sub-optimal lower bounds whenever
ln 1

ǫ ≫ ln d. Furthermore, in the exponential regime ǫ ≤ 1
2O(d) , these results do not effectively give useful

lower bounds. Indeed, in this regime, one has d2 = O(d ln 1
ǫ ) and as a result, the lower bounds provided are

weaker than the classical Ω(d ln 1
ǫ ) lower bounds for oracle-complexity [32] and memory [49]. In particular,

in this exponential regime, these results fail to show that there is any trade-off between oracle-complexity
and memory.

In this section, we aim to explicit the dependence in ǫ of these lower-bounds. We show with simple
modifications and additional arguments that one can roughly multiply these oracle-complexity and memory
lower bounds by a factor ln 1

ǫ each. We split the proofs in two. First we give arguments to improve the
memory dependence by a factor ln 1

ǫ , which is achieved by modifying the sampling of the rows of the matrix
A defining a wall term common to the functions considered in the lower bound proofs [29, 5]. Then we show
how to improve the oracle-complexity dependence by an additional ln 1

ǫ/ ln d factor, via a standard rescaling
argument.

6.1 Improving the memory lower bound

We start with some concentration results on random vectors. [29] gave the following result for random
vectors in the hypercube.

Lemma 6.1 ([29]). Let h ∼ U({±1}d). Then, for any t ∈ (0, 1/2] and any matrix Z = [z1, . . . , zk] ∈ R
d×k

with orthonormal columns,
P(‖Z⊤h‖∞ ≤ t) ≤ 2−cHk.

Instead, we will need a similar concentration result for random unit vectors in the unit sphere.

Lemma 6.2. Let k ≤ d and x1, . . . ,xk be k orthonormal vectors, and ζ ≤ 1.

Py∼U(Sd−1)

(

|x⊤
i y| ≤

ζ√
d
, i ∈ [k]

)

≤
(

2√
π
ζ

)k

≤ (
√
2ζ)k.

Proof. First, by isometry, we can suppose that the orthonormal vectors are simply e1, . . . , ek. We now prove
the result by induction on d. For d = 1, the result holds directly. Fix d ≥ 2, and 1 ≤ k < d. Then, if Sn is
the surface area of Sn the n-dimensional sphere, then

P

(

|y1| ≤
ζ√
d

)

≤ Sd−2

Sd−1

2ζ√
d
=

2ζ√
πd

Γ(d/2)

Γ(d/2− 1/2)
≤ 2√

π
ζ. (7)

Conditionally on the value of y1, the vector (y2, . . . , yd) follows a uniform distribution on the (d− 2)-sphere
of radius

√

1− y21 . Then,

P

(

|yi| ≤
ζ√
d
, 2 ≤ i ≤ k | x1

)

= Pz∼U(Sd−2)

(

|zi| ≤
ζ

√

d(1 − y21)
, 2 ≤ i ≤ k

)
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Now recall that since |x1| ≤ 1/
√
d, we have d(1 − x21) ≥ d− 1. Therefore, using the induction,

P

(

|yi| ≤
ζ√
d
, 2 ≤ i ≤ k | x1

)

≤ Pz∼U(Sd−2)

(

|zi| ≤
ζ√
d− 1

, 2 ≤ i ≤ k
)

≤
(

2ζ√
π

)k−1

.

Combining this equation with Eq (7) ends the proof.

We next use the following lemma to partition the unit sphere Sd−1.

Lemma 6.3 ([17] Lemma 21). For any 0 < δ < π/2, the sphere Sd−1 can be partitioned into N(δ) =
(O(1)/δ)d equal volume cells, each of diameter at most δ.

Following the notation from [5], we denote by Vδ = {Vi(δ), i ∈ [N(δ)]} the corresponding partition, and
consider a set of representatives Dδ = {bi(δ), i ∈ [N(δ)]} ⊂ Sd−1 such that for all i ∈ [N(δ)], bi(δ) ∈ Vi(δ).
With these notations we can define the discretization function φδ as follows

φδ(x) = bi(δ), x ∈ Vi(δ).
We then denote by Uδ the distribution of φδ(z) where z ∼ U(Sd−1) is sampled uniformly on the sphere. Note
that because the cells of Vδ have equal volume, Uδ is simply the uniform distribution on the discretization Dδ.

We are now ready to give the modifications necessary to the proofs, to include a factor ln 1
ǫ for the

necessary memory. For their lower bounds, [29] exhibit a distribution of convex functions that are hard to
optimize. Building upon their work [5] construct classes of convex functions that are hard to optimize, but
that also depend adaptively on the considered optimization algorithm. For both, the functions considered
a barrier term of the form ‖Ax‖∞, where A is a matrix of ≈ d/2 rows that are independently drawn as
uniform on the hypercube U({±1}d). The argument shows that memorizing A is necessary to a certain
extent. As a result, the lower bounds can only apply for a memory of at most O(d2) bits, which is sufficient
to memorize such a binary matrix. Instead, we draw rows independently according to the distribution Uδ,
where δ ≈ ǫ. We explicit the corresponding adaptations for each known trade-off. We start with the lower
bounds from [5] for ease of exposition; although these build upon those of [29], their parametrization makes
the adaptation more straightforward.

6.1.1 Lower bound of [5] for convex optimization and deterministic algorithms

For this lower bound, we use the exact same form of functions as they introduced,

max

{

‖Ax‖∞ − η, ηv⊤0 x, η
(

max
p≤pmax,l≤lp

v⊤p,lx− pγ1 − lγ2
)}

,

with the difference that rows of A are take i.i.d. distributed according to Uδ′ instead of U({±1}d). As a
remark, they use n = ⌈d/4⌉ rows for A. Except for η, we keep all parameters γ1, γ2, etc as in the original
proof, and we will take δ′ = ǫ and η = 2

√
dǫ. The reason why we introduced δ′ instead of δ is that the

original construction also needs the discretization φδ. This is used during the optimization procedure which
constructs adaptively this class of functions, and only needs δ = poly(1/d) instead of δ of order ǫ.

Theorem 6.1. For ǫ ≤ 1/(2d4.5) and any δ ∈ [0, 1], a deterministic first-order algorithm guaranteed to
minimize 1-Lipschitz convex functions over the unit ball with ǫ accuracy uses at least d2−δ ln 1

ǫ bits of memory

or makes Ω̃(d1+δ/3) queries.

With the changes defined above, we can easily check that all results from [5] which reduce convex
optimization to the optimization procedure, then the optimization procedure to their Orthogonal Vector
Game with Hints (OVGH) [5, Game 2], are not affected by our changes. The only modifications to perform
are to the proof of query lower bound for the OVGH [5, Proposition 14]. We emphasize that the distribution
of A is changed in the optimization procedure but also in OVGH as a result.

Proposition 6.2. Let k ≥ 20 M+3d log(2d)+1

n log2(
√
2(ζ+δ′

√
d))−1

. And let 0 < α, β ≤ 1 such that α(
√
d/β)5/4 ≤ ζ/

√
d

where ζ ≤ 1. If the Player wins the adapted OVGH with probability at least 1/2, then m ≥ 1
8 (1 +

30 log2 d

log2(
√
2(ζ+δ′

√
d))−1

)−1d.
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Proof. We use the same proof and only highlight the modifications. The proof is unchanged until the step
when the concentration result Lemma 6.1 is used. Instead, we use Lemma 6.2. With the same notations as
in the original proof, we constructed ⌈k/5⌉ orthonormal vectors Z = [z1, . . . , z⌈k/5⌉] such that all rows a of
A′ (which is A up to some observed and unimportant rows) one has

‖Z⊤a‖∞ ≤
ζ√
d
.

Next, by Lemma 6.2, we have
∣

∣

∣

∣

{

a ∈ Dδ′ : ‖Z⊤a‖∞ ≤
ζ√
d

}∣

∣

∣

∣

≤ |Dδ′ | · Pa∼Uδ′

(

‖Z⊤a‖∞ ≤
ζ√
d

)

≤ |Dδ′ | · Pz∼U(Sd−1)

(

‖Z⊤z‖∞ ≤
ζ√
d
+ δ′

)

≤ |Dδ′ | ·
(√

2(ζ + δ′
√
d)
)⌈k/5⌉

.

Hence, using the same arguments as in the original proof, we obtain

H(A′ | Y ) ≤ (n−m)

(

log2 |Dδ′ |+ P(E) · k
5
log2

(√
2(ζ + δ′

√
d)
)

)

,

where E is the event when the algorithm succeeds at the OVGH game. In the next step, we need to bound
H(A | V ) −H(G, j, c) where V stores hints received throughout the game, G stores observed rows of A
during the game, and j, c are auxiliary variables. The latter can be treated as in the original proof. We
obtain

H(A | V )−H(G, j, c) ≥ H(A)−H(G)− I(A;V )− 3m log2(2d)

≥ (n−m) log2 |Dδ′ | − 3m log2(2d)− I(A,V ).

Now the same arguments as in the original proof show that we still have I(A,V ) ≤ 3km log2 d+1, and that
as a result, if M is the number of bits stored in memory,

M ≥ k

10
log2

(

1√
2(ζ + δ′

√
d)

)

(n−m)− 3km log2 d− 1− 3d log2(2d).

Then, with the same arguments as in the original proof, we can conclude.

We are now ready to prove Theorem 6.1. With the parameter k = ⌈20 M+3d log(2d)+1

n log2(
√
2(ǫd4/2+δ′

√
d))−1

⌉ and the

same arguments, we show that an algorithm solving the convex optimization up to precision η/(2
√
d) = ǫ

yields an algorithm solving the OVGH where the parameters α = 2η
γ1

and β = γ2
4 satisfy

α

(√
d

β

)5/4

≤ ηd3

4
=
d3.5ǫ

2
.

We can then apply Proposition 6.2 with ζ = d4ǫ/2. Hence, if Q is the maximum number of queries of the
convex optimization algorithm, we obtain

⌈Q/pmax⌉+ 1 ≥ 1

8

(

1 +
30 log2 d

log2
1
d4ǫ − 1/2

)−1

d ≥ d

8 · 61 ,

where in the last inequality we used ǫ ≤ 1/(2d4.5). As a result, with the same arguments, we obtain

Q = Ω

(

d5/3 ln1/3 1
ǫ

(M + ln d)1/3 ln2/3 d

)

.

This ends the proof of Theorem 6.1.
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6.1.2 Lower bound of [5] for feasibility problems and deterministic algorithms

We improve the memory dependence by showing the following result.

Theorem 6.3. For ǫ = 1/(48d3) and any δ ∈ [0, 1], a deterministic algorithm guaranteed to solve the
feasibility problem over the unit ball with ǫ accuracy uses at least d2−δ ln 1

ǫ bits of memory or makes at least

Ω̃(d1+δ) queries.

We use the exact same class of feasibility problems and only change the parameter η0 which constrained
successful points to satisfy ‖Ax‖∞ ≤ η0, as well as the rows of A that are sampled i.i.d. from Uδ. The
other parameter η1 = 1/(2

√
d) is unchanged. We also take δ′ = ǫ. Because the rows of A are already

normalized, we can take η0 = ǫ directly. Then, the same proof as in [5] shows that if an algorithm solves
feasibility problems with accuracy ǫ, there is an algorithm for OVGH for parameters α = η/η1 and β = η1/2.
Then, we have α(

√
d/β)5/4 ≤ 12d2η0 and we can apply Proposition 6.2 with ζ = 12d2.5η0 = 12d2.5ǫ. Similar

computations as above then show that m ≥ d/(8 · 61), with k = Θ(M+ln d
d ln 1

ǫ

), so that the query lower bound

finally becomes

Q ≥ Ω

(

d3 ln 1
ǫ

(M + ln d) ln2 d

)

.

Remark 6.1. The more careful analysis—involving the discretization Dδ of the unit sphere at scale δ instead
of the hypercube {±1}d—allowed to add a ln 1

ǫ factor to the final query lower bound but also an additional
ln d factor for both convex-optimization and feasibility-problem results. Indeed, the improved Proposition 6.2
shows that the OVGH with adequate parameters requires O(d) queries, instead of O(d/ ln d) in [5, Proposition
14]. At a high level, each hint queried brings information O(d ln d) but memorizing a binary matrix A ∈
{±1}⌈d/4⌉×d only requires d2 bits of memory: hence the query lower bound is limited to O(d/ ln d). Instead,
memorizing the matrix A where each row lies in Dδ requires Θ(d2 ln 1

ǫ ) memory, hence querying d hints
(total information O(d2 ln d)) is not prohibitive for the lower bound.

6.1.3 Lower bound of [29] for convex optimization and randomized algorithms

We aim to improve the result to obtain the following.

Theorem 6.4. For ǫ ≤ 1/d4 and any δ ∈ [0, 1], any (potentially randomized) algorithm guaranteed to
minimize 1-Lipschitz convex functions over the unit ball with ǫ accuracy uses at least d1.25−δ ln 1

ǫ bits of

memory or makes Ω̃(d1+4δ/3) queries.

The distribution considered in [29] is given by the functions

1

d6
max

{

d5‖Ax‖∞ − 1,max
i∈[N ]

(v⊤i x− iγ)
}

,

where N ≤ d is a parameter, A has ⌊d/2⌋ rows drawn i.i.d. from U({±1}d), and the vectors vi are drawn
i.i.d. from the rescaled hypercube vi ∼ U(d−1/2{±1}d). We adapt the class of functions by simply changing
pre-factors as follows

µmax

{

1

µ
‖Ax‖∞ − 1,max

i∈[N ]
(v⊤i x− iγ)

}

, (8)

where A has the same number of rows but they are draw i.i.d. from Uδ, and δ, µ > 0 are parameters to
specify. We use the notation µ instead of η as in the previous sections because [29] already use a parameter
η which in our context can be interpreted as η = 1/(µ

√
d). We choose the parameters µ = 16

√
dǫ and δ′ = ǫ.

Again, as for the previous sections, the original proof can be directly used to show that if an algorithm
is guaranteed to find a µ

16
√
N
(≥ ǫ)-suboptimal point for the above function class, there is an algorithm that

wins at their Orthogonal Vector Game (OVG) [29, Game 1], with the only difference that the parameter d−4

(l.8 of OVG) is replaced by
√
dµ. OVG requires the output to be robustly-independent (defined in [29]) and

effectively corresponds to β = 1/d2 in OVGH. As a result, there is a successful algorithm for the OVGH with
parameters α =

√
dµ and β = 1/d2 and that even completely ignores the hints. Hence, we can now directly

25



use Proposition 6.2 with ζ = d1+25/16µ (from the assumption ǫ ≤ d−4 we have ζ ≤ 1/
√
d). This shows that

with the adequate choice of k = Θ(M+d ln d
d ln 1

ǫ

), the query lower bound is Ω(d).

Putting things together, a potentially randomized algorithm for convex optimization that usesM memory
makes at least the following number of queries

Q ≥ Ω

(

Nd

k

)

= Ω

(

d4/3

ln1/3 d

(

d ln 1
ǫ

M + d ln d

)4/3
)

.

6.2 Proof sketch for improving the query-complexity lower bound

We now turn to improving the query-complexity lower bound by a factor
ln 1

ǫ

ln d . At the high level, the idea is

to replicate these constructed “difficult” class of functions at
ln 1

ǫ

ln d different scales or levels, similarly to the
manner that the historical Ω(d ln 1

ǫ ) lower bound is obtained for convex optimization [32]. This argument is
relatively standard and we only give details in the context of improving the bound from [29] for randomized
algorithms in convex optimization for conciseness. This result uses a simpler class of functions, which
greatly eases the exposition. We first present the construction with 2 levels, then present the generalization

to p = Θ(
ln 1

ǫ

ln d ) levels. For convenience, we write

Q(ǫ;M,d) = Ω

(

d4/3

ln1/3 d

(

d ln 1
ǫ

M + d ln d

)4/3
)

.

This is the query lower bound given in Theorem 6.5 for convex optimization algorithms with memory M
that optimize the defined class of functions (Eq (8)) to accuracy ǫ.

6.2.1 Construction of a bi-level class of functions FA,v1,v2 to optimize

In the lower-bound proof, [29] introduce the point

x̄ = − 1

2
√
N

∑

i∈[N ]

PA⊥(vi),

where PA⊥ is the projection onto the orthogonal space to the rows of A. They show that with failure
probability at most 2/d, x̄ has good function value

FA,v(x̄) := µmax

{

1

µ
‖Ax̄‖∞ − 1,max

i∈[N ]
(v⊤i x̄− iγ)

}

≤ − µ

8
√
N
.

This is shown in [29, Lemma 25]. On the other hand, from Theorem 6.4, during the first

Q1 = Q(ǫ;M,d)

queries of any algorithm, with probability at least 1/3, all queries are at least µ/(16
√
N)-suboptimal com-

pared to x̄ in function value [29, Theorem 28, Lemma 14 and Theorem 16]. Precisely, if FA,v is the sampled
function to optimize, with probability at least 1/3,

FA,v(xt) ≥ FA,v(x̄) +
µ

16
√
N
≥ FA,v(x̄) +

µ

16
√
d
, ∀t ≤ Q1.

As a result, we can replicate the term maxi∈[N ](v
⊤
i x− iγ) at a smaller scale within the ball Bd(x̄, 1/(16

√
d)).

For convenience, we introduce ξ2 = 1/(16
√
d) which will be the scale of the duplicate function. We separate

the wall term ‖Ax‖∞ − µ for convenience. Hence, we define

GA,v1(x) := µmax
i∈[N ]

(

v⊤1,ix− iγ
)

GA,v1,v2(x) := max{GA,v(1)(x), GA,v1(x̄) +
µξ2
3
·

max

{

1 + ‖x− x̄‖2, 1 +
ξ2
6

+
ξ2
18

max
i∈[N ]

(

v⊤2,i

(

x− x̄
ξ2/9

)

− iγ
)}}
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x

GA,v1(x)

x̄

µξ2
3

GA,v1(x̄)

+µξ2
3 (1 + ‖x− x̄‖2)

ξ2
3

µξ2 · 2ξ29
GA,v1(x̄) +

µξ2
3 +

µξ22
18

+
µξ22
54 maxi∈[N ]

(

v⊤2,i

(

x−x̄
ξ2/9

)

− iγ
)

Figure 3: Representation of the procedure to rescale the optimization function.

An illustration of the construction is given in Fig. 3. The resulting optimization functions are given by
adding the wall term:

FA,v1(x) = max {‖Ax‖∞ − µ,GA,v1(x)}
FA,v1,v2(x) = max {‖Ax‖∞ − µ,GA,v1,v2(x)}

We first explain the choice of parameters. First observe that since ‖Ax̄‖ = 0, we have GA,v1(x̄) =
FA,v1(x̄). We can then check that for all x ∈ Bd(0, 1),

GA,v1,v2(x) ≤ max

{

GA,v1(x), GA,v1(x̄) +
2

3
µξ2

}

. (9)

Further, for any x ∈ Bd(x̄, ξ2/3), since FA,v1 is 1-Lipschitz, we can easily check that

GA,v1,v2(x)−GA,v1(x̄) =
µξ2
3

max

{

1 + ‖x− x̄‖2, 1 +
ξ2
6

+
ξ2
18

max
i∈[N ]

(

v⊤2,i

(

x− x̄
ξ2/9

)

− iγ
)}

≤ 2

3
µξ2.

Thus, GA,v1,v2(x) does not coincide with GA,v1(x) on Bd(x̄, ξ2/3). Then, the ‖x − x̄‖2 term ensures
that any minimizer of GA,v1,v2 is contained within the closed ball Bd(x̄, ξ2/3). Also, to obtain a µξ2/3-
suboptimal solution of FA,v1,v2 , the algorithm needs to find what would be a µξ2-suboptimal solution of
FA,v1 , while receiving the same response as when optimizing the latter. Next, for any x ∈ Bd(x̄, ξ2/9), the
term maxi∈[N ]

(

v⊤2,i

(

x−x̄
ξ2/9

)

− iγ
)

lies in [−1, 1]. Hence, we can check that for x ∈ Bd(x̄, ξ2/9),

GA,v1,v2(x) = GA,v1(x̄) +
µξ2
3

+
µξ22
18

+
µξ22
54

max
i∈[N ]

(

v⊤2,i

(

x− x̄
ξ2/9

)

− iγ
)

. (10)

We now argue that FA,v1,v2 acts as a duplicate function. Until the algorithm reaches a point with
function value at most GA,v1(x̄) + µξ2, the optimization algorithm only receives responses consistent with
the function FA,v1 by Eq (9). Next, all minimizers of FA,v1,v2 are contained in Bd(x̄, ξ2/3), which was
the goal of introducing the term in ‖x− x̄‖2. As a result, optimizing FA,v1,v2 on this ball is equivalent to
minimizing

F̃A,v2(y) = max

{

‖Ay‖∞ − µ2, c2 + ν2 max
i∈[N ]

(v⊤2,iy − iγ), c′2 + ν′2‖y‖
}

, y ∈ Bd(0, 3),

where y = x−x̄
ξ2/9

. The function has been rescaled by a factor ξ2/9 compared to FA,v1,v2 so that µ2 = 9µ
ξ2
,

ν2 = µξ2
6 , ν′2 = 6µ, c2 = 9

ξ2
GA,v1(x̄) + 3µ+ µξ2

2 , and c′2 = 9
ξ2
GA,v1(x̄) + 3µ. By Eq (10), the two first terms

of F̃A,v1 are preponderant for y ∈ Bd(0, 1).
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The form of F̃A,v2 is very similar to the original form of functions

FA,v2 = max

{

‖Ay‖∞ − µ′
1, µ

′
2 max
i∈[N ]

(v⊤2,iy − iγ)
}

,

In fact, the same proof structure for the query-complexity/memory lower-bound can be applied in this case.
The main difference is that originally one had µ′

1 = µ′
2; here we would instead have µ′

1 = µ2 + c2 = Θ(µ/ξ2)
and µ′

2 = ν2 = Θ(µξ2). Intuitively, this corresponds to increasing the accuracy to Θ(ǫξ22)—a factor ξ2 is due
to the fact that F̃A,v2 was rescaled by a factor ξ2/9 compared to FA,v1,v2 , and a second factor ξ2 is due to

the fact that within F̃A,v2 , we have µ′
2 = Θ(µξ2)—while the query lower bound is similar to that obtained

for Θ(ǫ/ξ2). As a result, during the first

Q2 = Q

(

Θ

(

ǫ

ξ2

)

;M,d

)

queries of any algorithm optimizing F̃A,v2 , with probability at least 1/3 on the sample of A and v2, all
queries are at least Θ(ǫξ2)-suboptimal compared to

ȳ = − 1

2
√
N

∑

i∈[N ]

PA⊥(v2,i).

We are now ready to give lower bounds on the queries of an algorithm minimizing FA,v1,v2 to accuracy
Θ(ǫξ22). Let T2 be the index of the first query with function value at most GA,v1(x̄) + µξ2. We already
checked that before that query, all responses of the oracle are consistent with minimizing FA,v1 , hence on an
event E1 of probability at least 1/3, one has T2 ≥ Q1. Next, consider the hypothetical case when at time T2,
the algorithm is also given the information of x̄ and is allowed to store this vector. Given this information,
optimizing FA,v1,v2 reduces to optimizing F̃A,v2 since we already know that the minimum is achieved within
Bd(x̄, ξ2/3). Further, any query outside of this ball either

• returns a vector v1,i which does not give any useful information for the minimization (v1 and v2 are
sampled independently and x̄ is given),

• or returns a row from A, as covered by the original proof.

Hence, on an event E2 of probability at least 1/3, even with the extra information of x̄, during the next
Q2 queries starting from T2, the algorithm does not query a Θ(µξ32)−suboptimal solution to FA,v1,v2 . This
holds a fortiori for the model when the algorithm is not given x̄ at time T2.

6.2.2 Recursive construction of a p-level class of functions FA,v1,...,vp

Similarly as in the last section, one can inductively construct the sequence of functions FA,v1 , FA,v1,v2 ,
FA,v1,v2,v3 , etc. Formally, the induction is constructed as follows: let (vp)p≥1 be an i.i.d. sequence of N
i.i.d. vectors (vk,i)i∈[N ] sampled from the rescaled hypercube d−1/2{±1}d. Next, we pose

GA,v1(x) = µ(1) max
i∈[N ]

(

v⊤1,i

(

x− x̄(1)

s(1)

)

− iγ
)

,

where µ(1) = µ, x̄(1) = 0 and s(1) = 1. For k ≥ 1, we pose

x̄(k+1) = x̄(k) − s(k)

2
√
N

∑

i∈[N ]

PA⊥(vk,i), and F (k) := GA,v1,...,vk
(x̄(k)) + µ(k)ξk+1,

for a certain parameter ξk+1 to be specified. We then define the next level as

GA,v1,...,vk+1
(x) := max

{

GA,v1,...,vk
(x), GA,v1,...,vk

(x̄(k+1)) +
µ(k)ξk+1

3
·

max

{

1 +
‖x− x̄(k+1)‖2

s(k)
, 1 +

ξk+1

6
+
ξk+1

18
max
i∈[N ]

(

v⊤k+1,i

(

x− x̄(k+1)

s(k)ξk+1/9

)

− iγ
)}}

.
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We then pose µ(k+1) := µ(k)ξ2k+1/54 and s(k+1) := s(k)ξk+1/9, which closes the induction. The optimization
functions are defined simply as

FA,v1,...,vk+1
(x) = max

{

‖Ax‖∞ − µ,GA,v1,...,vk+1
(x)
}

.

We checked before that we can use ξ2 = 1/(16
√
d). For general k ≥ 0, given that the form of the function

slightly changes to incorporate the absolute term (see F̃A,v2), this constant may differ slightly. In any case,

one has ξk = Θ(1/
√
d). Now fix a construction level p ≥ 1 and for any k ∈ [p], let Tk be the first time that

a point with function value at most F (k) is queried. For convenience let T0 = 0. Using the same arguments
as above recursively, we can show that on an event Ek with probability at least 1/3,

Tk − Tk−1 ≥ Qk = Q
(

Θ
( µ

s(k)

)

;M,d
)

Next note that the sequence F (k) is decreasing and by construction, if one finds a µ(p)ξp+1-suboptimal point
of FA,v1,...,vp , then this point has value at most F (p). As a result, for an algorithm that finds a µ(p)ξp+1-

suboptimal point, the times T0, . . . , Tp are all well defined and non-decreasing. We recall that µ = Θ(
√
dǫ).

Therefore, we can still have µ/s(p) ≤ √ǫ and µ(p)ξp+1 ≥ ǫ2 for p = Θ(
ln 1

ǫ

ln d ). Combining these observations,

we showed that when optimizing the functions FA,v1,...,vp to accuracy Θ(µ(p)ξp+1) = Ω(ǫ2), the total number
of queries Q satisfies

E[Q] ≥ 1

3

∑

k∈[p]

Qk ≥
p

3
Q(
√
ǫ;M,d) = Θ

(

d4/3 ln 1
ǫ

ln4/3 d

(

d ln 1
ǫ

M + d ln d

)4/3
)

.

Changing ǫ to ǫ2 proves the desired result.

Theorem 6.5. For ǫ ≤ 1/d8 and any δ ∈ [0, 1], any (potentially randomized) algorithm guaranteed to
minimize 1-Lipschitz convex functions over the unit ball with ǫ accuracy uses at least d1.25−δ ln 1

ǫ bits of

memory or makes Ω̃(d1+4δ/3 ln 1
ǫ ) queries.

The same recursive construction can be applied to the results from Theorems 6.1 and 6.3 to improve

their oracle-complexity lower bounds by a factor
ln 1

ǫ

ln d , albeit with added technicalities due to the adaptivity
of their class of functions. This yields Theorem 3.3.

7 Memory-constrained gradient descent for the feasibility prob-
lem

In this section, we prove a simple result showing that memory-constrained gradient descent applies to the
feasibility problem. We adapt the algorithm described in [49].

Input: Number of iterations T , computation accuracy η ≤ 1, target accuracy ǫ ≤ 1
Initialize: x = 0;
for t = 0, . . . , T do

Query the oracle at x
if x successful then return x;
Receive a separation vector g with accuracy η
Update x as x− ǫg up to accuracy η

end
return x

Algorithm 11: Memory-constrained gradient descent

We now prove that this memory-constrained gradient descent gives the desired result of Proposition 3.1.
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Proof of Proposition 3.1. Denote by xt the state of x at iteration t, and gt (resp. g̃t) the separation oracle
without rounding errors (resp. with rounding errors) at xt. By construction,

‖xt+1 − (xt + ǫg̃t)‖ ≤ η and ‖g̃t − gt‖ ≤ η. (11)

As a result, recalling that ‖gt‖ = 1,

‖xt+1 − x⋆‖2 ≤ (‖xt + ǫg̃t − x⋆‖+ η)2 ≤ (‖xt + ǫgt − x⋆‖+ (1 + ǫ)η)2 ≤ ‖xt + ǫgt − x⋆‖2 + 20η.

By assumption, Q contains a ball Bd(x
⋆, ǫ) for x⋆ ∈ Bd(0, 1). Then, because gt separates xt from Bd(x

⋆, ǫ),
one has g⊤t (x

⋆ − xt) ≥ ǫ. Therefore,

‖xt+1 − x⋆‖2 ≤ ‖xt − x⋆‖2 + 2ǫg⊤t (xt − x⋆) + ǫ2‖gt‖2 + 20η

≤ ‖xt − x⋆‖2 − ǫ2 + 20η.

Then, take η = ǫ2/40 and T = 8
ǫ2 . If iteration T was performed, we have using the previous equation

‖xT − x⋆‖2 ≤ ‖x0 − x⋆‖2 −
ǫ2

2
T ≤ 4− ǫ2

2
T ≤ 0.

Hence, xT is an ǫ-suboptimal solution.
We now turn to the memory usage of gradient descent. It only needs to store x and g up to the desired

accuracy η = O(ǫ2). Hence, this storage and the internal computations can be done with O(d ln d
ǫ ) memory.

Because we suppose that ǫ ≤ 1√
d
, this gives the desired result.

8 Discussion and Conclusion

To the best of our knowledge, this work is the first to provide some positive trade-off between oracle-
complexity and memory-usage for convex optimization or the feasibility problem, as opposed to lower-bound
impossibility results [29, 5]. Our trade-offs are more significant in a high accuracy regime: when ln 1

ǫ ≈ dc,
for c > 0 our trade-offs are polynomial, while the improvements when ln 1

ǫ = poly(ln d) are only in ln d
factors. A natural open direction [49] is whether there exist algorithms with polynomial trade-offs in that
case. We also show that in the exponential regime ln 1

ǫ ≥ Ω(d ln d), gradient descent is not Pareto-optimal.
Instead, one can keep the optimal memory and decrease the dependence in ǫ of the oracle-complexity from
1
ǫ2 to (ln 1

ǫ )
d. The question of whether the exponential dependence in d is necessary is left open. Last,

our algorithms rely on the consistency of the oracle, which allows re-computations. While this is a classical
assumption, gradient descent and classical cutting-plane methods do not need it; removing this assumption
could be an interesting research direction (potentially, this could also yield stronger lower bounds).
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[8] Sébastien Bubeck. “Convex Optimization: Algorithms and Complexity”. In: Foundations and Trends®
in Machine Learning 8.3-4 (2015), pp. 231–357.
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