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Abstract

We study the fundamental limits of learning in contextual bandits, where a learner’s rewards

depend on their actions and a known context, which extends the canonical multi-armed bandit

to the case where side-information is available. We are interested in universally consistent algo-

rithms, which achieve sublinear regret compared to any measurable fixed policy, without any func-

tion class restriction. For stationary contextual bandits, when the underlying reward mechanism

is time-invariant, [1] characterized learnable context processes for which universal consistency is

achievable; and further gave algorithms ensuring universal consistency whenever this is achievable,

a property known as optimistic universal consistency. It is well understood, however, that reward

mechanisms can evolve over time, possibly adversarially, and depending on the learner’s actions. We

show that optimistic universal learning for contextual bandits with adversarial rewards is impossible

in general, contrary to all previously studied settings in online learning—including standard super-

vised learning. We also give necessary and sufficient conditions for universal learning under various

adversarial reward models, and an exact characterization for online rewards. In particular, the set of

learnable processes for these reward models is still extremely general—larger than i.i.d., stationary

or ergodic—but in general strictly smaller than that for supervised learning or stationary contextual

bandits, shedding light on new adversarial phenomena.

Keywords. Contextual bandits, Universal consistency, Optimistically universal learning, Online learn-

ing, Adversarial rewards, Statistical learning theory
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1 Introduction

The contextual bandit setting is a central problem in statistical decision-making. This setting models

the interaction between a learner or decision maker, and a reward mechanism. At each iteration of the

learning process, the learner observes a context x ∈ X (also known as covariate in the statistical learning

literature), then selects an action a ∈ A to perform. The decision maker then receives a reward based on

the context and selected action, which can then be used to perform informed future actions. As a classical

example, this framework can model the problem of online personalized recommendations. For any new

customer, an online store provides a list of product recommendations. Based on the reward obtained from

actions of the customer, e.g., if they purchase an item, the store can then update its recommendations for

future customers. The major difference with the standard supervised learning framework is that the

learner can only observe the reward of the selected action, referred to as partial feedback, instead of the

full-feedback case of supervised learning in which a learner can directly compute the reward (or loss) of

non-selected actions. Further, instead of estimating the reward mechanism, the goal in contextual bandits

is to achieve low regret compared to the optimal actions in hindsight. New phenomena arise from these

characteristics, including the well-known exploration/exploitation trade-off: algorithms should balance

between exploiting known high-reward actions and exploring new actions which potentially could yield

higher rewards. In the present work, we aim to shed light on the fundamental question of learnability in

contextual bandits and unveil key differences from the classical full-feedback setting.

Universal consistency. We focus on the foundational notion of consistency. In the contextual bandit

context, a learner is consistent if its long-term excess regret vanishes. Contexts are modeled by a stochas-

tic process X = (Xt)t≥1. If ât is the selected action and rt the reward function at time t, we ask that for

any measurable policy π∗,

limsup
T→∞

1

T

T
∑

t=1

rt(π
∗(Xt))− rt(ât) ≤ 0 (a.s.).

As shown in the above equation, we follow a traditional regret analysis, where we compare the learner

to a fixed policy (static regret) as opposed to switching regret where the comparison policy may also

change. For robustness and generality, one commonly aims to design algorithms that ensure consistency

for a large class of instances. In this paper, we consider the strongest notion of universal consistency,
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introduced in [2], which asks that a learning rule is consistent for any possible reward mechanism—

informally, any form of reward functions (rt)t≥1. The notion of universal consistency was mostly studied

in the full-feedback supervised learning framework. In this context, a learner observes a stream of data

(Xt, Yt)t≥1 and makes predictions Ŷt at each step. Thus, it is universally consistent if irrespective of

the underlying mechanism relating values Y to contexts X, its average excess error compared to any

measurable predictor function f : X → Y vanishes: limsupT→∞
1
T

∑

t≤T ℓ(Ŷt, Yt) − ℓ(f(Xt), Yt) ≤
0 (a.s.). Starting with the work of [3] which proved universal consistency for a large class of local

average estimators in Euclidean spaces, a significant line of work focused on extending these results.

Notably, one can achieve universal consistency for more general spaces and loss functions [4, 5]. More

recently, [6–8] provided learning rules for universal learning under a provably-minimal assumption on the

context space X known as essential separability. While these works focused on independent identically

distributed (i.i.d.) data, more restricted consistency results were also obtained for non-i.i.d. mixing,

stationary ergodic data processes [5, 9, 10] or processes satisfying the law of large numbers [11–13].

Optimistic learning. Following these efforts to generalize results, a natural question arises: what are

the fundamental limits of universal consistency? To answer this question, we adopt the framework of

optimistic learning [2, 6, 14] which aims to study learning with provably-minimal assumptions. As orig-

inally introduced by [2], the notion of optimistically universal learning is motivated by the following

reasoning. If we are interested in designing a learning algorithm that achieves a particular learning guar-

antee (in our case, universal consistency under the process X), to succeed we must necessarily assume

that such a guarantee is at least possible (i.e., that there exists a learner achieving this guarantee). Since

such an assumption typically cannot be verified empirically, making such an assumption is an act of op-

timism. As such, this is referred to as the optimist’s assumption [2]. The main question in this literature

is to determine whether there exists a learning algorithm which achieves the desired guarantee given

only the assumption that it is possible to do so (in our case, this means making no additional assump-

tions about the process X). Such a learning algorithm is said to be optimistically universal. Since the

optimist’s assumption is always necessary to achieve the desired guarantee, an optimistically universal

learning algorithm succeeds under the minimal possible assumptions. Thus, in the present context, an

algorithm is called optimistically universal if it is universally consistent under every process X for which

there exists a universally consistent learner: that is, it learns whenever learning is possible. The key

point is that the learner whose existence establishes that X admits universal consistency may depend on

the distribution of X, whereas an optimistically universal learner must be consistent under every such X.

In the present work, we aim to understand whether optimistically universal learning is possible for

contextual bandits under various categories of reward adversaries. It is useful first to understand and

characterize the minimal assumptions for the existence of a universally consistent learning rule: that is,

which processes X satisfy the optimist’s assumption. Informally, we aim to characterize

C = {X : ∃ learning rule f· s.t. ∀ rewards within a given model, f· is consistent}.

Second, we search for optimistically universal procedures: i.e., which are universally consistent under all

processes where this is possible (X ∈ C). For any process X, if such an algorithm fails to be universally

consistent, we are guaranteed that no other algorithm would be either.

Universal learning in contextual bandits. While the literature on universal learning in the case of

full-feedback is very extensive, it is surprisingly sparse for partial-feedbacks. Previous literature mostly

investigated stochastic contextual bandits under important structural assumptions on rewards, such as

smoothness or margin conditions. Closest to universal learning—in which one relaxes assumptions on
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the reward mechanism—[15] showed that for continuous rewards in the contexts, strong consistency can

be achieved with traditional non-parametric methods, for Euclidean context spaces. [1] gave the first

results for contextual bandits on universal consistency per se. They focus on stationary rewards—the

underlying reward mechanism is invariant over time—and show in particular that for the main case of

interest—finite action spaces A—universal consistency is achievable under the same class of processes

as for the noiseless full-feedback case. In contrast with previous literature, the proposed learning rules

are consistent without any assumptions on the rewards, on general spaces and under large classes of non-

i.i.d. contexts. Further, they show that optimistically universal learning rules always exist for stationary

bandits.

The present work challenges the stationarity assumption from [1]. In particular, this does not allow

for changes in the underlying reward mechanism, a behavior ubiquitous in current applications. It is

well-known that the distribution of contexts and rewards can shift over time, such as seasonal changes in

consumer behavior and can be adversarial. Our analysis mainly focuses on two models for the strengh of

the adversary: oblivious rewards for which the reward mechanism can depend on the past context history,

but not the past actions of the learner; and the strongest online rewards for which the rewards can be adap-

tive on past contexts and selected actions. This study shows that having adversarial rewards—as opposed

to stationary rewards—plays a crucial role in the fundamental limits of learnability for contextual ban-

dits, and represents a significant advancement in the general analysis of more intricate decision-making

processes, such as reinforcement learning.

1.1 Related works

Literature on optimistic supervised learning. Optimistic learning was first introduced by [2] for the

realizable (noiseless) case when values are exactly given as Yt = f(Xt) for some unknown measurable

function f : X → Y , and provided necessary conditions and sufficient conditions for universal learn-

ing. The characterization was then completed in a subsequent line of work [14, 16, 17]. In particular,

while nearest-neighbor is not consistent even for i.i.d. processes in general metric spaces [18], a simple

variant with restricted memory is optimistically universal for general separable metric spaces. Notably,

the corresponding class of learnable processes—which intuitively asks that the process visits sublinearly

measurable partition of the ambient space—is significantly larger than previously considered relaxations

of the i.i.d. assumptions. For more general noisy data generating processes [19, 20] gave complete char-

acterizations and showed that universal learning can be achieved not only for noisy data but arbitrarily

dependent values Y on the contexts X, possibly even adversarial to the learner’s predictions. Specifically,

[20] showed that under mild assumptions on the value space—including totally-bounded-metric spaces—

optimistically universal learning with noisy values is possible on the exact same class of processes as for

noiseless values. Hence, learning with arbitrary or adversarial responses comes at no generality expense

for the full-feedback setting.

Literature on contextual bandits and non-stationarity. The concept of contextual bandits was first

introduced in a limited context for single-armed bandits [21, 22]. Since then, considerable effort was

made to generalize the framework and provide efficient methods under important structural assump-

tions on the rewards. Most of the literature considered parametric assumptions [23–28], but substantial

progress has also been achieved in the non-parametric setting towards obtaining minimax guarantees

under smoothness (e.g., Lipschitz) conditions or margin assumptions [29–32], with further refinements

including [33, 34].

While the above-cited works mostly focus on i.i.d. data, the non-stationary case has also been studied

in the literature. The fact that the reward distribution can change over time has been widely acknowledged

4



in the established parametric setting for contextual bandits, and has been explored under various models

including [35–41]. The non-parametric case, more relevant to our work has also been considered for

Lipschitz rewards and margin conditions [31, 42]. We note however, that these works often consider

non-static regret, where the baseline is also non-stationary, while we focus on the excess regret compared

to fixed policies.

1.2 Summary of the present work

We mainly focus on bounded rewards. Our first main result shows that in the main case of interest of

finite action spaces A and separable metrizable spaces X admitting a non-atomic probability measure,

optimistic universal learning is impossible, even under the weakest adversarial model which we call

memoryless: rewards conditionally on their selected action and context are independent but may follow

different conditional distributions. This implies that adapting algorithms for specific context processes is

necessary to ensure universal learning. This is the first example of such a phenomenon for online learn-

ing, for which previously considered settings always admitted optimistically universal learning rules,

including realizable (noiseless) supervised learning [2, 14, 16], arbitrarily noisy (potentially adversarial

rewards) supervised learning [19, 20], and stationary contextual bandits [1]. Intuitively, personalization

and generalization are incompatible for contextual bandits with adversarial rewards.

Next, we study universally learnable processes for various adversarial reward models. On the nega-

tive side, we show that in the main case of interest, the set of learnable processes for stationary contextual

bandits or supervised learning denoted C2 is not anymore fully learnable even for memoryless rewards:

learning with adversarial rewards is fundamentally more difficult. This comes as a surprising result since

C2 processes admitted universal learning in all previous learning settings. We further identify novel nec-

essary and sufficient conditions, involving intricate behavior of duplicates in the context process. In

particular, for memoryless, oblivious, and online rewards, the set of learnable processes is strictly be-

tween C2 and a smaller class C1. For this same case of interest, we give an exact characterization of

these learnable processes for online rewards: this characterization involves a sort of convergence rate of

the instance process towards its limit distribution. Given the knowledge of this rate, universal learning

is achievable with a learning rule that we provide; on the other hand, without a priori knowledge on

this rate, universal learning is impossible since optimistic universal learning is not achievable. While

we leave the exact characterization for memoryless and oblivious rewards as an open question for finite

action spaces A and context spaces admitting a non-atomic probability measure, our characterizations in

all other cases are complete.

Last, we give extensions of the above results, when the rewards are unbounded or satisfy some

regularity constraints, namely uniform continuity.

1.3 Overview of contributions and techniques

Non-existence of optimistically universal learning rules. The proof involves several major steps.

First, one needs to show that universal learning is achievable for a large class of processes. In particu-

lar, we show that deterministic C2 processes are learnable, where C2 is the characterization of learnable

processes for supervised learning or stationary contextual bandits. This is achieved by assigning each

distinct instance a multi-armed bandit learner designed to learn the best action for this instance, which

corresponds to pure personalization. Next, we argue that C1 processes—the characterization of learn-

able processes for countable action spaces A in stationary contextual bandits—can be learned with the

same structural risk minimization approach introduced by [1] for stationary contextual bandits, which

corresponds to generalization.
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The main challenge is to show that one cannot universally learn both classes of processes (determin-

istic C2 and C1) with a unique algorithm. At the high level, we show that by contradiction, personalization

and generalization are incompatible. We consider a C1-like algorithm, where instances are i.i.d. during

a phase, then the same sequence is repeated many times. The reward is identical for each duplicate and

has the following behavior: one safe action a2 always has relatively high reward, and an uncertain action

a1 has random reward. We then show that because of the C1 property, the algorithm needs to follow

the safe action in order to be consistent: if it explores the uncertain action too often, the incurred loss

is significant. More precisely, we show that the exploration rate of the unsafe action a2 decays to 0.

Once the algorithm reaches a certain threshold, we stop the stochastic process and consider a realization

of the uncertain rewards and C1-like process. Once these are taken as deterministic, the optimal policy

would be to use the action a2 when it has high reward, which the algorithm did not perform. Repeating

this process inductively with decaying threshold, we can show that on a deterministic C2 process, the

algorithm is not universally consistent.

New classes of stochastic processes for learning theory. We identify novel classes of processes that

arise in the characterization of learnable processes. In the main case of interest, we give a new necessary

condition C4. Informally, while C2 processes only required that the process the process visits only a

sublinear number of sets from any countable partition of the context space X , the necessary condition C4
requires this sublinear behavior to be uniform spatially in X . Loosely speaking, when the convergence

speed of the sublinear visit property is heterogeneous across space, one can take advantage of these

discrepancies with adversarial rewards together with a somewhat similar personalization/generalization

incompatibility phenomenon as the one described above. More precisely, if C4 is not satisfied, locally

in the context space X , one can find the following behavior: contexts are duplicated across phases

of exponential time-length, for arbitrarily small exponent. One can then consider oblivious rewards—

rewards that may depend on past contexts X≤t but only the selected action ât at time t—that are identical

on duplicates but with one safe and one uncertain option as above. Eventually, the algorithm’s exploration

rate of the uncertain action decays to 0. However, for a given fixed realization of the rewards, this is

suboptimal. In this proof, the dependence of the rewards on past contexts was necessary to make sure

that during each constructed phase, no information on the rewards of future local space zones is revealed.

On the positive side, we introduce a novel condition C5 that is universally learnable, with C1 ( C5
in general. Intuitively, this asks that there is a specific rate at which we can add duplicates while still

preserving the C1 behavior. This should be related to the property observed in [1] that if we were to

replace all duplicates with an arbitrary value x0 ∈ X , C2 processes would belong to C1. The C5 property

provides an intermediary condition. We now briefly describe the algorithm we introduce to achieve

universal consistency on C5 processes. The learning rule heavily relies on the knowledge of the correct

rate to add duplicates. For all points included within this addition rate, we can use the structural risk

minimization approach since these points still have C1 behavior. For the remaining duplicates, we use

pure personalization by assigning a bandit learner to each distinct instance. In particular, all deterministic

C2 processes belong to C5. Further, we can show that for online rewards, condition C5 is also necessary

and as a result is an exact characterization of learnable processes in this setting. In particular, for online

rewards, universal learning exactly requires the a priori knowledge of the correct rate to add duplicates.

Last, in an attempt to bridge the gap C5 ( C4 remaining for oblivious rewards, we propose a new

condition C6 on processes that is necessary for universal learning. In the general case of context spaces X
admitting non-atomic probability distributions, we have C5 ⊂ C6 ( C4. This shows that further uniform

continuity than the C4 condition is necessary. The condition can be tightened using the same proof for a

stronger type of adversary that we call prescient for which the rewards can also depend on the complete
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sequence X instead of the past revealed contexts to the learner. For these rewards, we can show that a

stronger C7—and simpler than C6—is necessary. We believe in general C7 ( C6 but more importantly, the

question of whether C5 = C7, is open. Hence, possibly, our characterizations for prescient and stronger

reward models are tight.

2 Preliminaries

Let (X ,B) be a separable metrizable Borel context space and A a separable metrizable Borel action

space A. When considering continuity assumptions, we suppose that A is given with a metric d. For

countable action spaces, we use the discrete topology. We are interested in the following sequential

contextual bandit framework: at step t ≥ 1, the learner observes a context Xt ∈ X , then selects an action

ât ∈ A and last, receives a reward rt ∈ R which may be stochastic. Unless mentioned otherwise, we

suppose that the rewards are bounded R = [0, r̄] and that the upper bound r̄ is known. Hence, without

loss of generality we may pose r̄ = 1. The learner is online and as such, can only use the current history

to selects the action ât.

Definition 1 (Learning rule). A learning rule is a sequence f· = (ft)t≥1 of possibly randomized measur-

able functions ft : X t−1×Rt−1×X → A. The action selected at t is ât = ft((Xs)s≤t−1, (rs)s≤t−1,Xt).

We now precise the data generation process. We suppose that the contexts X = (Xt)t≥1 are generated

from a general stochastic process. To define the rewards, (rt)t≥1, many models for the underlying

reward mechanism are possible. [1] considered the case of stationary rewards when the rewards follow

a conditional distribution Pr|a,x conditionally on the selected action ât and the context Xt at the current

time t ≥ 1. We consider the considerably more general case of adversarial rewards. Of particular

interest to the discussion of this paper will be 1. oblivious rewards which correspond to the case when

the learner plays a game against an adversary oblivious to the player’s actions and 2. online rewards

when the adversary can choose rewards depending on the complete history of contexts, selected actions

and received rewards. For a stochastic process X, we will use the notation X≤t = (Xt′)t′≤t. Also, for a

measurable set A ∈ B, we will use the shorthand X ∩A = {Xt : Xt ∈ A, t ≥ 1}.

Definition 2 (Reward models). The reward mechanism is said to be

• stationary (stat.) if there is a conditional distribution Pr|a,x such that the rewards (rt)t≥1 given

their selected action at and context Xt are independent and follow Pr|a,x

• memoryless if there are conditional distributions (Pr|a,x,t)t≥1 such that (rt)t≥1 given their selected

action at and context Xt are independent for t ≥ 1 and respectively follow Pr|a,x,t

• oblivious if there are conditional distributions (Pr|a,x≤t
)t≥1 such that rt given the selected action

at and the past contexts X≤t, follows Pr|a,x≤t

• online if there are conditional distributions (Pr|a≤t,x≤t,r≤t−1
)t≥1 such that rt given the sequence

of selected actions a≤t and the sequence of contexts X≤t and received rewards r≤t−1, follows

Pr|a≤t,x≤t,r≤t−1
.

We refer to all the models except for the stationary one as adversarial. To emphasize the depen-

dence of the reward in the selected action, and the conditional distributions, we may write rt(a | Xt),
rt(a | X≤t), rt(a | X), and rt(a | a≤t−1,X≤t, r≤t) for the corresponding reward models. When the

conditioning is clear from context, we may simply write rt(a) for the reward if action a is selected.
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The general goal in contextual bandits is to discover or approximate an optimal policy π∗ : X → A if

it exists. For adversarial rewards, there may not exist a single optimal policy π∗. Instead, we aim for

consistent algorithms that have sublinear regret compared to any fixed measurable policy.

Definition 3 (Consistency and universal consistency). Let X be a stochastic process on X , (rt)t≥1 be a

reward mechanism and f· be a learning rule. Denote by (ât)t≥1 its selected actions. We say that f· is

consistent under X with rewards r if for any measurable policy π∗ : X → A,

limsup
T→∞

1

T

T
∑

t=1

rt(π
∗(Xt))− rt(ât) ≤ 0, (a.s.).

We say that f· is universally consistent for a given reward model if it is consistent under X with any

reward within the considered reward model.

Even in the simplest case of full-feedback noiseless learning [2], universal consistency is not always

achievable. For instance, if the process X visits a distinct instance at each step the learner, the information

gathered on previous instances X≤t−1 does not provide information on the rewards for instance Xt. We

are then interested in understanding the set of processes X on X for which universal learning is possible.

More practically, we aim to provide optimistically universally consistent learning rules which, if they

exist, would be universally consistent whenever this is possible.

Definition 4 (Optimistically universal learning rule). For a given reward model which we write model ∈
{stat,memoryless, oblivious, prescient, online}, we define

Cmodel = {X : ∃ learning rule universally consistent for model under X}.

We say that a learning rule f· is optimistically universal for the reward model if it is universally

consistent under any process X ∈ Cmodel for that reward model.

In general Conline ⊂ Coblivious ⊂ Cmemoryless ⊂ Cstat.

2.1 Two main classes of stochastic processes

We give the definitions of two main conditions on stochastic processes arising in our characterizations

of learnable processes. First, given a stochastic process X on X , an extended process is given by X̃ =
(Xt)t∈T where T ⊂ N is a possibly random subset of times—which can depend on any random variable,

the process X itself, rewards potentially observed by a learner, etc. We define the limit submeasure µ̂X̃

as follows. For any A ∈ B,

µ̂X̃(A) = limsup
T→∞

1

T

∑

t≤T,t∈T
1A(Xt).

The first condition intuitively asks that the expected empirical limsup frequency of sets A ∈ B is a

continuous sub-measure on B.

Condition 1 (Blanchard et al. [1], Hanneke [2]). Let X be a stochastic process and X̃ = (Xt)t∈T an

extended process. X̃ satisfies the condition if for every monotone sequence {Ak}∞k=1 of measurable

subsets of X with Ak ↓ ∅,
lim
k→∞

E[µ̂X̃(Ak)] = 0.

We define C′1 as the set of extended processes X̃ satisfying this condition. For clarity, we also define C1
as the set of (classical) processes X satisfying this condition (taking T = N).
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The next condition asks that X visits a sublinear number of sets of any measurable partition of X .

Condition 2 (Hanneke [2]). For every sequence {Ak}∞k=1 of disjoint measurable subsets of X , |{k :
X≤T ∩Ak 6= ∅}| = o(T ) (a.s.). Denote by C2 the set of all processes X satisfying this condition.

Intuitively, this condition asks that the process does not keep exploring completely different regions

of the space X . This is known that even in the noiseless full-feedback setting, C2 is a necessary condition

for universal learning [2] since intuitively, the past history does not provide any information on newly

visited regions for a learner. [2] showed that both classes above are very general classes of processes.

Precisely, we have C1 ⊂ C2 and i.i.d. processes, stationary ergodic processes, stationary processes and

processes satisfying the law of large numbers belong to C1.

2.2 Useful algorithms

Our learning rules will use as subroutine the following two algorithms. First, we will use the algorithm

EXP3.IX for regret bounds with high-probability in adversarial bandits.

Theorem 5 ([43]). There exists an algorithm EXP3.IX for adversarial multi-armed bandit with K ≥ 2
arms such that for any δ ∈ (0, 1) and T ≥ 1,

max
i∈[K]

T
∑

t=1

(rt(ai)− rt(ât)) ≤ 4
√
KT lnK +

(

2

√

KT

lnK
+ 1

)

ln
2

δ
,

with probability at least 1− δ.

We will always use a very simplified version of this result: there exists a universal constant c > 0
such that

max
i∈[K]

T
∑

t=1

(rt(ai)− rt(ât)) ≤ c
√
KT lnK ln

1

δ
,

with probability 1− δ for δ ≤ 1
2 . Second, we use the EXPINF algorithm from [1] which uses EXP3.IX

as subroutine to achieve sublinear regret compared to an infinite countable sequence of experts.

Theorem 6 ([1]). There is an online learning rule EXPINF using bandit feedback such that for any

countably infinite set of experts {E1, E2, . . .} (possibly randomized), for any T ≥ 1 and 0 < δ ≤ 1
2 , with

probability at least 1− δ,

max
1≤i≤T 1/8

T
∑

t=1

(rt(Ei,t)− rt(ât)) ≤ cT 3/4
√
lnT ln

T

δ
.

where c > 0 is a universal constant. Further, with probability one on the learning and the experts, there

exists T̂ such that for any T ≥ 1,

max
1≤i≤T 1/8

T
∑

t=1

(rt(Ei,t)− rt(ât)) ≤ T̂ + cT 3/4
√
lnT lnT.
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3 Statement of results

Our first main result is that for contextual bandits with adversarial rewards, for generic metric spaces

X—that admit a non-atomic probability measure, e.g., any uncountable Polish space—there never exists

an optimistically universal learning rule. On the other hand, if X does not admit a non-atomic probability

measure, optimistic learning is possible.

Theorem 7. Let X be a separable metrizable Borel space.

1. Let A be a finite action space with |A| ≥ 2.

• IfX admits a non-atomic probability measure, there does not exist an optimistically universal

learning rule for any adversarial reward model considered in Definition 2 (i.e., all except

stationary).

• Otherwise, there exists an optimistically universal learning rule for all reward models from

Definition 2 and Conline = Cstat = C2.

2. Let A be a countably infinite action space, there exists an optimistically universal learning rule

for all reward models from Definition 2 and Conline = Cstat = C1.

3. Let A be an uncountable separable metrizable Borel space, then universal learning is never

achievable and Conline = Cstat = ∅.

The question of whether optimistic learning is possible for finite action spaces is answered in Sec-

tion 4. The case of infinite action spaces is treated in Section 6.1. Thus, Theorem 7 is a concatenation of

Theorems 15 and 16 and Section 6.1.

The fact that optimistic learning is impossible the main case of finite action space and spaces X
admitting a non-atomic probability measure comes in stark contrast with all learning frameworks that

have been studied in the universal learning literature. Namely, for the noiseless full-feedback [2, 14],

noisy/adversarial full-feedback [20] and stationary partial-feedback [1] learning frameworks, analysis

showed that there always existed an optimistically universal learning rule. Precisely, the optimistically

universal learning rule for stationary contextual bandits in finite action spaces provided by [1] combined

two strategies:

• A strategy 0, which treats each distinct context completely separately by assigning a distinct bandit

subroutine to each new instance. Informally, this corresponds to learning the optimal action for

each new context without gathering population information.

• A strategy 1, in which the learning rule views context in an aggregate fashion: it tries to fit the pol-

icy which performed best on the complete historical data using learning-with-experts subroutines,

from a set of pre-defined policies.

The procedure to combine these strategies estimates their performance, to implement the best strategy

during pre-defined periods. We show that for adversarial rewards, balancing these two strategies is im-

possible. In particular, an adversarial reward mechanism can fool the estimation procedure by changing

behavior between the estimation period and the implementation period.

The non-existence of an optimistically universal learning rule also provides another proof that model

selection is impossible for contextual bandits. A formulation of this question was posed as a COLT 2020

open problem [44]. The impossibility of model selection was then recently proved first with a switching

bandit problem [45]. Our results show this general impossibility in a completely different context. More
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precisely, Proposition 8 below shows that universal consistency up to a fixed error tolerance ǫ > 0 is

always achievable under C2 processes (which were necessary for universal learning even in the stationary

case [1]). However, Theorem 7 implies that combining these learning rules for decaying ǫ to achieve

vanishing excess error is not possible in general.

Proposition 8. Let X be a separable metrizable Borel space and A a finite action space. For any ǫ > 0,

there exists a learning rule f ǫ
· such that for any process X ∈ C2 and adversarial reward mechanism

(rt)t≥1, for any measurable policy π∗ : X → A,

limsup
T→∞

1

T

T
∑

t=1

rt(π
∗(Xt))− rt(ât(ǫ)) ≤ ǫ, (a.s.),

where ât(ǫ) denotes the action selected by the learning rule at time t.

The proof is given in Section 5.3. Theorem 7 provides the characterizations of universally learnable

processes in all cases except the main case of interest when A is finite and X admits a non-atomic

probability measure. Giving exact characterizations for this case is rather complex and in the following,

we only give necessary conditions and sufficient conditions. These require the introduction of novel

classes of stochastic processes for online learning.

3.1 Additional classes of stochastic processes

We first give a significantly stronger assumption asking that the process only visits a finite number of

distinct points. This very restrictive condition will only arise for unbounded rewards R = [0,∞).

Condition 3 (Hanneke [2], Blanchard et al. [16]). |{x : X∩ {x} 6= ∅}| <∞ (a.s.). Denote by C3 the set

of all processes X satisfying this condition.

We then introduce two novel conditions on stochastic processes. Before doing so, we need to in-

troduce some exponential time scales. Intuitively, for α > 0, the exponential time scale at rate α is the

sequence of times given by T k(α) ≈ ⌊(1+α)k⌋ for k ≥ 0. For convenience, we will instead consider for

all integers i ≥ 0 the sequence of times T k
i = ⌊2u(1+ v2−i)⌋ where k = u2i+ v and u ≥ 0, 0 ≤ v < 2i

are integers. In particular, u =
⌊

k2−i
⌋

and v = k mod 2i. These times have an exponential behavior

with rate oscillating between 2−i−1 and 2−i but conveniently, they form periods [T k
i , T

k+1
i ) which be-

come finer as i increases. For t ≥ 1, we then define ki(t) as the index k such that t ∈ [T k
i , T

k+1
i ). This

allows to consider the set of times t such that Xt is the first appearance of the instance on its period,

T i = {t ≥ 1 : ∀T ki(t)
i ≤ t′ < t,Xt′ 6= Xt}.

By construction, note that T i ⊂ T i+1 for all i ≥ 0. We are now ready to define the next condition which

intuitively asks that the process has a C′1 behavior uniformly at any exponential scale.

Condition 4. For any sequence of disjoint measurable sets (Ai)i≥1 of X , we have

lim
i→∞

E



limsup
T→∞

1

T

∑

t≤T,t∈T i

1Ai(Xt)



 = 0.

Denote by C4 the set of all processes X satisfying this condition.
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Then, we define the next condition which asks that there exists a rate to include decreasing exponen-

tial scales while conserving the C′1 property.

Condition 5. There exists an increasing sequence of integers (Ti)i≥0 such that letting

T =
⋃

i≥0

T i ∩ {t ≥ Ti},

we have X̃ = (Xt)t∈T ∈ C′1. Denote by C5 the set of all processes X satisfying this condition.

We now introduce two new conditions on stochastic processes which we will show are necessary

for some of the considered reward models. These build upon the definition of C4 processes. Before

introducing them, we need to analyze large deviations of the empirical measure in C′1 processes. The

next lemma intuitively shows that for a process X̃ ∈ C′1, for large enough time steps, one can bound the

deviations of the empirical measure of a set A ∈ B compared to the limit sub-measure µ̂X(A) uniformly

in the set A.

Lemma 9. Let X be a stochastic process on X and T some random times such that X̃ = (Xt)t∈T ∈ C′1.

Then, for any ǫ > 0, there exists Tǫ ≥ 1 and δ > 0 such that for any measurable set A ∈ B,

E[µ̂X̃(A)] ≤ δ =⇒ E



 sup
T≥Tǫ

1

T

∑

t≤T,t∈T
1A(Xt)



 ≤ ǫ.

Now consider a process X ∈ C4. For any integer p ≥ 0, the definition of C4 implies Xp :=
(Xt)t∈T p ∈ C′1. Indeed, the sets T i are increasing in i ≥ 0, hence for i ≥ p one has T p ⊂ T i.

As a result, Condition 4 implies that for any disjoint measurable sets (Ai)i≥1, one has E[µ̂Xp(Ai)] =
E[limsupT→∞

∑

t≤T,t∈T p 1Ai(Xt)]→ 0 as i→∞. Now for any ǫ > 0 and T ≥ 1, we define

δp(ǫ;T ) := sup

{

0 ≤ δ ≤ 1 : ∀A ∈ B s.t. sup
l

E[µ̂Xl(A)] ≤ δ,

∀τ ≥ T online stopping time, E





1

2τ

∑

τ≤t<2τ,t∈T p

1A(Xt)



 ≤ ǫ







,

where the τ is a stopping time with respect to the filtration generated by the instance process X. In

particular, τ can be seen as an online procedure which decides when to count the number of instances of

Xp falling in the considered set A. Note that δp(ǫ;T ) satisfies the property that for all measurable set A
satisfying supl E[µ̂Xl(A)] ≤ δp(ǫ;T ) and any stopping time τ ≥ T ,

E





1

2τ

∑

τ≤t<2τ,t∈T p

1A(Xt)



 ≤ ǫ,

which can be checked for all sets A ∈ B separately. Next, the quantity δp(ǫ;T ) is non-decreasing in T .

Further, as a direct application of Lemma 9, because Xp ∈ C′1, there exists T p(ǫ) ≥ 1 and δ > 0 such that

for T ≥ T p(ǫ), we have δp(ǫ;T ) ≥ δ. As a result, we have δp(ǫ) := limT→∞ δp(ǫ;T ) ≥ δ > 0. Also,

the quantity δp(ǫ;T ) is non-increasing in p since the sets T p are non-decreasing with p. Thus, δp(ǫ) is

also non-increasing in p. We are now ready to introduce the condition on stochastic processes based on

the limit of the quantities δp(ǫ).
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Learning setting

Stationary

contextual bandits [1]

Contextual bandits with

adversarial rewards [This paper]

Cstat OL?
Necessary and sufficient

conditions on C OL?

Finite A, |A| ≥ 2, X with

non-atomic proba. measure
C2 Yes

C1 ( C5 ⊂ C ( C2
C5 = Conline ⊂ Coblivious ⊂ C6

No

Finite A, |A| ≥ 2, X without

non-atomic proba. measure
C2 Yes C = C2 Yes

Countably infinite A C1 Yes C = C1 Yes

Uncountable A ∅ N/A C = ∅ N/A

Table 1: Characterization of learnable processes for universal learning in contextual bandits, depending

on the action space A, context space X and reward model. When the model is not specified, C refers to

any of the considered models. OL? = Is optimistic learning possible?

Condition 6. X ∈ C4 and for any ǫ > 0, we have limp→∞ δp(ǫ) > 0. Denote by C6 the set of all

processes X satisfying this condition.

Intuitively, this asks that the maximum deviations are also bounded in p, hence C6 processes have

more regularity than general C4 processes. However, the maximum deviations are limited by the fact that

they should be discernible through an online stopping time τ .

The following inclusions hold C3 ⊂ C1 ⊂ C5 ⊂ C6 ⊂ C4 ⊂ C2. Indeed, the inclusion C3 ⊂ C1 is

known [2]. C1 ⊂ C5 and C6 ⊂ C4 are immediate from the definition of Condition 5 and Condition 6

respectively. The inclusion C4 ⊂ C2 is shown in Proposition 19. Last, the fact that for oblivious rewards,

C6 is necessary (Theorem 22) and C5 is sufficient (Theorem 29) shows that C5 ⊂ C6.

3.2 Necessary and sufficient conditions for universal learning

Our second main contribution is giving necessary and sufficient conditions for universal learning with

adversarial rewards. In addition to characterizations from Theorem 7, we have the following.

Theorem 10. Let X be a separable metrizable Borel space admitting a non-atomic probability measure

and A a finite action space with |A| ≥ 2. Then C1 ( C5 = Conline ⊂ Coblivious ⊂ Cmemoryless ( C2.

Further, Coblivious ⊂ C6 ( C2.

These results are proved in Section 5. The fact that Cmemoryless ( C2 is proved in Theorem 20.

Coblivious ⊂ C6 is proved in Theorem 22 while C6 ( C2 comes from Theorem 20 and the fact that

C6 ⊂ C4 (Theorem 23 further gives an example of processes in C4 \ C6). Conline ⊂ C5 is proved in

Theorem 27 and C1 ( C5 ⊂ Conline is proved in Theorem 29 and Proposition 30. Here is the overview of

relations we show between the classes of processes: for X admitting non-atomic probability measures,

C1 ( C5 ⊂ C6 ( C4 ( C2.

In particular, our characterization is complete for the strongest online rewards, unlike for memoryless

and oblivious rewards. We believe that C5 ( C6 in general. In fact, the proof of Theorem 22 for the

necessity of C6 for oblivious rewards can be tightened given a stronger reward model in which the reward

adversary can additionally take into account the complete sequence X—instead of the revealed contexts

to the learner X≤t. We refer to this reward model as prescient rewards (see Definition 24 for a formal

definition) and show that in this case, a stronger C7 condition is necessary (Theorem 25). We leave open

the question of whether C5 = C7. If this were true, then we also have an exact characterization for

prescient rewards.
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Our findings are summarized in Table 1, which also compares learnable processes for stationary

and adversarial contextual bandits. We leave open the exact characterization of learnable processes for

memoryless and oblivious rewards in finite action spaces A and context spaces admitting a non-atomic

probability measure.

Open question: Let X be a separable metrizable Borel space admitting a non-atomic probability mea-

sure and A a finite action space with |A| ≥ 2. What is an exact characterization of Cmemoryless or

Coblivious?

Finally, we also give results in a setting where we assume that rewards are unbounded. We answer

the same questions: what are the learnable processes for which universal learning is possible, and can we

obtain optimistically universal learning rules? We use a subscript Cunbounded to specify that we consider

the case of unbounded rewards. We show that in that case, results are identical to the case of stationary

contextual bandits.

Proposition 11. Let X be a separable metrizable Borel space. For all reward models,

• if A is uncountable, Cunbounded = C3 for all reward models. Further, there is an optimistically

universal learning rule,

• if A is uncountable, universal learning for unbounded rewards is never achievable.

Last, we extend our results to rewards with additional regularity assumptions. For a given metric d
on A, we suppose that they are uniformly-continuous, generalizing a notion introduced in [1].

Let (A, d) be a separable metric space. The reward mechanism (rt)t≥1 is uniformly-continuous if

for any ǫ > 0, there exists ∆(ǫ) > 0 such that

∀t ≥ 1,∀(x≤t,a≤t−1, r≤t−1) ∈ X t ×At−1 ×Rt−1,∀a, a′ ∈ A,
d(a, a′) ≤ ∆(ǫ)⇒

∣

∣E[rt(a)− rt(a
′) | X≤t = x≤t,a≤t−1, r≤t−1]

∣

∣ ≤ ǫ,

For uniformly-continuous rewards we use a reduction to the case of rewards without regularity as-

sumptions, which we refer to as unrestricted rewards. Then, we recover the same results for uniformly-

continuous rewards, in totally-bounded (resp. non-totally-bounded) action spaces as for unrestricted

rewards in finite (resp. countably infinite) action spaces. We adopt the subscript Cuc to emphasize that

we consider uniformly-continuous rewards.

Theorem 12. Let X be a metrizable Borel space and model ∈ {memoryless, oblivious, online}.

• If A is a totally-bounded metric space, all properties for Cmodel for finite action spaces described

in Theorem 10 hold for Cucmodel. Further, there is an optimistically universal learning rule for

uniformly-continuous rewards if and only if there is one for finite action spaces for unrestricted

rewards as in Theorem 7.

• If A is a non-totally-bounded metric space, all properties for Cmodel for countable action spaces

described in Theorem 10 hold for Cucmodel. Further, there is always an optimistically universal

learning rule for uniformly-continuous rewards.

This result is proved in Section 6.3 and is a concatenation of Proposition 33 for necessary conditions

and Theorem 35 and Theorem 36 for sufficient conditions for universal learning.
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4 Existence or non-existence of an optimistically universal learning rule

In this section, we ask the question of whether there exists an optimistically universal learning rule for

finite action spaces. In fact, in all the frameworks considered for universal learning—noiseless [14] or

noisy/adversarial responses [20] in the full-feedback setting and stationary partial-feedback responses

[1]—analysis showed that optimistically universal learning always existed. However, the learning rule

provided by [1] for stationary rewards under C2 processes heavily relies on the assumption that the

rewards are stationary in order to make good estimates of the performance of different learning strategies.

In particular, one can easily check that this learning rule would not be universally consistent under

adversarial rewards even in the weakest memoryless setting. Instead, we will show that for contextual

bandits with adversarial rewards, in general there does not exist optimistically universal learning rules.

To do so, we first need to argue that the set of learnable processes even in the online setting Conline
contains a reasonably large class of processes. We first show that using the EXP3.IX algorithm for

adversarial bandits [43] as subroutine yields a universally consistent learning rule for processes X which

visit a sublinear number of distinct instances.

Proposition 13. Let X be a metrizable separable Borel space and A a finite action space. There exists

a learning rule which is universally consistent for online rewards under any process X satisfying |{x ∈
X : {x} ∩ X≤T 6= ∅}| = o(T ) (a.s.).

Proof. Consider the learning rule f· which simply performs independent copies of the EXP3.IX algo-

rithm in parallel such that to each distinct instance visited is assigned a EXP3.IX. More precisely, for

any t ≥ 1, instances x≤t and observed rewards r≤t−1, we define

ft(x≤t−1, r≤t−1, xt) = EXP3.IX(âSt , rSt),

where St = {t′ < t : xt′ = xt} is the set of times that xt was visited previously and ât′ denotes the action

selected at time t′ for t′ < t. We now show that this learning rule is universally consistent on any process

X which visits a sublinear number of distinct instances almost surely. For simplicity we denote ât the

action selected by f· at time t. Let X such that almost surely, 1
T |{x ∈ X : {x}∩X≤T 6= ∅}| → 0. Denote

by E this event, and for any T ≥ 1 we define ǫ(T ) = 1
T |{x ∈ X : {x}∩X≤T 6= ∅}| and ST = {x ∈ X :

{x} ∩ X≤T 6= ∅}, hence |ST | = Tǫ(T ). Further, for any x ∈ ST we pose TT (x) = {t ≤ T : Xt = x}.
Let H0(T ) = {x ∈ ST : |TT (x)| < 1√

ǫ(T )
}, H1(T ) = {x ∈ ST : 1√

ǫ(T )
≤ |TT (x)| < ln2 T} and

H2(T ) = {x ∈ ST : |TT (x)| ≥ ln2 T}, so that ST = H0(T ) ∪H1(T ) ∪H2(T ). Note that

∑

x∈H0(T )

∑

t∈TT (x)

rt(π(Xt))− rt(ât) ≤
|H0(T )|
√

ǫ(T )
≤
√

ǫ(T )T.

Now fix a measurable policy π : X → A. Then,

∑

x∈H2(T )

∑

t∈TT (x)

rt(π(Xt))− rt(ât) ≤
∑

x∈H2(T )

max
a∈A

∑

t∈TT (x)

(rt(a)− rt(ât)).

Now recall that for any x ∈ ST , on TT (x) the algorithm EXP3.IX was performed. As a result, by

Theorem 5, conditionally on the realization X, for any x ∈ H2(T ), with probability 1− 1
T 3 , conditionally

on X,

max
a∈A

∑

t∈TT (x)

(rt(a)− rt(ât)) ≤ 3c
√

|A||TT (x)| ln |A| lnT ≤ |TT (x)| · 3c
√

|A| ln |A|
lnT

.
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Noting that |H2(T )| ≤ T , we obtain by the union bound that (conditionally on X) with with probability

1− 1
T 2 ,

∑

x∈H2(T )

max
a∈A

∑

t∈TT (x)

(rt(a)− rt(ât)) ≤ 3c

√

|A| ln |A|
lnT

∑

x∈H2(T )

|TT (x)| ≤ 3c
√

|A| ln |A| T

lnT
.

We denote by FT the event when the above equation holds. We have P[FT ] ≥ 1 − 1
T 2 where the

probability is also taken over X. We now turn to points in H1(T ) for which we need to go back to

the proof of Theorem 5 from [43]. Taking the same notations as in the original proof, for u ≥ 1, let

ηu = 2γu =
√

ln |A|
|A|u , and for any t ≥ 1, a ∈ A denote by pt,a the probability that the learning rule

selects action a at time t, and let ℓt,a = 1 − rt(a). Next, let u(t) = |{s ≤ t : Xs = Xt}| and pose

ℓ̃t,a = 1−rt(a)
pt,a+γu

1[ât = a]. Using the derivations of the proof of Theorem 5, for any x ∈ ST , writing

TT (x) = {t1(x), . . . , t|TT (x)|}, for any a′ ∈ A,

|TT (x)|
∑

u=1

(

ℓtu,â − ℓ̃tu,a′
)

≤ ln |A|
η|TT (x)|

+

|TT (x)|
∑

u=1

ηu
∑

a∈A
ℓ̃tu,a.

Summing these equations with a′ = π(x), we obtain

∑

x∈H1(T )

∑

t∈TT (x)

(1− ℓ̃t,π(Xt))− rt(ât) ≤
∑

x∈H1(T )

√

|A| ln |A||TT (x)| +
∑

x∈H1(T )

∑

t∈TT (x)

ηu(t)
∑

a∈A
ℓ̃t,a.

Now let for any a ∈ A, conditionally on X, the sequence (
∑

x∈H1(T ′)

∑

t∈TT ′ (x) ηu(t)(ℓ̃t,a−ℓt,a))T ′≤T is

a super-martingale (the immediate expected value of ℓ̃t,a is
pu(t)

pu(t)+γu(t)
ℓt,a) and each increment is upper-

bounded by 2 in absolute value: 0 ≤ ηu(t)ℓ̃t,a ≤ ηu(t)
ℓt,a

pu(t),a+γu(t)
≤ ηu(t)

γu(t)
≤ 2. Therefore, Azuma’s

inequality implies

P





∑

x∈H1(T )

∑

t∈TT (x)

ηu(t)
∑

a∈A
(ℓ̃t,a − ℓt,a) ≤ 4T 3/4 | X



 ≥ 1− e−2
√
T .

Similarly, because 0 ≤ ℓ̃t,a ≤ 1
γu(t)

= 2
√

|A|u(t)
ln |A| , we have

P





∑

x∈H1(T )

∑

t∈TT (x)

∑

a∈A
(ℓ̃t,π(Xt) − ℓt,π(Xt)) ≤ 4

√

|A|
ln |A|T

3/4 lnT | X



 ≥ 1− e−2
√
T .
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As a result, on an event GT of probability at least 1− (1 + |A|)e−2
√
T , we have

∑

x∈H1(T )

∑

t∈TT (x)

rt(π(Xt))− rt(ât) ≤
∑

x∈H1(T )

√

|A| ln |A||TT (x)|+
∑

x∈H1(T )

∑

t∈TT (x)

ηu(t)
∑

a∈A
ℓt,a

+ 4

√

|A|
ln |A|T

3/4 lnT + 4T 3/4

≤
∑

x∈H1(T )

√

|A| ln |A||TT (x)|+
∑

x∈H1(T )

|A|
∑

t∈TT (x)

ηu(t)

+ 4

√

|A|
ln |A|T

3/4 lnT + 4T 3/4

≤
∑

x∈H1(T )

3
√

|A| ln |A||TT (x)|+ 8
√

|A|T 3/4 lnT

≤ 3
√

|A| ln |A|ǫ(T )1/4T + 8
√

|A|T 3/4 lnT.

Combining all our estimates, we showed that on FT ∩ GT ,

∑

t≤T

rt(π(Xt))− rt(ât) ≤ 8|A|T 3/4 lnT + 3c
√

|A| ln |A| T

lnT
+ (
√

ǫ(T ) + 3
√

|A| ln |A|ǫ(T )1/4)T

Now note that
∑

T≥1 P[Fc
T ] + P[GcT ] < ∞. Hence, the Borel-Cantelli lemma implies that on an event

A of probability one, there exists T̂ ≥ 1 such that for any T ≥ T̂ , the event FT ∩ GT is satisfied. As a

result, on the event E ∩ A, since ǫ(T )→ 0, we obtain

limsup
T→∞

1

T

T
∑

t=1

rt(π(Xt))− rt(ât) ≤ 0.

By union bound, E ∩ A has probability one, hence we proved that the learning rule f· is universally

consistent on X. This ends the proof of the proposition. �

As a simple consequence of Proposition 13, deterministic C2 processes are always universally learn-

able even in the online rewards setting.

Proposition 14. Let X be a metrizable separable Borel space andA a finite action space. There exists a

learning rule which is universally consistent for any deterministic process X ∈ C2 under online rewards.

Proof. We first show that any deterministic process X ∈ C2 visits a sublinear number of distinct in-

stances almost surely. Denote ST = {Xt : t ≤ T} the set of visited instances until time T and let

S =
⋃

T→∞ ST . Then, {x}x∈S forms a countable sequence of disjoint sets. Hence, by the C2 property

and because X is deterministic, we have that

|{x : {x} ∩ X≤T 6= ∅}| = |St| = |{x ∈ S : {x} ∩X≤T 6= ∅}| = o(T ), (a.s.).

Hence, by Proposition 13, the learning rule which performs EXP3.IX independently for each distinct

visited instance is universally consistent under X. This ends the proof of the proposition. �
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Next, we argue that C1 processes are also universally learnable in the online rewards setting. In

the case of countable action sets A, [1] gave a universally consistent learning rule EXPINF under C1
processes using Theorem 6. Precisely, the learning rule uses a result from [2] showing that there exists a

countable set of policies Π = {πi : X → A, i ≥ 1} that is empirically dense within measurable policies

under any C1 process. As a result, to yield a universally consistent learning rule under C1 processes,

it suffices to have a learning rule with sublinear regret compared to any policy π ∈ Π. The algorithm

EXPINF achieves this property using restarted EXP3.IX subroutines with slowly increasing finite set

of experts from the sequence Π. Because the subroutines EXP3.IX have guarantees in the adversarial

bandit framework, EXPINF directly inherits this guarantee and is a result universally consistent under

C1 processes for online rewards. Thus, C1 ⊂ Conline.
We are now ready to show that for spaces X on which there exists a non-atomic probability measure

on the space X , there does not exist any optimistically universally consistent learning rule. Precisely, we

show that there is no learning rule that is universally consistent both on C1 and deterministic C2 processes.

Note that most context spaces X of interest would admit a non-atomic probability measure, in particular

any uncountable Polish space.

Theorem 15. Let X a metrizable separable Borel space such that there exists a non-atomic probability

measure µ on X , i.e., such that µ({x}) = 0 for all x ∈ X . If A is a finite action space with |A| ≥ 2,

then there does not exist an optimistically universal learning rule for memoryless rewards (a fortiori for

oblivious, prescient or online rewards).

Proof. We fix a1, a2 ∈ A two distinct actions. Suppose that there exists an optimistically universal

learning rule f·. For simplicity, we will denote by ât the action chosen by this learning rule at step t.
We will construct a deterministic process X ∈ C2 and rewards rt for which f· does not achieve universal

consistency.

We construct the process X and rewards (rt)t≥1 recursively. Let ǫk = 2−k for k ≥ 1. The process

and rewards are constructed together with times Tk such that a significant regret is incurred to the learner

between times Tk and Tk+1 for all k ≥ 1. We pose T0 = 0. We are now ready to start the induction.

Suppose that we have already defined Tl for l < k and the deterministic process X≤Tk−1
as well as the

deterministic rewards rt for t ≥ Tk−1. Let Z = (Zi)i≥1 be an i.i.d. sequence on X with distribution

µ. Pose T i = (1+i)!
ǫk

Tk−1 for i ≥ 0 and ki = ǫkT
i (= (1 + i)!Tk−1), ni =

∑

j<i kj for i ≥ 0. Letting

x̄ ∈ X an arbitrary instance, we now consider the following process X̃:

X̃t =























Xt, t ≤ Tk−1,

x̄, Tk−1 < t < T 0,

Zni+l, t = T i + p · ki + l, 0 ≤ p < 1
ǫk
, 0 ≤ l < ki, i ≥ 0,

x̄, 2T i ≤ t < T i+1, i ≥ 0.

The process is deterministic until time T 0. From this point, the process is constructed by periods, where

period i ≥ 0 corresponds to times T i ≤ t < T i+1 = (1 + i)T i. Each period i has a first phase

T i ≤ t < 2T i composed of 1
ǫk

sub-phases of length ki = ǫkT
i on which the process repeats exactly.

We can therefore focus on the first sub-phase T i ≤ t < T i(1 + ǫk), which is constructed as an i.i.d.

process following distribution µ independent from the past samples. In the second phase of period i for

2T i ≤ T i+1 the process is idle equal to x̄. This ends the construction of the process X̃.

We now argue that X̃ ∈ C1. Indeed, note that forgetting about the part for t ≤ T 0, and idle phases

where the process visits x̄ only, this process takes values from an i.i.d. process Z and each value is

duplicated 1
ǫk

times throughout the whole process. Formally, let (Ap)p≥1 be a decreasing sequence of
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measurable sets with Ap ↓ ∅. Then for any T i < T ≤ T i+1 with i ≥ 1 we have, for p sufficiently large

so that x̄ /∈ Ap,

1

T

T
∑

t=1

1Ap(X̃t) ≤
2T i−1

T i
+

1

ǫkT i

ni+ki−1
∑

l=ni

1Ap(Zl)

≤ 2

1 + i
+

ni + ki
ki

1

ni + ki

ni+ki−1
∑

l=0

1Ap(Zl).

Last, we note that ni+ki
ki
→ 1 as i→∞. As a result, we obtain µ̂

X̃
(Ap) ≤ µ̂Z(Ap). Because Z ∈ C1, we

have E[µ̂Z(Ap)]→ 0 as p→∞, which proves E[µ̂
X̃
(Ap)]→ 0 as well. This ends the proof that X̃ ∈ C1.

We now construct rewards. Before doing so, for any i ≥ 0, let δi such that

P

[

min
1≤u<v<ni+1

ρ(Zi, Zj) ≤ δi

]

≤ 2−i−2.

This is possible because µ is non-atomic, as a result with probability one, all Zk for k ≥ 1 are distinct.

Then, by the union bound, with probability at least 1− 1
2 = 1

2 , for all i ≥ 0 we have

min
1≤u<v<ni+1

ρ(Zu, Zv) > δi.

We denote by E the event where the above inequality holds for all i ≥ 1 and for all u ≥ 1, Zu 6= x̄.

Because µ is non-atomic, we still have P[E ] ≥ 1
2 . We now construct a partition of X as follows. Let

(xk)k be a dense sequence of X . We denote by B(x, r) = {x′ ∈ X , ρ(x, x′) < r} the ball centered at

x of radius r > 0. For any k ≥ 1 and δ > 0 let Pk(δ) = B(xk, δ) \ ⋃l<k B(xl, δ). Then, (Pk(δ))k
forms a partition of X . For any δ > 0 and sequence b = (bk)k≥1 in {0, 1} we consider the following

deterministic rewards

rδ,b(a | x) =











bk a = a1, x ∈ Pk(δ),
3
4 a = a2,

0 a /∈ {a1, a2}.
Now for any sequence of binary sequences b = (bi)i≥0 where b

i = (bik)k≥1, we will consider the

memoryless rewards rb defined as follows. The deterministic rewards rt being constructed for t ≤ Tk−1,

we pose rbt = rt for t ≤ Tk−1. For all idle phases, i.e., Tk−1 < t < T 0 or 2T i ≤ T i+1 for i ≥ 0, we

pose rbt = 0. Last, for any i ≥ 0 and T i ≤ t < 2T i we pose rbt = rδi,bi . Now let b be a random

sequence such that all bi are independent i.i.d. Bernouilli B(12) sequences in {0, 1}. On the event E , all

new instances fall in distinct sets of the partitions defining the rewards. Hence, with this perspective, the

reward of the action a2 is always 3
4 while on the event E , for each new instance value, the reward of a1 is

a random Bernouilli B(12). Intuitively, for a specific instance x, if the learner has not yet explored the arm

a1, selecting a1 incurs an average regret 1
4 compared to selecting the fixed arm a2. We will then argue

that there is a time Tk and a realization of X̃≤Tk
and rewards, such that on this realization, the regret

compared to the best actions for each instance in hindsight is significantly large. We now formalize these

ideas.

Because X̃ is a C1 process, there exists a universally consistent learning rule under X̃. Then, because

f· is optimistically universal, it is universally consistent under X̃. Now fix a specific realization of the

sequences in b, considering the policy which always plays action a2, i.e. π0 : x ∈ X 7→ a2 ∈ A, we

have

limsup
T→∞

1

T

T
∑

t=1

rbt (a2 | Xt)− rbt (ât | Xt) ≤ 0, (a.s.).
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In particular, since P[E ] ≥ 1
2 , we have

E

[

limsup
T→∞

1

T

T
∑

t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E ,b
]

≤ 0.

As a result, taking the expectation over b then applying Fatou’s lemma gives

limsup
T→∞

E

[

1

T

T
∑

t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E
]

≤ 0.

Now let αk := 1
16·41/ǫk . In particular, there exists i ≥ 4

αk
such that for all T ≥ T i,

E

[

1

T

T
∑

t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E
]

≤ αk

4
. (1)

For simplicity, we may write rbt (a) instead of rbt (a | x), when it is clear from context that x = Xt. We

now focus on period [T i, 2T i) and denote by Sip := {T i + (p − 1) · ǫkT i ≤ t < T i + p · ǫkT i} the

sub-phase p for 1 ≤ p ≤ 1
ǫk

of this period. Also note by Ai
p the number of new exploration steps for

arm a1 during Sip, i.e., times when the learner selected a1 for an instance that had not previously been

explored

Ai
p = {t ∈ Sip : ât = a1,∀1 ≤ q < p : ât+(q−p)ǫkT i 6= a1}, Ai

p = |Ai
p|.

We show by induction that E[Ai
p | E ] ≤ 4p+1αkT

i for all 1 ≤ p ≤ 1
ǫk

. Let 1 ≤ p ≤ 1
ǫk

. Suppose that the

result was shown for 1 ≤ q < p (if p = 1 this is directly satisfied). We have

E





T i(1+pǫk)−1
∑

t=1

rbt (a2)− rbt (ât) | E





≥ −2T i−1 + E





T i(1+pǫk)−1
∑

t=T i(1+(p−1)ǫk)

(rbt (a2)− rbt (ât))1Ai
p
(t)−

∑

q<p

(p+ 1− q)Ai
q

4
| E





= −2T i−1 −
∑

q<p

p+ 1− q

4
E[Ai

q | E ] + E





T i(1+pǫk)−1
∑

t=T i(1+(p−1)ǫk)

1Ai
p
(t)E[rbt (a2)− rbt (ât)|t ∈ Ai

p, E ]

∣

∣

∣

∣

∣

∣

E





where in the first inequality we discard times from phase Sip for which an exploration of the correspond-

ing instance during phases Si1, . . . Sip−1: these yield a regret least (3/4 − 1) = −1/4 compared to the

fixed arm a2. For each instance newly explored during phase Siq, i.e. t ∈ Siq, it affects potentially the

(p+ 1− q) next times with the same instance in phases Siq, . . . ,Sip. Now, note that all elements in b are

together independent, and independent from the process X, in particular independent from E . As a result,

the rewards at a time Ai
p are independent from the past because Xt visits a set of the partition (Pk(δi))k

which has never been visited. Thus, we have

E[rbt (a2)− rbt (ât)|t ∈ Ap, E ] =
3

4
− 0 + 1

2
=

1

4
.
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Combining the above estimates with Eq (1) then gives

− 2T i−1 − 1

4

∑

q<p

(p+ 1− q)E[Ai
q | E ] +

1

4
E[Ai

p | E ] ≤ E





T i(1+pǫk)−1
∑

t=1

rbt (a2)− rbt (ât) | E





≤ αk

4
T i(1 + pǫk) ≤

αk

2
T i.

Thus,

E[Ai
p | E ] ≤

(

8

1 + i
+ 2αk

)

T i +
∑

q<p

(p+ 1− q)E[Ai
q | E ]

≤ 4αkT
i



1 +

p−1
∑

q=1

(p + 1− q)4q





≤ 4αkT
i



1 +

p−1
∑

q=1

2p−q4q



 = 4αkT
i (1 + 2p(2p − 1)) ≤ 4p+1αkT

i.

This completes the induction.

For any time t, denote a∗t = argmaxa∈A rbt (a) the optimal arm in hindsight. Note that a∗t ∈
{a1, a2}. We lower bound the regret of the learner compared to the best action in hindsight until time

T i+1. To do so, define B =
⋃1/ǫk

p=1 {t ∈ Sip : ∀1 ≤ q ≤ p, t+ (q − p)ǫkT
i /∈ Ai

q} the set of times t such

that the learner never explored a1 on the present and past appearances of the instance Xt. We also define

C = {T i ≤ t < 2T i : a∗t = a1} the set of times when a1 was the optimal action. One can observe that

for any time in B, because no exploration on a1 was performed up for the corresponding instance Xt in

the past history, P[t ∈ C|t ∈ B, E ] = 1
2 . Hence, if t ∈ B ∩ C ∩ E , the learner incurs a regret at least 1

4
compared to the best arm a∗t = a1. Therefore,

E





2T i−1
∑

t=1

rbt (a
∗
t )− rbt (ât) | E



 ≥ 1

4
E

[

∑

t∈B
1C(t) | E

]

=
1

8
E[|B| | E ].

where by construction, we have |B|+∑1/ǫk
p=1

(

1
ǫk
− p+ 1

)

Ai
p = 2T i − T i = T i. As a result,

E





2T i−1
∑

t=1

rbt (a
∗
t )− rbt (ât) | E



 ≥ T i

8
− αk

2
T i

1/ǫk
∑

p=1

(

1

ǫk
− p+ 1

)

4p

≥ T i

8
− αkT

i41/ǫk

≥ T i

16
≥ 2T i − 1

32
.

Hence, there exist a realization of instances X<2T i ≤ X̃<2T i falling in E and of rewards (rt)<2T i such

that the regret compared to the best action in hindsight for on this specific instance sequence and for

these rewards is at least T i

16 . We then pose Tk := 2T i − 1, and use the realization X≤Tk
, (rt)≤Tk

for the

deterministic process X≤Tk
and (rt)t≤Tk

. We recall that by construction, the realizations are consistent

with the previously constructed process X≤Tk−1
and rewards (rt)≤Tk−1

. Further, to each new instance
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between times T i and 2T i − 1 corresponded a best action in hindsight: this gives a collection of pairs

(x, a) where x ∈ X is an instance visited by the deterministic process X between times T i and 2T i − 1
and a ∈ {a1, a2} is the corresponding best action. Let Dk denote this collection. This ends the recursive

construction of the deterministic process X and rewards.

Because we enforced that the samples of µ be always distinct and different from x̄ across the con-

struction of X, the countable collection
⋃

k≥1Dk of pairs instance/optimal-action never contains pairs

with the same instance x. Hence, we can consider the following measurable policy π∗ : X → A defined

by

π∗(x) =

{

a if (x, a) ∈ ⋃k≥1Dk,

a2 otherwise.

This policy always performs the optimal action in hindsight. Hence by construction, for any k ≥ 1,

E

[

1

Tk

Tk
∑

t=1

rt(π
∗(Xt) | Xt)− rt(ât | Xt)

]

≥ 1

32
,

where ât refers to the learner’s decisions on the constructed process X and rewards (rt)t≥1. Note that

the expectation is taken only with respect to the learner’s randomness given that X and (rt)t≥1 are

deterministic. Because the above equation holds for all k ≥ 1 and (Tk)k≥1 is an increasing sequence of

times, we have

E

[

limsup
T→∞

1

T

T
∑

t=1

rt(π
∗(Xt))− rt(ât)

]

≥ limsup
T→∞

E

[

1

T

T
∑

t=1

rt(π
∗(Xt))− rt(ât)

]

≥ 1

32
,

where we used Fatou’s lemma. This proves that f· is not universally consistent on X.

We now show that X ∈ C2. It suffices to check that it visits a sublinear number of distinct points—this

is also necessary since X is deterministic. For t ≥ 1, denote by Nt the number of dinstint instances visited

by the process X≤t. Fix k ≥ 1. The process X≤Tk
being constructed from the process X̃≤Tk

above, we

re-use the same notations. Let i ≥ 1 such that Tk = 2T i−1. For 1 ≤ j ≤ i and T j ≤ t < min(T j+1, Tk)
we have Nt ≤ Tk−1+1+nj+kj ≤ 1+ǫkT

0+2kj ≤ 1+3ǫkT
j ≤ 1+3ǫkt. (The additional 1 accounts

for x̄.) For Tk−1 < t < T 0, we have Nt ≤ 1 +Ntk−1
≤ 2 + 3ǫk−1t. As a result for all Tk−1 < t ≤ Tk

we have

Nt ≤ 2 + 3ǫk−1t.

Because ǫk → 0 as k → ∞, we obtain that Nt
t → 0 as t → ∞. This shows that X ∈ C2. Because X

is deterministic and in C2, Proposition 14 shows that there exists an universally consistent learning rule

on X. However f· is not universally consistent under X which contradicts the hypothesis. This ends the

proof that there does not exist an optimistically universal learning rule. �

We now turn to the case of spaces X which do not have a non-atomic measure and show that in this

case, the learning rule for processes visiting a sublinear number of distinct instances in Proposition 13 is

optimistically universal learning rule for all settings including online rewards.

Theorem 16. Let X a metrizable separable Borel space such that there does not exist a non-atomic

probability measure on X , and A a finite action space. Then, learnable processes are exactly Cstat =
Conline = C2 and there exists an optimistically universal learning rule for all settings.
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Proof. We show that any process X ∈ C2 visits a sublinear number of distinct instances almost surely.

Fix X ∈ C2. Using [1, Lemma 5.1], because X does not admit a non-atomic probability measure, there

exists a countable set Supp(X) such that on an event E of probability one, for all t ≥ 1, Xt ∈ Supp(X).
Then consider the sequence ({x})x∈Supp(X) of disjoint measurable sets of X . Applying the C2 property

of X to this sequence yields |{x ∈ Supp(X) : {x} ∩ X≤T}| = o(T ), (a.s.). We denote by F the

corresponding event of probability one. By union bound P[E ∩ F ] = 1. Now on the event E , for any

T ≥ 1 we have

|{x ∈ X : {x} ∩ X≤T 6= ∅}| = |{x ∈ Supp(X) : {x} ∩ X≤T }|.

As a result, on the event E ∩ F we have |{x ∈ X : {x} ∩ X≤T 6= ∅}| = o(T ), which proves the

claim that C2 visit a sublinear number of distinct instances almost surely. As a result, the learning rule

f· from Proposition 13 which simply performs independent copies of the EXP3.IX algorithm for each

distinct visited instance is universally consistent under all processes X ∈ C2. Now recall that in the

stationary case, the condition C2 is already necessary for universal learning. In fact, this condition is

already necessary for universal learning in the noiseless full-feedback setting [2]. As a result, Conline ⊂
Cstat = C2. Therefore, universally learnable processes are exactly C2 even in the online rewards setting

and f· is optimistically universal, which completes the proof. �

5 Universally learnable processes for context spaces with non-atomic prob-

ability measures

5.1 Necessary conditions on learnable processes

In the previous section, we showed that for spaces X that do not have non-atomic probability measures,

the set of learnable processes is exactly C2, independently of the learning setting. Here, we focus on

the remaining case of universal learning for spaces X that admit a non-atomic probability measure for

adversarial rewards and aim to understand which processes admit universal learning. We focus here on

necessary conditions; sufficient conditions are given in the next section.

5.1.1 Condition 4 is necessary for universal learning with oblivious rewards

We quickly recall the definition of condition C4. For an integer i ≥ 0 and any k ≥ 1, we define

T k
i = ⌊2u(1 + v2−i)⌋ where k = u2i + v and u ≥ 0, 0 ≤ v < 2i are integers. In particular, u =

⌊

k2−i
⌋

and v = k mod 2i. These times form periods [T k
i , T

k+1
i ) which become finer as i increases. Then

consider the set of times t such that Xt is the first appearance of the instance on its period,

T i = {t ≥ 1 : T k
i ≤ t < T k+1

i , ∀T k
i ≤ t′ < t,Xt′ 6= Xt}.

We note that the sets T p are increasing with p. Condition C4 is defined as follows.

Condition 4. For any sequence of disjoint measurable sets (Ai)i≥1 of X , we have

lim
i→∞

E



limsup
T→∞

1

T

∑

t≤T,t∈T i

1Ai(Xt)



 = 0.

Denote by C4 the set of all processes X satisfying this condition.
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We first give an alternative definition of C4 which will be useful in the next results.

Proposition 17. Let X be a metrizable separable Borel space and X a stochastic process on X . The

following are equivalent.

• X ∈ C4,

• For any sequence of decreasing measurable sets (Ai)i≥1 with Ai ↓ ∅,

sup
p≥0

E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1Ai(Xt)



 −→
i→∞

0.

• For any sequence of decreasing measurable sets (Ai)i≥1 with Ai ↓ ∅,

E



sup
p≥0

limsup
T→∞

1

T

∑

t≤T,t∈T p

1Ai(Xt)



 −→
i→∞

0.

Proof. Suppose that the second proposition is not satisfied. We aim to show that X /∈ C4. By hypothesis,

there exists measurable sets Ai ↓ ∅, ǫ > 0, and an increasing sequence of indices (ip)p≥1 such that

sup
l≥0

E



limsup
T→∞

1

T

∑

t≤T,t∈T l

1Aip
(Xt)



 ≥ ǫ.

Now let i ≥ 1 and p ≥ 1 such that ip ≥ i. We observe that because Aip ⊂ Ai,

sup
l≥0

E



limsup
T→∞

1

T

∑

t≤T,t∈T l

1Ai(Xt)



 ≥ sup
l≥0

E



limsup
T→∞

1

T

∑

t≤T,t∈T l

1Aip
(Xt)



 ≥ ǫ.

Hence, for any i ≥ 1, there exists p(i) > 0 such that

E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i)

1Ai(Xt)



 ≥ ǫ

2
.

Case 1. We consider a first case where there exists ηi > 0 such that for any j ≥ i,

E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i)

1Aj(Xt)



 ≥ ηi.

For simplicity, we will write T k = T k
p(i). We will also drop the indices i of p(i) and ηi for conciseness.

We now construct by induction a sequence of indices (k(l))l≥0 together with indices (j(l))l≥0 with

k(0) = 1, j(0) = i and such that for any l ≥ 1,

E



 sup
T k(l−1)<T≤T k(l)

1

T

∑

t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)



 ≥ η

2
.
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Suppose that we have already constructed j(0), . . . , j(l − 1) and k(0), . . . , k(l − 1). Note that

E



 sup
T>T k(l−1)

1

T

∑

t≤T,t∈T p

1Aj(l−1)
(Xt)



 ≥ E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1Aj(l−1)
(Xt)



 ≥ η.

Therefore, by the dominated convergence theorem, there exists k(l) > k(l − 1) such that

E



 sup
T k(l−1)<t≤T k(l)

1

T

∑

t≤T,t∈T p

1Aj(l−1)
(Xt)



 ≥ 3η

4
.

Now because Ai ↓ ∅, there exists j(l) > j(l − 1) such that P[Aj(l) ∩ X≤T k(l) = ∅] ≥ 1 − η
4 . Let us

denote by E this event. Then,

E



 sup
T k(l−1)<t≤T k(l)

1

T

∑

t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)





≥ E





1[E ] sup
T k(l−1)<t≤T k(l)

1

T

∑

t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)





= E





1[E ] sup
T k(l−1)<t≤T k(l)

1

T

∑

t≤T,t∈T p

1Aj(l−1)
(Xt)





≥ E



 sup
T k(l−1)<t≤T k(l)

1

T

∑

t≤T,t∈T p

1Aj(l−1)
(Xt)



− η

4
≥ η

2
.

This ends the construction of the indices k(l) and j(l) for l ≥ 1. Now for any u ≥ 1, let Su = {l ≥ 1 :
l ≡ 2u−1 mod 2u}. The main remark is that Su is infinite for all u ≥ 1 and they are all disjoint. We then

pose Bu =
⋃

l∈Su
Aj(l−1) \ Aj(l). Because all Su are disjoint, this implies that the sets (Bu)u are also

disjoint. Then, using Fatou’s lemma together with the fact that all Su are infinite, we obtain

E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1Bu(Xt)



 ≥ limsup
k∈Su

E



 sup
T k(l−1)<T≤T k(l)

1

T

∑

t≤T,t∈T p

1Bu(Xt)





≥ limsup
k∈Su

E



 sup
T k(l−1)<T≤T k(l)

1

T

∑

t≤T,t∈T p

1Aj(l−1)\Aj(l)
(Xt)





≥ η

2
.

We obtain therefore for any u ≥ p

E



limsup
T→∞

1

T

∑

t≤T,t∈T u

1Bu(Xt)



 ≥ E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1Bu(Xt)



 ≥ η

2
.

This ends the proof that X /∈ C4.
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Case 2. Recalling that the sets (Ai)i are decreasing, we can now suppose that for all i ≥ 1, one has

E
[

limsupT→∞
1
T

∑

t≤T,t∈T p(i) 1Aj (Xt)
]

→ 0 as j → ∞. We now construct a sequence of indices

(i(u))u≥1 as follows such that i(1) = 1 and for any u ≥ 1,

E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i(u))

1Ai(u)\Ai(u+1)
(Xt)



 ≥ ǫ

4
.

Suppose we have constructed i(u). Then, by the hypothesis of this case, there exists i(u + 1) > i(u)
such that

E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i(u))

1Ai(u+1)
(Xt)



 ≤ ǫ

4
.

Now note that

ǫ

2
≤ E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i(u))

1Ai(u)
(Xt)



 ≤ E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i(u))

1Ai(u)\Ai(u+1)
(Xt)





+ E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i(u))

1Ai(u+1)
(Xt)



 .

As a result, the induction at step p is complete. We then define a sequence of measurable sets (Bj)j≥1

such that for any u ≥ 1, Bp(i(u)) = Ai(u) − Ai(u+1), and for all other indices j /∈ {p(i(u)), u ≥ 1} we

set Bj = ∅. All these sets are disjoint, and we have for any u ≥ 1,

E



limsup
T→∞

1

T

∑

t≤T,t∈T p(i(u)

1Bp(i(u))
(Xt)



 ≥ ǫ

4
.

Therefore, X /∈ C4.

We now show that if X satisfies the second property, then X ∈ C4. Let (Ai)i be a sequence of disjoint

measurable sets, and define Bi =
⋃

j≥iAj . Then,

0 ≤ E



limsup
T→∞

1

T

∑

t≤T,t∈T i

1Ai(Xt)



 ≤ E



limsup
T→∞

1

T

∑

t≤T,t∈T i

1Bi(Xt)





≤ sup
p≥0

E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1Bi(Xt)



 .

Hence, because Bi ↓ ∅, the second property implies that E
[

limsupT→∞
1
T

∑

t≤T,t∈T i 1Ai(Xt)
]

→ 0

as i→∞.

Now for any Borel set A, by the dominated convergence theorem and the fact that the sets T p are

increasing for p ≥ 0, we obtain

lim
p→∞

E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1A(Xt)



 = E



 lim
p→∞

limsup
T→∞

1

T

∑

t≤T,t∈T p

1A(Xt)



 ,
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where both terms are bounded by 1. In other terms,

sup
p≥0

E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1A(Xt)



 = E



sup
p≥0

limsup
T→∞

1

T

∑

t≤T,t∈T p

1A(Xt)



 .

As a result, the second and third condition of the proposition are equivalent. �

The main result of this section is that the C4 condition is necessary for universal learning with obliv-

ious rewards.

Theorem 18. Let X a metrizable separable Borel space, and a finite action spaceA with |A| ≥ 2. Then,

Coblivious ⊂ C4.

Proof. Fix, a1, a2 ∈ A two distinct actions. By contradiction, let X /∈ C4 and f· a universally consistent

learning rule under X for oblivious rewards. For simplicity, we will denote by ât the action selected

by the learning rule at time t. By hypothesis, let (Ai)i≥1 be a sequence of disjoint measurable sets and

0 < ǫ ≤ 1 such that

limsup
i→∞

E



limsup
T→∞

1

T

∑

t≤T,t∈T i

1Ai(Xt)



 ≥ ǫ.

Then, there exists an increasing sequence (j(i))i≥1 such that for any p ≥ 1,

E



limsup
T→∞

1

T

∑

t≤T,t∈T j(i)

1Aj(i)
(Xt)



 ≥ ǫ

2
.

We write I = {j(i), i ≥ 1}. Without loss of generality, we can suppose Aj = ∅ if j ∈ I . We

now construct recursively rewards (rt)t≥1 on which this algorithm is not consistent, as well as a policy

π∗ : X → A compared to which the algorithm has high regret. The reward functions and policy are

constructed recursively together with an increasing sequence of times (T p)p∈I such that after the p−th

iteration of the construction process, the rewards rt for t ≤ T p have been defined such that rt(· |
x≤t) = 0 if x /∈ ⋃i<pAi, the policy π∗(·) is defined on

⋃

i<pAi and always the best action in hindsight

until T p−1. For p = j(p′), suppose that we have performed p′ − 1 iterations of this construction and

have constructed the times T j(1), . . . , T j(p′−1). For convenience, let αp = 2−p−1 and define Kp =
⌈

2
αp

log 26

ǫ

⌉

, βp = ǫ
210(1+2αp)(Kp−1)Kp4Kp

, K̃p =
⌈

2
αp

log 8
βp

⌉

and Mp = max( 8
ǫαp

, (1 + 2αp)
Kp+K̃p).

We first construct by induction an increasing sequence of indices (k(l))l≥0 with k(0) = min{k ≥ 2p :

T k
p > MpT

j(p′−1)} and such that for any l ≥ 1, T
k(l)
p > MpT

k(l−1)
p and

E



 max
MpT

k(l−1)
p <T≤T

k(l)
p

1

T

∑

t≤T,t∈T p

1Ap(Xt)



 ≥ ǫ

4
.

To do so, suppose that we have constructed k(l′) for 0 ≤ l′ < l. Note that

E



 sup
T>MpT

k(l−1)
p

1

T

∑

t≤T,t∈T p

1Ap(Xt)



 ≥ E



limsup
T→∞

1

T

∑

t≤T,t∈T p

1Ap(Xt)



 ≥ ǫ

2
.
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Then, by dominated convergence theorem, there exists k(l) > k(l−1) such that T
k(l)
p > MpT

k(l−1)
p and

E



 max
MpT

k(l−1)
p <T≤T

k(l)
p

1

T

∑

t≤T,t∈T p

1Ap(Xt)



 ≥ E



 sup
T>MpT

k(l−1)
p

1

T

∑

t≤T,t∈T p

1Ap(Xt)



− ǫ

4
≥ ǫ

4
.

This ends the construction of the sequence (k(l))l≥0. We then denote by k̂(l) the index of a phase

(T k−1
p , T k

p ] where the max is attained, i.e.

k̂(l) = argmax
k≤k(l)



 max
MpT

k(l−1)
p ,T k−1

p <T≤T k
p

1

T

∑

t≤T,t∈T p

1Ap(Xt)



 .

Ties can be broken with alphabetical order. Because T k
p ≤ 2T k−1

p , we have in particular,

E







1

T
k̂(l)
p

∑

t≤T
k̂(l)
p ,t∈T p

1Ap(Xt)






≥ ǫ

8
.

Now for any l ≥ 1, let δl such that

P

[

min
1≤t,t′≤T

k(l)
p ,Xt 6=Xt′

ρ(Xt,Xt′) ≤ δl

]

≤ ǫ

2l+10
.

Then, let E be the event when for all l ≥ 1, we have min
1≤t,t′≤T

k(l)
p ,Xt 6=Xt′

ρ(Xt,Xt′) > δl. By the

union bound, P[E ] ≥ 1− ǫ
210 . As a result, we have

E







1

T
k̂(l)
p

∑

t≤T
k̂(l)
p ,t∈T p

1Ap(Xt) | E






≥ ǫ

16
. (2)

Now for δ > 0 and u ≥ 1, define the sets Pu(δ) = (Ap ∩ B(xu, δ)) \ ⋃v<uB(xv, δ) which form

a partition of Ap. For any δ > 0 and sequence b = (bu)u≥1 in {0, 1} we consider the following

deterministic rewards

rδ,b(a | x) =











bu a = a1, x ∈ Pu(δ),
3
4 a = a2,

0 a /∈ {a1, a2},
if x ∈ Ap, rδ,b(· | x) = 0 if x /∈ Ap.

For any sequence of binary sequences b = (bk)k≥0 where b
k = (bku)u≥1, and binary sequence c =

(ck)k≥0 we construct the rewards r
b,c as follows. For t ≤ T j(p′−1) we pose rb,ct = rt so that the

rewards r
b,c coincide with those constructed by induction so far. For T j(p′−1) < t ≤ T

k(0)
p we pose

rb,ct = 0. For t > T
k(0)
p let l ≥ 1 such that T

k(l−1)
p < t ≤ T

k(l)
p and k > k(0) such that T k−1

p < t ≤ T k
p .

Then, we pose

rb,ct (a | x≤t) =























0 ∃t′ ≤ T
k(l−1)
p : xt′ = xt

0 o.w. ck = 0,

rδl,bl(a | xt) o.w. ck = 1,∀T k−1
p < t′ < t : xt′ 6= xt,

0 o.w. ck = 1,∃T k−1
p < t′ < t : xt′ = xt,
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for a ∈ A, x≤t ∈ X t. Note that these rewards coincide on the rewards that have been constructed by

induction so far. Now let b be generated such that all bk are independent i.i.d. Bernouilli B(12 ) random

sequences in {0, 1}, and c is also an independent i.i.d. B(12) process. The sequence is used to delete

some periods (T k−1
p , T k

p ]. Precisely, for any l ≥ 1, we consider the following event where we deleted the

periods between k̂(l) −Kp − K̃p and k̂(l) −Kp but did not delete periods after this phase until period

k̂(l),

Fp
l =

⋂

k̂(l)−Kp−K̃p<k≤k̂(l)−Kp

{ck = 0} ∩
⋂

k̂(l)−Kp<k≤k̂(l)

{ck = 1}.

One can note that the events Fp
l for l ≥ 1 are together independent. Indeed, k̂(l) ≤ k(l) and T

k̂(l)
p >

MpT
k(l−1) ≥ (1+2αp)

Kp+K̃pT k(l−1), which yields k̂(l) > k(l−1)+Kp+ K̃p. As a result, the indices

of c considered in the events Fp all lie in distinct intervals (k(l − 1), k(l)], hence their independence.

Further, we have P[Fp
l ] = 2−Kp−K̃p . Then, the Borel-Cantelli implies that on an event Fp of probability

one, there is an infinite number of l ≥ 1 such that Fp
l is satisfied.

Next, define π0 : x ∈ X 7→ a2 ∈ A, the policy which always selects arm a2. Fix any realization of

b and c. Because f· is universally consistent for oblivious rewards, it has in particular sublinear regret

compared to π0 under rewards r
b,c, i.e., almost surely limsupT→∞

1
T

∑T
t=1 r

b,c
t (a2 | Xt) − rb,ct (ât |

Xt)) ≤ 0. Now observe that the event Fp only depends on c and X and is in particular independent from

b. Therefore, P[E ∩ Fp | b] = P[E ∩ Fp] ≥ 1− ǫ
210 , where we used P[Fp] = 1. Therefore,

E

[

limsup
T→∞

1

T

T
∑

t=1

rb,ct (a2 | X≤t)− rb,ct (ât | X≤t) | E ,Fp,b

]

≤ 0.

For conciseness, we will omit the terms X≤t in the rest of the proof. We then take the expectation

over b and c. Thus, by the dominated convergence theorem, there exists l0 ≥ 1 such that

E



 sup
T>T

k(l0)
p

1

T

T
∑

t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp



 ≤ βp
8
.

On the event Fp, there exists l̂ > l0 such that the event Fp

l̂
is met. For convenience, we take l̂ the

minimum index satisying these conditions. Then, we have

E



 sup

T
k̂(l̂)−Kp
p <T≤T

k̂(l̂)
p

1

T

T
∑

t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp





≤ E



 sup

T
k(l̂−1)
p <T≤T

k(l̂)
p

1

T

T
∑

t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp



 ≤ βp
8
.

Now let lp such that P[l̂ ≤ lp | Fp] ≥ 1
2 . Then,

E



 sup

T
k̂(l̂)−Kp
p <T≤T

k̂(l̂)
p

1

T

T
∑

t=1

rb,ct (a2)− rb,ct (ât) | E ,Fp, l̂ ≤ lp



 ≤ βp
4
. (3)

For conciseness, we will write k̂ for k̂(l̂), let Gp = E ∩ Fp ∩ {l̂ ≤ lp}. We now use similar same

arguments as in the proof of Theorem 15, to show that the learning rule incurs a large regret compared to
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the best action in hindsight, before time T k̂
p . We focus on the period (T

k̂−Kp
p , T k̂

p ], which we decompose

using the sets

Sq = {T k̂−Kp−1+q
p < t ≤ T

k̂−Kp+q
p : Xt ∈ Ap} ∩ T p, 1 ≤ q ≤ Kp.

We also define Eq the number of new exploration steps for arm a1 during Sq,

Expq =







t ∈ Sq : ât = a1 and ∀t′ ∈
⋃

q′<q

Sq′ : Xt′ = Xt, ât′ 6= a1







\ {t : ∃t′ ≤ T
k̂−K̃p
p ,Xt′ = Xt},

and Eq = |Expq|. We now show by induction on i that E

[

Eq

T k̂
p

| Gp
]

≤ (1 + 2αp)
(q−1)Kp4q+1βp for all

1 ≤ q ≤ Kp. Suppose that this is shown for all 1 < q′ < q. Recalling that on the event Gp, for any

T
k̂−Kp−K̃p
p < t ≤ T

k̂−Kp
p we have rb,ct = 0, we can use the same arguments as in Theorem 15 to obtain

E







1

T
k̂−Kp+q
p

T
k̂−Kp+q
p
∑

t=1

rb,ct (a2)− rb,ct (ât) | Gp






≥ −E





T
k̂−Kp−K̃p
p

T
k̂−Kp+q
p

| Gp


+

q
∑

q′=1

E







1

T
k̂−Kp+q
p

T
k̂−Kp+q′

p
∑

t=T
k̂−Kp−1+q′

p +1

rb,ct (a2)− rb,ct (ât) | Gp






= −E





T
k̂−Kp−K̃p
p

T
k̂−Kp+q
p

| Gp


+

q
∑

q′=1

E





1

T
k̂−Kp+q
p

∑

t∈Sq′

rb,ct (a2)− rb,ct (ât) | Gp




≥ −(1 + q)E





T
k̂−Kp−K̃p
p

T
k̂−Kp+q
p

| Gp


−
∑

q′<q

q + 1− q′

4
E

[

Eq′

T
k̂−Kp
p

| Gp
]

+ E







1

T k̂
p

T
k̂−Kp+q
p
∑

t=T
k̂−Kp−1+q
p +1

1Expq(t)(r
b,c
t (a2)− rb,ct (ât)) | Gp






,

where the additional terms−T k̂−K̃p
p compared to the computations in Theorem 15 are due to the fact that

in Expq we also discard times of instances that were visited before T k̂−K̃p , and that in a single period

Sq, there are no duplicates. Now for any T k̂−Kp−1+q < t ≤ T k̂−Kp+q such that a pure exploration was

performed t ∈ Expq, we have

E[rb,ct (a2)− rb,ct (ât) | t ∈ Expq,Gp, k̂] =
3

4
− 0 + 1

2
=

1

4
,

because Xt visits a set of the partition (Pu(δk̂−Kp+q))u which has never been visited in the past, hence

the reward of a1 on this set is equally likely to be 0 or 1 (depending on b), and Gp is independent from b.

Also, using the inequality log(1+z) ≥ z
2 for 0 ≤ z ≤ 1 we obtain T

k̂−K̃p
p ≤ (1+αp)

−K̃p(1+T
k̂−Kp
p ) ≤

βp

8 (1 + T
k̂−Kp
p ) ≤ βp

4 T
k̂−Kp
p . Lastly, T

k̂−Kp
p ≥ T k̂

p /(1 + 2αp)
Kp . Combining these results with Eq (3)
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yields

βp
4
≥ −(1 + q)

βp
4
− 1

4

∑

q′<q

(q + 1− q′)(1 + 2αp)
KpE

[

Eq′

T k̂
p

| Gp
]

+
1

4
E

[

Eq

T k̂
p

| Gp
]

.

Thus,

E

[

Eq

T k̂
p

| Gp
]

≤ (2 + q)βp + (1 + 2αp)
Kp
∑

q′<q

(q + 1− q′)E

[

Eq′

T k̂
p

| Gp
]

≤ (1 + 2αp)
(q−1)Kpβp



2 + q + 4

q−1
∑

q′=1

(q + 1− q′)4q
′





≤ (1 + 2αp)
(q−1)Kp4q+1βp.

This completes the induction. Now for any t ≥ 1, denote by a∗t = argmaxa∈A rb,ct (a | X≤t) the optimal

action in hindsight. In particular, a∗t ∈ {a1, a2}. Now define

B =

K0
⋃

q=1







t ∈ Sq : ∀t′ ∈
⋃

q′<q

Sq′ : Xt′ = Xt, t /∈ Expq′







.

These are times such that we never explored the action a2. In particular, on Gp, the learner incurs an

average regret of at least 1
8 on these times since action a2 would be optimal with probability 1

2 with a

reward excess 1
4 over action a1. Therefore,

E







1

T k̂
p

T k̂
p
∑

t=1

rb,ct (a∗t )− rb,ct (ât) | Gp





≥ E









1

T k̂
p

∑

T
k̂−Kp
p <t≤T k̂

p

rb,ct (a∗t )− rb,ct (ât) | Gp









≥ 1

8
E

[

|B|
T k̂
p

| Gp
]

.

Now denote by T ∗
p = |{t ≤ T k̂

p : Xt ∈ Ap} ∩ T p|. Recall that because Fp and l̂ are independent from

E , by Eq (2), we have E

[

T ∗
p

T k̂
p

| Gp
]

=

[

T ∗
p

T k̂
p

| E
]

≥ ǫ
16 . By construction, we have |B|+∑Kp

q=1(Kp − q +

1)Eq +KpT
k̂−Kp−K̃p
p ≥ T ∗

p − T
k̂−Kp
p . Thus,

E







1

T k̂
p

T k̂
p
∑

t=1

rb,ct (a∗t )− rb,ct (ât) | Gp





≥ ǫ

27
− Kp

4
E





T
k̂−Kp−K̃p
p

T k̂
p





− βp
2

Kp
∑

q=1

(Kp − q + 1)(1 + 2αp)
(q−1)Kp4q

≥ ǫ

27
− βpKp

16
− βp

2
(1 + 2αp)

(Kp−1)Kp4Kp+1

≥ ǫ

28
.
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Recall that by construction P[l̂ ≤ lp | Fp] ≥ 1
2 . Also, P[Fp] = 1 and both these events are independent

from E , hence , letting T p = T
k(lp)
p we have

E

[

sup
T p−1<T≤T p

1

T

T
∑

t=1

rb,ct (a∗t )− rb,ct (ât) | E
]

≥ 1

2
E







1

T k̂
p

T k̂
p
∑

t=1

rb,ct (a∗t )− rb,ct (ât) | Gp





≥ ǫ

29
.

This ends the construction of the sequence T p. Then, for any binary sequences b and c we introduce

slightly different rewards (r̃b,ct )t≤T p as follows: for t ≤ T j(p′−1), r̃b,ct = rt, for T j(p′−1) < t ≤ T
k(0)
p let

r̃b,ct = 0. For t > T
k(0)
p let l ≥ 1 such that T

k(l−1)
p < t ≤ T

k(l)
p and k > k(0) such that T k−1

p < t ≤ T k
p .

Then, we pose

r̃b,ct (a | x≤t) =























0 ∃t′ ≤ T
k(l−1)
p : xt′ = xt

0 o.w. ck = 0,

rδlp ,b(a | xt) o.w. ck = 1,∀T k−1
p < t′ < t : xt′ 6= xt,

0 o.w. ck = 1,∃T k−1
p < t′ < t : xt′ = xt,

for a ∈ A, x≤t ∈ X t. The only difference with the previous oblivious rewards is that we use the same

reward function rδlp ,b across phases (T
k(l−1)
p , T

k(l)
p ] for l ≤ lp. Then, consider the following policy,

πb(x) =























a1 if bu = 1, x ∈ Pu(δlp) ∩Ap,

a2 if bu = 0, x ∈ Pu(δlp) ∩Ap

π∗(x) if x ∈ ⋃i<pAi

a1 if x /∈ ⋃i≤pAi.

Note that by induction hypothesis on the rewards rt for t ≤ T j(p′−1), using the rewards r̃b,r, πb always

selects the best action in hindsight for times t ≤ T j(p′−1). Also, by construction, πb also selects the best

action in hindsight for times T j(p′−1) < t ≤ T p.

Similarly to before, suppose that b, c are generated as independent i.i.d. B(12) processes. We now

argue that on the event E , the learning process with rewards rb,c until T p is stochastically equivalent to

the learning process with rewards r̃
b,c until T p. Indeed, these rewards only differ in that for different

periods (T
k(l−1)
p , T

k(l)
p ], we may have reward rδl,bl instead of rδlp ,b. However, on the event E , new

instances always fall in portions where the reward of a1 is still B(12) conditionally on the current available

history. This holds for both reward sequences. Further, duplicates can only affect rewards during the

same period (T
k(l−1)
p , T

k(l)
p ] by construction—if xt is a duplicate from a previous period, the reward

function is 0. Hence, even though for rb,c, we have distinct sequences bl, these are all consistent with a
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single sequence b based on a finer partition at scale δlp . Precisely, we have

Eb,c

[

EX,â

[

sup
T j(p′−1)<T≤T p

1

T

T
∑

t=1

r̃b,ct (πb(Xt))− r̃b,c(ât) | E
]]

= EX

[

Eb,cEâ

[

sup
T j(p′−1)<T≤T p

1

T

T
∑

t=1

r̃b,ct (a∗t ))− r̃b,c(ât) | X, E
]

| E
]

= EX

[

Eb,cEâ

[

sup
T j(p′−1)<T≤T p

1

T

T
∑

t=1

rb,ct (a∗t )− rb,c(ât) | X, E
]

| E
]

= E

[

sup
T j(p′−1)<T≤T p

1

T

T
∑

t=1

rb,ct (a∗t )− rb,c(ât) | E
]

≥ ǫ

29
.

As a result, there exists a specific realization of b and c such that

EX,â

[

sup
T j(p′−1)<T≤T p

1

T

T
∑

t=1

r̃b,ct (πb(Xt))− r̃b,c(ât) | E
]

≥ ǫ

29
.

Hence, because P[Ec] ≤ ǫ
210 , we obtain

EX,â

[

sup
T j(p′−1)<T≤T p

1

T

T
∑

t=1

r̃b,ct (πb(Xt))− r̃b,c(ât)

]

≥ ǫ

29

(

1− ǫ

210

)

− ǫ

210
≥ ǫ

211
.

Now for all t ≤ T p we pose rt = r̃b,ct , and complete the definition of π∗ by setting π∗(x) = πb(x)
on
⋃

i≤pAi. Note that these definitions are consistent with the previously constructed rewards and the

actions selected by the policy on
⋃

i<pAi. This ends the recursive construction of the rewards r =
(rt)t≥1 and the policy π∗ on

⋃

i≥1 Ai. We close the definition of π∗ by setting π∗(x) = a1 for x /∈
⋃

i≥1Ai arbitrarily. The constructed policy π∗ is measurable because it is measurable on each Ai for

i ≥ 1.

We now analyze the regret of the algorithm compared to π∗ for the rewards (rt)t. First, note that

the rewards are deterministic and that π∗ is the optimal policy, i.e., which always selects the best arm in

hindsight. Also, if b, c denote the realizations used in the iteration p = j(p′) of the above recursion, for

any t ≤ T p we have rt = r̃b,ct . As a result,

E

[

sup
T j(p′−1)<T≤T j(p′)

1

T

T
∑

t=1

rt(π
b(Xt))− rt(ât)

]

≥ ǫ

211
.

Now by Fatou’s lemma, we have

E

[

limsup
T→∞

1

T

T
∑

t=1

rt(π
b(Xt))− rt(ât)

]

= E

[

limsup
p′→∞

sup
T j(p′−1)

< T ≤ T j(p′) 1

T

T
∑

t=1

rt(π
b(Xt))− rt(ât)

]

≥ limsup
p→∞

E

[

sup
T j(p′−1)

< T ≤ T j(p′) 1

T

T
∑

t=1

rt(π
b(Xt))− rt(ât)

]

≥ ǫ

211
.
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As a result, f· is not consistent on the oblivious rewards (rt)t under X, which contradicts the hypothesis

that f· is universally consistent under X. This ends the proof of the theorem. �

Recall that the condition C2 is necessary for universal learning because this is already the case for

noiseless online learning [2] and is also a sufficient for universal learning in noiseless online learning

[14], online learning with adversarial responses [16] and stationary contextual bandits [1]. In the next

proposition, we show that our new necessary condition C4 is a stronger condition than C2.

Proposition 19. Let X be a metrizable separable Borel space. Then, C4 ⊂ C2.

Proof. Suppose that X /∈ C2, then there exists a sequence of disjoint sets (Ai)i≥1 and ǫ > 0 such that

E[limsupT→∞
1
T |{i ≥ 1, Ai ∩ X≤T 6= ∅}|] ≥ ǫ. We now let Bi =

⋃

j≥iAj . We define T̄ = {t ≥ 1 :
∀t′ < t,Xt′ 6= Xt} the set of new instances times. Then, for any i ≥ 1,

E



limsup
T→∞

1

T

∑

t≤T,t∈T i

1Bi(Xt)



 ≥ E



limsup
T→∞

1

T

∑

t≤T,t∈T̄
1Bi(Xt)





≥ E

[

limsup
T→∞

|{j ≥ i : Aj ∩X≤T 6= ∅}|
T

]

= E

[

limsup
T→∞

|{j ≥ 1 : Aj ∩ X≤T 6= ∅}|
T

]

≥ ǫ.

This holds for all i ≥ 1 and Bi ↓ ∅. Hence, the second property of Proposition 17 implies X /∈ C4. �

In fact, C4 is a strictly stronger condition than C2 provided that X admits a non-atomic probability

measure. More precisely, in the next result, we explicitly construct a process X ∈ C2 \ C4 which does

not admit universal learning even in the memoryless setting. As a result, for memoryless, oblivious,

prescient and online rewards, one cannot universally learn all C2 processes, while this was achievable for

stationary rewards. Thus having adversarial partial-feedback on the losses of each action strictly reduces

the set of learnable processes Conline ⊂ Coblivious ⊂ Cmemoryless ( C2.

Theorem 20. LetX be a metrizable separable Borel space such that there exists a non-atomic probability

measure onX , and a finite action spaceAwith |A| ≥ 2. Then, C4 ( C2 and the set of learnable processes

also satisfies Cmemoryless ( C2.

Before proving this result, we present a lemma which allows to have a countable sequence of non-

atomic measures with disjoint support.

Lemma 21. Let X be a metrizable separable Borel space such that there exists a non-atomic proba-

bility measure on X . Then, there exists a sequence of disjoint non-empty measurable sets (Ai)i≥0 and

probability measures (νi)i≥0 on X such that νi(Ai) = 1.

Proof. Let ρ denote the metric on X . First, let (xi)i≥1 be a dense sequence on X . For any x ∈ X and

r > 0 we denote by B(x, r) = {x′ ∈ X : ρ(x, x′) < δ} the open ball centered at x of radius r. Then,

for any δ > 0, we define the partition P(δ) = (Pi(δ))i≥1 by Pi(δ) = B(xi, δ) \⋃j<iB(xj, δ).
Let µ−1 a non-atomic probability measure on X . We construct the disjoint measures and sets recur-

sively. We pose B0 = X . Suppose for p ≥ 1 that we have constructed disjoint sets (Ai)i≤p−1, disjoint

with Bp−1, as well as non-atomic probability measures (νi)i≤p−1 and µp−1 satisfying νi(Ai) = 1 for
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i ≤ p − 1 and µp−1(Bp−1) = 1. Now let Z1, Z2 ∼ µp−1 two independent random variables with distri-

bution µp−1. Because µp−1 is non-atomic, Z1 6= Z2 almost surely. Thus, there exists δp > 0 such that

P[ρ(Z1, Z2) ≤ δp] ≤ 1
2 . As a result, with probability at least 1

2 , Z1 and Z2 fall in distinct sets of the parti-

tion P(δp). Hence, there exists at least two indices i < j such that P[Z1 ∈ Pi(δp)],P[Z2 ∈ Pj(δp)] > 0.

We then pose Ap = Bp−1 ∩ Pi(δp) and Bp = Bp−1 ∩ Pj(δp). Because µp−1(Bp−1) = 1, we have

µp−1(Ap) = µp−1(Pi(δp)) > 0. Similarly, µp−1(Bp) > 0. Hence, we can consider the probability

measure νp of µp−1 conditionally on Ap (i.e. νp(A) =
µp−1(A∩Ap)
µp−1(Ap)

for all measurable A). Similarly,

let µp the probability measure of µp−1 conditionally on Bp. Both are non-atomic because the original

measure µp−1 is non-atomic. This ends the recursion and the proof of the lemma. �

We are now ready to prove the theorem.

Proof of Theorem 20. Fix a1, a2 ∈ A two distinct actions. Let (xi)i≥1 be a dense sequence of X and

denote by B(x, r) denotes the open ball centered at x ∈ X with radius r > 0. Using, Lemma 21,

let (Ai)i≥0 disjoint measurable sets together with non-atomic probability measures (νi)i≥0 such that

νi(Ai) = 1. We then fix x0 ∈ A0 (we will not use the set A0 any further and from now will only reason

on the sets (Ai)i≥1) and for i ≥ 1, we define Si = {k ≥ 1 : k ≡ 2i−1 mod 2i}. Then let Zi for i ≥ 1
be independent processes where Zi is an i.i.d. process following the distribution νi. We now construct a

process X on X . For any k ≥ 1, let Tk = 2kk!, ni = 2⌊log2 i⌋ for i ≥ 1, and lk =
∑

l∈Si,l<k
Tk
ni

, where

k ≡ 2i−1 mod 2i. For any t ≥ 1, we pose

Xt =

{

Zi
lk+r if Tk ≤ t < 2Tk, k ≡ 2i−1 mod 2i, t− Tk ≡ r mod Tk

ni
, 1 ≤ r ≤ Tk

ni
,

x0 otherwise.

This ends the construction of X. We now argue that X ∈ C2. Let (Bl)l≥1 be a sequence of disjoint

measurable sets of X . Because Zi is an i.i.d. process for any i ≥ 1, the event Ei where |{l : Zi
≤T ∩Bl 6=

∅}| = o(T ) has probability one. Now define E =
⋂

i≥1 Ei, which has probability one by the union

bound. Fix ǫ > 0 and i∗ = ⌈2ǫ ⌉ so that ǫ ≤ 1
ni∗

. On the event E for any i ≤ i∗ there exists Ti such that

for any T ≥ Ti we have |{l : Zi
≤T ∩Bl 6= ∅}| ≤ ǫ

2i
T . Now let T 0 = maxi≤i∗ Tini. Then, on E , for any

T ≥ T 0,

|{l : X≤T ∩Bl 6= ∅}| ≤ 1 +
i∗
∑

i=1

|{l : Zi
≤⌊T/ni⌋ ∩Bl 6= ∅}|

+ |{l : ∃t ≤ T : Xt ∈ Bl, Tk ≤ t < 2Tk, k ≡ 0 mod 2i
∗}|

≤ 1 + ǫT + |{Xt, t ≤ T, Tk ≤ t < 2Tk, k ≡ 0 mod 2i
∗}|

≤ 1 + ǫT +
T

ni∗
+

T

ni∗

≤ 3ǫT + 1.

In the first inequality, the additional 1 is due to the visit of x0, and in the third inequality, we used the

fact that in a phase i > i∗, each point is duplicated ni ≥ ni∗ times. This yields a term T
ni∗

. The second

term T
ni∗

in the third inequality is due to boundary effects for times close to T , the worst-case scenarios

being attained for T of the form Tk(1 +
1
ni
). As a result, on E , we have limsupT→∞

1
T |{l : X≤T ∩Bl 6=

∅}| ≤ 3ǫ, which holds for any ǫ > 0. Thus, 1
T |{l : X≤T ∩Bl 6= ∅}| → 0 on E , which ends the proof that

X ∈ C2.
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We now show that there does not exist an universally consistent algorithm under X for memoryless

rewards. One can easily check that X /∈ C4, since for any i ≥ 1, we have

E



limsup
T→∞

1

T

∑

t≤T,t∈T ⌊log2 i⌋

1Ai(Xt)



 ≥ E



limsup
k→∞

1Si(k)

2Tk

∑

t≤2Tk ,t∈T ⌊log2 i⌋

1Ai(Xt)





≥ E

[

limsup
k→∞

1Si(k)

2

]

≥ 1

2
.

This already shows that Conline ⊂ Coblivious ⊂ C4 ( C2. However, we will show a stronger statement

that X /∈ Cmemoryless. The proof uses the same techniques as Theorem 18, but leverages the fact that the

phases Si are deterministic and instances from previous phases [Tk, 2Tk) do not appear in future phases.

By contradiction, suppose that f· is a universally consistent learning rule. We will refer to its decision

at time t as ât for simplicity. We will construct recursively rewards (rt)t≥1 on which this algorithm is

not consistent, as well as a policy π∗ : X → A compared to which the algorithm has high regret. The

rewards and policy are constructed recursively together with an increasing sequence of times (T p)p≥1

and indices (ip)p≥1 with i1 = 1 such that after the p−th iteration of the construction process, the rewards

rt(a | ·) have been defined for all t ≤ T p and the policy π∗(·) has been defined
⋃

i<ip
Ai. The rewards

will be deterministic and stationary, hence we may omit the subscript t. Suppose that we have performed

p − 1 iterations of this construction for p ≥ 1. We will drop the subscripts p for simplicity and simply

assume that we have defined the reward r(a | ·) and the value of the policy π∗(·) on
⋃

j<iAj for some

i ≥ 1 (i = ip). We now construct the rewards on Ai. To do so, we will first introduce other memoryless

rewards. For any k ∈ Si, because νi is non-atomic, there exists δk such that

P



 min
1≤u<v≤lk+

Tk
ni

ρ(Zi
u, Z

i
v) ≤ δk



 ≤ 2−k−5.

Then, let E i be the event when for all k ∈ Si, we have min
1≤u<v≤lk+

Tk
ni

ρ(Zi
u, Z

i
v) > δk, and Zi takes

values in Ai only—this is almost sure since νi(Ai) = 1. By the union bound, P[E i] ≥ 1 − 1
32 . Now for

δ > 0 and u ≥ 1, define the sets Pu(δ) = (Ai ∩ B(xu, δ)) \⋃v<u B(xv, δ) which form a partition of

Ai. For any δ > 0 and sequence b = (bu)u≥1 in {0, 1} we consider the following deterministic rewards

rδ,b(a | x) =











bu a = a1, x ∈ Pu(δ),
3
4 a = a2,

0 a /∈ {a1, a2},
if x ∈ Ai, rδ,b(a | x) = r(a | x) if x ∈

⋃

j<i

Aj ,

and rδ,b(· | x) = 0 if x /∈ ⋃j≤i. Now for any sequence of binary sequences b = (bk)k∈Si
where b

k =

(bku)u≥1, we will consider the memoryless rewards rb defined as follows. For any t ≥ 2, let k ≥ 1 such

that T k ≤ t < T k+1, and k′ = min{l ∈ Si : l ≥ k}. We pose rbt = r
δk′ ,b

k′ , and rb1 = rb2 . Now let b be

generated such that all bi are independent i.i.d. Bernouilli B(12) random sequences in {0, 1}. Next, define

π0 : x ∈ X 7→ a2 ∈ A, the policy which always selects arm a2. Now fix any realization of rb. Because

f· is universally consistent for memoryless rewards, it has in particular sublinear regret compared to π0
under rewards rb, i.e., almost surely limsupT→∞

1
T

∑T
t=1 r

b
t (a2 | Xt) − rbt (ât | Xt)) ≤ 0. The same

arguments as in Theorem 15 with Fatou’s lemma give

limsup
T→∞

E

[

1

T

T
∑

t=1

rbt (a2 | Xt)− rbt (ât | Xt) | E i
]

≤ 0,
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where the expectation is now also taken over b. Therefore, with αi :=
1

16·4ni
, there exists t0 such that for

all T ≥ t0, we have E
[

1
T

∑T
t=1 r

b
t (a2 | Xt)− rbt (ât | Xt) | E i

]

≤ αi
4 . In particular, there exists k ∈ Si

such that k ≥ 4
αi

and Tk ≥ t0 and the above inequality holds for all Tk ≤ T < 2Tk. Then, using the

same arguments as in the proof of Theorem 15, if a∗t denotes the best action in hindsight at time t, we

have

E





2Tk−1
∑

t=Tk

rbt (a
∗
t | Xt)− rbt (ât | Xt) | E i



 ≥ Tk

16
.

For any binary sequence b, we will write for conciseness rb = rδk ,b. We also define the following policy,

restricted to instances in Ai:

πb : x ∈ Ai 7→
{

a1 if bu = 1, x ∈ Pu(δk),

a2 if bu = 0, x ∈ Pu(δk).

Now consider the case where b is an i.i.d. sequence of Bernouillis B(12). We argue that on the event E i,
the learning process before time 2Tk−1 and under rewards rb is stochastically equivalent to the learning

under stationary rewards rb := (rb)t≥1 before 2Tk − 1. Precisely, we have

E
b∼B( 1

2
)



EX,â





2Tk−1
∑

t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt) | E i








= EX



E
b∼B( 1

2
)Eâ





2Tk−1
∑

t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt) | X, E i


 | E i




= EX



EbEâ





2Tk−1
∑

t=Tk

rbt (a
∗
t | Xt)− rbt (ât | Xt) | X, E i



 | E i




= E





2Tk−1
∑

t=Tk

rbt (a
∗
t | Xt)− rbt (ât | Xt) | E i





≥ Tk

16
,

where in the second inequality we used the fact that on the event E i, until time 2Tk − 1 all distinct

instances in Ai fall in distinct sets of the partition (Pu(δk))u: for both rewards r
b and r

b, the reward

on a new instance Ai is independent from the past and has the distribution B(12) for action a1 and

deterministic 3
4 for action a2. As a result, there exists a specific realization of b such that

EX,â





2Tk−1
∑

t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt) | E i


 ≥ Tk

16
.

Hence, because P[(E i)c] ≤ 1
32 , we obtain

EX,â





2Tk−1
∑

t=Tk

rb(πb(Xt) | Xt)− rb(ât | Xt)



 ≥ Tk

16

(

1− 1

32

)

− Tk

32
≥ 2Tk − 1

27
.
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Now denote T p = 2Tk − 1, and let ip+1 = 1 + max{j ≥ i : ∃l ∈ Si, Tl ≤ T i} = 1 + max{j ≥ i :
T2j−1 ≤ T i}. The index ip+1 is chosen so that until time T p, the process X has not visited

⋃

j≥ip
Aj yet.

Note that this index is well defined since Tk → ∞ as k → ∞. We then pose r(· | x) = rb(· | x) for all

x ∈ ⋃i≤j<ip+1
Aj . In particular, we have r(a | x) = 0 for all x ∈ ⋃ip<j<ip+1

Aj . Then pose

π∗(x) =

{

πb(x) x ∈ Ai

a2 x ∈ ⋃i<j<ip+1 Aj .

This ends the recursive construction of the reward r and the policy π∗, i.e., we have constructed r(· | x)
and π∗(x) for all x ∈ ⋃i≥1Ai. We end the definition of the rewards by posing rt(· | x) = 0 and

π∗(x) = a2 if x /∈ ⋃i≥1 Ai. Note that (rt)t≥1 forms a valid sequence of rewards since by construction

on each Ai they are deterministic. Similarly, π∗ is measurable because it is measurable on each Ai.

We now analyze the regret of the algorithm compared to π∗ for the rewards (rt)t. First, note that the

rewards are deterministic, time independent, and that π∗ is the optimal policy, i.e., which always selects

the best arm in hindsight. Then, for any p ≥ 1, we have

r(· | x) = rb(· | x), ∀x ∈ X \
⋃

i≥ip+1

Ai.

where rb denotes the rewards defined at the p-th iteration of the construction process. Now recall that

by construction, the sets Ai visited by the process X≤T p all satisfy i < ip+1, which is the first index for

which the rewards would differ. As a result, we have

E

[

1

T p

T p
∑

t=1

r(π∗(Xt) | Xt)− r(ât | Xt)

]

≥ E





1

T p

T p
∑

t=(Tp+1)/2

r(π∗(Xt) | Xt)− r(ât | Xt)





= E





1

T p

T p
∑

t=(Tp+1)/2

rb(πb(Xt) | Xt)− rb(ât | Xt)





≥ 1

27
,

where in the first inequality we used the fact that π∗ always selects the best action in hindsight. Because

this holds for any p ≥ 1, we can use Fatou’s lemma to obtain

E

[

limsup
T→∞

1

T

T
∑

t=1

rt(π
∗(Xt) | Xt)− rt(ât | Xt)

]

≥ limsup
T→∞

E

[

1

T

T
∑

t=1

rt(π
∗(Xt) | Xt)− rt(ât | Xt)

]

≥ 1

27
.

As a result, f· is not consistent on the stationary rewards (r)t under X, which ends the proof of the

theorem. �

5.1.2 A tighter necessary condition 6 for oblivious rewards

This section proves that C6 is necessary for stochastic processes, which is tighter than the family C4. We

first prove the lemma on large deviations of the empirical measure in C′1 processes.
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Proof of Lemma 9. Let ǫ > 0 and suppose by contradiction that for all T ≥ 1 and δ > 0 there exists a

measurable set A(δ;T ) such that E[µ̂
X̃
(A(δ;T ))] ≤ δ and

E



 sup
T ′>T

1

T ′
∑

t≤T ′,t∈T
1A(δ;T )(Xt)



 > ǫ.

We now construct by induction a sequence of sets (Ai)i≥1 together with times (Ti)i≥0 such that T0 = 0.

Now suppose that we have constructed Ti−1 for i ≥ 1. We take Ai = A(ǫ2−i−2;Ti−1). Then, because

E[µ̂
X̃
(Ai)] ≤ ǫ2−i−2, by the dominated convergence theorem, there exists Ti > Ti−1 such that

E



 sup
T>Ti

1

T

∑

t≤T,t∈T
1Ai(Xt)



 ≤ ǫ

2i+1
.

This ends the construction of the sequences. For any i ≥ 1, let Bi = Ai \
⋃

j<iAj and note that

E



 sup
T>Ti−1

1

T

∑

t≤T,t∈T
1Ai(Xt)





≤ E



 sup
T>Ti−1

1

T

∑

t≤T,t∈T
1Bi(Xt)



+
∑

j<i

E



 sup
T>Ti−1

1

T

∑

t≤T,t∈T
1Aj(Xt)





≤ E



 sup
T>Ti−1

1

T

∑

t≤T,t∈T
1Bi(Xt)



+
∑

j<i

E



 sup
T>Tj

1

T

∑

t≤T,t∈T
1Aj (Xt)





≤ E



 sup
T>Ti−1

1

T

∑

t≤T,t∈T
1Bi(Xt)



+
ǫ

2
.

By construction E
[

supT>Ti−1

1
T

∑

t≤T,t∈T 1Ai(Xt)
]

> ǫ. Hence, letting Ci =
⋃

j≥iBj , we obtain that

for any j ≥ i,

E



 sup
T>Tj

1

T

∑

t≤T,t∈T
1Ci(Xt)



 ≥ E



 sup
T>Tj

1

T

∑

t≤T,t∈T
1Bj+1(Xt)



 ≥ ǫ

2
.

As a result, by the dominated convergence theorem we have E[µ̂
X̃
(Ci)] ≥ ǫ

2 . Further, all sets Bi are

disjoint. But Ci ↓ ∅, which contradicts the hypothesis that X̃ ∈ C′1. This ends the proof of the lemma. �

We recall the necessary definitions to introduce condition C6. For a process X ∈ C4, any ǫ > 0 and

T ≥ 1,

δp(ǫ;T ) := sup

{

0 ≤ δ ≤ 1 : ∀A ∈ B s.t. sup
l

E[µ̂Xl(A)] ≤ δ,

∀τ ≥ T online stopping time, E





1

2τ

∑

τ≤t<2τ,t∈T p

1A(Xt)



 ≤ ǫ







,

and δp(ǫ) := limT→∞ δp(ǫ;T ) > 0. We recall condition C6.
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Condition 6. X ∈ C4 and for any ǫ > 0, we have limp→∞ δp(ǫ) > 0. Denote by C6 the set of all

processes X satisfying this condition.

The main result of this section is that this condition is necessary for oblivious rewards.

Theorem 22. Let X be a metrizable separable Borel space, and a finite action space A with |A| ≥ 2.

Then, Coblivious ⊂ C6.

Proof. Fix X ∈ C4 \C6. By hypothesis, there exists ǫ > 0 such that δp(ǫ)→ 0 as p→∞. Let (p(i))i≥1

be the set of increasing indices such that δp(i)(ǫ) ≤ ǫ2−i−3. Similarly to the proof of Theorem 18,

we suppose by contradiction that there is a universally consistent learning rule f· under X and we will

construct by induction some rewards on which the learning rule is not consistent. We will denote by

ât the action selected by the learning rule at time t. Precisely, suppose that we have performed i − 1
iterations of the construction process for some i ≥ 1, and have constructed times T 1, . . . , T i−1 as well

as rewards (rt)t≤T i−1 , disjoint sets A1, . . . , Ai−1 satisfying

sup
l

E[µ̂Xl(Aj)] ≤ ǫ2−j−2

for all j < i, and a policy π∗ on
⋃

j<iA
i. We will now focus on the times T p(i). For convenience, in the

rest of the proof, when clear from context, we will write p instead of p(i).
First, by hypothesis, for any 1 ≤ j < i, we have E[µ̂Xp(Aj)] ≤ ǫ2−j−2. Thus, by the dominated

convergence theorem, there exists t(j) such that

E



 sup
T≥t(j)

1

T

∑

t≤T,t∈T p

1Aj (Xt)



 ≤ ǫ

2j+1
.

Therefore, summing these equations yields

E



 sup
T≥maxj<i t(j)

1

T

∑

t≤T,t∈T p

1

⋃
j<i A

j (Xt)



 ≤ ǫ

2
.

We define T̃ i−1 = max(T i−1, t(1), . . . , t(i − 1)). Now by construction, δp(i)(ǫ) ≤ ǫ2−i−3. Therefore,

there exists T0 ≥ T̃ i−1 such that for any T ≥ T0, we have δp(ǫ;T ) ≤ ǫ2−i−2. Now for T ≥ T0, let

Ai(T ) ∈ B and τ i(T ) ≥ T be a stopping time such that

sup
l

E[µ̂Xl(Ai(T ))] ≤ ǫ2−i−2 and E





1

2τ i(T )

∑

τ i(T )≤t<2τ i(T ),t∈T p

1Ai(T )(Xt)



 > ǫ.

Last, let U(T ) be such that

P[2τ i(T ) > U(T )] ≥ ǫ

2T+10
.

Then, by the union bound, with probability at least 1− ǫ2−10, for all T ≥ T0, we have 2τ i(T ) ≤ U(T ).

Denote byH this event. Next, let ki = 2p+1, αi = 2−p−1, βi =
ǫ

210(1+2αi)(ki−1)ki4ki
, K̃i =

⌈

2
αi

log 8
βi

⌉

and Mi = max((1 + 2αi)
K̃i , 2

10

ǫ ). We first construct by induction of increasing times (T (l))l≥0 with
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T (0) = MiT0 and T (l) ≥ MiU(T (l − 1)). For convenience, we use the notation τ il = τ i(T (l)),
Ai

l = Ai(T (l)) \⋃1≤j<iA
j for l ≥ 0. Then, by construction, τ i(T (l)) ≥MiU(T (l − 1)) and

E





1

2τ il

∑

τ il≤t<2τ il ,t∈T p

1Ai
l
(Xt)





≥ E





1

2τ il

∑

τ il≤t<2τ il ,t∈T p

1Ai(T (l))(Xt)



− E





1

2τ il

∑

τ il≤t<2τ il ,t∈T p

1

⋃
j<i A

j(Xt)





> ǫ− E



 sup
T≥T̃ i−1

1

T

∑

t≤T,t∈T p

1

⋃
j<i A

j(Xt)





>
ǫ

2
.

For any l ≥ 1, let δl > 0 such that

P

[

min
1≤t,t′≤U(T (l)),Xt 6=Xt′

ρ(Xt,Xt′) ≤ δl

]

≤ ǫ

2l+10
.

Let E be the event when for all l ≥ 1, we have min1≤t,t′≤U(T (l)),Xt 6=Xt′
ρ(Xt,Xt′) > δl and H is

satisfied. By the union bound, P[E ] ≥ 1− ǫ
29

. We now construct similar rewards to those in the proof of

Theorem 18. Then, for any δ > 0 and u ≥ 1, define the sets Pu(δ) = B(xu, δ) \⋃v<uB(xv, δ) where

(xu)u≥1 is a dense sequence of X , which form a partition of X . For any binary sequence b = (bu)u≥1

in {0, 1} define the deterministic rewards

rδ,b;l(a | x) =











bu1x∈Ai
l

a = a1, x ∈ Pu(δ),
3
41x∈Ai

l
a = a2,

0 a /∈ {a1, a2}.

Next, for any sequence of binary sequences b := (bl)l≥1, we construct the deterministic rewards r
b

as follows. First, for t ≤ T i−1, rbt = rt the rewards already constructed. Also, for T i−1 < t ≤
U(T (0)), we pose rbt = 0. Next, observe that τ il is an online stopping time. Therefore, for any l ≥ 0,

U(T (l − 1)) < t < τ il or 2τ il ≤ t ≤ U(T (l)), we pose rbt = 0. Finally, for τ il ≤ t < 2τ il , U(T (l)) and

k such that T k−1
p < t ≤ T k

p , we pose

rbt (a | x≤t) =











0 ∃t′ ≤ U(T (l − 1)) : xt′ = xt,

0 o.w., ∃T k−1
p < t′ ≤ t : xt′ = xt,

rδl,bl;l(a | xt) o.w., ∀T k−1
p < t′ ≤ t : xt′ 6= xt,

for any a ∈ A and x≤t ∈ X t. Now generate b as independent i.i.d. Bernouilli B(12) processes. We

now compare the predictions of the learning rule compared to the constant policy which selects action

a2. Because the learning rule is consistent under any rewards r
b for any realization b, and because

P[E ] > 0, taking the expectation over b, we obtain

E

[

limsup
T→∞

1

T

T
∑

t=1

rbt (a2)− rbt (ât) | E
]

≤ 0.
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Next, we use the dominated convergence theorem to find li ≥ 1 such that

E

[

sup
T≥T (li)/2

1

T

T
∑

t=1

rbt (a2)− rbt (ât) | E
]

≤ βp
4
.

We now define Ai = Ai
li , T

i = U(T (li)) and focus on the period [τ il , 2τ
i
l ). Let k̂ = max{k : τ il ≥ T k

p }.
Then, [τ il , 2τ

i
l ) ⊂ [T k̂

p , T
k̂+2p+1
p ) and we construct the following sets

Sq = {T k̂+q−1
p < t ≤ T k̂+q

p : Xt ∈ Ai} ∩ T p, 1 ≤ q ≤ 2p + 1 = ki. (4)

We also define Expq the exploration steps of arm a1 during Sq.

Expq =







t ∈ Sq : ât = a1 and ∀t′ ∈
⋃

q′<q

Sq′ : Xt′ = Xt, ât′ 6= a1







\ {t : ∃t′ ≤ U(T (li − 1)),Xt′ = Xt},

and Eq = |Expq|. The same arguments as in Theorem 18 show that for all 1 ≤ q ≤ k1, we have

E

[

Eq

T
k̂+ki
p

| E
]

≤ 4q+1(1 + 2αi)
(ki−1)kiβp. For any t ≥ 1, let a∗t be the optimal action in hindsight and

define

Bq =
⋃

q≤q̂







t ∈ Sq : ∀t′ ∈
⋃

q′<q

Sq′ : Xt′ = Xt, t /∈ Expq′







,

the times such that we never explored action a2, before time T k̂+q
p . As in the proof of Theorem 18, for

times in B, the learner incurs an average regret at least 1
8 . Therefore,

E







1

T k̂+ki
p

T
k̂+ki
p
∑

t=1

rbt (a
∗
t )− rbt (ât) | E






≥ 1

8
E

[

|Bq|
T k̂+ki
p

| E
]

.

Finally, let T ∗
p = |{t ≤ T k̂+ki

p : Xt ∈ Ai} ∩ T p|. Noting that we have E

[

T ∗
p

T
k̂+ki
p

| E
]

≥ 1
2E
[

T ∗
p

2τ il
| E
]

≥
ǫ
4 ≥ ǫ

16 , the same arguments as in the original proof give directly

E







1

T k̂+ki
p

T
k̂+ki
p
∑

t=1

rbt (a
∗
t )− rbt (ât) | E






≥ ǫ

28
.

As a result, there exists a realization of b such that the above equation holds for this specific realization.

We then pose rt = rbt for all t ≤ T i and define a policy πi on Ai as follows,

πi(x) =

{

a1 if blu = 1, x ∈ Pu(δli) ∩Ai,

a2 if blu = 0, x ∈ Pu(δli) ∩Ai.
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for any x ∈ Ai, which is possible because Ai is disjoint from
⋃

j<iA
j . Now observe that the policy

selects the best action in hindsight during the interval [T (li), U(T (li)), irrespective on how it is defined

outside of Ai. As a result, we have

E

[

sup
T i−1<T≤T i

1

T

T
∑

t=1

rt(π
∗(Xt))− rt(ât) | E

]

≥ E





1

T k̂+ki

T k̂+ki
∑

t=1

rbt (π
∗(Xt))− rbt (ât) | E





≥ E



−2U(T (li − 1))

T k̂+ki
+

1

T k̂+ki

T k̂+ki
∑

t=1

rbt (a
∗
t )− rbt (ât) | E





≥ − 2

Mi
+

ǫ

28

≥ ǫ

29
.

This ends the recursive construction of the rewards. We close the definition of π∗ by setting π∗(x) = a1
for x /∈ ⋃i≥1A

i arbitrarily. The constructed policy is measurable and we showed that for all i ≥ 1,

E

[

sup
T i−1<T≤T i

1

T

T
∑

t=1

rt(π
∗(Xt))− rt(ât)

]

≥ ǫ

29
.

Using Fatou’s lemma, this shows that E
[

limsupT→∞
1
T

∑T
t=1 r̃t(π

∗(Xt))− r̃t(ât)
]

≥ ǫ
29
. This ends

the proof that f· is not universally consistent under X and ends the proof of the theorem. �

We now give an example of process X ∈ C4 \ C6.

Theorem 23. For X = [0, 1] with usual topology, C6 ( C4.

Proof. We construct a process X on [0, 1] by phases [2l, 2l+1) for l ≥ 0. We set X1 = 0 arbitrarily and

divide phases by categories Sp = {l ≥ 1 : l ≡ 2p−1 mod 2p} for any p ≥ 1. Next, for any l ∈ Sp, let

Ap(l) =
⋃

0≤i<2l

[

i2p

2p+l
,
i2p + 1

2p+l

]

.

Importantly, Ap(l) has Lebesgue measure 2−p. Next, noting that l ≥ 2p−1 ≥ p, for 2l ≤ t < 2l+1 we

define

Xt =

{

Ut(Ap(l)) 2l ≤ t < 2l + 2l−p,

Xt′ t ≥ 2l + 2l−p, 2l ≤ t′ < 2l + 2l−p, t′ ≡ t mod 2l−p

where Ut(Ap(l)) denotes a uniform random variable on Ap(l) independent from all past random vari-

ables. The process on Sp is constructed so that it has 2p duplicates. This ends the construction of X.

We now show that X ∈ C4. For convenience, for any l ≥ 1, let p(l) be the index such that l ∈ Sp(l).

Next, let Xp := (Xt)t∈T p for p ≥ 0. we will show the stronger statement that for any measurable set

A ∈ B, we have µ̂Xp(A) ≤ µ(A) (a.s.), where µ is the Lebesgue measure. To do so, fix A ∈ B and
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ǫ > 0. Since A is Lebesgue measurable, there exists a sequence of disjoint intervals (Ik)k≥0 within

X = [0, 1] such that A ⊂ ⋃k≥0 Ik and

∑

k≥0

ℓ(Ik) ≤ µ(A) + ǫ,

where ℓ(I) is the length of an interval I . Then, let k0 such that
∑

k≥k0
Ik ≤ ǫ2

2p+1 and pose ℓ0 =

mink<k0 ℓ(Ik). Then, for any l ≥ max(2, log2
k0
ǫ ) := l0, with l ∈ Sq,

µ(A ∩Aq(l))

µ(Aq(l))
≤
∑

k<k0

µ(Ik ∩Aq(l))

µ(Aq(l))
+ 2qµ





⋃

k≥k0

Ik





≤
∑

k<k0

(ℓ(Ik) + 2−l) + ǫ22q−p−1

≤ µ(A) + 2ǫ+ ǫ22q−p−1.

Let q0 = p + log2
1
ǫ . For any l ≥ l0 with l ∈ ⋃q<q0

Sq, we have
µ(A∩Aq(l))
µ(Aq(l))

≤ µ(A) + 3ǫ. Now for any

l ≥ l0, if l ∈ ⋃q<q0
Sq, Hoeffding’s inequality implies that for any l ≤ r ≤ 2l−q ,

P





∑

2l≤t<2l+r

1A(Xt) ≤ r(µ(A) + 4ǫ)



 ≥ 1− e−2ǫ2r2 ≥ 1− e−2ǫ2lr.

Note that we always have 2l−q ≥ l since l ≥ 2q−1 and l ≥ 2. In particular, because we have
∑

r≥1

∑

l≥1 e
−2ǫ2lr < ∞, on an event E(ǫ) of probability one, there exists l̂ ≥ l0 such that the above

equation holds for all l ≥ l̂ with l ∈ ⋃q<q0
Sq and l ≤ r ≤ 2l−q. Then, for T ≥ 2l̂, letting l(T ) ≥ 1

such that 2l(T ) ≤ T < 2l(T )+1, we have

∑

t≤T,t∈T p

1A(Xt) =
∑

l<l(T )

min(2p(l), 2p)
∑

2l≤t<2l+2l−p(l)

1A(Xt) +
∑

2l(T )≤t≤T,t∈T p

1A(Xt)

≤
∑

l<l(T )

ǫ2l1[p(l) ≥ q0] + 2l̂ +
∑

l̂≤l<l(T )

2l(µ(A) + 4ǫ)1[p(l) < q0]

ǫ2l(T )
1[p(l(T )) ≥ q0] + [(T − 2l(T ) + 1)(µ(A) + 4ǫ) + l(T )]1[p(l(T )) < q0]

≤ 2l̂ + l(T ) + 2ǫ2l(T ) + (µ(A) + 4ǫ)T

≤ 2l̂ + log2 T + (µ(A) + 6ǫ)T.

where in the first inequality, we used the fact that for q ≥ q0, 2p ≤ ǫ2q. Further, the additional term l(T )
comes from the fact that the estimates on E(ǫ) held for r ≥ l: writing T = 2l(T ) + u2l(T )−p(l(T )) + v,

we first use E(ǫ) with r = 2l(T )−p(l(T )), then with r = max(v, l(T )). As a result, on E(ǫ), we have

µ̂Xp(A) ≤ µ(A) + 6ǫ. Thus, on
⋂

j≥0 E(2−j) of probability one, we have µ̂Xp(A) ≤ µ(A), and this

holds for all p ≥ 1 and A ∈ B. Using this property, verifying the C4 condition is straightforward. For

disjoint measurable sets Ai, we have E[µ̂Xi(Ai)] ≤ µ(Ai)→ 0 because
∑

i µ(Ai) ≤ 1.

We now show that X /∈ C6. First, on an event F of probability one, all samples Ut(Ap(l)) are distinct.

As a result, on F , except for the intended duplicates, all instances of X are distinct. Thus, for any l ∈ Sp,
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and any 2l ≤ t < 2l+1, we have t ∈ T p. Hence, on F ,

1

2l+1

∑

2l≤t<2l+1,t∈T p

1Ap(l)(Xt) ≥
2l

2l+1
=

1

2
.

In particular, this implies that

E





1

2l+1

∑

2l≤t<2l+1,t∈T p

1Ap(l)(Xt)



 ≥ 1

2
.

However, E[µ̂Xp(Ap(l))] = µ(Ap(l)) = 2−p. Therefore, using the trivial stopping time τ = 2l, we

showed δp(1/2; 2l) ≤ 2−p. Because this holds for all l ∈ Sp which is infinite, we have δp(1/2) ≤ 2−p.

Thus, δp(1/2)→ 0 as p→∞. This shows that X /∈ C6 and ends the proof of the theorem. �

A more natural condition on processes than C6 would be one that does not involve these stopping

times τ . In particular, for a process X ∈ C4, we can define instead for any ǫ > 0 and T ≥ 1,

δ̄p(ǫ;T ) := sup

{

0 ≤ δ ≤ 1 : ∀A ∈ B s.t. sup
l

E[µ̂Xl(A)] ≤ δ,

E



 sup
T ′≥T

1

T

∑

t≤T,t∈T p

1A(Xt)



 ≤ ǫ







.

As before, δ̄p(ǫ;T ) is non-decreasing in T and δ̄p(ǫ) := limT→∞ δp(ǫ;T ) > 0. We can then observe

that δ̄p(ǫ) is non-increasing. Similarly to C6, we can then define the following condition.

Condition 7. X ∈ C4 and for any ǫ > 0, we have limp→∞ δ̄p(ǫ) > 0. Denote by C7 the set of all

processes X satisfying this condition.

As a simple remark, we have the inclusion C7 ⊂ C6, since if for any given process X ∈ C4, set A ∈ B
and online stopping time τ ≥ T ,

E





1

2τ

∑

τ≤t<2τ,t∈T p

1A(Xt)



 ≤ E



 sup
T ′≥T

1

T

∑

t≤T,t∈T p

1A(Xt)



 .

Unfortunately, for oblivious rewards, we were unable to prove that C7 is a necessary condition. In-

deed, for a process X ∈ C4, time T ≥ 1 and ǫ > 0, if

E



 sup
T ′≥T

1

T

∑

t≤T,t∈T p

1A(Xt)



 > ǫ, (5)

it is in general not true that there exists an online stopping time τ ≥ T such that

E





1

2τ

∑

τ≤t<2τ,t∈T p

1A(Xt)



 > ηǫ, (6)
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even for a fixed multiplicative tolerance 0 < η < 1, which should be independent of ǫ > 0. Thus, it

seems unlikely that C6 = C7 in general for spaces X admitting a non-atomic probability measure.

However, if one considers a stronger type of adversary, we can show that C7 becomes necessary for

universal learning. Precisely, one can introduce prescient rewards, that are stronger than oblivious re-

wards in that rewards are allowed to depend on the complete sequence X instead of the revealed contexts

to the learner X≤t at step t. Formally, these are defined as follows.

Definition 24 (Reward models). The reward mechanism is said to be prescient if there are conditional

distributions (Pr|a,xt′≥1
)t≥1 such that rt given the selected action at and the sequence of contexts X,

follows Pr|a,xt′≥1
.

In this model, given a process X ∈ C4, a time T ≥ 1 and ǫ > 0 satisfying Eq (5), finding a time

τ ≥ T (measurable with respect to the sigma-algebra σ(X), i.e., conditionally on X) such that Eq (6) is

satisfied becomes trivial even with η = 1. Therefore, the same proof as for Theorem 22 shows that the

last condition on stochastic processes is necessary for prescient rewards.

Theorem 25. Let X be a metrizable separable Borel space, and a finite action space A with |A| ≥ 2.

Then, Cprescient ⊂ C7.

5.1.3 Condition 5 is necessary for universal learning with online rewards

In this section, we show that condition C5 is necessary for universal learning with online rewards, tight-

ening the result on the necessity of condition C6 from the previous section. In fact, in Section 5.2 we

show that C5 is also sufficient, which together with the result from this section shows that C5 exactly

characterizes universally learnable processes for online rewards. We recall that this is the strongest re-

ward model that we consider in this paper and allows the reward adversary to also take into account the

past actions selected by the learner. We first briefly recall the definition of condition C5.

Condition 5. There exists an increasing sequence of integers (Ti)i≥0 such that letting

T =
⋃

i≥0

T i ∩ {t ≥ Ti},

we have X̃ = (Xt)t∈T ∈ C′1. Denote by C5 the set of all processes X satisfying this condition.

Before proving our main result, we need the following lemma that gives an equivalent formulation

of the class of processes C5. Intuitively, it shows that if X /∈ C5, for any tentative rate to add duplicates—

yielding the extended process X̃—we can uniformly lower-bound the proportion of failure for the C′1
condition.

Lemma 26. LetX be a metrizable separable Borel space and X a stochastic process onX . The following

are equivalent.

• X ∈ C5,

• For any ǫ > 0, there exists an increasing sequence of integers (Ti)i≥0 such that letting T =
⋃

i≥0 T i ∩ {t ≥ Ti}, for any sequence {Ak}k≥1 of measurable sets of X with Ak ↓ ∅,

lim
k→∞

E[µ̂(Xt)t∈T
(Ak)] ≤ ǫ.
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Proof. By definition of the condition C5, it is immediate that X ∈ C5 implies the second proposition.

It remains to prove the converse. We then suppose that X satisfies the second proposition. Denote by

(Ti(l))i≥0 the sequence obtained from the proposition by setting ǫ = 2−l. Now defining

Ti = max
j≤i

Ti(j),

it then suffices to argue that the sequence (Ti)i≥0 satisfies the requirements for the C5 condition. We

write T =
⋃

i≥0 T i ∩ {t ≥ Ti} and T (l) = ⋃i≥0 T i ∩ {t ≥ Ti(l)} for any l ≥ 0. Now fix l ≥ 0, and

note that for any i ≥ l, one has Ti ≥ Ti(l). As a result,

⋃

i≥l

T i ∩ {t ≥ Ti} ⊂
⋃

i≥l

T i ∩ {t ≥ Ti(l)}.

Next, note that because the sets T i are increasing in i, we have T \ ⋃i≥l T i ∩ {t ≥ Ti} ⊂ {t < Tl}.
Therefore, for any measurable set A ∈ B, one has

µ̂(Xt)t∈T
(A) = limsup

T→∞

1

T

∑

t≤T,t∈T
1A(Xt) ≤ limsup

T→∞

Tl

T
+

1

T

∑

t≤T,t∈T (l)

1A(Xt) = µ̂(Xt)t∈T (l)
(A).

Thus, for any sequence of measurable sets Ak ↓ ∅, one has

lim
k→∞

E[µ̂(Xt)t∈T
(Ak)] ≤ lim

k→∞
E[µ̂(Xt)t∈T (l)

(Ak)] ≤ 2−l.

Because this holds for all l ≥ 0, we obtain limk→∞ E[µ̂(Xt)t∈T
(Ak)] = 0 and the lemma is proved. �

We are now ready to prove the following theorem.

Theorem 27. Let X be a metrizable separable Borel space, and a finite action space A with |A| ≥ 2.

Then, Conline ⊂ C5.

Proof. Fix X /∈ C5. If X /∈ C4, we already proved that (even for oblivious rewards) universal learning is

not achievable. We therefore suppose that X ∈ C4 and suppose by contradiction that there is a universally

consistent learning rule f· under X. We will construct by induction some online rewards on which the

learning rule is not consistent. For convenience, we denote by ât the action selected by the learning rule

at time t. Last, since |A| ≥ 2, we can fix a1 6= a2 ∈ A two arbitrary actions. These will be the only used

actions for our constructions, all other actions a ∈ A \ {a1, a2} will have zero reward at all times.

We start by constructing rewards that will depend on the actions of the learning rule. By Lemma 26,

we can fix ǫ such that for any increasing sequence (Ti)i≥0, letting T =
⋃

i≥0 T i ∩ {t ≥ Ti}, there exists

a sequence of sets Ak ↓ ∅ such that

E[µ̂(Xt)t∈T
(Ak)] ≥ ǫ, ∀k ≥ 0.

Here we used that the sequence of sets is decreasing so that E[µ̂(Xt)t∈T
(Ak)] is decreasing in i.

The end rewards are constructed by induction: at the phase p of the construction, the rewards r⋆t
have been constructed for all t < T ⋆

p for some time T ⋆
p = 2R

⋆
p . Further, we have defined some disjoint

sets B1, . . . , Bp, increasing times T ⋆
1 , . . . , T

⋆
p−1, and a policy π(p) such that π(p)(x) = a2 for all x /∈

B1 ∪ · · ·Bp, and for any p′ ≤ p,

E

[

max
T ⋆
p′−1

≤T<T ⋆
p′

1

T

T
∑

t=1

r⋆t (π
(p)(Xt))− r⋆t (ât)

]

≥ ǫ

16
+

ǫ

2p+10
, (7)
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where we used the notation T ⋆
0 = 0. Last, at phase p we have also constructed a sequence of increasing

indices (Qp(i))i≥0 with Qp(i) ≥ 4i such that with T (p) =
⋃

i≥0 T i ∩ {t ≥ 2Qp(i)}, one has

E



sup
T≥1

1

T

∑

t≤T,t∈T (p)

1Bp′
(Xt)



 ≤ ǫ

2p′+10
, p′ ≤ p. (8)

For instance, for p = 0 we can simply take Q0(i) = 2i for all i ≥ 0. We then suppose that we completed

phase p ≥ 0 and proceed with the induction to construct the set Bp+1, time T ⋆
p+1 and rewards r⋆t until

time T ⋆
p+1.

Before doing so, we need to construct an auxiliary reward process. These rewards have the following

behavior. Before T ⋆
p = 2R

⋆
p , these are constructed identically as the rewards r⋆. Then, at time t ≥ 2R

⋆
p ,

either the rewards are always zero and this is called an inactive time; or the time is active, in which case

the “safe” action a2 always receives a reward 3/4, and the “uncertain” action a1 receives a reward that

can either be 0 or 1 with equal probability. We say that the learning rule explores at an active time t if it

selects action a1. At the high level, the rewards proceed by period and tentatively activate the times from

T i for some i ≥ 0. If the learning rule performs too many explorations, the trial fails and we instead aim

to activate fewer times from T j for j < i. We construct the rewards inductively by period [2r, 2r+1) for

r ≥ r0. Each of these periods will be associated with a level i(r) ≥ 0, which roughly corresponds to

the fact that the active times during period r were times in T i(r). We also denote by St the set of active

times up until time t (included). The formal procedure to define the online rewards is given in Algorithm

1, where rt(a) denotes the reward for action a defined by the procedure at time t, for t ≥ 1.

Let S =
⋃

t≥1 St be the set of all active times. We first give some properties on the learning

procedure starting from time T ⋆
p . As a first step, we show that the learner cannot make better pre-

dictions than the simple policy π0 : x ∈ X 7→ a2 ∈ A. Precisely, we show that the quantities

rt(ât) − rt(a2) + 1t∈S1ât 6=a2/4 for t ≥ T ⋆
p form the increments of a super-martingale with respect

to the filtration σ(X≤t, â≤t, r≤t−1). First, note that whether t is active, i.e., t ∈ S only requires the

knowledge of X≤t and the actions â≤t, hence is measurable with respect to the given filtration. Next,

if t is inactive, all rewards are zero. We now consider active times. Denote by u(t) the time of the first

occurrence of Xt starting from T ⋆
p , i.e., u(t) = min{T ⋆

p ≤ u ≤ t : Xt = Xu}. Then, if t is active,

rt(a1) − rt(a2) = Bu(t) − 3/4. Moreover, by construction, the learning rule has not queried a1 for any

previous active time u within the same period as t such that Xt = Xu. However, these are the only times

when Bt′ affected the rewards. As a result, all rewards that the learning rule has received before time

t are independent of Bu(t) (whether t is active or not). This shows that Bu(t) is independent from X≤t,

â≤t and r≤t−1 together. As a result,

E[rt(ât)− rt(a2) + 1t∈S1ât 6=a2/4 | X≤t, â≤t, r≤t−1] = 1t∈S(−1/2 · 1ât /∈{a1,a2}
+ 1ât=a1E[Bu(t) − 1/2 | X≤t, â≤t, r≤t−1])

= −1/2 · 1t∈S1ât /∈{a1,a2} ≤ 0.

This ends the proof that (rt(ât)−rt(a2)+1t∈S1ât 6=a2/4)t≥T ⋆
p

form the increments of a super-martingale,

and these are bounded in absolute value by one. Azuma-Hoeffding’s inequality then implies for any

T ≥ T ⋆
p ,

P





T
∑

t=T ⋆
p

rt(ât)− rt(a2) ≥ 2T 3/4 − 1

4

T
∑

t=T ⋆
p

1t∈S1ât 6=a2



 ≤ e−2
√
T .
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Let (Bt)t≥1 be an i.i.d. B(12) sequence

for t = 1, . . . , T ⋆
p − 1 do

Observe context Xt

Define rt(a) = r⋆t (a) for all a ∈ A
Observe action selected by learner ât

end

Initialize i(R⋆
p) = 0 and let ST ⋆

p−1 = ∅
for r ≥ R⋆

p do

for t = 2r, . . . , 2r+1 − 1 do
Observe context Xt

if t /∈ T i(r) then
Define rt(a) = 0 for all a ∈ A and St = St−1

else if ∀T ⋆
p ≤ t′ < t, Xt′ 6= Xt then

Define rt(a) =











Bt a = a1
3
4 a = a2,

0 a /∈ {a1, a2}
for a ∈ A

St = St−1 ∪ {t}
else if ∃T ⋆

p ≤ t′ < t such that Xt = Xt′ , t
′ ∈ St−1 and ât′ = a1 then

Define rt(a) = 0 for all a ∈ A and St = St−1

else

Define rt(a) = rt′(a) for all a ∈ A where t′ < t, Xt = Xt′ and t′ ∈ St−1

St ← St−1 ∪ {t}
end

Observe action selected by learner ât
while 1

t

∑t
u=T ⋆

p
1u∈St1âu 6=a2 ≥ 1

22i(r)(i(r)+1)
do i(r)← max(0, i(r) − 1) ;

end

Define i(r + 1) = min{i(r) + 1, k} where k is such that Qp(k) ≤ r + 1 < Qp(k + 1)

end

Algorithm 1: Procedure to define the online rewards

Borel-Cantelli’s lemma then implies that on an event E of probability one, there exists T̂ ≥ T ⋆
p such that

for any T ≥ T̂ ,
T
∑

t=T ⋆
p

rt(ât)− rt(a2) < 2T 3/4 − 1

4

T
∑

t=T ⋆
p

1t∈S1ât 6=a2 .

We now focus on the level i(r) at each period. Note that this quantity is updated by the procedure

along the learning process: it starts at i(r−1)+1 (or 0 if r = r0) at the beginning of the period [2r, 2r+1),
then can only decrease during the period. Starting from the end of the period 2r+1, the level i(r) is never

updated again. To avoid any confusions, we denote by I(r) this final value of i(r) once the period is

completed. We aim to prove that the level at each period i(r) eventually diverges to infinity. Fix j ≥ 0.

Because f· is universally consistent under X, it has in particular vanishing excess error compared to π0.

Hence, we have

P

[

limsup
T→∞

1

T

T
∑

t=1

rt(a2)− rt(ât) ≥
1

22j+4(j + 1)

]

= 0.
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As a result, by the dominated convergence theorem there exists tj ≥ 1 such that

P

[

sup
T≥tj

1

T

T
∑

t=1

rt(a2)− rt(ât) ≥
1

22j+4(j + 1)

]

≤ ǫ

2j+10
.

We denote by Fj the complement event. Next, because E has full probability, there exists t′j such that

P





T
∑

t=T ⋆
p

rt(ât)− rt(a2) < 2T 3/4 − 1

4

T
∑

t=T ⋆
p

1t∈S1ât 6=a2 , ∀T ≥ t′j



 ≤ ǫ

2j+10
.

We denote by Ej the complement event. Now, we define an integer Rj ≥ R⋆
p such that 2Rj−j ≥

max(tj , t
′
j , 2

8j+16(j + 1)4, 22j+4(j + 1)T ⋆
p , 2

Qp(j)). Using the previous two equations shows that on

Ej ∩ Fj of probability at most 1− ǫ
2j+9 , for all T ≥ 2Rj−j ,

1

T

T
∑

t=T ⋆
p

1t∈S1t6=a2 <
4

T

∑

t<T ⋆
p

(rt(ât)− rt(a2)) +
8

T 1/4
+

1

22j+2(j + 1)

≤ 4T ⋆
p

T
+

8

T 1/4
+

1

22j+2(j + 1)
≤ 1

22j(j + 1)
.

Also, for any r ≥ Rj − j, one has r ≥ Qp(j) so that the quantities I(r) can freely increase until they

reach j from when the quantities i(r) are always lower bounded by j. In particular, by the union bound,

this shows that

P

[

∀j ≥ 0, inf
r≥Rj

I(r) ≥ j

]

≥ P





⋂

j≥0

Ej ∩ Fj



 ≥ 1− ǫ

28
.

We denote by F = {∀j ≥ 0, infr≥Rj I(r) ≥ j} the corresponding event.

We are now ready to show that f· is not universally consistent. Because X /∈ C5, with T =
⋃

i≥0 T i∩
{t ≥ 2Rj}, there exists a measurable sets Ak ↓ ∅ such that for all k ≥ 1 we have E[µ̂(Xt)t∈T

(Ak)] ≥ ǫ.
Now because Ak ↓ ∅, we have

0 ≤ lim
k+→∞

P
(

∃t < T ⋆
p : Xt ∈ Ak

)

≤
∑

t<T ⋆
p

lim
k→∞

P(Xt ∈ Ak) = 0.

Also, because X ∈ C4, by Lemma 17 we have

lim
k→∞

E

[

sup
i≥0

µ̂(Xt)t∈T i
(Ak)

]

= 0.

As a result, there exists l ≥ 1 such that

E

[

sup
i≥0

µ̂(Xt)t∈T i
(Al)

]

≤ ǫ

2p+11
and P

(

∃t < T ⋆
p : Xt ∈ Ak

)

≤ ǫ

2p+11
. (9)

We fix this index l in the rest of the proof. Let L⋆
p be an integer such that L⋆

p ≥ max(R⋆
p + 10 −

log2 ǫ,R10−log2 ǫ, 4(log2(Cǫ)+10− log2 ǫ)), where Cǫ =
√

2 ln 8
ǫ . Now by construction, since we have

E[µ̂(Xt)t∈T
(Al)] ≥ ǫ, we have in particular

E



 sup
T≥2L

⋆
p

1

T

∑

t≤T,t∈T
1Al

(Xt)



 ≥ ǫ.
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Thus, by the dominated convergence theorem, there exists an integer R⋆
p+1 > 2L

⋆
p such that

E



 max
2L

⋆
p≤T<2

R⋆
p+1

1

T

∑

t≤T,t∈T
1Al

(Xt)



 ≥ ǫ

2
. (10)

We define T ⋆
p+1 = 2R

⋆
p+1 . As a second step, we show that when during the learning process until time

T ⋆
p+1, for a large proportion of active times t for which Xt ∈ Al, the optimal arm in hindsight is a1.

Precisely, we aim to show that

E



 max
2L

⋆
p≤T<T ⋆

p+1

1

T

∑

t≤T,t∈S
1Al

(Xt) · Bu(t)



 ≥ ǫ

8
.

To prove this, we reason conditionally on X. Define

T̂ = argmax
2L

⋆
p≤T<T ⋆

p+1

1

T

∑

t≤T,t∈T
1Al

(Xt).

Also, let Exp = {T ⋆
p ≤ t ≤ T̂ : t ∈ S,Xt ∈ Al, ât = a1} the set of “exploration” times on Al when

the learning rule selected action a1 without prior knowledge on the value Bu(t) for active time t. For any

exploration time t ∈ Exp, we also define N(t) = |{T ⋆
p ≤ t′ ≤ t : t ∈ S,Xt′ = Xt}| the number of

active occurrences of Xt before the exploration at t. Note that after the exploration, new duplicates of

Xt will never be active anymore. Last, denote by Unexp = (Al ∩ {Xt, T
⋆
p ≤ t ≤ T̂}) \ {Xt, t ∈ Exp}

the set of points in Al that were left unexplored until horizon T̂ . As above, for x ∈ Unexp, we denote

by N(x) = |{T ⋆
p ≤ t ≤ T̂ : t ∈ S,Xt′ = x| the number of active occurrences of x until T̂ . Also,

by abuse of notation, for any x ∈ Unexp, we denote u(x) = min{T ⋆
p ≤ t ≤ T̂ : Xt = x} the

first occurrence of Xt. Conditionally on the realization of X (which as a result makes T̂ deterministic),

the sequence (1t∈ExpN(t)(Bu(t) − 1
2 ))T ⋆

p≤t≤T̂ followed by the sequence (N(x)(Bu(x) − 1
2))x∈Unexp

form the increments of a martingale with filtration given by the σ-algebras σ(X, â≤t, r≤t−1). Indeed,

conditionally on X, the past history â≤t−1, r≤t−1 and the selected action ât, at an exploration time

t ∈ Exp, the value Bu(t) is independent from X and has never been revealed yet, hence is independent

from the history as well. Similarly, for unrevealed points x ∈ Unexp, the variables Bu(x) are together

independent and also independent from X and the history â≤T̂ , r≤T̂ . The final term of the described

martingale writes

T̂
∑

t=T ⋆
p

1t∈ExpN(t)

(

Bu(t) −
1

2

)

+
∑

x∈Unexp

N(x)

(

Bu(x) −
1

2

)

=
T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)

(

Bu(t) −
1

2

)

.

We now bound these increments. For any R⋆
p ≤ r < R⋆

p+1, during the period [2r, 2r+1), one has

S ∩ [2r, 2r+1) ⊂ T k, where k is such that Qp(k) ≤ r < Qp(k + 1). Now recall that Qp(k) ≥ 4k so

that the number of active duplicates for a given point x during period r is at most 2k ≤ 2r/4. Hence, if

T̂ ∈ [2r̂, 2r̂+1), the number of active duplicates of any point until T̂ satisfies

max
t∈Exp

N(t), max
x∈Unexp

N(x) ≤
r̂
∑

r=r0

2r/4 ≤ 2r/4

1− 2−1/4
≤ T̂ 1/4

21/4 − 1
≤ 6T̂ 1/4.
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In particular, all increments of the constructed martingale have elements norm bounded by the above

value. Azuma-Hoeffding’s inequality then yields

P





T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)

(

Bu(t) −
1

2

)

≤ −CǫT̂
3/4 | X



 ≤ ǫ

8
.

Let G be the complement event, i.e., the event when
∑T̂

t=T ⋆
p
1t∈S1Al

(Xt)
(

Bu(t) − 1
2

)

> −CǫT̂
3/4.

Then, using Eq (10) we obtain

E





1F∩G
T̂

∑

t≤T̂ ,t∈T

1Al
(Xt)



 ≥ E





1

T̂

∑

t≤T̂ ,t∈T

1Al
(Xt)



− P[F ]− P[G] ≥ ǫ

2
− ǫ

8
− ǫ

8
=

ǫ

4
. (11)

As a last step, we show that under F ∩ G, the learning rule incurs significant regret compared to the

best action in hindsight for times with contexts falling in Al. On F ∩ G,

1

T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)Bu(t) ≥

1

2T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)−

Cǫ

T̂ 1/4
≥ 1

2T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)−

ǫ

210
.

We used T̂ ≥ 2L
⋆
p in the last inequality. We now aim to compare the right-hand side of the last inequality

to 1
T̂

∑

T ⋆
p≤t≤T̂ ,t∈T 1Al

(Xt). Because F is satisfied, T \ S the set of inactive times that are counted

within T only contains times t such that there exists t′ < t with t′ ∈ S when the learning rule performed

an exploration (see Algorithm 1). Thus,

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt) ≥

∑

t≤T̂ ,t∈T

1Al
(Xt)− T ⋆

p −
∑

t∈Exp

|{t < t′ ≤ T̂ , t′ ∈ T \ S,Xt′ = Xt}|.

Letting ĵ be the integer such that Rĵ ≤ R̂ < Rĵ+1, i.e., 2Rĵ ≤ T̂ < 2Rĵ+1 , we observe that

∑

t∈Exp

|{t < t′ ≤ T̂ , t′ ∈ T \ S,Xt′ = Xt}| ≤ 2R̂−ĵ +
∑

t∈Exp

|{2R̂−ĵ, t < t′ ≤ T̂ , t′ ∈ T ĵ,Xt′ = Xt}|

≤ 2R̂−ĵ + |Exp|2ĵ(ĵ + 1)

≤ T̂

2ĵ−1
+ |Exp|2ĵ(ĵ + 1).

where we used the fact that because (Rj)j≥1 is increasing, each distinct point is duplicated at most 2ĵ

times in any period T ∩ [2r, 2r+1) with r < Rĵ+1. Next, because F is satisfied we have in particular

I(R̂) ≥ ĵ, implying that at time T̂ , we had the guarantee

|Exp|
T̂
≤ 1

T̂

T̂
∑

u=T ⋆
p

1u∈S1âu 6=a2 <
1

22I(R̂)(I(R̂) + 1)
≤ 1

22ĵ(ĵ + 1)
.
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Combining the previous four equations and the fact that T̂ ≥ 2L
⋆
p shows that on F ∩ G one has

1

T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)Bu(t) ≥

1

2T̂

∑

t≤T̂ ,t∈T

1Al
(Xt)−

ǫ

210
−

T ⋆
p

2T̂
− 1

2ĵ
− 1

2ĵ+1

≥ 1

2T̂

∑

t≤T̂ ,t∈T

1Al
(Xt)−

ǫ

28
.

In the last inequality, we used ĵ ≥ 10− log2 ǫ, a consequence of T̂ ≥ 2L
⋆
p . We are now ready to compare

the reward of the learning rule to the best action in hindsight for times t such that Xt ∈ Al. Precisely,

consider the following actions a⋆t : at an active time t ∈ S and Xt ∈ Al, we pose a⋆t = a1 if Bu(t) = 1
and a⋆t = a2 otherwise. For any other active time t ∈ S and Xt /∈ Al, we pose a⋆t = a2 (which is in that

case not necessarily the best action in hindsight). First note that

1

T̂

T̂
∑

t=T ⋆
p

1Al
(Xt)(rt(a

⋆
t )− rt(ât)) =

1

T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)

(

3 +Bu(t)

4
− rt(ât)

)

≥ 1

4T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)1t/∈ExpBu(t)

≥ 1

4T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)Bu(t) −

1

4T̂

T̂
∑

t=T ⋆
p

1t∈Exp1Al
(Xt).

Also, note that

1

T̂

T̂
∑

t=T ⋆
p

1Ac
l
(Xt)(rt(a

⋆
t )−rt(ât)) ≥

1

T̂

T̂
∑

t=T ⋆
p

1t∈S1Ac
l
(Xt)

(

3

4
− rt(ât)

)

≥ − 1

4T̂

T̂
∑

t=T ⋆
p

1t∈Exp1Ac
l
(Xt).

Combining the two previous equations shows that on F ∩ G,

1

T̂

T̂
∑

t=T ⋆
p

rt(a
⋆
t )− rt(ât) ≥

1

4T̂

T̂
∑

t=T ⋆
p

1t∈S1Al
(Xt)Bu(t) −

|Exp|
4T̂

≥ 1

2T̂

∑

t≤T̂ ,t∈T

1Al
(Xt)−

ǫ

27
.

Combining this with Eq (11) shows that

E

[

max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=1

rt(a
⋆
t )− rt(ât)

]

≥ E





1

T̂

T̂
∑

t=T ⋆
p

rt(a
⋆
t )− rt(ât)−

T ⋆
p

T̂



 ≥ ǫ

8
− ǫ

210
− ǫ

27
. (12)

As a last step before defining new rewards, we introduce the scale δl > 0 such that

P

[

min
1≤t,t′<2

R⋆
p+1 ,Xt 6=Xt′

ρ(Xt,Xt′) ≤ δl

]

≤ ǫ

210
.

We denote byH the complement event.
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We are now ready to introduce the new online rewards. To do so, we first need to introduce some

notations for partitions of the space X . Let (xu)u≥1 be a dense sequence in X . We define the sets

Pu = (Al∩B(xu, δl))\
⋃

v<u B(xu, δl) for u ≥ 1. We can easily check that the sequence of measurable

sets (Pu)u≥1 forms a partition of Al, and that each set Pu has diameter at most δl. For any binary

sequence b = (bu)u≥1, we define online rewards that follow the same structure as defined with the

procedure from Algorithm 1, with the difference that rewards rbt , at any active time t ∈ S with Xt ∈ Pu

for some u ≥ 1, are constructed using the binary value bu instead of the random binary variable Bu(t)

where u(t) = min{T ⋆
p ≤ u ≤ t : Xt = Xu}. The procedure to construct the rewards rb until time T ⋆

p+1

is given in Algorithm 2.

Consider the case when the binary sequence b is sampled as an i.i.d. B(12) process. We argue that

under the event H, these rewards rb from Algorithm 2 are not distinguishable from the rewards r from

Algorithm 1. First, observe that they share the same overall structure, the only difference is that when

needed to define rewards rbt at an active time t ∈ S , one may use bu instead of Bt, where u is such that

Xt ∈ Pu. Recall that bu is by hypothesis sampled as bu ∼ B(12) as Bt and further, under the event H,

all distinct points from X<T ⋆
p+1

falling within Al are at distance at least δl. We only use bu for rbt when

Xt ∈ Pu. Therefore, under H, one has {t′ < t : Xt ∈ Pu} = ∅. This shows that the variable bu was

never observed prior to time t and as a result, is not distinguishable from a true random binary variable

Bt ∼ B(12). In particular, under H, the rewards rb when b
i.i.d.∼ B(12), yield the same selected actions as

the rewards r from Algorithm 1. Now for any binary sequence b, we define the policy

πb(x) =











a1 if bku = 1, x ∈ Pu,

a2 if bku = 0, x ∈ Pu,

a2 if x /∈ Al.

By construction, these are constructed exactly similarly to the best action in hindsight a⋆t for contexts

falling in Al as defined previously. Therefore,

E
b
i.i.d.∼ B( 1

2
)

[

EX,a

(

max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=1

rbt (π
b(Xt))− rbt (ât)

)]

≥ P[H] · EX|G

[

E
b
i.i.d.∼ B( 1

2
),a

(

max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=1

rbt (π
b(Xt))− rbt (ât)

)

| X,G
]

= P[H] · EX|G

[

Ea

(

max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=1

rt(a
⋆
t )− rt(ât)

)

| X,G
]

≥ EX,a

[

max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=1

rt(a
⋆
t )− rt(ât)

]

− P[Hc] ≥ ǫ

8
− ǫ

26
.

In particular, there exists a realization b such that

E



 max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=T ⋆
p

rbt (π
b(Xt))− rbt (ât)



 ≥ ǫ

8
− ǫ

26
. (13)

We fix this realization of b in the rest of the proof. We are now ready to close the induction by letting

Bp+1 := Al \ (B1 ∪ . . . ∪ Bp) and defining the policy π(p+1) so as to be consistent with the selected
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Input: Binary sequence b

Let (Bt)t≥1 be an i.i.d. B(12) sequence

for t = 1, . . . , T ⋆
p − 1 do

Observe context Xt

Define rt(a) = r⋆t (a) for all a ∈ A
Observe action selected by learner ât

end

Initialize i(R⋆
p) = 0 and let ST ⋆

p−1 = ∅
for r = R⋆

p, . . . , R
⋆
p+1 − 1 do

for t = 2r, . . . , 2r+1 − 1 do
Observe context Xt

if t /∈ T i(r) then

Let rbt (a) = 0 for all a ∈ A and St = St−1

else if ∀Tp⋆ ≤ t′ < t, Xt′ 6= Xt; Xt ∈ Pu for some u ≥ 1 then

Let rbt (a) =











bu a = a1
3
4 a = a2,

0 a /∈ {a1, a2}
for a ∈ A

St = St−1 ∪ {t}
else if ∀Tp⋆ ≤ t′ < t, Xt′ 6= Xt then

Let rbt (a) =











Bt a = a1
3
4 a = a2,

0 a /∈ {a1, a2}
for a ∈ A

St = St−1 ∪ {t}
else if ∃Tp⋆ ≤ t′ < t such that Xt = Xt′ , t

′ ∈ St−1 and ât′ = a1 then

Let rbt (a) = 0 for all a ∈ A and St = St−1

else

Define rbt (a) = rt′(a) for all a ∈ A where t′ < t, Xt = Xt′ and t′ ∈ St−1

St ← St−1 ∪ {t}
end

Observe action selected by learner ât
while 1

t

∑t
u=T ⋆

p
1u∈St1âu 6=a2 ≥ 2−2i(r) do i(r)← max(0, i(r) − 1) ;

end

Define i(r + 1) = min{i(r) + 1, k} where k is such that Qp(k) ≤ r < Qp(k + 1)

end

Algorithm 2: Procedure to define the online rewards rb<T ⋆
p+1

actions of π(p) on B1, . . . , Bp. We pose

π(p+1)(x) =

{

π(p) if x ∈ B1 ∪ . . . ∪Bp,

πb otherwise.

Observe that by construction, π(p+1)(x) = a2 for all x /∈ B1 ∪ . . . ∪Bp+1. Next, we define the rewards

r⋆t to be exactly rbt for any t < T ⋆
p+1. Note that by the construction given in Algorithm 2, these rewards

are consistent with the rewards r⋆t that had already been constructed for t < T ⋆
p . In the rest of the proof,
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we show that these satisfy the induction requirements.

We first check that the fact that π(p+1) differs from π(p) on Al does not affect significantly the

guarantees of the constructed rewards until time T ⋆
p . Indeed, for any T < T ⋆

p ,

∣

∣

∣

∣

∣

T
∑

t=1

r⋆t (π
(p+1))− r⋆t (π

(p))

∣

∣

∣

∣

∣

≤ |{t ≤ T : Xt ∈ Al}| ≤ T1∃t≤T :Xt∈Al
,

so that, using Eq (7) and Eq (9), for any p′ ≤ p,

E

[

max
T ⋆
p′−1

≤T<T ⋆
p′

1

T

T
∑

t=1

r⋆t (π
(p+1)(Xt))− r⋆t (ât)

]

≥ E

[

max
T ⋆
p′−1

≤T<T ⋆
p′

1

T

T
∑

t=1

r⋆t (π
(p+1)(Xt))− r⋆t (ât)

]

− P(∃t < T ⋆
p : Xt ∈ Al)

≥ ǫ

16
+

ǫ

2p+10
− ǫ

2p+11
≥ ǫ

16
+

ǫ

2p+11
.

Now we check that the guarantee also holds for p′ = p+1. First, recall that by construction of Algorithm

2, for any r ≥ R⋆
p, one has that i(r) ≤ k where k is such that Qp(k) ≤ r < Qp(k + 1). In particular,

the active times during the corresponding period satisfy S ∩ [2r, 2r+1) ⊂ T k. As a result, we obtain

S ⊂ T (p), where we recall that T (p) :=
⋃

i≥0 T i∩{t ≥ 2Qp(i)}. Then, because π(p+1) only differs from

πb on B1 ∪ . . . ∪Bp, for any T ⋆
p ≤ T < T ⋆

p+1,

1

T

T
∑

t=1

rbt (π
b(Xt))− rbt (π

(p+1)(Xt)) ≤
1

T

∑

t≤T,t∈S
(rbt (π

b(Xt))− rbt (π
(p+1)(Xt)))

≤ 1

T

∑

t≤T,t∈T (p)

p
∑

p′=1

1Bp′
(Xt)

≤
p
∑

p′=1

sup
T≥1

1

T

∑

t≤T,t∈T (p)

1Bp′
(Xt).

Therefore, combining Eq (13) and the induction hypothesis Eq (8), we obtain

E

[

max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=1

rbt (π
(p+1)(Xt))− rbt (ât)

]

≥ E

[

max
T ⋆
p≤T<T ⋆

p+1

1

T

T
∑

t=1

rbt (π
b(Xt))− rbt (ât)

]

−
p
∑

p′=1

E



sup
T≥1

1

T

∑

t≤T,t∈T (p)

1Bp′
(Xt)





≥ ǫ

8
− ǫ

26
− ǫ

210
≥ ǫ

16
+

ǫ

2p+10
.

The last step consists in constructing the increasing indices Qp+1(i) for i ≥ 0. By the dominated

convergence theorem, for any i ≥ 0, there exists T̃i ≥ 1 such that

E



 sup
T≥T̃i

1

T

∑

t≤T,t∈T i

1Bp+1(Xt)− µ̂(Xt)t∈T i
(Bp+1)



 ≤ ǫ

2p+12+i
.
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We then define by induction the sequence of integers Qp+1(i) such that Qp+1(0) ≥ max(Qp(0), log2 T̃0)
and for all i ≥ 1, Qp+1(i) ≥ max(Qp(i), log2 T̃i, Qp+1(i− 1)). In particular, the sequence is increasing

and the above equation shows that

E



 sup
T≥2Qp+1(i)

1

T

∑

t≤T,t∈T i

1Bp+1(Xt)− µ̂(Xt)t∈T i
(Bp+1)



 ≤ ǫ

2p+12+i
. (14)

Now letting T (p+1) =
⋃

i≥0 T i ∩ {t ≥ 2Qp+1(i)}, we note that

sup
T≥1

1

T

∑

t≤T,t∈T (p+1)

1Bp+1(Xt) = sup
i≥0

sup
2Qp+1(i)≤T<2Qp+1(i+1)

1

T

∑

t≤T,t∈T (p+1)

1Bp+1(Xt)

≤ sup
i≥0

sup
2Qp+1(i)≤T<2Qp+1(i+1)

1

T

∑

t≤T,t∈T i

1Bp+1(Xt).

As a result,

E



sup
T≥1

1

T

∑

t≤T,t∈T (p+1)

1Bp+1(Xt)





≤ E

[

sup
i≥0

µ̂(Xt)t∈T i
(Bp+1)

]

+
∑

i≥0

E



 sup
T≥2Qp+1(i)

1

T

∑

t≤T,t∈T i

1Bp+1(Xt)− µ̂(Xt)t∈T i
(Bp+1)





≤ sup
i≥0

E
[

µ̂(Xt)t∈T i
(Bp+1)

]

+
ǫ

2p+11
≤ ǫ

2p+10
.

In the second inequality we used Eq (14), and in the third inequality, we used Eq (9). Finally, because for

all i ≥ 0, one has Qp+1(i) ≥ Qp(i), we have directly T (p) ⊂ T (p+1), which shows that for all p′ ≤ p,

we still have

E



sup
T≥1

1

T

∑

t≤T,t∈T (p+1)

1Bp′
(Xt)



 ≤ ǫ

2p′+10
, p′ ≤ p.

This ends the inductive construction of the rewards r⋆.

The last step of the proof is to show that f· is not universally consistent under X for these online

rewards r⋆. Having constructed the sequence of sets (Bp)p≥1, we let π⋆ be the policy defined by

π⋆(x) =

{

π(p)(x) if x ∈ Bp,

a2 otherwise.

Recall that the sequence of policies π(p) for p ≥ 1 was constructed so that they are consistent: π(p′) for

p′ ≥ p ≥ 1 all coincide on Ap. Further, all π(p) coincide on (
⋃

p≥1Bp)
c on which they select a2. Now

fix p ≥ 1. Because the rewards are also constructed to be consistent over time, if ât denotes the selected

action at time t for rewards r⋆, the induction implies that for all p′ ≥ p one has

E

[

max
T ⋆
p−1≤T<T ⋆

p

1

T

T
∑

t=1

r⋆t (π
(p′)(Xt))− r⋆t (ât)

]

≥ ǫ

16
. (15)

57



As a result, because π(p′) and π⋆ coincide everywhere except on
⋃

q>p′ Bq, we have for any T ⋆
p−1 ≤ T <

T ⋆
p ,

1

T

T
∑

t=1

r⋆t (π
⋆(Xt))− r⋆t (ât) ≥

1

T

T
∑

t=1

r⋆t (π
(p′)(Xt))− r⋆t (ât)− 1

(

∃t < t⋆p : Xt ∈
⋃

q>p′ Bq

)

.

Because the sets (Bp)p≥1 are all disjoint, we have P
(

∃t < t⋆p : Xt ∈
⋃

q>p′ Bq

)

→ 0 as p′ →∞. Thus,

using Eq (15) yields

E

[

max
T ⋆
p−1≤T<T ⋆

p

1

T

T
∑

t=1

r⋆t (π
⋆(Xt))− r⋆t (ât)

]

≥ ǫ

16
.

Because this holds for all p ≥ 1, Fatou’s lemma implies

E

[

limsup
T→∞

1

T

T
∑

t=1

r⋆t (π
⋆(Xt))− r⋆t (ât)

]

≥ limsup
p→∞

E

[

max
T ⋆
p−1≤T<T ⋆

p

1

T

T
∑

t=1

r⋆t (π
⋆(Xt))− r⋆t (ât)

]

≥ ǫ

16
.

As a result, the learning rule is not universally consistent under X, which ends the proof of the theorem.

�

5.2 A sufficient condition on learnable processes

In this section, we show that C5 is sufficient universal learning for all reward models. We recall that the

condition C5 asks that there exists an increasing sequence (Ti)i≥0 such that X̃ = (Xt)t∈T ∈ C′1 where

T =
⋃

i≥0 T i ∩ {t ≥ Ti} is obtained by adding the times T i according to the rate given by (Ti)i≥0.

It is straightforward to see C1 ⊂ C5 since for any X ∈ C1, one can take any arbitrary sequence, for

instance Ti = i for i ≥ 0, and satisfy property C5. Before showing that C5 is a sufficient condition for

universal learning with online rewards, we state a known result showing that for C′1 processes, there is a

countable sequence of policies that is empirically dense within all measurable policies.

Lemma 28 ([2] Lemma 24). Let A be a finite action space and X a separable metrizable Borel space.

There exists a countable sequence of measurable policies (πl)l≥1 from X to A such that for extended

process X̃ = (Xt)t∈T ∈ C′1, and any measurable policy π : X → A,

inf
l≥1

E



limsup
T→∞

1

T

∑

t≤T,t∈T
1[πl(Xt) 6= π(Xt)]



 = 0.

We are now ready to prove the sufficiency of C5.

Theorem 29. Let X be a metrizable separable Borel space and A a finite action space. Then, C5 ⊂
Conline.

Proof. Let X ∈ C5, and (Ti)i≥0 such that letting T =
⋃

i≥0 T i ∩ {t ≥ Ti} we have X̃ = (Xt)t∈T ∈ C′1.

We suppose that Ti = 2u(i) for some indices u(i) increasing in i. This is without loss of generality,

because one could take T̃i = min{2s, 2s ≥ Ti} and still have a C′1 process in the definition of X̃ (a

slower sequence (Ti)i only reduces considered points, hence does not impact the C′1 property). We may

also suppose that u(i) ≥ 2i. Also, letting ηi =
√

8 ln(i+1)
2i

for i ≥ 0, we suppose that u(i) ≥ ηi2
i+5.
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Last, we suppose that u(0) = 0 which again can be done without loss of generality since the C′1 property

is not affected by the behavior of the process on the first T0 times. Hence, T0 = 1.

Similarly to the algorithm that was proposed for stationary rewards in [1], the learning rule associates

a category p to each time t and acts separately on each category. To do so, the algorithm first computes

the phase of t as follows: PHASE(t) is the unique integer i such that Ti ≤ t < Ti+1. Then, we define

the stage STAGE(t) := ⌊log2 t⌋ = l so that t ∈ [2l, 2l+1), and the period k = PERIOD(t) as the unique

integer k such that T l2i+k
i ≤ t < T l2i+k+1

i where i = PHASE(t). (Recall that T l2i
i = 2l). We will

refer to [T l2i+k
i , T l2i+k+1

i ) as period k of stage l of phase i. The category of t is then defined in terms of

number of occurrences of Xt within its period.

CATEGORY(t,X≤t) :=










log4

t
∑

t′=T l2i+k
i

1[Xt′ = Xt]










,

where i = PHASE(t), l = STAGE(t), k = PERIOD(t). For conciseness, we will omit the argument

X≤t of the function in the rest of the proof. In words, category p contains duplicates with indices in

[4p, 4p+1) within the periods defined by T . Now using Lemma 28, let (πl)l≥1 be a sequence of dense

functions from X toAwithin measurable functions under C′1 processes. The learning rule acts separately

on times from different categories. We now fix a category p and only consider points from this category.

Essentially, between times Ti and Ti+1, the learning rule performs the Hedge algorithm for learning with

experts to select between the strategies j for 1 ≤ j ≤ i, which apply πj and a strategy 0 which assigns a

different EXP3.IX learner to each new instance within each period at scale i.
Precisely, during an initial phase [1, 2u(16p)), the learning rule only applies strategy 0. Then, let

l ≥ u(16p) and u(i) ≤ l < u(i + 1), we define the learning rule on stage [2l, 2l+1) as follows. For

0 ≤ k < 2i, before period k of stage l, we construct probabilities Pp(l, k; j) for j = 0, . . . , i. These

will be probabilities of exploration for each strategy. At the first phase k = 0 we initialize at the uniform

distribution Pp(l, 0; j) =
1

i+1 . During period k, each new time of category p is assigned a strategy ĵ(t)
sampled independently from the past according to probabilities Pp(l, k; ·). Duplicates of Xt within the

same category and period are also assigned the same strategy ĵ(t). The learning rule then performs the

assigned strategy: for ĵ = 0, it performs an EXP3.IX algorithm and for 1 ≤ ĵ ≤ i, it applies the policy

πĵ . At the end of the phase, the learning rule computes the average reward obtained by each strategy,

r̃p(l, k; j) :=
1

2l−i

∑

T l2i+k
i ≤t<T l2i+k+1

i

1[CATEGORY(t) = p, ĵ(t) = j]

Pp(l, k; j)
rt,

and r̂p(l, k+1; j) =
∑

0≤k′≤k r̃p(l, k
′; j) the cumulative average reward of strategy j. These rewards are

then used to define the probabilities for the next phase Pp(l, k + 1; ·) using the exponentially weighted

averages.

Pp(l, k + 1; j) =
exp(ηir̂p(l, k + 1; j))

∑i
j′=0 exp(ηir̂p(l, k + 1; j′))

,

where ηi =
√

8 ln(i+1)
2i

is the parameter of the Hedge algorithm for 2i steps. The detailed algorithm is

given in Algorithm 3.

We now show that this is a universally consistent algorithm for X. We first introduce some notations.
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ηi =
√

8 ln(i+1)
2i

, i ≥ 0 // learning rates for Hedge

r̂jp(l, 0) = 0, Pp(l, 0; j) =
1

i+1 , p, l, j ≥ 0 // initialization

for t ≥ 1 do
Observe context Xt

i = PHASE(t), l = STAGE(t), k = PERIOD(t), p = CATEGORY(t),

St = {t′ ∈ [T l2i+k
i , t) : CATEGORY(t′) = p,Xt′ = Xt}

if t < 2u(16p) then // initially play strategy 0
ât = EXP3.IXA(âSt , rSt)

else

if St = ∅ then ĵ(t) ∼ Pp(l, k; ·) // select strategy ĵ(t)

else ĵ(t) = ĵ(minSt)
if ĵ(t) = 0 then ât = EXP3.IXA(âSt , rSt) // play strategy ĵ(t)

else ât = πĵ(t)(Xt)
end

Receive reward rt
if l ≥ u(16p), t = T l2i+k+1

i − 1 then // update probabilities

r̂p(l, k + 1; j) = r̂(l, k; j) + 1
2l−i

∑

t∈[T l2i+k
i ,T l2i+k+1

i )

1[CATEGORY(t)=p,ĵ(t)=j]
Pp(l,k;j)

rt, 0 ≤ j ≤ i

Pp(l, k + 1; j) =
exp(ηi r̂p(l,k+1;j))

∑i
j′=0 exp(ηi r̂p(l,k+1;j′))

, 0 ≤ j ≤ i

end

end

Algorithm 3: Learning rule for C5 processes on times Tp

For p ≥ 0,

Tp :=
⋃

i≥1

[Ti, Ti+1) ∩







t ≥ 1 : T k
i ≤ t < T k+1

i , 4p ≤
t
∑

t′=T k
i

1[Xt′ = Xt] < 4p+1







,

is the set of times in category p. We will also denote Xp := (Xt)t∈T p . In this setting, the rewards are

independent from the selected actions of the learner. First, note that the constructed rewards r̂p(l, k; j)
are estimates of the average reward that would have been obtained by strategy j during period k of stage

l. For convenience, we denote Tp(k, l) = [T l2i+k, T l2i+k+1) ∩ Tp. We denote by Rp(l, k; j) the reward

that would have been obtained had we selected always ĵ = j on this period, and rp(l, k; j) =
Rp(l,k;j)

2l−i the

average reward of strategy j for 0 ≤ j ≤ i. For example, for strategy 1 ≤ j ≤ i we have Rp(l, k; j) =
∑

t∈Tp(l,k) rt(π
j(Xt)). Let Xp(l, k) = {Xt, t ∈ Tp(k, l)} the set of visited instances during this period.

For x ∈ Xp(l, k) we denote tp(l, k;x) = min{t ∈ Tp(k, l) : Xt = x} the first time of occurrence

of x during this period, and Np(l, k;x) = |{t ∈ Tp(l, k) : Xt = x}| its number of occurrences. Let
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0 ≤ j ≤ i. We use Hoeffding’s inequality conditionally on X and Pp(l, k; j), to obtain

P





∣

∣

∣

∣

∣

∣

∑

x∈Xp(l,k)

1[ĵ(t) = j]
∑

t∈Tp(l,k),Xt=x

rt − Pp(l, k; j)Rp(l, k; j)

∣

∣

∣

∣

∣

∣

≥ Pp(l, k; j)4
p+12

3
4
(l−i) | X, Pp(l, k; j)

]

≤ 2 exp

(

−2Pp(l, k; j)
223/2(l−i)

|Xp(l, k)|

)

≤ 2 exp

(

−2 23/2(l−i)

(i+ 1)2eηi2i+1 |Xp(l, k)|

)

.

Now by construction of Tp(l, k), each instance of Xp(l, k) has at least 4p duplicates within the same

period. Hence |Xp(l, k)| ≤ 2l−i

4p . As a result, dividing the inner inequality by Pp(l, k; j)2
l−i, we obtain

for l ≥ u(16p), with probability at least 1− 2 exp

(

− 22p+(l−i)/2

(i+1)2eηi2
i+1

)

:= 1− p1(l, k; p),

|r̂p(l, k; j) − rp(l, k; j)| <
4p+1

2(l−i)/4
≤ 4

2l/16
, (16)

where in the last inequality we used l ≥ u(i) ≥ 2i and l ≥ u(16p) ≥ 32p. We now focus on the rewards

for strategy 0. For any t ∈ Tp(l, k) we denote by r̃t the reward that would have been obtained had we

selected strategy 0 for time t, i.e. ĵ(tp(l, k;Xt)) = 0. In particular, we have Rp(l, k; 0) =
∑

t∈Tp(l,k) r̃t.
Let π∗ : X → A be a measurable policy, we now compare Rp(l, k; 0) to the rewards obtained by

the policy π∗ on Tp(l, k). Intuitively, we wish to apply Theorem 5 independently for each EXP3.IX
algorithm corresponding to elements of Xp(l, k). However, these runs are not independent for general

adaptive adversaries. Therefore, we will need to go back to the standard analysis of EXP3.IX. Using

the same notations as in this analysis, for t ∈ Tp(l, k), denote u(t) = |{t′ ≤ t : t′ ∈ Tp(l, k),Xt′ = Xt}|
the index of t for its corresponding EXP3.IX learner. Let ηu = 2γu =

√

ln |A|
u|A| be the parameters used

by the learner at step u. Also, denote by pt,a the probability that the EXP3.IX learner chose a ∈ A at

time t. Further, for a ∈ A denote by ℓt,a = 1 − rt(a) and ℓ̃t,a =
ℓt,a

pt,a+γu(t)
1[a selected]. We keep in

mind that the term “selected” refers to the selection of the EXP3.IX algorithm, but not necessarily the

selection of our learning rule, which potentially did not apply strategy 0 at that time. To avoid confusion,

for t ∈ Tp(l, k), denote ãt the action that would be selected by the EXP3.IX learner at time t. Last, we

define

Ap(l, k) =
∑

t∈Tp(l,k)
ℓ̃t,π∗(Xt) − ℓt,π∗(Xt) and Bp(l, k) =

∑

t∈Tp(l,k)

∑

a∈A
ηu(t)(ℓ̃t,a − ℓt,a).

Then, the same arguments as in Proposition 13 give

∑

t∈Tp(l,k)
rt(π

∗(Xt))− rt(ãt) ≤ Ap(l, k) +Bp(l, k) +
∑

x∈Xp(l,k)

3
√

|A| ln |A|Np(l, k;x)

≤ Ap(l, k) +Bp(l, k) + 3
√

|A| ln |A|4p+1|Xp(l, k)|
≤ Ap(l, k) +Bp(l, k) + 6

√

|A| ln |A|2−p2l−i,

where in the last inequality, we used the fact that |Xp(l, k)| ≤ 2l−i

4p . Now similarly to Proposition 13, note

that conditionally on X, the increments of Ap(l, k) and Bp(l, k) form a super-martingale with increments
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upper bounded by 2
√

|A|4p+1

ln |A| and 2|A|
√

|A|4p+1

ln |A| respectively. Thus, Azuma’s inequality implies

P[Ap(l, k) ≤ 8p|A|2p+ 3
4
(l−i) | X] ≥ 1− e−2p22(l−i)/2

,

P[Bp(l, k) ≤ 8p|A|22p+ 3
4
(l−i) | X] ≥ 1− e−2p22(l−i)/2

.

Thus, denoting δp = 6

√
|A| ln |A|
2p , for any l ≥ 2i, u(16p), with probability at least 1 − 2e−2p22(l−i)/2

:=
1− p2(l, k; p), we have

Rp(l, k; 0) ≥
∑

t∈Tp(l,k)
rt(π

∗(Xt))− 16|A|22−i215l/16 − δp2
l−i. (17)

In the first phase where l < u(16p), we will need to proceed differently. Let T init =
⋃

p≥0{t ∈
Tp : t < 2u(16p)}. Observe that on these times, the learning uses a distinct EXP3.IX learner for each

new instance within each category and period. In Proposition 13 we showed that this learning rule is

universally consistent under processes visiting a sublinear number of distinct instances almost surely.

We now show that this is the case for the process (Xt)t∈T init where for any t, t′ ∈ T init, we view Xt

and Xt′ as duplicates if and only if Xt = Xt′ and they have same category and period. For l ≥ 1,

let p(l) denote the index p such that u(16p) ≤ l < u(16(p + 1)) and i(l) be the index i such that

u(i) ≤ l < u(i + 1). Fix T ≥ 1 and let l ≥ 0 such that 2l ≤ T < 2l+1. We now count the number

of distinct instances N(T ) of (Xt)t∈T init before time T . To do so, we distinguish whether t ≤ 2l/2 or

t > 2l/2 as follows,

N(T ) ≤
∑

p≥0

∑

l′≤u(16p),l

∑

k

|Xp(l
′, k)| ≤ 2l/2 +

∑

p≥p( l
2
)

∑

l
2
≤l′≤l

∑

k

|Xp(l
′, k)|

≤ 2l/2 +
∑

p≥p( l
2
)

∑

l
2
≤l′≤l

∑

k

2l
′−i(l′)

4p

≤ 2l/2 +
∑

p≥p( l
2
)

2l+1

4p

≤ 2l/2 +
2l+1

4p(l/2)−1

≤
√
T +

8T

4p(log4(T ))
= o(T ).

Now let π∗ : X → A a measurable policy. Because of the above estimate, Proposition 13 implies that

on an event E of probability one,

limsup
T→∞

1

T

∑

t≤T,t∈T init

rt(π
∗(Xt))− rt ≤ 0.

Now recall that l ≥ u(i) ≥ 2i, ηi2
i+5, hence 2(l−i)/2

eηi2
i+1 ≥ 2l/4−ηi2i+2 ≥ 2l/8. As a result,

∑

p≥0

∑

l≥32p

∑

k

(i+ 1)p1(l, k; p) + p2(l, k; p) <∞.

62



Then, the Borel-Cantelli lemma implies that on an event F of probability one, there exists l̂ such that for

all p ≥ 0, l ≥ max(l̂, u(16p)) Eq (16) holds, for all p ≥ 0 and l ≥ l̂, Eq (17) holds, and E is satisfied.

We suppose that this event is met in the rest of the proof.

The probabilities Pp(l, k; j) are chosen according to the Hedge algorithm. As a result, we have that

for any l ≥ max(l̂, u(16p)), 0 ≤ k < 2i,

max
0≤j≤i

∑

k′≤k

r̂p(l, k; j) −
∑

k′≤k

i
∑

j=0

Pp(l, k; j)r̂p(l, k; j) ≤
ln(i+ 1)

ηi
+

(k + 1)ηi
8

.

We then use Eq (16) and k + 1 ≤ 2i to obtain

max
0≤j≤i

∑

k′≤k

rp(l, k; j) −
∑

k′≤k

i
∑

j=0

Pp(l, k; j)r̂p(l, k; j) ≤ 2i
4

2l/16
+

ηi
4
2i

As a result,

max
0≤j≤i

∑

k′≤k

Rp(l, k; j) −
∑

k′≤k

∑

t∈Tp(l,k)
rt ≤ 4 · 215l/16 + ηi

4
2l. (18)

Now because l ≥ u(16p), we have i ≥ 16p, we have

∑

0≤k′≤k

∑

t∈Tp(l,k′)
rt ≥

∑

0≤k′≤k

Rp(l, k
′; 0)− 4 · 215l/16 − η16p

4
2l

≥
∑

0≤k′≤k

∑

t∈Tp(l,k)
rt(π

∗(Xt))− 20|A|2215l/16 −
(

δp +
η16p
4

)

2l,

where in the second inequality we used Eq (17). Therefore, summing these equations, for any T ≥
2l̂, 2u(16p),

∑

2u(16p)<t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2l̂ + c|A|2T 15/16 + 2

(

δp +
η16p
4

)

T, (19)

where c = 20
1−2−15/16 . An important remark is that

∑

p≥0(δp +
η16p
4 ) < ∞, which will allow us to

consider only a finite number of p ≥ 0 when comparing the performance of the learning rule compared

to π∗.

Before doing so, we show that for all p ≥ 0, we have Xp = (Xt)t∈Tp ∈ C′1. By definition, letting T =
⋃

i≥0 T i ∩ {t ≥ Ti}, we have that X̃ = (Xt)t∈T ∈ C′1. Then note that each instance of [T k
i , T

k+1
i ) ∩ Tp

has at least one duplicate in [T k
i , T

k+1
i )∩T and to each instance of [T k

i , T
k+1
i )∩T corresponds at most

4p+1 duplicates in [T k
i , T

k+1
i ) ∩ Tp. As a result, for any set A ∈ B, we have µ̂Xp(A) ≤ 4p+1µ̂X̃(A),

which yields E[µ̂Xp(A)] ≤ 4p+1E[µ̂X̃(A)]. Using the definition of C′1 processes ends the proof that

Xp ∈ C′1 for all p ≥ 0.

Now let ǫ > 0 and p0 such that
∑

p≥p0
(δp +

η16p
4 ) < ǫ. Recall that if t ∈ Tp, we have t ≥ 4p.

Therefore, summing Eq (19) gives

∑

p≥p0

∑

2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt))− rt ≤

∑

p0≤p≤log4 T

∑

2u(16p)≤t<T,t∈Tp

rt(π(Xt))− rt

≤ 2l̂ log4 T + c|A|2T 15/16 log4 T + ǫT.
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We now treat the case of p < p0. Because Xp ∈ C′1, by Lemma 28, there exists rp ≥ 1 such that

E



limsup
T→∞

1

T

∑

t≤T,t∈Tp
1[π∗(Xt) 6= πrp(Xt)]



 ≤ ǫ2

2p20
.

By dominated convergence theorem, let lp such that

E



 sup
T≥2l

p

1

T

∑

t≤T,t∈Tp
1[π∗(Xt) 6= πrp(Xt)]



 ≤ ǫ2

p20
.

Using the Markov inequality, we have

P



 sup
T≥2lp

1

T

∑

t≤T,t∈Tp
1[π∗(Xt) 6= πrp(Xt)] ≥

ǫ

p0



 ≤ ǫ

p0
.

By union bound, on an event G of probability at least 1 − ǫ, for all p < p0 and T ≥ 2l
p
, we have

∑

t≤T,t∈Tp 1[π(Xt) 6= πrp(Xt)] <
ǫ
p0
T . Next, let l0 = max(u(rp), lp, p < p0). Thus, any phase l ≥ l0,

has rp ≤ i for all p < p0. Last, let i0 such that ηi0 ≤ 2 ǫ
p0

. On the event E ∩ F ∩ G, for p < p0, for any

l ≥ l̂1 := max(l0, 32p0, u(i0), l̂) and 0 ≤ k < 2i, Eq (18) yields

∑

2l≤t<T l2i+k+1
i ,t∈Tp

rt(π
rp(Xt))− rt ≤ 4 · 215l/16 + ηi

4
2l ≤ 4 · 215l/16 + ǫ

2p0
2l

As a result, for T ≥ 1, letting i(T ), l(T ) the indices i, l such that 2u(i) ≤ T < 2u(i+1) and 2l ≤ T <
2l+1, on E ∩ F ∩ G,

∑

p<p0

∑

2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2l̂1 + 2−i(T )T +

∑

p<p0

∑

t<T,t∈Tp
1[π∗(Xt) 6= πrp(Xt)]

+
∑

p<p0

∑

l̂1≤l′≤l

(

4 · 215l′/16 + ǫ

2p0
2l

′

)

≤ 2l̂1 + 2−i(T )T + ǫT + cp0T
15/16 + ǫT.

Finally, putting everything together, for T sufficiently large, we have

∑

t≤T

rt(π
∗(Xt))− rt ≤

∑

t∈T init,t≤T

r̄t(π
∗(Xt))− rt +

∑

p≥0

∑

2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt

≤ 2l̂1+1 log4 T + 2−i(T )T + c(|A|2 + p0)T
15/16 log4 T + 3ǫT +

∑

t∈T init,t≤T

rt(π
∗(Xt))− rt,

which shows that on E ∩ F ∩ G,

limsup
T→∞

1

T

T
∑

t=1

rt(π
∗(Xt))− rt ≤ 3ǫ.
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We denote by (x)+ = max(0, x) the positive part. Recall that P[E ∩ F ∩ G] ≥ 1− ǫ. Thus,

E

[(

limsup
T→∞

1

T

T
∑

t=1

rt(π(Xt))− rt

)

+

]

≤ 4ǫ.

Because this holds for any ǫ > 0, this shows that almost surely, limsupT→∞
1
T

∑T
t=1 rt(π(Xt))−rt ≤ 0.

As a result, the learning rule is universally consistent on X. This ends the proof of the theorem. �

To the best of our knowledge, while we believe that for general spaces X with non-atomic probability

measures, one may have a gap C5 ( C6, it seems plausible that C5 = C7. As a consequence, this would

imply that we have an exact characterization for processes admitting universal learning with prescient

rewards Cprescient = C5 = C7.

Comparison to a more natural condition C8. In the rest of this section, we compare condition C5 to

another potentially more natural sufficient condition. [1] showed that given any X ∈ C2 process, only

allowing for a finite number of duplicates in X yields a C′1 process. Precisely, for any M , letting

T ≤M =







t ≥ 1 :
∑

t′≤t

1[Xt′ = Xt] ≤M







,

the set of times when contexts are duplicates of index at most M , one has (Xt)t∈T ≤M ∈ C′1. How-

ever, if one does not restrict the maximum number of duplicates, one loses the C′1 property. A natural

condition on stochastic processes would therefore be that for some increasing rate of maximum num-

ber of duplicates, the C′1 property is conserved. For any process X, we denote the occurrence count as

Nt(x) =
∑t

i=1 1[Xt = x] for all x ∈ X . Then, the condition on stochastic processes can be formally

defined as follows.

Condition 8. There exists an increasing function Ψ : N → N with Ψ(T ) → ∞ as T → ∞ such that

for any sequence of measurable sets Ai ∈ B for i ≥ 1 with Ai ↓ ∅,

E

[

limsup
T→∞

1

T

T
∑

t=1

1Ai(Xt)1Nt(Xt)≤Ψ(T )

]

→ 0.

Although this condition is indeed sufficient for universal learning, we show that the more involved

C5 class of processes is larger, and strictly larger whenever X admits a non-atomic probability measure.

Proposition 30. Let X be a metrizable separable Borel space, then C8 ⊂ C5. Further, if there exists a

non-atomic probability measure on X , then C8 ( C5.

Proof. We first show C8 ⊂ C5. Indeed, suppose that X ∈ C8, then there exists Ψ : N→ N increasing to

infinity such that for any measurable sets Ak ↓ ∅, we have

E



limsup
T→∞

1

T

∑

t≤T,Nt(Xt)≤Ψ(T )

1Ak
(Xt)



 −→
k→∞

0.

65



Now let Ti ≥ 1 such that Ψ(Ti) ≥ 1 + i2i. We now show that (Ti)i satisfies the condition of condition

C5. Let T =
⋃

i≥0 T i ∩ {t ≥ Ti}, and Ak ↓ ∅. For any T ≥ 1, we denote X (T ) = {Xt, t ≤ T} the set

of visited instances. Now fix k ≥ 0. Then, for T ≥ Tk, let i ≥ k such that Ti ≤ T < Ti+1,

1

T

∑

t≤T,t∈T
1Ak

(Xt) ≤
1

2k
+

1

T

∑

2−kT<t≤T,t∈T
1Ak

(Xt)

=
1

2k
+

1

T

∑

x∈X (T )∩Ak

|{2−kT < t ≤ T, t ∈ T : Xt = x}|.

In T , we accept at most one duplicate per phase. Because Ti ≤ T < Ti+1, the interval [2−kT, T ]
intersects at most 1 + k2i phases. Thus, for any x ∈ X (T ), |{2−kT < t ≤ T, t ∈ T : Xt = x}| ≤
1 + k2i ≤ 1 + i2i ≤ Ψ(T ). Thus, for any T ≥ Tk,

1

T

∑

t≤T,t∈T
1Ak

(Xt) ≤
1

2k
+

1

T

∑

x∈X (T )∩Ak

min(|{t ≤ T : Xt = x}|,Ψ(T ))

=
1

2k
+

1

T

∑

t≤T,Nt(Xt)≤Ψ(T )

1Ak
(Xt).

Using the hypothesis on Ψ applied to Ak ↓ ∅ yields E
[

limsupT→∞
1
T

∑

t≤T,t∈T 1Ak
(Xt)

]

−→
k→∞

0.

Hence, this shows that X̃ = (Xt)t∈T ∈ C′1 and X ∈ C5.

Next, suppose that there exists a non-atomic probability measure on X . We will construct explicitly

a process X ∈ C5 \ C8. By Lemma 21, there exists a sequence of disjoint measurable sets (Ai)i≥0

together with non-atomic probability measures (νi)i≥0 such that νi(Ai) = 1. We now fix x0 ∈ A0

an arbitrary instance (we will not use the set A0 any further) and define subsets of indices as follows,

Si = {k ≥ 1 : k ≡ 2i−1 mod 2i}. Note that the sets (Si)i≥1 form a partition of N. We now introduce

independent processes Zi for i ≥ 1 such that Zi = (Zi
t)t≥1 is an i.i.d. process with distribution νi. Last,

for all i ≥ 1 we denote ni = 2⌊log2 i⌋. Now consider the following process X where X1 = x0 and for

any t ≥ 1,

Xt = Zi
⌊ t
ni

⌋, 2k ≤ t < 2k+1, k ≡ 2i−1 mod 2i.

When the process is in phase i, it corresponds to an i.i.d. process on Ai which is duplicated ni times.

Note that we used ni duplicates instead of i so that each point is duplicated exactly ni times (we do not

have boundary issues at the end of the phase). We now show that X /∈ C8. Let Ψ : N→ N an increasing

function with Ψ(T ) → ∞ as T → ∞. For i ≥ 1, we first construct an increasing sequence of times

Ti such that Ψ(Ti) > ni. Then, for any k ≥ 1, consider times T k = k2i + 2i−1 which belong to Si.

Then, consider the event Fi such that the process Zi only takes distinct values in Ai. Note that P[Fi] = 1
because the νi is non-atomic and νi(Ai) = 1. Then, on Fi, by construction, we have for any k ≥ 0, with

T k ≥ Ti,

1

2T k − 1

2T k−1
∑

t=1

1Ai(Xt)1Nt(Xt)≤Ψ(2T k−1) ≥
1

2T k

2T k−1
∑

t=T k

1Ai(Xt)1Nt(Xt)≤ni

=
1

2T k

2T k−1
∑

t=T k

1Ai(Xt)

≥ T k

2T k − 1
.
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Hence, on the event Fi, we have limsupT→∞
1
T

∑T
i=1 1Ai(Xt)1Nt(Xt)≤Ψ(T ) ≥ 1

2 . Because P[Fi] = 1,

we obtain

E

[

limsup
T→∞

1

T

T
∑

i=1

1Ai(Xt)1Nt(Xt)≤Ψ(T )

]

≥ 1

2
.

Now consider Bi =
⋃

j≥iAi. Then, we have Bi ↓ ∅ and for any i ≥ 1,

E

[

limsup
T→∞

1

T

T
∑

i=1

1Bi(Xt)1Nt(Xt)≤Ψ(T )

]

≥ E

[

limsup
T→∞

1

T

T
∑

i=1

1Ai(Xt)1Nt(Xt)≤Ψ(T )

]

≥ 1

2
.

As a result, X /∈ C8.

We now show that X ∈ C5. To do so, we first prove that X ∈ C2. Let (Bl)l≥1 be a sequence of

disjoint measurable sets. Because Zi are i.i.d. processes, we have Zi ∈ C2. In particular, on an event Ei
of probability one, we have

|{l : Zi
≤T ∩Bl 6= ∅}| = o(T ).

Now consider the event E =
⋂

i≥1 Ei. This has probability one by the union bound. Let ǫ > 0 and

i∗ = ⌈2ǫ ⌉. In particular, we have 1
ni∗
≤ ǫ. On the event E , for any i ≤ i∗, there exist Ti such that for all

T ≥ Ti,

|{l : Zi
≤T ∩Bl 6= ∅}| ≤

ǫ

2i
T.

Now consider T 0 = maxi≤i∗ Tini. Then, for any T ≥ T 0, we have

|{l : X≤T ∩Bl 6= ∅}| ≤
i∗
∑

i=1

|{l : Zi
≤⌊T/ni⌋ ∩Bl 6= ∅}|

+ |{l : ∃t ≤ T : Xt ∈ Bl, 2
k ≤ t < 2k+1, k ≡ 0 mod 2i

∗}|
≤ ǫT + |{Xt, t ≤ T, 2k ≤ t < 2k+1, k ≡ 0 mod 2i

∗}|

≤ ǫT + 2
T

ni∗
,

where in the last inequality we used the fact that in a phase i > i∗, each point is duplicated ni ≥ ni∗

times. As a result, on the event E , we have

limsup
|{l : X≤T ∩Bl 6= ∅}|

T
≤ 3ǫ.

Because this holds for all ǫ > 0, we obtain that on E , |{l : X≤T ∩ Bl 6= ∅}| = o(T ). Because E has

probability one, this ends the proof that X ∈ C2. Now consider the following times Tj = 4j for j ≥ 0
and define T =

⋃

j≥0 T j ∩{t ≥ Ti}. We aim to show X̃ = (Xt)t∈T ∈ C′1. First, note that for any j ≥ 0,

the phases [2k, 2k+1) contained in [Tj , Tj+1) satisfy k ≤ 2j + 1. Let i(j) = 1 + log2(2j + 1). We have

k ∈ ⋃i≤i(j) Si, which implies that each instance Xt is duplicated consecutively at most ni(j) times in

X within [Tj , tj+1). However, the sections defined by T have length at least 2−jTj = 2j . Further, all

the phases were constructed so that there are no boundary issues: if ni(j) ≤ 2j , then T does not contain

any duplicates during the period [Tj , Tj+1). Because ni(j) ≤ i(j) = o(2j), there exists j0 ≥ 0 such

that T does not contain any duplicate on [Tj0 ,∞). Let T (0) = {t ≥ 1 : Nt(Xt) = 1} the set of first

appearances. Then, for any A ∈ B and T ≥ 1,

∑

t≤T,t∈T
1A(Xt) ≤ Tj0 +

∑

t≤T,t∈T (0)

1A(Xt).
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Now because X ∈ C2, we have (Xt)t∈T (0) ∈ C′1 which implies (Xt)t∈T ∈ C′1 by the above inequality.

This ends the proof of the proposition. �

5.3 Universal learning with fixed excess error tolerance

In this section, we show that as an application of the methods developed in [1] and in this paper, achieving

a fixed excess regret ǫ > 0 is always possible for C2 processes. This is stated in Proposition 8. We first

need to state a result from [1] showing that C2 processes without duplicates are C′1 extended processes.

Lemma 31 ([1]). Let X be a stochastic process on X , and define for any M ≥ 1,

T ≤M =







t ≥ 1 :
∑

t′≤t

1[Xt′ = Xt] ≤M







,

the set of times which are duplicates of index at most M . In particular, T ≤1 is the set of times where we

delete all duplicates. The following are equivalent.

1. X ∈ C2.

2. For all M ≥ 1, (Xt)t∈T ≤M ∈ C′1.

We are now ready to prove Proposition 8.

Proof of Proposition 8. We first describe the algorithm that depends on a parameter M ≥ 1 which we

will fix later. We use the notation T ≤M from Lemma 31 for the set of times that are duplicates of index

at most M . Note that whether t ∈ T M or t /∈ T M can be decided in an online manner. Next we fix

a sequence Π = (πl)l≥1 of policies that are dense within C′1 processes from Lemma 28. The learning

rule f· simply performs the EXPINF strategy on the sequence Π for times in T ≤M and for other times

performs independent copies of the EXP3.IX algorithm in parallel for each distinct instance. Formally,

for any t ≥ 1, instances x≤t and observed rewards r≤t−1, we define

ft(x≤t−1, r≤t−1, xt) =

{

EXPINF(xUt , âUt , rUt , xt) if t ∈ T M

EXP3.IXA(âSt , rSt) o.w.

where Ut = {t′ ≤ t − 1 : t ∈ T M} and St = {t′ < t : xt = xt′ , t
′ ∈ T M} and ât′ denotes the action

selected at time t′ ≤ t− 1.

Let X ∈ C2. We now prove that this learning rule achieves low excess error compared to a fixed

measurable policy π∗ : X → A. We denote by ât(M) its selected action at time t. First, by Lemma 31,

X̃ = (Xt)t∈T M ∈ C′1. Further, as discussed in Section 5.2, the same proof of universal consistence

of EXPINF under C1 processes for stationary rewards given in [1] shows that EXPINF is universally

consistent under C′1 extended processes for adversarial rewards. This is a consequence from the fact that

the regret guarantee of EXP3.IX—Theorem 5—holds for adversarial rewards as well. Thus, on an event

E of probability one,

limsup
T→∞

1

T

∑

t≤T,t∈T M

rt(π
∗(Xt))− rt(ât(M)) ≤ 0.
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Next, similarly to the proof of Proposition 13, let ǫ(T ) = 1
T |{Xt : t ≤ T, t /∈ T M}|. The same proof as

in Proposition 13 shows that on an event F of probability one, for all T ≥ 1,

1

T

∑

t≤T,t/∈T M

rt(π
∗(Xt))− rt(ât(M))

≤ 8|A| lnT
T 1/4

+ 3c
√

|A| ln |A| 1

lnT
+
√

ǫ(T ) + 3
√

|A| ln |A|ǫ(T )1/4.

Note that to each element of {Xt : t ≤ T, t /∈ T M} correspond least M duplicates in T M so that

ǫ(T ) ≤ 1
M . As a result, combining the two previous equations yields on E ∩ F of probability one,

limsup
T→∞

1

T

∑

t≤T,t∈T M

rt(π
∗(Xt))− rt(ât(M)) ≤ 4

√

|A| ln |A|
M1/4

.

Thus, taking M ≥ 44|A|2 ln2 |A|ǫ−4 gives a learning rule with the desired ǫ excess error almost surely.

This ends the proof of the proposition. �

6 Model extensions

6.1 Infinite action spaces

The previous sections focused on the case of finite action spaces. For infinite action spaces, we argue that

as a direct consequence from the analysis of the stationary case in [1], one can obtain a characterization

of learnable processes and same optimistically universal learning rules.

For countably infinite action spaces, they showed that EXPINF performed with the countable se-

quence of dense policies given by Lemma 28 is universally consistent under C1 processes with stationary

rewards, and that C1 is necessary. As discussed in Sections 5.2 and 5.3, the same arguments as in [1]

show that EXPINF is universally consistent under C1 processes for adversarial rewards as well. Further,

since adversarial rewards generalize stationary rewards, C1 is still necessary for universal learning. Thus,

Conline = Cprescient = Coblivious = Cmemoryless = Cstat = C1 and EXPINF is optimistically universal

in all reward settings.

For uncountable separable metrizable Borel action spaces A, even for stationary rewards, universal

learning is impossible [1]. Hence, Conline = Cprescient = Coblivious = Cmemoryless = Cstat = ∅.

6.2 Unbounded rewards

We now turn to the case of unbounded rewards R = [0,∞). We further suppose that for any t ≥ 1,

and history x ∈ X∞,a≤t ∈ At, r≤t−1 ∈ Rt−1, the random variable rt(at | X = x, â≤t−1 =
a≤t−1, r(â)≤t−1 = r≤t−1) is integrable so that the immediate expected reward is well defined. Again,

in this case, adversarial rewards yield the same results as stationary rewards. Clearly, for uncountable

separable metrizable Borel action spaces, under unbounded rewards, universal learning is still impossible

Conline = Cprescient = Coblivious = Cmemoryless = Cstat = ∅, because this was alreay the case for

bounded rewards.

For countable action spaces A, condition C3 is necessary even under the full-feedback noiseless

setting [2, 16], hence necessary for contextual bandits as well. Also, [1] proposed the algorithm which

runs an independent EXPINF learner on each distinct context instance, which is universally consistent

under C3 processes. As in the previous section, this guarantee still holds for adversarial rewards, and C3
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is still necessary for universal learning. Therefore, Conline = Cprescient = Coblivious = Cmemoryless =
Cstat = C3.

6.3 Uniformly-continuous rewards

We assume that the rewards are bounded again. In the previous sections, we showed that for finite action

sets, universal learning is possibly under large classes of processes, namely at least on C5 processes.

However, for countable action sets, this is reduced to C1 and for uncountable action sets, universal learn-

ing is not achievable. Therefore, imposing no constraints on the rewards is too restrictive for universal

learning in the last cases. Here, we investigate the case when A is a separable metric space given with

a metric d, and the rewards are uniformly-continuous. Crucially, modulus of continuity should be uni-

formly bounded over time as well. We recall the definition of uniformly-continuous rewards.

Let (A, d) be a separable metric space. The reward mechanism (rt)t≥1 is uniformly-continuous if

for any ǫ > 0, there exists ∆(ǫ) > 0 such that

∀t ≥ 1,∀(x≤t,a≤t−1, r≤t−1) ∈ X t ×At−1 ×Rt−1,∀a, a′ ∈ A,
d(a, a′) ≤ ∆(ǫ)⇒

∣

∣E[rt(a)− rt(a
′) | X≤t = x≤t,a≤t−1, r≤t−1]

∣

∣ ≤ ǫ,

In the definition, the expectation is taken over the rewards’ randomness, in the event when the context

sequence until t is exactly x≤t, the learner selected actions a≤t−1 and received rewards r≤t−1 in the first

t− 1 steps. For instance, for stationary rewards, only xt is relevant in this expectation, while for online

rewards, x≤t,a≤t−1, r≤t−1 may be relevant. The above definition is not written for prescient rewards

for simplicity. For these, we need to condition on the complete sequence X:

∀t ≥ 1,∀(x,a≤t−1, r≤t−1) ∈ X∞ ×At−1 ×Rt−1,∀a, a′ ∈ A,
d(a, a′) ≤ ∆(ǫ)⇒

∣

∣E[rt(a)− rt(a
′) | X = x,a≤t−1, r≤t−1]

∣

∣ ≤ ǫ.

As in the unrestricted rewards case, we consider the set of processes Cucsetting admitting universal learning

for uniformly-continuous rewards under any chosen reward setting. The uniform-continuity assumption

defined above generalizes the corresponding assumption proposed in [1] for stationary rewards. They

also proposed a weaker continuity assumption on the immediate expected rewards, however, similarly as

in Section 6.1 one can easily check that with this reward assumption, adversarial settings give the same

results as the stationary case.

The goal of this section is to show that under the mild uniform-continuity assumption on the rewards,

one can recover all the results from the finite action space case, when the action space is totally-bounded.

We first start by showing that the derived necessary conditions still hold. To do so, we will use the

following reduction lemma.

Lemma 32. Let X be a metrizable separable Borel space and let (A, d) be a separable metric space.

Let S ⊂ A such that mina,a′∈S d(a, a′) > 0. Then, we have Cucsetting(A) ⊂ Csetting(S) for any setting ∈
{stat,memoryless, oblivious, prescient, online}.

Further, if there is a learning rule for uniformly continuous rewards inA that is universally consistent

under a set of processes C̃ on X , there is also a learning rule for unrestricted rewards in S that is

universally consistent under all C̃ processes.

Proof. The first claim was proven in [1] for the specific case of stationary rewards. They show that the

case of uniformly-continuous rewards on A is at least harder than the unrestricted rewards on S through

a simple reduction. Here, we show that the reduction can be extended to adversarial rewards as well.
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Denote η = 1
3 mina,a′∈S d(a, a′). Any realization r : S → [0, 1] can be extended to a 1/η-Lipschitz

function F (r) : X → A by

F (r)(a) = max

(

0,max
a′∈S

r(a′)− d(a, a′)
r̄

η

)

, a ∈ A.

Then, a general reward mechanism (rt)t≥1 on S can be extended to a reward mechanism on A such that

for any realization, rt : a ∈ A → [0, 1] is 1/η-Lipschitz. Hence, the mechanism (rt)t≥1 is uniformly-

continuous. From now, the same arguments as in the proof of [1, Lemma 6.3] show that the reduction

holds and that Cucsetting(A) ⊂ Csetting for the considered setting. Intuitively, since for any realization,

rt : a ∈ A → [0, 1] has zero value outside of the balls Bd(a, η) for a ∈ S, that on the ball Bd(a, η) for

a ∈ S, the action a has maximum reward, and that these balls are disjoint, without loss of generality, one

can assume that a universally consistent learning rule always selects actions in S under these rewards,

in which case, the problem becomes equivalent to having unrestricted rewards on the action set S. The

formal learning rule reduction is defined in the original proof, and one can check that the reduction is

invariant in the process X. Hence, this also proves the second claim of the lemma. �

This lemma allows to use the necessary conditions to the unrestricted reward setting by changing

the terms “finite action set” (resp. “countably infinite action set”) into “totally-bounded action set”

(resp. “non-totally-bounded action set”). The second claim of Lemma 32 will be useful to show that

no optimistically universal learning exists for adversarial uniformly-continuous rewards either. More

precisely, the following result is a direct consequence from the first claim of Lemma 32.

Proposition 33. Let X be a metrizable separable Borel space and letA be a non-totally-bounded metric

space. Then, for any reward setting, Cuc ⊂ C1. Let A be a totally-bounded metric space with |A| >
2. Then, for any reward setting, Cuc ⊂ C2. Further, if X admits a non-atomic probability measure,

Cucmemoryless ( C2, Cucoblivious ⊂ C6 and Cucprescient ⊂ C7.

We now show that we can recover the sufficient conditions from previous sections as well. For

uniformly-continuous rewards, we can show that there exists a countable set of dense policies under C′1
processes, as was the case for unrestricted rewards and countable action sets.

Lemma 34. Let A be a separable metric space. There is a countable set of measurable policies Π
such that for any extended process X̃ = (Xt)t∈T ∈ C′1, any measurable policy π∗ : X → A, and any

uniformly-continuous possibly stochastic rewards (rt)t, with probability one over the rewards,

{

infπ∈Π limsupT→∞
1
T

∑

t≤T,t∈T rt(π
∗(Xt))− rt(π(Xt)) ≤ 0,

infπ∈Π limsupT→∞
1
T

∑

t≤T,t∈T r̄t(π
∗(Xt))− r̄t(π(Xt)) ≤ 0,

where r̄t = Ert is the immediate average reward.

Proof. For any ǫ > 0, let ∆(ǫ) be the ǫ−modulus of continuity of the sequence of rewards (r̄t)t. By [1,

Lemma 6.1] (and with a straightforward adaptation for extended processes), on an event E of probability

one, for any i ≥ 1, there exists πi ∈ Π such that limsupT→∞
1
T

∑

t≤T,t∈T 1[d(π
∗(Xt), π

i(Xt)) ≥
2−i] ≤ 2−i, for all i ≥ 1, 1

T

∑

t≤T,t∈T rt(π
i(Xt)) − r̄t(π

i(Xt)) → 0 and similarly for π∗, where r̄t is

the immediate expected reward at time t. We now suppose that this event is met. Let ǫ > 0, let i ≥ 1
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such that 2−i ≤ ∆(ǫ). Then,

∑

t≤T,t∈T
r̄t(π

∗(Xt))− r̄t(π
i(Xt)) ≤

∑

t≤T,t∈T
(r̄t(π

∗(Xt))− r̄t(π
i(Xt)))1d(πi(x),π∗(x))<∆(ǫ)

+
∑

t≤T,t∈T
1d(π(x),π∗(x))≥2−i

≤ ǫT +
∑

t≤T,t∈T
1d(π(x),π∗(x))≥2−i .

As a result, limsupT→∞
1
T

∑

t≤T,t∈T r̄t(π
∗(Xt)) − r̄t(π

i(Xt)) ≤ ǫ+∆(ǫ). Further, because the event

E is satisfied, limsupT→∞
1
T

∑

t≤T,t∈T rt(π
∗(Xt))− rt(π

i(Xt)) ≤ ǫ+∆(ǫ). This holds for any ǫ > 0.

Now because ∆(ǫ)→ 0 as ǫ→ 0, we proved that on E ,

{

infπ∈Π limsupT→∞
1
T

∑

t≤T,t∈T rt(π
∗(Xt))− rt(π(Xt)) ≤ 0,

infπ∈Π limsupT→∞
1
T

∑

t≤T,t∈T r̄t(π
∗(Xt))− r̄t(π(Xt)) ≤ 0.

This ends the proof of the lemma. �

We are now ready to generalize our algorithms from previous sections, using Π as a countable set of

functions that are dense within all policies in the uniformly-continuous rewards context. First, note that

using EXPINF directly with the countable family described in Lemma 34 is universally consistent on

all C1 processes. This shows that we always have C1 ⊂ Cuc for all models. In particular, together with

Proposition 33, this shows that for non-totally-bounded metric action spaces A, we have Cuc = C1 for

all reward models.

Next, we turn to the case of finite action spaces and context spaces X that do not admit a non-

atomic measure. In this case, we showed that the algorithm that simply uses different EXP3.IX for each

distinct instance is optimistically universal. In the case of uniformly-continuous rewards, we can replace

EXP3.IX with EXPINF over a countable set of actions. This yields an optimistically universal learning

rule for any totally bounded action spaces A.

Theorem 35. Let X be a metrizable separable Borel space that does not admit a non-atomic proba-

bility measure. Let A be a totally-bounded metric space. Then, there exists an optimistically universal

learning rule for uniformly-continuous rewards (in any setting) and learnable processes are exactly

Cucstat = Cuconline = C2.

Proof. We first describe the learning rule. For any ǫ > 0, let A(ǫ) be an ǫ−net of A. By abuse of

notation, for any a ∈ A, we use the same notation a for the expert which selects action a at all time steps.

Now consider the countable set of experts
⋃

i≥1A(2−i) = {a1, a2, . . .}, where the sets are concatenated

by increasing order of index i. Now consider the learning rule that uses a distinct EXPINF over this set

of experts, for each distinct instance. Formally, the learning rule is

ft(x≤t−1, r≤t−1, xt) = EXPINF(âSt , rSt)

where St = {t′ < t : xt′ = xt} is the set of times that xt was visited previously and ât′ denotes

the action selected at time t′ for t′ < t. We now show that this learning rule is universally consistent

on all C2 processes for uniformly bounded rewards. In the proof of Theorem 16 we showed that for

spaces X that do not admit a non-atomic probability measure, any C2 process visits a sublinear number

of distinct instances almost surely. Therefore, for X ∈ C2, on an event E of probability one, we have

72



|{x ∈ X : {x}∩X≤T 6= ∅}| = o(T ). It now suffices to adapt the proof of Proposition 13. Let (rt)t be an

uniformly continuous reward mechanism. For ǫ > 0, let ∆(ǫ) > 0 its ǫ−modulus of continuity. We keep

the same notations as in the proof of Proposition 13. Let ST = {x : {x}∩X≤T 6= ∅}, ǫ(T ) = |ST |
T and for

x ∈ ST , let TT (x) = {t ≤ T : Xt = x}. Further, for any x ∈ ST we pose TT (x) = {t ≤ T : Xt = x}.
Let H0(T ) = {x ∈ ST : |TT (x)| < 1√

ǫ(T )
}, H1(T ) = {x ∈ ST : 1√

ǫ(T )
≤ |TT (x)| < ln8 T} and

H2(T ) = {x ∈ ST : |TT (x)| ≥ ln8 T}. Now let π : X → A be a measurable policy. We still have

1

T

∑

x∈H0(T )

|TT (x)| ≤
√

ǫ(T ).

Next, we turn to points x ∈ H2(T ). By Theorem 6, conditionally on the realization X, for any x ∈
H2(T ), with probability at least 1− 1

T 3 ,

max
i≤lnT

∑

t∈TT (x)

rt(ai)− rt(ât) ≤ 4c|TT (x)|3/4(ln T )3/2 ≤ 4c
|TT (x)|√

lnT
.

Therefore, since |H2(T )| ≤ T , by union bound, with probability at least 1− 1
T 2 := 1− p2(T ),

∑

x∈H2(T )

max
i≤lnT

∑

t∈TT (x)

rt(ai)− rt(ât) ≤ 4c
T√
lnT

.

We then treat points in H1(T ) for which we will need to go back to the proof of the regret bounds

for EXPINF and the underlying EXP3.IX algorithm which is used as subroutine. First we recall the

structure of EXPINF. Let i(k) =
∑

r<k r
3. It works by periods [i(k) + 1, i(k) + k3) on which a

new EXP3.IX learner to find the best expert within the first k experts in the sequence provided to

EXPINF. We will refer to this as period k. As useful inequalities, we have k4

4 ≤ i(k) ≤ (k+1)4

4 . Let

k0 = ⌈ǫ(T )−1/8⌉ and focus on a period k for k ≥ k0 of an EXPINF run. We denote by âu the action

selected at horizon u by EXPINF. Following the same arguments as in Proposition 13 and the analysis

of EXP3.IX in [43], for any j ≤ k0

k3
∑

u=1

(ℓu,âi(k)+u
− ℓ̃u,aj ) ≤

ln k

ηk3
+

k3
∑

u=1

ηu

k
∑

i=1

ℓ̃u,ai .

As a result,

k3
∑

u=1

ℓu,âi(k)+u
− ℓu,aj ≤ 3

√
k ln k · k3 +

k3
∑

u=1

(ℓ̃u,aj − ℓu,aj ) +

k3
∑

u=1

k
∑

i=1

ηu(ℓ̃u,aj − ℓu,aj )

Now for any a ∈ A, let a(k0) = argmin1≤i≤k0 d(a, ai) the nearest neighbor of a where ties are broken

alphabetically. We will sum this inequality for all EXPINF runs for x ∈ H1(T ), and periods k ≥
k0 that were completed, i.e. |TT (x)| ≥ i(k + 1), taking aj = π(x)(k0). Before doing so, note that
∑

k′≤k

√

3(k′)4 ln k′ ≤ (k + 1)3
√
ln k ≤ 4i(k + 1)3/4

√

ln i(k + 1). Further, for simplicity, denote

by A(T ) (resp. B(T )) the sum that is obtained after summing all the terms
∑k3

u=1(ℓ̃u,aj − ℓu,aj ) (resp.
∑k3

u=1

∑k
i=1 ηu(ℓ̃u,aj − ℓu,aj)). Using these notations, we obtain

∑

x∈H1(T )

∑

t∈TT (x)

rt(π(Xt)
(k0))− rt(ât) ≤

∑

x∈H1(T )

(

k40
4

+ 4|TT (x)|3/4 + 4|TT (x)|3/4
√

3 ln |TT (x)|
)

+A(T ) +B(T ).
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where in the first inequality,
k40
4 accounts for the first k0 initial periods and 4|TT (x)|3/4 accounts for

the last phase which potentially was not completed. Now recall that for each x ∈ H1(T ), ǫ(T )
−1/2 ≤

|TT (x)| < ln8 T . Let n0 ≥ 1 such that for any n ≥ n0, 8n3/4
√
3 lnn ≤ n7/8. Since on the event E ,

we have ǫ(T ) → 0, there exists an index T̂ such that for T ≥ T̂ , ǫ(T )−1/2 ≥ n0. Therefore, on E , for

T ≥ T̂ we have

∑

x∈H1(T )

(

k40
4

+ 20|TT (x)|3/4 + |TT (x)|3
√

3 ln |TT (x)|
)

≤ 2
√

ǫ(T )T +
∑

x∈H1(T )

|TT (x)|7/8

≤ (2
√

ǫ(T ) + ǫ(T )1/16)T.

Next, using the same arguments as in the proof of Proposition 13, observe that conditionally on X,

(A(T ′))T ′≤T is a super-martingale, with increments bounded in absolute value by 2
√

k·k3
ln k ≤ 2k2 ≤

4
√

i(k + 1) ≤ 4 ln4 T . Therefore, Azuma’s inequality implies that

P[A(T ) ≤ 8T 3/4 ln4 T | X] ≥ 1− e−2
√
T .

Simialrly, (B(T ′))T ′≤T is a super-martingale, with increments bounded in absolute value by 2k
√

k·k3
lnk ≤

8i(k + 1) ≤ 8 ln8 T . Therefore,

P[B(T ) ≤ 16T 3/4 ln8 T | X] ≥ 1− e−2
√
T .

Therefore, by the Borel-Cantelli lemma, on an event G of probability one, limsupT→∞
1
T (A(T ) +

B(T )) ≤ 0. Finally, let j(T ) = min(ǫ(T )−1/8, lnT ). Putting everything together, we proved that

on E ∩ F ∩ G, for T ≥ T̂ ,

1

T

∑

t≤T

rt(π(Xt)
(j(T )))− rt(ât) ≤ 3

√

ǫ(T ) + ǫ(T )1/16 +
4c√
lnT

+
1

T
(A(T ) +B(T )).

In particular, this hows that on E ∩ F ∩ G,

limsup
T→∞

1

T

∑

t≤T

rt(π(Xt)
(j(T )))− rt(ât) ≤ 0.

Now using Hoeffding’s bound, with probability at least 1− 2e−2
√
T , we have

∣

∣

∣

∣

∣

T
∑

t=1

rt(π(Xt)
(j(T )))− r̄t(π(Xt)

(j(T )))

∣

∣

∣

∣

∣

≤ 2T 3/4.

We have the same bound for π. Therefore, the Borel-Cantelli lemma implies that on an event H of

probability one, 1
T

∑T
t=1 rt(π(Xt)

(j(T )))− r̄t(π(Xt)
(j(T )))→ 0 and 1

T

∑T
t=1 rt(π(Xt))− r̄t(π(Xt))→

0. We now suppose that E ∩ F ∩ G ∩ H is met.

Now fix ǫ > 0. Let k0 such that 2−k0 ≤ ∆(ǫ). Because E is met, ǫ(T ) → 0 and j(T ) → ∞. Thus,

there exists T̃ ≥ T̂ such that for any T ≥ T̃ , ǫ(T ) ≤ n−2
0 and A(2−k0) ⊂ {ai, j ≤ j(T )}. Now for

T ≥ T̃ and any a ∈ A, we have d(a, a(j(T ))) ≤ ∆(ǫ). As a result, using H,

limsup
T→∞

1

T

T
∑

t=1

rt(π(Xt))− rt(ât) ≤ limsup
T→∞

1

T

T
∑

t=1

r̄t(π(Xt))− r̄t(π(Xt)
(j(T )))

≤ limsup
T→∞

T̃

T
+ ǫ

≤ ǫ.
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In the second inquality, we used the uniform-continuity assumption on the rewards and the fact that for

T ≥ T̃ , d(π(Xt), π(Xt)
(j(T ))) ≤ mina∈A(2−k0 ) d(a, π(Xt)) ≤ 2−k0 ≤ ∆(ǫ). Because this holds for

any ǫ > 0 and E∩F∩G∩H has probability one, this proves that the learning rule is universally consistent

under X. Then, the learning rule is universally consistent under any C2 process. By Proposition 33, this

shows that the learnable processes are exactly C2 and that this is an optimistically universal learning rule.

This ends the proof of the theorem. �

The last algorithms needed to be adapted to the uniformly-continuous rewards setting are the algo-

rithms for C5 processes in finite action spaces. Precisely, we will show that we for totally-bounded metric

action spaces A, the set of learnable processes for uniformly-continuous adversarial rewards contains C5
processes. Recall that the class of constructed algorithms in Theorem 29 proceed separately on different

categories of times. The category of t is defined based on the number of duplicates of Xt within its

associated period. For each category of times, the learning rule performs a form of Hedge algorithm to

perform the best strategy among strategy 0 which simply assigns a different EXP3.IX learner to distinct

instances from the period; and strategy j for j ≥ 1 which selected actions according to a fixed policy πj ,

where Π̃ = {πl, l ≥ 1} was a dense of policies within C′1 processes.

We make the following modifications to these learning rules. First, we replace Π̃ with the countable

set Π of measurable policies that are dense in the uniformly-continuous rewards setting, as given by

Lemma 34. Second, for every category p, strategy 0 will use EXP3.IX learners from A(γp), a γp−nets

of A, where γp is to be defined. With these modifications, we obtain the following result.

Theorem 36. Let X be a metrizable separable Borel space and letA be a totally-bounded metric space.

Then, C5 ⊂ Cuconline.

Proof. Fix X ∈ C5 and let (Ti)i≥0 such that with T =
⋃

i≥0 T i ∩{t ≥ Ti}, we have (Xt)t∈T ∈ C′1. We

first define how we modify the learning rule from Theorem 29 for this process. The functions PHASE,

STAGE, PERIOD, CATEGORY are left unchanged. In the initial phase when t < 2u(16p), we replace

EXP3.IXA with EXPINF run with the dense sequence of A with the specific order described in the

previous Theorem 35. We briefly recap the procedure. Let A(ǫ) be an ǫ−net of A. We consider the

sequence of experts
⋃

i≥1A(2−i) where we confuse a ∈ A with the constant policy equal to a and we

concatenate the nets by increasing order of index i. EXPINF is then run with this sequence of experts.

Next, we enumerate Π = {πl, l ≥ 1} and use these policies as well for the learning rule (strategies

j ≥ 1). Last, when playing strategy 0 after the initial phase, we replace EXP3.IXA with EXP3.IXA(γp),

where γp will be defined shortly. In the original proof, we defined δp := 6

√
|A| ln |A|
2p , ηi :=

√

8 ln(i+1)
2i

and showed that the average error of the learning rule on Tp outside of the intitial phase is O(δp + η16p
4 ).

Then,
∑

p≥0(δp +
η16p
4 ) <∞ allowed the learner to converge separately on each Tp. We now replace δp

with δp := 4

√

|A(γp)| ln |A(γp)|
2p and choose γp such that

∑

p δp <∞. We pose

γp = min{2−i : |A(2−i)| ln |A(2−i)| ≤ 2p/4}.

Thus, we still have
∑

p δp <∞ and γp → 0. We now show that the modified learning rule is universally

consistent under online uniformly-continuous rewards on A. Fix (rt)t such a reward mechanism and

for ǫ > 0, let ∆(ǫ) the ǫ−modulus of continuity of the sequence of immediate rewards. As in the

original proof of Theorem 29, let T init =
⋃

p≥0{t ∈ Tp : t < 2u(16p)} be the initial phase. The process

(Xt)t∈T init still visits a sublinear number of distinct instances almost surely, where we say that two

instances t, t′ ∈ T init are duplicates if and only if they have same category, period and Xt = Xt′ . As a
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result, in the proof of Theorem 35, we showed that for any π∗ : X → A, on an event E of probability

one,

limsup
T→∞

1

T

∑

t≤T,t∈T init

rt(π
∗(Xt))− rt ≤ 0.

We then turn to non-initial phases and adapt the original proof of Theorem 29. For any a ∈ A, we

denote a(γ) = argmina′∈A(γ) d(a, a
′), the nearest neighbor of a within the γ−net where ties are broken

alphabetically. Keeping the same event F , Eq (16) is unchanged and Eq (17) becomes

Rp(l, k; 0) ≥
∑

t∈Tp(l,k)
rt(π

∗(Xt)
(γp))− 16|A(γp)|22−i215l/16 − δp2

l−i.

Eq (18) is left unchanged. For p ≥ 0, let ǫ(p) = min{2−i : γp ≤ ∆(2−i)}. Note that because γp → 0,

we have ǫ(p) → 0 as p → ∞. Following the same arguments as in the original proof and noting that

|A(γp)| ≤ 2p/4, Eq (19) is replaced by

∑

2u(16p)<t≤T,t∈Tp

rt(π
∗(Xt)

(γp))− rt ≤ 2l̂ + c2p/2T 15/16 +
(

δp +
η16p
4

)

T

≤ 2l̂ + cT 31/32 +
(

δp +
η16p
4

)

.

Now fix ǫ > 0, and let p0 such that
∑

p≥p0
(δp +

η16p
4 ) < ǫ and ǫ(p0) < ǫ. Following the original

arguments,

∑

p≥p0

∑

2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt)

(γp))− rt ≤ 2l̂ log4 T + cT 31/32 log4 T + ǫT.

Now using Azuma’s inequality, with probability at least 1− 4e−2
√
T , we have

∣

∣

∣

∣

∣

∣

∑

p≥p0

∑

2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt)

(γp))− r̄t(π
∗(Xt)

(γp))

∣

∣

∣

∣

∣

∣

≤ 2T 3/4

∣

∣

∣

∣

∣

∣

∑

p≥p0

∑

2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt))− r̄t(π

∗(Xt))

∣

∣

∣

∣

∣

∣

≤ 2T 3/4.

Therefore, using Borel-Cantelli, on an event G of probability one, there exists T̂1 such that for T ≥ T̂1,

the above two equations hold. Then, on E ∩ F ∩ G, for T sufficiently large,

∑

p≥p0

∑

2u(16p)≤t<T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2l̂ log4 T + cT 31/32 log4 T + ǫT + 4T 3/4

+
∑

p≥p0

∑

2u(16p)≤t<T,t∈Tp

r̄t(π
∗(Xt))− r̄t(π

∗(Xt)
(γp))

≤ 2l̂ log4 T + 4T 3/4 + cT 31/32 log4 T + 2ǫT,

where in the last inequality we used the uniform continuity of the immediate expected rewards since for

p ≥ p0, one has γp ≤ γp0 ≤ ∆(ǫ(p0)) ≤ ∆(ǫ). This implies that on the event E ∩ F ∩ G,

limsup
T→∞

1

T

∑

p≥p0

∑

2u(16p)≤t<T,t∈Tp

rt(π(Xt))− rt ≤ 2ǫ.
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Now for p < p0, by Lemma 34, on an event Hp of probability one, there exists lp such that

limsup
T→∞

1

T

∑

t≤T,t∈Tp
rt(π

∗(Xt))− rt(π
lp(Xt)) ≤

ǫ

p0
.

Following the arguments in the proof of Theorem 29, on the event E ∩F ∩ G ∩⋂p<p0
Hp of probability

one, for T large enough,

∑

p<p0

∑

2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤

∑

p<p0

∑

2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt(π

lp(Xt))

+
∑

p<p0

∑

2u(16p)≤t≤T,t∈Tp

rt(π
lp(Xt))− rt

≤
∑

p<p0

∑

2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt(π

lp(Xt))

+ 2l̂1 + 2−i(T )T + cp0T
15/16 + ǫT.

As a result,

limsup
T→∞

1

T

∑

p<p0

∑

2u(16p)≤t≤T,t∈Tp

rt(π
∗(Xt))− rt ≤ 2ǫ.

Combining all the estimates together, we proved that on E ∩ F ∩ G ∩⋂p<p0
Hp of probability one,

limsup
T→∞

1

T

T
∑

t=1

rt(π
∗(Xt))− rt ≤ 4ǫ.

This holds for all ǫ > 0. The same arguments as in the original proof conclude that the learning rule is

universally consistent under X. This ends the proof of the theorem. �

As a summary, we generalized all results from the case of the unrestricted reward to uniformly-

continuous rewards with the corresponding assumptions on action spaces.
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