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Additional Results and Extensions for the paper “Probabilistic

bounds on the k-Traveling Salesman Problem and the

Traveling Repairman Problem”

M. Blanchard1, A. Jacquillat1, and P. Jaillet1

1Massachusetts Institute of Technology, Cambridge, MA, USA

We study two variants of the classical traveling salesman problem (TSP). Given n points,
the TSP seeks a tour of minimal length visiting all n points. In contrast, we focus on

• the k-TSP which seeks a path of minimal length visiting k out of n points, where k ≤ n.
Formally, if x1, . . . , xk is the service order, the objective to minimize is the path length

k−1
∑

i=1

|xi+1 − xi|.

• the traveling repairman problem (TRP) which seeks a tour visiting all n points that
minimize the sum of latencies (or waiting time) for each point. Formally, if x1, . . . , xn
defines a service order, the latency at point xi is defined as li =

∑i−1
j=1 |xj+1 − xj | and

the objective is to minimize the total latency

n
∑

i=1

li =
n−1
∑

i=1

(n− i)|xi+1 − xi|.

We consider a probabilistic setting where n points X1, . . . ,Xn are sampled independently
and identically from some distribution on a compact K ⊂ R

2.
In [2], we provided constant-factor probabilistic approximations of both problems, i.e.,

bounds on the expected optimal objective value that hold within a universal constant factor,
as well as constant-factor approximation algorithms. Precisely, we show that the optimal

length of the k-TSP path (non-asymptotically) grows at a rate of Θ
(

k/n
1
2
(1+ 1

k−1
)
)

and

that a constant-factor approximation scheme can be obtained by solving the TSP in a high-
concentration zone, leveraging large deviations of local point concentration. Next, we show
that the optimal TRP objective follows an asymptotic rate Θ(n

√
n) with a prefactor that

depends on the density f of the absolutely-continuous part of the point distribution. This
generalizes the classical Beardwood-Halton-Hammersley theorem to the latency-minimization
objective in the TRP. The resulting constant-factor approximation scheme visits local regions
of the space by decreasing order of probability density f . Last, we propose fairness-enhanced
versions of the k-TSP and the TRP to balance efficiency and fairness.

In this companion report, we provide two additional contributions.
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1. We extend the k-TSP results to the case with general densities. In Section 1, we
show that the results obtained in [2] with continuous densities can be extended via
smoothing techniques. We also discuss the case of k = Ω(n), in which case the k-TSP
path becomes non-local and recovers similar behavior to that of the TRP tour—visiting
zones by decreasing order of density until k points are visited.

2. For the TRP, we propose a utility-based notion of fairness in Section 2. Instead of
assuming that the dissatisfaction (or negative utility) of customers is linear in their
latency/waiting time, we consider the case where the utility is a convex function Ψ of
their latency. A fair solution aims to minimize total dissatisfaction, which we refer to
as the Ψ-TRP solution. For polynomial functions Ψ, we give constant-factor approxi-
mations of the optimal Ψ-TRP objective, thus extending the TRP bounds to non-linear
utility. Further, we show that the approximation scheme for the TRP given in [2] can
be efficiently adapted to obtain constant-factor approximations in the Ψ-TRP.

1 Generalisations of probabilistic bounds for the k-TSP

In the main paper, we provide probabilistic bounds for the k-TSP when points are sampled
independently from a distribution with continuous density on a compact. In this section,
we present a natural extension of this result to distributions with general densities f on a
compact. In particular, the density f is allowed to diverge on a zero-measure set. To this
end, we use the notion of Lebesgue derivative f̃ , defined as the local average value of f on
centered balls. Intuitively, f̃ is a smoothed version of the density f . For instance, if f is
continuous then f̃ = f . Formally, the Lebesgue derivative is defined as follows:

f̃(x) := lim
r→0

1

|B(x, r)|

∫

B(x,r)
f, ∀x,

where |B(x, r)| denotes the volume of a centered ball at x of radius r. The Lebesgue differen-
tiation theorem states that this limit exists and that f̃ and f coincide almost everywhere. By
construction, the maximum density of points sampled according to f cannot exceed ‖f̃‖∞.
Because f and f̃ coincide almost everywhere, if ‖f̃‖∞ <∞, the same proof as for continuous
densities gives this non-asymptotic lower bound for the length of the k-TSP, where f has
simply been replaced by f̃ .

Proposition 1.1. Assume n vertices are drawn independently, on a compact space K, accord-

ing to a density f such that its Lebesgue derivative f̃ is bounded on K. Denote by lTSP (k, n)
the length of the k−TSP on these n vertices, where 2 ≤ k ≤ n. There exists a universal

constant c > 0 such that

E[lTSP (k, n)] ≥ c
k − 1

(‖f̃‖∞n)
1
2(1+

1
k−1)

A
− 1

2(k−1)

K .

For the upper bound, we provide similar asymptotic results, which match the lower bound
whenever k → ∞ and k = o(n).
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Proposition 1.2. Assume n vertices are drawn independently, on a compact space K, ac-

cording to a density f such that f̃ is bounded on K. Denote by lTSP (kn, n) the length of the

kn−TSP on these n vertices, where 2 ≤ kn = o(n). There exists a universal constant C > 0
such that

lim sup
n→∞

E[lTSP (kn, n)]
(‖f̃‖∞n)

1
2

(

1+ 1
kn−1

)

kn − 1
ψn ≤ C.

where ψn = 1 if kn → ∞ and for any sequence ψn → 0 otherwise.

Proof. We first recall that in the Lebesgue differentiation theorem, we can extend the family
of balls centered at each point by families of sets with bounded eccentricity V in other words,
there exists c > 0 such that every set U ∈ V is contained in a ball B with |U | ≥ c|B|, and
such that every point x is contained in arbitrarily small sets of the family V. For instance, in
this proof, we can define V as the family of cubes. The Lebesgue differential theorem gives

f̃(x) = lim
U→x,U∈V

1

|U |

∫

U
f,

where U → x means that the sets shrink to x i.e. x ∈ U and their diameters tend to 0.
Now let ε > 0 be an error tolerance. Consider a cube U ε such that

∣

∣

∣

∣

1

|U ε|

∫

Uε

f − ‖f̃‖∞
∣

∣

∣

∣

≤ ε‖f̃‖∞.

For convenience, let us write f(U ε) := 1
|Uε|

∫

Uε f , and let N(U ε) denote the number of vertices

contained in U ε. According to the Hoeffding inequality, with probability 1− e−2ε2f(Uε)2n, U ε

contains at least nUε := |U ε|f(U ε)(1 − ε)n ≥ |U ε|‖f̃‖∞(1 − ε)2n vertices. We call E0 this
event. Note that k = o(nUε). First suppose k ≤ n1/3. Conditionally on E0, these nUε vertices
are drawn independently according to a density f

|Uε|f(Uε) on U ε. We will now focus on the
k−TSP in U ε, which will serve as upper bound for the k−TSP on K. From here, the proof is
very similar to that of the continuous density case. Let us fix α > 0. We start by partitioning

U ε into Pα := m2
α sub-squares of equal size

√
|Uε|
mα

×
√

|Uε|
mα

where mα :=

⌊

1
α

√

nUε
1+ 1

k−1

k−1

⌋

. We

will show that with high probability, there exists at least one of these sub-squares that contains
at least k vertices. Define Xα

i as the number of vertices in sub-square i. Conditionally on
E0, (X

α
1 , · · · ,Xα

Pα
) follows a multinomial where the probability corresponding to sub-square

Qα
i is pi =

1
|Uε|f(Uε)

∫

Qα
i
f ≤ |Qα

i |‖f̃‖∞
|Uε|f(Uε) ≤ 1

Pα(1−ε) . Now denote by Aα
i := {Xα

i ≥ k} the event

that sub-square i contains at least k vertices. We first give a lower bound on P(Aα
i ):

P(Aα
i ) ≥

(

nUε

k

)

pki

(

1− 1

Pα(1− ε)

)nUε−k

≥ nkUε

k!
· (1 + o(1)) · pki .

By Jensen’s inequality, 1
Pα

∑Pα
i=1 p

k
i ≤ 1

P k
α
. Therefore,

Pα
∑

i=1

P(Aα
i ) ≥ c · α2k−2 · (1 + o(1)) ≥ c̃ · α2k−2
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for some constant c̃ > 0, so we can use the same proof as in the case of uniform probabilities
in the original paper. Then, if lUε(k, nUε) denotes the length of the k−TSP on the nUε

vertices in U ε, we obtain,

E[lUε(k, nUε)|E0] ≤ Ĉ
k − 1

n
1
2(1+

1
k−1)

Uε

√

|U ε| ≤ |U ε|
−1

2(kn−1)
C1(kn − 1)

(‖f̃‖∞n)
1
2

(

1+ 1
kn−1

) ,

for some constant C1. If E0 is not realized, we can use the naive bound lTSP (kn, n) ≤
lTSP (n, n) ≤ 2

√
n+ C. Therefore,

E[lTSP (kn, n)] ≤ E[lUε(k, nUε)|E0] + (2
√
n+ C)(1− P(E0))

≤ |U ε|
−1

2(kn−1)
C1(kn − 1)

(‖f̃‖∞n)
1
2

(

1+ 1
kn−1

) · (1 + o(1)).

Note that |U ε|1/(2(kn−1)) → 1 if kn → ∞. Otherwise, we can use |U ε|1/(2(kn−1)) ≤ |U ε|−1/2 =
o(ψn) for any sequence ψn → ∞ which ends the proof for kn ≤ n1/3. In the case where
k ≥ n1/3, the same proof as in the uniform density case shows that

E[lUε(k, nUε)|E0] ≤
√

|U ε|k − 1

nUε
(2
√
nUε + C) ≤ 2

k − 1

(‖f̃‖∞n)
1
2

(

1+ 1
kn−1

) (1 + o(1)).

The proof follows from the same arguments as in the case kn ≤ n1/3.

For the case k = Θ(n), we expect a constant-factor approximation for the k−TSP to
perform the TSP on a set with maximal average density and area Θ(k/n). In the following,
we state this generalization as a claim without proof. A possible proof sketch would use
similar techniques to the analysis developed for the TRP in the original paper.

Claim 1.3. Assume n vertices are drawn independently, on a compact space K, according to

a density f . Let ε > 0. Denote by lTSP (kn, n) the length of the kn−TSP on these n vertices,

where εn ≤ kn ≤ n. There exists constants 0 < cε < C such that

cε ≤ lim inf
n→∞

E[lTSP (kn, n)]√
ngf (kn/n)

≤ lim sup
n→∞

E[lTSP (kn, n)]√
ngf (kn/n)

≤ C,

where if we denote by F the cumulative distribution of f and y0 = inf{y : 1− F (y) ≤ kn/n},

gf (kn/n) =

∫

√

f1f>y0 +
kn/n− (1− F (y0))√

y0
.

2 The Ψ-TRP

In the main paper, we analyzed the TRP under fairness considerations. In particular, we
showed that achieving efficency while ensuring max-min fairness asymptotically is possible.
Here, we propose another notion of fairness and give similar positive results. Recall that the
TRP objective of a given tour is

n
∑

i=1

li,
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where li is the latency at vertex i. In resource allocation problems, this objective corresponds
to the utilitarian principle i.e. maximizing the total utility. A common approach to fairness
consists of maximizing

∑

j f(uj) where f is a concave function and uj denotes the utility
of player j. In particular, the log function yields the proportional fairness solution under
mild convexity assumptions [1]. We adapt this idea to our setting by changing the latency
objective. Specifically, for any increasing function Ψ, we can define the Ψ−TRP, which seeks
a tour that minimizes the objective:

n
∑

i=1

Ψ(li).

To capture fairness considerations, we assume that Ψ is convex. We show that, for a large
class of functions Ψ, our approximation algorithm for the TRP is also constant-factor optimal
for the Ψ-TRP, hence encapsulating this notion of fairness. Indeed, our analysis for the TRP
generalizes to the Ψ−TRP when Ψ is a convex monomial. This is formalized in the following
proposition, which we prove in the next sections.

Proposition 2.1. Assume all n vertices are drawn according to a distribution with density

f on a compact space K ⊂ R
2. Let α ≥ 1 and Ψα : x 7→ xα the power function. Denote by

lα−TRP the optimal Ψα−TRP objective of a tour for the Ψα−TRP. Then,

cα

∫

K
gα(f, x)dx ≤ lim inf

n→∞
E [lΨ−TRP ]

n1+α/2
≤ lim sup

n→∞

E [lΨ−TRP ]

n1+α/2
≤ Cα

∫

K
gα(f, x)dx

where 0 < cα < Cα are two constants depending only in α and

gα(f, x) =







f(x)
(∫

K
√
f · 1f<f(x)

)α
, if

∫

K 1f=f(x) = 0
√

f(x)
(
∫

K

√
f ·1f≤f(x))

α+1−(
∫

K

√
f ·1f<f(x))

α+1

(α+1)
∫

K
1f=f(x)

, otherwise.

We use similar proof ideas as for the probabilistic bounds of the classical TRP. However,
because Ψα is non-linear for α > 1, the arguments are more technical. In particular for the
lower bound, we divide the tour into sub-paths in each sub-square of the partition but with
the additional constraint that all sub-paths should visit the same number of vertices. The
non-linearity of Ψα also affects the form of the integrand gα(f, ·) for degenerate levels of the
density function when

∫

K 1f=f(x) > 0. As a result, the proof of convergence of the integral of
gα(φ, ·) to the integral of gα(f, ·), for fine piece-wise constant approximations φ of f , is more
technical than the equivalent result for the TRP.

Furthermore, the upper bound is reached by the same approximating scheme as for the
TRP in which we partition the space in sub-squares and visit sub-squares by decreasing order
of density. In particular, this scheme is also constant-factor optimal for the Ψ−TRP. Using the
same arguments, we can generalize Proposition 2.1 to any linear combination of monomials
where the leading term is a of the form x 7→ c ·xα where c > 0 and α ≥ 1. In other words, the
competitive ratio between the fairness-maximizing Ψ−TRP and the efficiency-maximizing
TRP is asymptotically 1.

2.1 A lower bound

Proposition 2.2. Assume all n vertices are drawn according to a distribution with density

f on a compact space K ⊂ R
2. Let α ≥ 1 and Ψα : x 7→ xα the power function. Denote by

5



lα−TRP the optimal TRP objective of a tour for the Ψα−TRP. Then,

lim inf
n→∞

E [lΨ−TRP ]

n1+α/2
≥ cα

∫

K
gα(f, x)dx,

where cα := 1
(πe)α/2 is a constant and

gα(f, x) =







f(x)
(∫

K
√
f · 1f<f(x)

)α
, if

∫

K 1f=f(x) = 0
√

f(x)
(
∫

K

√
f ·1f≤f(x))

α+1−(
∫

K

√
f ·1f<f(x))

α+1

(α+1)
∫

K
1f=f(x)

, otherwise,

is a function that depends only on α and f .

Proof. We take the same notations as in the proof of the lower bound of Theorem 3 from [2].
Again, we first start by the case where f has support in the unit square [0, 1]2 and has the
form

f =
m2
∑

k=1

fk1Qk
,

where {Qi} is the regular partition of the unit square into m2 sub-squares. We define the
margin

M =
⋃

1≤k≤m2

Qk ∩
(

∂Qk + ε(k)m B(0, 1)
)

,

for ε
(k)
m := ε

m

√

f∗
fk
. Note that this is a smaller margin than what was considered in the proof

of the lower bound of Theorem 3 from [2]. We can have estimates for the number of vertices
in the margin similar to Lemma 3 of [2]. Finally, we define the event E0 in which for all
1 ≤ k ≤ m2 such that fk > 0,

fk
2m2

n ≤ Nk ≤ 3fk
2m2

n, lTSP (Qk)

(⌈

ε · e
√

π
3f∗
2m2

n

⌉

, Nk

)

> ε(k)n .

Let us estimate the probability of the event E0. By the proof of Lemma 4 of [2],

P

[∣

∣

∣

∣

Nk −
fk
m2

n

∣

∣

∣

∣

≥ fk
2m2

n

]

≤ 2e−
1
12

· fk
m2 n.

We now use Corollary 1 of [2] to each of the sub-squares. For 1 ≤ k ≤ m2, such that fk > 0,

P

[

lTSP (Qk)

(⌈

ε · e
√

π
3f∗
2m2

n

⌉

, Nk

)

≤ ε(k)m

∣

∣

∣

∣

∣

fk
2m2

n < Nk <
3fk
2m2

n

]

≤ P

[

lTSP (Qk)

(⌈

ε · e
√

π
3f∗
2m2

n

⌉

,
3fk
2m2

n

)

≤ ε(k)m

]

= o

(

e
−ε·e

√

π 3f∗n

2m2

)

.
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Finally, the probability of E0 is 1− o

(

e
−cε

√

f∗n

m2

)

for some constant c > 0.

In the next steps we will assume that this event is met. We are now ready to use an
equivalent of Lemma 5 from [2] to each sub-path in Qk which is not completely included in
the margin. However, we will need all sub-paths to visit same number of vertices. Denote
by lΨ−TRP the optimal objective and consider an optimal tour. We order the sub-paths
P1, · · · PP which are not completely included in the margin. Also, we denote by k(i) the
index of the sub-square containing Pi. We divide Pi into smaller sub-paths of length exactly

n∗ =

⌈

ε · e
√

π 3f∗
2m2n

⌉

. Since the number of vertices visited by Pi might not be a multiple

of n∗, some vertices will be left out. For any path Pi, if n(Pi) ≥ n∗, then at most n(Pi)/2
vertices will be left out. We will denote P1

i , · · · Pti
i the corresponding created sub-paths

containing exactly n∗ edges. Note that ti =
⌊

n(Pi)
n∗

⌋

. We now treat paths with n(Pi) < n∗
separately, which we will call low-density paths. Let L be the set of indices of low density
paths. For a given low-density path Pi, we artificially add n∗ − n(Pi) vertices from later
low-density paths Pj in the same sub-square as Pi, where j > i. At the end of this process,
at most one low-density path remains, which we will leave out. Let us denote by P̂i for i ∈ L̃,
the corresponding constructed paths from low-density paths. Note that we have L̃ ⊂ L, but
not necessarily an equality because the process can potentially remove all vertices of some
low-density paths. In the following, if P is a sub-path, we will denote by l(P) its length. Let
us summarize the obtained lower bound.

lΨ−TRP =
∑

v∈V
Ψα(completion time of v)

=
∑

1≤i≤P

∑

v∈Pi

Ψα(completion time of v)

≥
∑

i/∈L

ti
∑

t=1

∑

v∈Pt
i

Ψα(completion time of v) +
∑

i∈L̃

∑

v∈P̂i

Ψα(completion time of v)

≥
∑

i/∈L

ti
∑

t=1

∑

v∈Pt
i

Ψα





i−1
∑

j=1

l(Pj) +

t−1
∑

u=1

l(Pu
i )



+
∑

i∈L̃

∑

v∈P̂i

Ψα





i−1
∑

j=1

l(Pj)





= n∗





∑

i/∈L

ti
∑

t=1

Ψα





i−1
∑

j=1

l(Pj) +
t−1
∑

u=1

l(Pu
i )



+
∑

i∈L̃

Ψα





i−1
∑

j=1

l(Pj)









≥ n∗
∑

1≤i≤P̃

Ψα





i−1
∑

j=1

l(P̃j)



 ,

where we have listed the new sub-paths containing n∗ vertices: P̃1, · · · P̃P̃ with the order
given by the original tour — the ordering where we omit added vertices to low-density sub-
paths. The length of the subpath P̃i is the length of the corresponding subpath P̃t

j if it came

from a non low-density path. Otherwise, we define it as l(P̃i) := l(Pj) where P̃i = P̂j . This
corresponds to lower bounding the contribution of added vertices in low-density sub-paths,
to the Ψ − TRP objective. A key observation is that we can have a similar result to that

7



of Lemma 5 from [2]. Again, we will denote by k(i) the index of the sub-square containing
sub-path P̃i, i.e. P̃i ⊂ Qk(i).

Lemma 2.3. Let 1 ≤ i ≤ P̃ . Under the event E0, for n sufficiently large, we can give the

lower bound

l(P̃i) ≥
n∗

2
√

πe · fk(i)n
.

Proof. Under E0, no path containing at n∗ vertices has lower length than ε
(k)
m . Let us first

consider the case of a sub-path p̃i corresponding to a sub-path of a non low-density sub-path
pj. Then, p̃i is a “true” sub-path of the original tour and contains n∗ vertices. Therefore,

lp̃i ≥ ε
(k(i))
m . Let us now consider a sub-path p̃i corresponding to a low-density sub-path pj

for j ∈ L. Recall that pj is a sub-path of Qk(i) which is not entirely contained in the margin.

Therefore, lpj ≥ ε
(k(i))
m . In summary, for all 1 ≤ i ≤ P̃ ,

lp̃i ≥ ε(k(i))m ≥ n∗
2
√

πe · fk(i)n
,

where the second inequality is true for n sufficiently large.

Therefore, under E0 we have the following lower bound,

lΨ−TRP ≥ n∗
∑

1≤i≤P̃

Ψα





i−1
∑

j=1

lp̃j





≥ n∗
∑

1≤i≤P̃

Ψα





1

2
√
πen

i−1
∑

j=1

n∗
√

fk(j)





=
nα+1
∗

2α(πen)α/2

∑

1≤i≤P̃

Ψα





i−1
∑

j=1

1
√

fk(j)





≥ nα+1
∗

2α(πen)α/2
· min
σ∈SP̃

∑

i

Ψα





i−1
∑

j=1

1
√

fk(σ(j))



 .

Let us now give an equivalent of Lemma 6 from [2].

Lemma 2.4. The minimum objective of the optimization problem

min
σ∈SP̃

∑

i

Ψα





i−1
∑

j=1

1
√

fk(σ(j))



 .

is given by ordering sub-paths by increasing order of 1√
fk(i)

, i.e. decreasing order of fk(i).

8



Proof. In this proof, we will denote by Cσ the objective of the minimization problem for
σ ∈ SP , i.e.

Cσ := min
σ∈SP̃

∑

i

Ψα





i−1
∑

j=1

1
√

fk(σ(j))



 .

Let 1 ≤ i < P̃ . We will compare Cσ and Cσ̃ where σ̃ is the permutation σ but the i−th and
(i+ 1)−th index are interchanged:

σ̃(r) =











σ(r), r /∈ {i, i+ 1}
σ(i+ 1), r = i

σ(i), r = i+ 1.

Then,

Cσ̃ − Cσ = Ψ

(

1
√

fk(σ(i+1))

+ η

)

−Ψ

(

1
√

fk(σ(i))
+ η

)

,

where η =
∑

t<i

npσ(t)√
fk(σ(t))

. Assume that we have 1√
fk(σ(i+1))

≤ 1√
fk(σ(i))

. Then, the objective

is decreases when we place σ(i + 1) in i−th position: Cσ̃ ≤ Cσ. We then use this argument
to order sequentially the permutation σ by decreasing order of fk(i). This ends the proof of
the lemma.

Let us now give estimates on the right hand of the inequality. Denote by σ∗ the ordering
on the sub-squares Qk such that 1√

fσ∗(k)
is increasing in k. Then under E0,

min
σ∈SP̃

∑

i

n∗Ψα





i−1
∑

j=1

n∗
√

fk(σ(j))





≥
∑

1≤k≤m2





∑

i, p̃i∈Qσ∗(k)

n∗



 ·Ψα





k−1
∑

t=1

1
√

fσ∗(t)





∑

i, p̃i∈Qσ∗(t)

n∗









≥
∑

1≤k≤m2

Nσ∗(k) − |V ∩Qσ∗(k) ∩M| − n∗
2

·Ψα

[

k−1
∑

t=1

Nσ∗(t) − |V ∩Qσ∗(t) ∩M| − n∗
2
√

fσ∗(t)

]

≥ 1

2α+1

∑

1≤k≤m2

Nσ∗(k) ·Ψα

[

k−1
∑

t=1

Nσ∗(t)
√

fσ∗(t)

]

− 1

2α+1

∑

1≤k≤m2

(|V ∩Qσ∗(k) ∩M|+ n∗) ·Ψα

[

n√
f∗

]

− α

2α+1

∑

1≤k≤m2

Nσ∗(k)

k−1
∑

t=1

|V ∩Qσ∗(t) ∩M|+ n∗√
f∗

·Ψα−1

[

n√
f∗

]

≥ nα+1

4α+1m2α+2

∑

1≤k≤m2

fσ∗(k) ·Ψα

[

k−1
∑

t=1

√

fσ∗(t)

]

− |V ∩M|+m2n∗
2α+1

·Ψα

[

n√
f∗

]

− α · n
2α+1

|V ∩M|+m2n∗√
f∗

·Ψα−1

[

n√
f∗

]

9



=
nα+1

4α+1m2α+2

∑

1≤k≤m2

fσ∗(k) ·Ψα

[

k−1
∑

t=1

√

fσ∗(t)

]

− nα(1 + α)

2α+1f
α/2
∗

(|V ∩M|+m2n∗).

Using Lemma 3 of [2], we obtain that with probability 1− o(e
−cε

√

f∗n

m2 ), the event E0 is met
and |V ∩M| ≤ 8εn. Therefore, we can take ε > 0 sufficiently small so that

lTRP ≥ 1 + o(1)

81+α(πe)α/2m2α+2
n1+α/2

∑

1≤k≤m2

fσ∗(k) ·Ψα

[

k−1
∑

t=1

√

fσ∗(t)

]

.

Define a new constant cα := 1
81+α(πe)α/2 , we now obtain the desired result.

lim inf
n→∞

E [lΨ−TRP ]

n1+α/2
≥ lim inf

n→∞
P(E0) ·

E[lΨ−TRP |E0]

n1+α/2

≥ lim inf
n→∞

(

1− o

(

e
−cε

√

f∗n

m2

))

cα(1 + o(1))

m2α+2

∑

1≤k≤m2

fσ∗(k)Ψα

[

k−1
∑

t=1

√

fσ∗(t)

]

≥ cα
m2α+2

∑

1≤k≤m2

fσ∗(k) ·Ψα

[

k−1
∑

t=1

√

fσ∗(t)

]

.

We will now make the link between the discrete sum and the integral formula. To do so,
we aggregate sub-squares who have same density fk. If f

1 > · · · > fS are values taken by the
density function, We obtain a partition {1, · · · ,m2} =

⋃

1≤s≤S As, where As = {k : fk = f s}
contains the indices of sub-squares having density f s. Note that because the values f1, · · · , fS
are ordered, so are the sets As i.e. all elements of A2 are larger than elements of A1, etc.
Then,

1

m2α+2

∑

1≤k≤m2

fσ∗(k) ·Ψα

[

k−1
∑

t=1

√

fσ∗(t)

]

=
∑

1≤k≤m2

∫

Qσ∗(k)

f(x)

(
∫

K

√

f · 1Qσ∗(1)∪···∪Qσ∗(k−1)

)α

dx

=

S
∑

s=1

∑

k∈As

∫

Qσ∗(k)

f(x)

(∫

K

√

f · 1f<f(x) +
√

f(x) · 1⋃
l∈As,l<k Qσ∗(k)

)α

dx.

Therefore,

S
∑

s=1

∫ A(
⋃

l∈As
Qσ∗(k))

0
f(x)

(
∫

K

√

f · 1f<f(x) + t
√

f(x)

)α

dt− 1

m2α+2

∑

1≤k≤m2

fσ∗(k) ·Ψα

[

k−1
∑

t=1

√

fσ∗(t)

]

=
S
∑

s=1

∑

k∈As

f(x)

∫ A(Qσ∗(k))

0

[(∫

K

√

f · 1f<f(x) +
√

f(x) · A(∪l∈As,l<kQσ∗(k)) + t
√

f(x)

)α

−
(∫

K

√

f · 1f<f(x) +
√

f(x) · A(∪l∈As,l<kQσ∗(k))

)α]

dt

10



≤
S
∑

s=1

∑

k∈As

f(x)

∫ A(Qσ∗(k))

0
α

(
∫

K

√

f

)α−1

t
√

f(x)dt

=
α

2m2

(
∫

K

√

f

)α−1 ∫

K
f3/2.

Also note that

S
∑

s=1

∫ A(
⋃

l∈As
Qσ∗(k))

0
f(x)

(∫

K

√

f · 1f<f(x) + t
√

f(x)

)α

dt =

∫

K
gα(f, x)dx.

Finally, we have

lim inf
n→∞

E [lΨ−TRP ]

n1+α/2
≥ cα

∫

K
gα(f, x)dx− cαα

2m2

(∫

K

√

f

)α−1 ∫

K
f3/2.

We can repeat the same procedure with a finest partition of the unit square [0, 1]2 into (βm)2

sub-squares where β ∈ N
∗. For β sufficiently large, we obtain

α

2m2

(∫

K

√

f

)α−1 ∫

K
f3/2 ≤ 1

2

∫

K
gα(f, x)dx.

Then, with this partition we obtain the desired result

lim inf
n→∞

E [lΨ−TRP ]

n1+α/2
≥ c̃α

∫

K
gα(f, x)dx,

where c̃α = cα
2(α+1) =

1
2·8α+1(πe)α/2(α+1)

. This ends the proof for the densities of the form

f(x) =

m2
∑

k=1

fk1Qk
(x).

Note that with the same proof, we can tighten the constant c̃α to be 1
(πe)α/2(α+1)

.

We now turn to general distributions with continuous densities. To do so, we need an
equivalent of Lemma 7 from [2], which is given by Lemma 2.6. Similarly to the proof of
the lower bound of Theorem 3 of [2], let us now consider the general case of an absolutely
continuous density f on a compact space K. By a scaling argument, we can suppose without
loss of generality that K ⊂ [0, 1]2. For any ε > 0, we use Lemma 2.6 to take a density φ of
the same form as above

φ(x) =

m2
∑

k=1

φk1Qk
(x),

such that ‖φ − f‖∞ ≤ ε and
∣

∣

∫

K gα(φ)− gα(f)
∣

∣ ≤ ε. By a coupling argument, we can
construct a joint distribution (X,Y ) such that X (resp. Y ) has density f (resp. φ), and
P(X 6= Y ) ≤ 2

∫

K |φ(x) − f(x)|dx ≤ 2ε. On the event {Xi = Yi, 1 ≤ i ≤ n}, the Ψ−TRP
lengths coincide. Therefore, we can use the estimates on φ to show that

lim inf
n→∞

E[lTRP (f)]

nα/2
≥ (1− 2ε)ncα

∫

K
gα(φ)

11



≥ (1− 2ε)ncα

(∫

K
gα(f)− ε

)

.

Since this is valid for any ε > 0, the desired result follows.

lim inf
n→∞

E[lTRP (f)]

nα/2
≥ cα

∫

K
gα(f)

This ends the proof of the Proposition.

2.2 An upper bound

We now give a constructive proof of an upper bound. The resulting constructed tour is
constant-factor from the optimal Ψ−TRP tour.

Proposition 2.5. Assume all n vertices are drawn according to a distribution with density

f on a compact space K ⊂ R
2. Let α ≥ 1 and Ψα : x 7→ xα the power function. Denote by

lα−TRP the optimal TRP objective of a tour for the Ψα−TRP. Then,

lim inf
n→∞

E [lΨ−TRP ]

n1+α/2
≤ Cα

∫

K
gα(f, x)dx,

where Cα > 0 is a constant depending only on α. Furthermore, there exists a simple way to

construct a tour that achieves the provided upper bound.

Proof. Let ε > 0. Take m > 0 and a piece-wise constant density φ approximating f , given by
Lemma 2.6. Similarly to the tour constructed in the proof of the upper bound of Theorem
3 of [2], if we order the sub-squares by decreasing value of φ and denote σ this ordering, our
tour will follow a TSP tour on Qσ(1), then on Qσ(2), until Qσ(m2). We will now show that
this tour is constant-factor optimal on the high-event probability E0 in which

φk
2m2

n ≤ Nk ≤ 3φk
2m2

n,

for all 1 ≤ k ≤ m2, where Nk is the count of vertices in sub-square Qk. By the Chernoff

bound, P(E0) = 1 − o
(

e−cφ∗n

m2

)

, where φ∗ := min{φk} and c > 0 a constant. Let us now

analyze the Ψ−TRP objective of this tour on E0. On each sub-square, by the BHH theorem,
the length lkTSP of the optimal TSP satisfies

lkTSP ≤ CβTSP

√

3φkn

2

1

m2
.

for C > 0 a constant and any n sufficiently large. Then, if l̂Ψ−TRP denotes the objective of
the constructed tour, for n sufficiently large,

l̂Ψ−TRP ≤
m2
∑

k=1

Nσ(k)Ψα

(

k
∑

l=1

l
σ(l)
TSP + (k − 1)

√
2

)

≤ 3n

2m2

m2
∑

k=1

φσ(k)Ψα

(

CβTSP

√

3n

2

1

m2

k
∑

l=1

√

φσ(l) + (k − 1)
√
2

)
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≤
(

3

2

)1+α/2

CαβαTSP

n1+α/2

m2

m2
∑

k=1

φσ(k)

[

Ψα

(

1

m2

k
∑

l=1

√

φσ(l)

)

+
2αk

CβTSP

√
3n

· 2
∥

∥

∥

√

φ
∥

∥

∥

α−1

1

]

≤
(

3

2

)1+α/2

CαβαTSP

n1+α/2

m2+2α

m2
∑

k=1

φσ(k)Ψα

(

k
∑

l=1

√

φσ(l)

)

+

(

3

2

)1+α/2

(CβTSP )
α−1 4αm

2n(α+1)/2

√
3

.

Therefore, with Cα :=
(

3
2

)1+α/2
CαβαTSP , we obtain

lim inf
n→∞

E [lΨ−TRP ]

n1+α/2
≤ Cα

m2α+2

∑

1≤k≤m2

φσ(k) ·Ψα

[

k
∑

t=1

√

φσ(t)

]

≤ Cα

m2α+2

∑

1≤k≤m2

φσ(k) ·Ψα

[

k−1
∑

t=1

√

φσ(t)

]

+
Cα

m4

∑

1≤k≤m2

φσ(k) · α
√

φσ(k)

≤ Cα

∫

K
gα(φ) +

Cα

m2

∫

K
φ3/2.

We can take a finer subdivision and take m sufficiently large so that finally,

lim inf
n→∞

E [lΨ−TRP ]

n1+α/2
≤ C̃α

∫

K
gα(φ),

where C̃α = 2Cα. Note that with the same proof we can get the same result with C̃α = βαTSP .
This ends the proof.

2.3 Technical lemma

Lemma 2.6. Let f be a density on K ⊂ [0, 1]2. For any ε > 0, there exists a density φ of the

form

φ(x) =

m2
∑

k=1

φk1Qk
(x)

such that

‖φ− f‖1 ≤ ε, and

∣

∣

∣

∣

∫

K
gα(φ)−

∫

K
gα(f)

∣

∣

∣

∣

≤ ε.

Proof. Let δ > 0 an error parameter. Similarly to the proof of Lemma 7 from [2], we first
take a density φε of the right form such that ε ≤ δ and

‖φε − f‖1 ≤ ε, and ‖
√

φε −
√

f‖1 ≤ ε.

We choose φε such that all φk are distinct. We will now write φ instead of φε. Again,
‖√f‖1, ‖

√
φ‖1 ≤ 1. We first introduce a new function g̃φ which we will use as intermediary.

g̃α(φ, x) =







φ(x)
(∫

K
√
φ · 1f<f(x)

)α
if
∫

K 1f=f(x) = 0,
√

f(x)
(
∫

K

√
f ·1f≤f(x))

α+1−(
∫

K

√
f ·1f<f(x))

α+1

(α+1)
∫

K
1f=f(x)

otherwise,
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Let us start by giving an estimate that will later be useful.

∣

∣

∣

∣

(∫

K

√

φ · 1f<f(x)

)α

−
(∫

K

√

f · 1f<f(x)

)α∣
∣

∣

∣

≤
∫

K

∣

∣

∣

√

φ−
√

f
∣

∣

∣ · 1f<f(x)

· αmax

(∫

K

√

φ · 1f<f(x),

∫

K

√

f · 1f<f(x)

)α−1

≤ α · δ

The first step will be to compare g̃α(φ) and gα(f). Similarly to the proof of the lower bound
of Theorem 3 from [2], we can define the function

h(z) :=

∫

K
1f=z.

Recall that h is non-zero only on a countable number of values which we will denote by zi
for i ≥ 1. Then,

∣

∣

∣

∣

∫

K
g̃α(φ)− gα(f)

∣

∣

∣

∣

=

∫

f /∈{z1,··· ,zZ}

∣

∣

∣

∣

φ(x)

(∫

K

√

φ · 1f<f(x)

)α

− f(x)

(∫

K

√

f · 1f<f(x)

)α∣
∣

∣

∣

≤
∫

f /∈{z1,··· ,zZ}
|φ(x) − f(x)|

∥

∥

∥

√

f
∥

∥

∥

α/2

1
+ φ(x) · εαmax

(

∥

∥

∥

√

f
∥

∥

∥

α−1

1
,
∥

∥

∥

√

φ
∥

∥

∥

α−1

1

)

≤ (1 + α)δ.

We now compare gα(φ) to φ(·)
(∫

K
√
φ · 1φ<φ(·)

)α
. For all 1 ≤ k ≤ m2, we will denote

ηk :=
∫

K
√
φ · 1φ<φk

. We now use the fact that all φk are distinct. By definition of gα(φ),

∫

K

∣

∣

∣

∣

gα(φ, x)− φ(x)

(
∫

K

√

φ · 1φ<φ(x)

)α∣
∣

∣

∣

dx =
m2
∑

k=1

φk

∫ A(Qk)

t=0
[(ηk + t)α − ηαk ] dt

≤
m2
∑

k=1

φk
m2

· α

m2

(∫

K

√

φ

)α−1

≤ α

m2
.

We take m sufficiently large so that the left term can be upper bounded by δ. We now turn
to comparing g̃α(φ) and φ(·)

(∫

K
√
φ · 1φ<φ(·)

)α
.

∣

∣

∣

∣

∫

K

[

g̃α(φ, x) − φ(x)

(∫

K

√

φ · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

≤
∑

i≥1

∣

∣

∣

∣

∫

f=zi

[

g̃α(φ, x) − φ(x)

(∫

K

√

φ · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

f /∈{zi, i≥1}

[

φ(x)

(∫

K

√

φ · 1f<f(x)

)α

− φ(x)

(∫

K

√

φ · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

∣

. (2.1)
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Let us analyze the second term in the right-hand side of the inequality.

∣

∣

∣

∣

∣

∫

f /∈{zi, i≥1}

[

φ(x)

(∫

K

√

φ · 1f<f(x)

)α
− φ(x)

(∫

K

√

φ · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

≤
∫

f /∈{zi, i≥1}
φ(x) · α

∥

∥

∥

√

φ
∥

∥

∥

α−1

1

∫

K

√

φ ·
∣

∣1f<f(x) − 1φ<φ(x)

∣

∣ dx

≤ α

∫∫

K2

φ(x)
√

φ(y)
∣

∣1f(y)<f(x) − 1φ(y)<φ(x)

∣

∣ dxdy

≤ α

∫∫

K2

φ(x)
√

φ(y)1|f(y)−f(x)|≤3ε1f(x)6=f(y)dxdy.

By the dominated convergence theorem, this term vanishes as ε → 0. We take 0 < ε ≤ δ
sufficiently small such that this term is upper bounded by δ. We now turn to the first term
of Equation (2.1). For 1 ≤ i ≤ Z, denote by ηi :=

∫

K
√
f · 1f<zi . Then,

∑

i

∣

∣

∣

∣

∣

∫

f(x)=zi

[

g̃α(φ, x) − φ(x)

(
∫

K

√

φ · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

∣

=
∑

i

∣

∣

∣

∣

∣

∫ A(f=zi)

0
zi (ηi +

√
zit)

α dt−
∫

f(x)=zi

φ(x)

(∫

K

√

φ · 1φ<φ(x)

)α
∣

∣

∣

∣

∣

≤
∑

i

zi

∣

∣

∣

∣

∣

∫ h(zi)

0
(ηi +

√
zit)

α dt−
∫

f(x)=zi

(
∫

K

√

f · 1φ<φ(x)

)α
∣

∣

∣

∣

∣

+ ε ·
∥

∥

∥

√

f
∥

∥

∥

α

1

+

∫

K
φ(x) · αmax

(

∥

∥

∥

√

φ
∥

∥

∥

α−1

1
,
∥

∥

∥

√

f
∥

∥

∥

α−1

1

)

εdx

≤
∑

i

zi

∣

∣

∣

∣

∣

∫ h(zi)

0
(ηi +

√
zit)

α dt−
∫

f(x)=zi

(
∫

K

√

f · 1φ<φ(x)

)α
∣

∣

∣

∣

∣

+ (1 + α)δ.

For x ∈ K such that f(x) = zi,

∫

K

√

f · 1φ<φ(x) =

∫

|f−f(x)|>3ε

√

f · 1f<f(x) +

∫

|f−f(x)|≤3ε

√

f · 1φ<φ(x)

=

∫

K

√

f · 1f<zi−3ε +
√
zi

∫

f=zi

1φ<φ(x) +

∫

K

√

f · 1φ<φ(x)1|f−zi|≤3ε1f 6=zi .

Therefore,

∣

∣

∣

∣

∫

K

√

f · 1φ<φ(x) − ηi −
√
zi

∫

f=zi

1φ<φ(x)

∣

∣

∣

∣

≤ 2

∫

K

√

f · 1|f−zi|≤3ε1f 6=zi .

We can use this estimate for the following upper bound.

∑

i

zi

∣

∣

∣

∣

∣

∫

f(x)=zi

[(

ηi +
√
zi

∫

f=zi

1φ<φ(x)

)α

−
(∫

K

√

f · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

∣
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≤ 2α ·
∑

i

zi

∫

K

√

f · 1|f−zi|≤3ε1f 6=zi .

All terms in the right-hand side sum vanish as ε→ 0 by the dominated convergence theorem.
Furthermore, the total sum is dominated by 2α. By monotone convergence, the sum vanishes
as ε→ 0. Let us take ε > 0 sufficiently small such that the left-hand term is upper bounded
by δ. The last term to analyze is

∑

i

zi

∫

f(x)=zi

(

ηi +
√
zi

∫

f=zi

1φ<φ(x)

)α

dx.

Let us take Z ≥ 1 sufficiently large such that

∣

∣

∣

∣

∣

∑

i>Z

zih(zi)

∣

∣

∣

∣

∣

≤ δ.

In particular, we can restrict the analysis to terms 1 ≤ i ≤ Z since

∑

i>Z

zi

∣

∣

∣

∣

∣

∫ h(zi)

0
(ηi +

√
zit)

α dt−
∫

f(x)=zi

(
∫

K

√

f · 1φ<φ(x)

)α
∣

∣

∣

∣

∣

≤ 2
∑

i>Z

zih(zi) ≤ 2δ.

Because {x : f(x) = zi} is measurable, for any tolerance ε > 0, there existsm0 ≥ 1 arbitrarily
large and a set of sub-squares Ei ⊂ {1, · · · ,m2} such that

∥

∥

∥1f=zi − 1
⋃

k∈Ei
Qk

∥

∥

∥

1
≤ δ

Z
.

for all 1 ≤ i ≤ Z. Then,

∑

i≤Z

∣

∣

∣

∣

∣

∫

f(x)=zi

(

ηi +
√
zi

∫

f=zi

1φ<φ(x)

)α

dx−
∫

⋃

k∈Ei
Qk

(

ηi +
√
zi

∫

⋃

k∈Ei
Qk

1φ<φ(x)

)α

dx

∣

∣

∣

∣

∣

≤
∑

i≤Z

∫

f(x)=zi

∣

∣

∣

∣

∣

(

ηi +
√
zi

∫

f=zi

1φ<φ(x)

)α

−
(

ηi +
√
zi

∫

⋃

k∈Ei
Qk

1φ<φ(x)

)α∣
∣

∣

∣

∣

dx

+
∑

i≤Z

∫

K

(

ηi +
√
zi

∫

⋃

k∈Ei
Qk

1φ<φ(x)

)α
∣

∣

∣
1f(x)=zi − 1

⋃

k∈Ei
Qk

∣

∣

∣
dx

≤
∑

i≤Z

h(zi) ·
√
ziε · α+

∑

i≤Z

δ

Z

≤ (1 + α)δ.

Now note that because values of φ on each sub-square φk are all distinct, then

∫

⋃

k∈Ei
Qk

(

ηi +
√
zi

∫

⋃

k∈Ei
Qk

1φ<φ(x)

)α

dx =

|Ei|
∑

k=1

1

m2

(

ηi +
√
zi
k − 1

m2

)α

.
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Therefore,

∣

∣

∣

∣

∣

∫ |Ei|/m2

0
(ηi +

√
zit)

α dt−
∫

⋃

k∈Ei
Qk

(

ηi +
√
zi

∫

⋃

k∈Ei
Qk

1φ<φ(x)

)α

dx

∣

∣

∣

∣

∣

≤
|Ei|
∑

k=1

1

m2

[(

ηi +
√
zi
k

m2

)α

−
(

ηi +
√
zi
k − 1

m2

)α]

≤ |Ei|
m2

α

m2
(ηi +

√
zi)

α−1

≤
(

h(zi) +
δ

Z

)

α

m2
.

We are now ready to merge all our estimates together.

∑

i≤Z

∣

∣

∣

∣

∣

∫ h(zi)

0
(ηi +

√
zit)

α dt−
∫

f(x)=zi

(
∫

K

√

f · 1φ<φ(x)

)α
∣

∣

∣

∣

∣

≤
∑

i≤Z

δ

Z
+
∑

i≤Z

∣

∣

∣

∣

∣

∫ |Ei|/m2

0
(ηi +

√
zit)

α dt−
∫

⋃

k∈Ei
Qk

(

ηi +
√
zi

∫

⋃

k∈Ei
Qk

1φ<φ(x)

)α

dx

∣

∣

∣

∣

∣

+
∑

i≤Z

∣

∣

∣

∣

∣

∫

⋃

k∈Ei
Qk

(

ηi +
√
zi

∫

⋃

k∈Ei
Qk

1φ<φ(x)

)α

dx−
∫

f(x)=zi

(

ηi +
√
zi

∫

f=zi

1φ<φ(x)

)α

dx

∣

∣

∣

∣

∣

+
∑

i≤Z

∣

∣

∣

∣

∣

∫

f(x)=zi

[(

ηi +
√
zi

∫

f=zi

1φ<φ(x)

)α

−
(
∫

K

√

f · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

∣

≤ (3 + α)δ +
(1 + δ)α

m2
.

We can then take m sufficiently large so that (1+δ)α
m2 ≤ δ. Finally, going back to Eq 2.1,

∣

∣

∣

∣

∫

K

[

g̃α(φ, x)− φ(x)

(
∫

K

√

φ · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

≤ (8 + 2α)δ

We now conclude by noting that

∣

∣

∣

∣

∫

K
gα(φ)− gα(f)

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

K

[

gα(φ, x)− φ(x)

(∫

K

√

φ · 1φ<φ(x)

)α]

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

K

[

φ(x)

(∫

K

√

φ · 1φ<φ(x)

)α

− g̃α(φ, x)

]

dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

K
g̃α(φ)− gα(f)

∣

∣

∣

∣

≤ (10 + 3α)δ

This is true for any δ > 0. This ends the proof of the lemma.
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