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We study an online resource allocation problem under uncertainty about demand and about the reward of

each type of demand (agents) for the resource. Even though dealing with demand uncertainty in resource

allocation problems has been the topic of many papers in the literature, the challenge of not knowing

rewards has been barely explored. The lack of knowledge about agents’ rewards is inspired by the problem of

allocating units of a new resource (e.g., newly developed vaccines or drugs) with unknown effectiveness/value.

For such settings, we assume that we can test the market before the allocation period starts. During the

test period, we sample each agent in the market with probability p. We study how to optimally exploit

the sample information in our online resource allocation problem under adversarial arrival processes. We

present an asymptotically optimal algorithm that achieves 1−Θ(1/(p
√
m)) competitive ratio, where m is the

number of available units of the resource. By characterizing an upper bound on the competitive ratio of any

randomized and deterministic algorithm, we show that our competitive ratio of 1−Θ(1/(p
√
m)) is tight for

any p= ω(1/
√
m). That asymptotic optimality is possible with sample information highlights the significant

advantage of running a test period for new resources. We demonstrate the efficacy of our proposed algorithm

using a dataset that contains the number of COVID-19 related hospitalized patients across different age

groups.
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1. Introduction

In online resource allocation problems, the goal is to allocate a limited number of a given

resource to heterogeneous demand/agents that arrive over time. These problems are noto-

riously challenging mainly because of the demand uncertainty and scarcity of the resource.

Such problems get even more challenging for newly developed resources (e.g., new drugs,

products, and services). For such a resource, the effectiveness/value of the resource for

different types of agents may not be fully known. To overcome this additional challenge,

businesses, for example, offer free products in an exchange for honest feedback (produc-

treviewmom.com 2022), and pharmaceutical companies test potential treatments/drugs in
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human volunteers (Pfizer 2022). These practices raise the following key question: can and

to what extent such feedback improve the efficiency of online resource allocation?

To answer this question, we consider a decision-maker who aims to allocate her available

resource to two types of unit-demand agents with unknown (expected) rewards, where type

1 has a higher expected reward than type 2.1 The total number of agents (i.e., the market

size), as well as, the number of agents of type 1 and 2, denoted by h and ` respectively,

are chosen adversarially, and hence are unknown to the decision-maker. Before the alloca-

tion period starts, the decision-maker tests the market by, for example, making a public

announcement and offering resources for free. We assume that with probability p ∈ (0,1),

each of the h+ ` agents sees and reacts to the announcement,2 and gets one unit of the

resource, where we assume that p is known to the decision-maker. (We will discuss this

assumption later in this section.) These agents then provide feedback on their realized

reward for the resource in return. That is, we assume that all the agents in the test period

will get a resource. As we will show in Section 7.1, this assumption can be relaxed by

limiting the number of available resources during the test period. The test procedure sup-

plies the decision-maker with some information about agents’ expected rewards, as well

as, the size of the market for each type of agent. We refer to this information as sample

information.

After the test period ends, the remaining agents arrive over time according to an

adversarially-chosen order. For each arriving agent, the decision-maker has to make an

irrevocable decision about accepting him and allocating him one unit of the resource or

rejecting him. The decision-maker who has m units of the resource when the allocation

period starts makes acceptance/rejection decisions while being uncertain about the num-

ber, type of future agents, and their expected rewards. The decision-maker is also uncertain

about which types of agents earn higher rewards upon receiving the resource. For such

a demanding setting, our goal is to design efficient resource allocation algorithms that

can optimally utilize the sample information under any possible arrival sequence. In other

words, we measure the performance of the algorithm in terms of its competitive ratio,

which is the expected ratio of the reward of the algorithm to the reward of the optimal

1 In Section 7.4, we discuss the case of having more than two types of agents.

2 In Section 7.3, we allow the probability p to be different for type 1 and 2 agents.
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clairvoyant solution that knows the arrival sequence and the expected reward of agents in

advance; see Section 2 for the model and the formal definition of the competitive ratio.

Before presenting our contributions, we make two remarks about our model. First, our

model bears resemblance to the proposed models in Correa et al. (2021), Kaplan et al.

(2022) for secretary and online bipartite matching problems, respectively. In Correa et al.

(2021), each of the secretaries is placed in a sample set with probability p, where the value

of the sampled secretaries will be disclosed to the decision-maker before the decision period

starts. In Kaplan et al. (2022) that studies an online bipartite matching problem, each

agent independently will be placed in a sample set with probability p. While at a high

level, these works seek to design algorithms that can take advantage of samples, the nature

of their considered problems is different from ours, preventing us to use their designed

algorithms for our setting. We discuss the details in Section 1.2.

Second, our model is a special case of the single-leg revenue management problem, which

has been widely studied in the literature; see, e.g., Littlewood (1972), Amaruchkul et al.

(2007), Ball and Queyranne (2009), Gallego et al. (2009), Ferreira et al. (2018), Jasin

(2015), Hwang et al. (2021), Golrezaei and Yao (2021). In all of these aforementioned

works, while the decision-maker may be uncertain about the demand (i.e., the number and

the order of the arrivals), the obtained reward of different types of demand upon receiving

the resource is fully known to the decision-maker. This is in sharp contrast with our model

in which these rewards are not known to the decision-maker, adding extra complexity

to our problem. (See also Section 1.2 for a discussion about previous works on revenue

management problems with limited demand information, but full knowledge of rewards.)

1.1. Our Contributions

In addition to our modeling contribution, our work makes the following contributions.

Impossibility results. To shed light on the value of sample information, in Section 3,

we consider alternative scenarios under which either the sample information is not available

or the sample information is not very informative due to the lack of some additional

knowledge (e.g., the sampling probability). In all of the considered scenarios, we show

that it is not possible to design asymptotically optimal algorithms whose competitive ratio

goes to one as the number of resources m increases. While in the first scenario, no sample

information is not available (i.e., the sampling probability p= 0), in the second scenario,

the sample information is available but the sampling probability p is not known to the
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decision-maker. The result for the second scenario justifies our assumption about knowing

the sampling probability; see (Correa et al. 2021) for a similar assumption. Nonetheless,

this assumption can be also justified by the fact that the outreach program is designed

by the decision-maker herself, and hence p can be well estimated using historical data

for similar outreach programs. See also our case study in Section 6 where we examine

the robustness of our proposed algorithm (which we will present shortly) to the lack of

knowledge of the sampling probability.3

Asymptotically optimal protection level algorithm. In light of our impossibility

results in Section 3, we design a simple, yet effective protection level algorithm that opti-

mally utilizes the sample information; see Algorithm 1 in Section 4. The algorithm uses the

sample information to obtain an estimate of the expected reward of each type of agents. If

the estimated reward of type 1 is greater than that of type 2, the algorithm protects type

1 agents, otherwise type 2 agents will be protected. In each of these cases, the algorithm

uses the sample information to estimate the protection level for the type that has a higher

estimated average reward.

In Theorem 1, we present the competitive ratio of our proposed algorithm for any finite

value of m. In addition, in Proposition 2, we show that our algorithm is asymptotically

optimal as m goes to infinity. More precisely, we show that for any p= ω(1/
√
m)4 (which

includes constant values for p that does not scale with m), the asymptotic competitive ratio

of our algorithm is on the order of 1−Θ(1/(p
√
m)).5 As we show in Section 7.1, the same

asymptotic competitive ratio continues to hold even when there is a capacity constraint

during the test period. (There we show that when the number of resources during the test

period is in the order of ω(
√
m), the asymptotic competitive ratio of (a slightly modified

version of) Algorithm 1 is in the order of 1−Θ(1/(p
√
m)).)

3 In Appendix K, using numerical studies and under adversarial arrival processes, we further test the robustness of
our proposed algorithm to the lack of knowledge of p. There we show that when the estimation error in p is 10%, the
competitive ratio decreases by at most 6%. Similar results are obtained when the estimation error in p is 20%.

4 We scale p with m because of the cost of testing the market. With a large value of m, if the market size turns out
to be large too (e.g., proportional to m), the decision-maker will incur a large cost during the test period, justifying
our choice of p= ω(1/

√
m). Nonetheless, our results hold for constant p’s, and theoretically speaking, handling the

case of p= ω(1/
√
m) is more challenging than that of constant p’s. This is because, under constant p’s, the sample

information is more informative, easing the analysis of the algorithm.

5 For the case of p=O( 1√
m

) where p goes to zero very fast as m grows, in Section J, we design another algorithm whose

competitive ratio is 1/2. We note that our upper bound in Section 5.2 confirms the challenges of such an extreme case
for the sampling probability. As we show there, when p goes to zero very fast (i.e., p=O(1/m)), obtaining asymptotic
optimality is impossible.
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This result shows that the sample information can be extremely useful to improve the

performance of resource allocation algorithms. This is because in the absence of the sample

information, and even when the expected rewards of agents are fully known, as shown in

Ball and Queyranne (2009), the competitive ratio of any algorithm cannot exceed 1/(2−

r2/r1) no matter how large m is, where r1 > r2 are the expected rewards for the the two

types of agents. Here, we show that we can break the barrier of 1/(2− r2/r1) by taking

advantage of the sample information in a very challenging setting, where the expected

reward of agents is not known to the decision-maker. This is mainly because the sample

information can be used to infer some knowledge about the number of agents of different

types in the online arrival sequence, gaining some knowledge about the adversarially-chosen

arrival sequence.

That being said, due to the adversarial nature of the demand process, it is not obvious

if the sample information can lead to asymptotic optimality when p = ω(1/
√
m). Even

when the sampling probability p is constant, with a large number of resources, the sample

information may not be very illuminating. Consider the case where either the market size

h or ` is small. In such cases, the number of agents in the sample set for at least one

of the types will be small and hence the decision-maker cannot correctly estimate the

expected rewards of the agents. This, in turn, can lead to the decision-maker protecting

the wrong (low-reward) type. Considering this, it is quite remarkable that our algorithm

obtains asymptotic optimality even when p shrinks as a function of m. As we will discuss

shortly, the competitive ratio of our algorithm is tight concerning both m and p.

We now comment on our technical contributions in characterizing the competitive ratio

of our algorithm. The proof of Theorem 1 is quite involved and is divided into three

main cases, where each case bounds the competitive ratio of the algorithm when the total

number of agents of type 1 and 2 falls into a certain region. The most challenging region

is the one in which the total number of type 1 agents (i.e., h) is large. In this case, the

algorithm may lose reward in three aspects: not protecting type 1 agents, over-protecting

type 1 agents, and under-protecting type 1 agents. Recall that in our setting, the decision-

maker does not even know which type has the higher reward, and hence our algorithm may

wrongfully protect type 2 agents. In addition, for large values of h, even when the right

type is protected, by over- and under-protecting the protected type, our algorithm can lose

some rewards. At a high level, we overcome these challenges, by showing that either (i)
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the algorithm protects the right (high-reward) type with high probability, or (ii) thanks to

setting protection levels using the sample information, the loss of the algorithm is small if

it protects the wrong (low-reward) type.

We note that while characterizing the bound for the region with large h is the most

challenging one, the proof shows that the competitive ratio is smallest when h is small.

This is because, with small h, the sample information may not even reveal which type has

the highest reward, leading the algorithm to protect the wrong type.

Upper bound on the competitive ratio of any deterministic and randomized

algorithms. Our proposed algorithm obtains the asymptotic competitive ratio of 1 −

Θ(1/(p
√
m)) when p= ω(1/

√
m). Such a superb performance makes us wonder if we can

design an algorithm with even a better asymptotic competitive ratio. In Section 5, we

present Theorems 2 and 3, which show that with p= ω(1/
√
m), even when the decision-

maker is fully aware of the expected reward of agents, no deterministic and randomized

algorithms can obtain an asymptotic competitive ratio better than 1−Θ(1/(p
√
m)). To

show the upper bound of 1−Θ(1/(p
√
m)) on the competitive ratio for any deterministic

algorithm, in the proof of Theorem 2, we consider a family of arrivals, wherein this family,

a large number of type 2 agents (i.e., the type with a lower reward) arrive first, followed by

some number of type 1 agents. Under this family of arrivals, any deterministic algorithm

has to decide how many type 2 agents to accept based on the number of type 1 agents in

the sample. We show that due to the lack of precise knowledge about the number of type 1

agents, no deterministic algorithm can do better than 1−Θ(1/(p
√
m)) on the constructed

family of arrivals. To show the same result for any randomized algorithms, we first derive

a variation of Yao’s Lemma that could be of independent interest; see Lemma 15. We then

devise a distribution over the family of the arrival sequence that we considered in Theorem

2 and show the upper bound of 1−Θ(1/(p
√
m)) using Lemma 15.

For the case of p=O(1/
√
m), we present another upper bound in Section 5.2. This non-

asymptotic upper bound, which is valid for any value of m, shows that when p=O(1/m),

it is not possible to exceed the bound of 1/(2− r2/r1), where 1/(2− r2/r1) is the upper

bound in Ball and Queyranne (2009) for a setting with no sample information, but known

rewards. This shows that when p is very small, the sample information is not sufficient to

overcome the challenge of not knowing the rewards.
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Case study. We perform a case study in Section 6 using the “Laboratory-Confirmed

COVID-19-Associated Hospitalizations” dataset, which contains the number of bi-weekly

cases of COVID-19-associated hospitalizations in the US from March 7th, 2020 to Febru-

ary 5th, 2022. The dataset is obtained from the following website: gis.cdc.gov/grasp/

covidnet/covid19_5.html. We study how to use our algorithm to allocate limited hos-

pital resources (e.g., a certain medicine) to different types of COVID-19 patients while

having access to some sample information. We show that the average competitive ratio of

our algorithm in various realistic settings exceed 0.88 and our algorithm substantially out-

performs a naive algorithm that does not use the sample information. Further, we observe

that our algorithm maintains its performance when it only has access to an estimate of

the sampling probability p.

1.2. Other Related Works

Our work is related to various streams of works in the literature.

Online decision-making with samples. As stated earlier, our model is related to

some of the recent works on online decision-making with samples. Correa et al. (2021) study

the secretary problem under both adversarial and random order arrival models with the

independent sampling process, where in the secretary problem, the goal is to maximize the

probability of selecting the best applicant. For the adversarial model, with the knowledge

of the true sample information, they design a simple threshold-based algorithm (with the

threshold of k= 1/(1−p)) that achieves a competitive ratio of kpk(1−p). They show that

the bound of kpk(1−p) is tight. (Similar results are obtained for the random order arrival

models.) Kaplan et al. (2022) study an online weighted bipartite matching problem under

an adversarial arrival with a similar independent sampling process. They analyze a simple

greedy algorithm which does not depend on p and show that it achieves a competitive

ratio of p(1− p) for p≤ 1/2 and 1/4 for p > 1/2. We note that without samples, the best

competitive ratio for the adversarial secretary problem and the online matching problem

in Kaplan et al. (2022) is zero. Thus, similar to our work, the aforementioned works show

that the sample information can be very helpful in enabling more efficient online decision-

making.

Revenue management with limited demand information. In practice, it is hard

to fully predict demand, and hence revenue management with limited demand information

becomes an essential problem. Lan et al. (2008) study a single-leg revenue management

gis.cdc.gov/grasp/covidnet/covid19_5.html
gis.cdc.gov/grasp/covidnet/covid19_5.html
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problem with predicted lower and upper bounds of the demand for each type of agent and

present an optimal algorithm. Perakis and Roels (2010) study a network revenue manage-

ment problem with lower and upper bounds on demand of each type of agent and design

an approximation algorithm.6 Besides the quantity-based revenue management problem

discussed above, some works study the price-based revenue management problem with

limited demand information. For example, Besbes and Zeevi (2012) design an algorithm

that dynamically adjusts prices to maximize rewards under the model where the demand

at each point in time is determined by the price. Araman and Caldentey (2011) study a

price-based revenue management problem with a parametric demand model (e.g., linear

demand model with unknown coefficients). See also Bu et al. (2020) for a work that con-

siders the problem of learning optimal price while having access to some offline demand

data under certain prices. Our work contributes to this literature by considering a novel

and practical adversarial model with samples, where the samples provide limited demand

information.

Online algorithm design with machine learned advice. The sample information

in our setting provides some information to the decision-maker regarding the adversarially-

chosen arrival sequence, allowing us to significantly improve the worst-case guarantee of

our algorithm. Improving the worst-case guarantee of online algorithms with the help of

extra information has been the topic of recent literature on algorithm design with machine-

learned advice. See, for example, Antoniadis et al. (2020) for using advice on the maximum

value of secretaries in the online secretary problems, Lattanzi et al. (2020) for using advice

on the weights of jobs in online scheduling problems, Lykouris and Vassilvtiskii (2018) for

using the advice in the online caching problem, Balseiro et al. (2022) for using advice in

single leg revenue management problems,7 and Jin and Ma (2022) for using advice in online

bipartite matching problems. Our work contributes to this line of work by presenting the

first algorithm that optimally exploits rather unstructured advice obtained through the

sample information in an online resource allocation problem.

Multi-armed bandits. Our setting is also related to the vast literature on multi-armed

bandits; see, for example, Thompson (1933), Auer et al. (2002a,b), Balseiro et al. (2019),

6 See also Hwang et al. (2021), Esfandiari et al. (2015) for works that consider a hybrid arrival model with both
adversarial and stochastic components. For such models, the stochastic component can reduce the uncertainty in the
demand process.

7 In Balseiro et al. (2022), the advice is a predicted demand vector.
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Van Parys and Golrezaei (2020), Niazadeh et al. (2021), Chen and Yang (2022), Chen et al.

(2021b). In this literature, it is assumed that there are some arms/options with unknown

expected rewards, and the goal is to identify the best arm by suffering from minimal regret,

where the regret is computed against a clairvoyant policy that knows the expected reward

of arms in advance. In our setting, similar to the bandit settings, the rewards of agents are

unknown. However, unlike the bandit setting, the algorithm aims to partially learn these

rewards via the sample information, rather than the feedback it receives throughout the

allocation period. Our upper bound results, which are obtained under the setting when

the rewards are fully known, show that using the feedback during the allocation period

does not improve the asymptotic competitive ratio of our algorithm. This is because, in

our setting, the order of arrivals and the number of agents of different types are chosen

adversarially. Hence, in the worst case, the feedback throughout the allocation periods

does not add any value, as the decision-maker is not able to acquire the right feedback at

the right time. What feedback the decision-maker can receive is mainly determined by the

adversary.

Online resource allocation. Our work is also related to the rich literature on online

resource allocation. Devanur and Hayes (2009), Feldman et al. (2010), Agrawal et al. (2014),

and Chen et al. (2021a) study this problem in a stochastic setting with i.i.d. demand

arrivals. In these works, the authors use the primal-dual technique to design algorithms

with sub-linear regret, where the algorithms aim to learn the optimal dual variables asso-

ciated with resource constraints. The primal-dual technique is also effective for adversarial

demand arrivals even though attaining sub-linear regret in adversarial settings is generally

impossible (Mehta et al. 2007, Buchbinder et al. 2007, Golrezaei et al. 2014). See also

Balseiro et al. (2020) for a recent work that shows how the primal-dual technique results

in well-performing algorithms for various demand processes. While in our work, we do not

rely on the primal-dual technique, our work contributes to this literature by presenting a

model that—with the help of the sample information—bridges the gap between stochastic

and adversarial arrivals, allowing us to bypass the impossibility results in the adversarial

settings which is obtained by Ball and Queyranne (2009).

2. Model

We consider a decision-maker who would like to allocate (identical) units of a

resource/service to two types of unit-demand agents. (In Section 7.4, we discuss how to
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extend our algorithm (Algorithm 1) to a setting with more than two types.) The expected

reward of agents of type i ∈ {1,2} upon receiving one unit of the resource is ri ∈ (0,1),

where without loss of generality, we assume that r1 > r2 and define α = r2
r1
∈ (0,1). The

decision-maker, however, is not aware of the expected reward of agents; she does not even

know which type of agents attains a higher expected reward. As stated in the introduction,

this setting captures scenarios where we would like to allocate new drugs, services, and

products to customers. Given the lack of knowledge about the expected rewards, before

the allocation period starts, the decision-maker aims to collect some information about the

unknown expected rewards of agents during a test period.

2.1. Test Period and Sample Information

During the test period, the decision-maker aims to outreach the market by, for example,

making a public announcement. Let h, `≥ 0 be respectively the market size of agents of

types 1 and 2, i.e., the total number of agents of types 1 and 2 that are interested in

the resource. The market size h and `, which are unknown to the decision-maker, can

take any arbitrary values; that is, they are chosen adversarially. We assume that during

the test period, with probability p ∈ (0,1), each of h+ ` agents sees and responds to the

outreach program run by the decision-maker, where the sampling probability p is known to

the decision-maker. (In Section 7.3, we show that our algorithm and results can be simply

extended to a setting where each agent of type i ∈ {1,2} reacts to the outreach program

with probability pi, where p1 6= p2.)

Note that we do not require p to be a constant. Our results not only hold for any

constant value of the sampling probability p, but also hold when p= ω( 1√
m

), where m is

the total number of resources when the test period ends. Furthermore, the assumption of

knowing the sampling probability is motivated by the fact that the outreach program is

designed by the decision-maker herself and hence an accurate estimate of the sampling

probability p is available to her. Nonetheless, in Section 3, we show that without knowing

p, achieving asymptotic optimality is not possible. See also our case study in Section 6 and

our numerical studies in Appendix K where we investigate the robustness of our proposed

algorithm to the lack of exact knowledge about p.
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Any agent who responds to the outreach program gets one unit of the resource and

reveals his realized reward to the decision-maker. 8 Here, for simplicity, we assume that the

realized reward of type i∈ {1,2} agents is either 0 or 1. This assumption can be relaxed by

letting the realized rewards take more than two values. Let si, i∈ {1,2}, be the (random)

number of agents of type i that are reached/sampled during the test period. Note that s1

is drawn from a binomial distribution with parameters h and p (i.e., s1 ∼ Bin(h,p)) and

s2 ∼Bin(`, p). The set of realized rewards of si sampled agents is denoted by ρi ∈ {0,1}si,

where ρi = {ρi,1, ρi,2, . . . , ρi,si} and ρi,j, j ∈ [si], is drawn from a Bernoulli distribution

with the success probability of ri. Throughout the paper, we denote (s1, s2) and (ρ1,ρ2)

with s and ρ, respectively. In addition, we refer to ψ := (s,ρ) as the sample information

that decision-maker obtains during the test period. (Note that ρ depends on the random

variables s. But, to simplify the exposition, we do not show the dependency of ρ to s.)

2.2. Online Allocation Period

Having described the test period, we are now ready to explain the allocation period. Let

m ≥ 2 be the number of available resources at the beginning of the allocation period.

During this period, the rest of the market, i.e., h−s1 type 1 agents and `−s2 type 2 agents

arrive one by one over time in an arbitrary order. We denote the number of agents of type i

during the allocation period with ni and we further denote (n1, n2) with n. Let zt ∈ {1,2},

t = 1,2, . . . , be the type of the agent in time period t within the allocation period. The

agent type zt, which can represent any available information at the time of the decision,

is observable to the decision-maker at time period t, but given the online nature of the

problem during the allocation period, zt′ for any t′ > t is not observable at time period t.

We define I = (zt)t≥1 as the online arrival sequence and note that ni = |{t≤ |I| : zt = i}|,

i∈ {1,2}.

Upon the arrival of the agent of type zt in time period t, the decision-maker has to make

an irrevocable acceptance/rejection decision regarding that agent. If the decision-maker

accepts the agent, she allocates the agent one unit of the resource. Otherwise, no resource

will be allocated to the agent, and that agent will not come back. If the agent gets accepted,

he reveals his realized reward to the decision-maker.

8 The assumption that any agent in the test period gets a resource can be relaxed as we show in Section 7.1. More
specifically, there we show that our asymptotic result still holds when the number of resources in the test period is
in the order of ω(

√
m), which includes the case of Θ(m).
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In this work, to ease the analysis, we will focus on the continuous version of our problem,

where the resources are divisible and we are allowed to partially accept agents. We can

still capture all the core ideas regarding sample information in continuous models. For

the discrete model, our algorithm can still be applied and are asymptotically optimal as

m→∞. To deal with small values of m, one can apply a technique used in Ball and

Queyranne (2009) to randomly accept or reject agents, obtaining the same performance

guarantees in expectation.

2.3. Performance Measure

The goal of the decision-maker during the allocation period is to yield high total rewards

while being uncertain about the number and the order of agents, as well as, their expected

rewards. For an algorithm A, online arrival sequence I, and the sample information, ψ =

(s,ρ), let rewA (I,ψ) be the cumulative expected reward of algorithm A across all the time

periods. We measure the performance of an algorithm A using the following competitive

ratio (CR) definition, which compares our algorithm to the optimal clairvoyant benchmark

that knows the arrival sequence I and the expected reward of agents (ri’s) in advance.9Let

opt(I) be the optimal clairvoyant cumulative expected reward that can be obtained from

I using m units of the resource. The CR of an algorithm A is then defined as

CRA = inf
(h,`)

Eψ
[
inf
I

E[rewA (I,ψ)]

opt(I)

]
. (1)

Here, the inner expectation is with respect to (w.r.t.) any randomness in algorithm A, and

the outer expectation is w.r.t. the arrival sequence I and the sample information ψ. Note

that given (h, `), the arrival sequence I and more precisely, the number of agents of type

i ∈ {1,2} in I (denoted by ni), is random. Further, observe that in our definition of CR,

we take infimum over (i) the size of the market, i.e., h, `, and (ii) the order of arrivals in I.

3. Impossibility Results

In this section, to shed light on the challenges in our setting and the necessity of some of

the assumptions we made, we present alternative scenarios for which we show that it is

impossible to obtain a CR that goes to one as the number of resources m goes to infinity.

These scenarios are listed below.

9 Observe that the optimal clairvoyant benchmark does not know the realized rewards in advance. This optimal
clairvoyant benchmark is consistent with that used in Ball and Queyranne (2009). Nevertheless, in Section 7.2, we
discuss a stronger benchmark that knows the realized rewards. We show that under a strong clairvoyant benchmark
that knows the realized reward of agents, it is not possible to design an algorithm whose competitive ratio w.r.t. this
strong benchmark goes to one as m goes to infinity.
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• Scenario 1: No Sample Information. Consider the setting in Section 2 where the rewards

ri are unknown and the arrival sequence during the allocation period is chosen adver-

sarially. But, unlike our original setting in Section 2, the sampling probability p = 0,

and hence, no sample information is available. For this scenario, we show that the CR

is upper bounded by 1/(2 − α), where α = r2/r1 and 1/(2 − α) is the bound in Ball

and Queyranne (2009). This impossibility result highlights the importance of the sample

information in achieving the asymptotically optimal CR. See also Section 5.2 where we

show that even with p=O(1/m), the CR cannot exceed 1/(2−α).

• Scenario 2: Unknown Sampling Probability. Consider the setting in Section 2 with sample

information, unknown rewards, and adversarial arrival sequences. But, assume that the

sampling probability p is completely unknown to the decision-maker. For this scenario,

we show an upper bound of 1/(2−α) on the CR. This impossibility result emphasizes

the importance of knowing the sampling probability. Note that as stated earlier, similar

to our setting, Correa et al. (2021) also assume that the sampling probability p is known

and they crucially use the knowledge of p to design optimal algorithms for the secretary

problem.

Proposition 1 (Impossibility Results). For the scenarios 1 and 2, defined above,

the CR of any deterministic and randomized algorithm is upper bounded by 1/(2 − α),

where α= r2/r1.

The proof of Proposition 1 is presented in Section A in the appendix.

4. Online Resource Allocation Algorithm with Samples

In light of our impossibility results, here, under our original model presented in Section 2,

we present an online resource allocation algorithm that is asymptotically optimal as the

number of resources m goes to infinity; that is, the CR of our algorithm converges to one

as m goes to infinity.

In our setting, the decision-maker receives some information about the number of agents

of each type in the online arrival sequence. The decision-maker further obtains some par-

tial information about the expected reward of each type. Recall that the decision-maker

observes si samples, i∈ {1,2}, for each type i agents where s1 ∼Bin(h,p) and s2 ∼Bin(`, p).

In addition, the decision-maker observes the realized reward of si agents of type i∈ {1,2},

denoted by ρi = (ρi,1, ρi,2, . . . , ρi,si).
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Our proposed algorithm (Algorithm 1) takes advantage of both s = (s1, s2) and ρ =

(ρ1,ρ2). The algorithm uses these pieces of information to obtain an estimate of the

expected reward of each type i, denoted by r̂i. In particular, if si > 0, the algorithm simply

uses the sample average of the realized reward observed in ρi as an estimate for ri; that is,

r̂i =

∑si
j=1 ρi,j

si
i∈ {1,2} .

When si = 0, r̂i is randomly drawn from a uniform distribution in [0,1].

Having access to these estimates, the algorithm follows a protection level policy to protect

the type that has the highest estimated expected reward. The definition of a protection

level policy for type i∈ {1,2} and protection level x is stated below in Definition 1.

Definition 1 (Protection Level Policy for Type i and Protection Level x).

In this algorithm, agents of type i are always accepted unless there is no resource left.

Agents of type −i will be accepted if the number of accepted type −i agents is less than

m−x and there is resource left.10

When r̂1 > r̂2, then the algorithm assigns a protection level of x1 = min{m,s1 1−pp } for

type 1 agents, where we note that conditioned on s1, s1
1−p
p

is equal to the expected number

of type 1 agents in the online arrival sequence, i.e., n1. Recall that n1 = h− s1 and s1 ∼

Bin(h,p). On the other hand, when r̂2 ≥ r̂1, the algorithm assigns a protection level of

x2 = min{m,s2 1−pp } for type 2 agents. The description of the algorithm can be found in

Algorithm 1.

Algorithm 1 Online Resource Allocation Algorithm with Samples
Input: The number of resources m and sample information ψ= (s,ρ), where s = (s1, s2), ρ= (ρ1,ρ2), and for

any i∈ {1,2}, ρi = {ρi,1, ρi,2, . . . , ρi,si}.

1. If the number of samples for type i∈ {1,2}, i.e., si, is positive, define

r̂i =

∑si
j=1 ρi,j

si

as an estimate of the expected reward of type i ∈ {1,2}. Otherwise, r̂i ∼ uniform(0,1), where uniform(0,1) is

the uniform distribution in [0,1].

2. If r̂1 > r̂2, set the protection level x1 = min
{
m,s1

1−p
p

}
for type 1, and run the protection level policy for type

1 agents and protection level x1 as per Definition 1.

3. If r̂1 ≤ r̂2, set the protection level x2 = min
{
m,s2

1−p
p

}
for type 2 and run the protection level policy for type

2 agents and protection level x2 as per Definition 1.

10 In this algorithm, the last accepted type j ∈ {1,2} agent may get accepted partially.
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We highlight that in the described algorithm, the adversary’s choice of h and ` influences

the algorithm’s estimate for the expected rewards, as well as, the protection levels x1 and

x2. Furthermore, the adversary’s choices impact the algorithm’s decision about protecting

a certain type. Note that when the estimated expected rewards r̂i, i∈ {1,2}, are noisy, the

algorithm may end up protecting a wrong type (i.e., the type with a lower reward). Despite

these challenges, as we show in Theorem 1 and Proposition 2, Algorithm 1 manages to

perform very well. Theorem 1 presents a lower bound on the CR of Algorithm 1 for any

value of m and p, where we recall that m is the number of resources and p is the sampling

probability. Further, Proposition 2 shows how this lower bound scales with m and p as m

goes to infinity. In particular, Proposition 2 shows that the asymptotic CR of Algorithm

1 is 1−Θ(1/(p
√
m)).

Later in Section 5, we show this bound is tight in the sense that no randomized or deter-

ministic algorithm can break the asymptotic bound of 1−Θ(1/(p
√
m)). The asymptotic

optimality of Algorithm 1 is quite remarkable given the simplicity of the algorithm and our

strong adversary. Note that the adversary through choosing the market size h and ` can

control to what extent the sample information is informative. When h and ` are both large,

the number of agents in the sample is also large and hence the sample information can be

very useful in reducing uncertainty in demand and expected rewards of agents. However,

when either h or ` is small—even when the number of resources m goes to infinity and the

sampling probability is constant—the sample information may not be very informative, as

it does not even allow the decision-maker to obtain an accurate estimate of rewards. As

a result, our algorithm may end up protecting the wrong type. Thus, the fact that our

simple algorithm obtains an asymptotically tight CR of 1−Θ(1/(p
√
m)) is outstanding.

In addition, Algorithm 1 does not use the realization of the reward of arriving agents

during the allocation period. One may wonder if using such information would help us

design a better algorithm. The answer is no. Our upper bound result in Section 5 shows that

adaptive algorithms that further use the realized rewards of agents during the allocation

period cannot obtain a better asymptotic CR. Intuitively speaking, this is because the

arrival sequence is chosen by an adversary who can manipulate how fast the rewards are

learned by choosing the order of arrivals. That is, the adversary can prevent the decision-

maker to have a good estimate about the rewards when having such estimates is crucial.
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Therefore, using the realized rewards during the allocation period does not give algorithms

an edge.

Nonetheless, one can consider an adaptive version of Algorithm 1. In this algorithm,

estimates of rewards r̂i are updated once an agent is accepted: we can again let r̂i be the

empirical mean of realized rewards of all agents of type i who receives the resource. At any

time t, if we observe r̂i > r̂j, we give type i agent protection level xi = min{m−Zj,t, si 1−pp −
Yi,t}, where Yi,t is the number of type i agents arrived before time t and Zj,t is the number

of type j agents accepted before time t. In Section 6, via our case study, we evaluate this

adaptive algorithm, and we show that even in realistic arrival scenarios, the CR of this

adaptive algorithm is almost the same as that of Algorithm 1, verifying our theoretical

result.

4.1. Competitive Ratio of Algorithm 1

Here, we present a lower bound on the CR of Algorithm 1. To do so, we start with the

following lemma. This lemma shows that to characterize a lower bound on the CR of the

algorithm, it suffices to only consider ordered arrival sequences in which any type 2 agent

arrives before any type 1 agent. The proofs of all the lemmas in this section are presented

in Section B in the appendix.

Lemma 1 (Worst Order). For any realization n1, n2, where ni is the number of type

i agents in the arrival sequence, let Iorder be an ordered arrival sequence under which n2

type 2 agents arrived first, followed by n1 type 1 agents. Let I be any arrival sequence that

contains n2 type 2 agents and n1 type 1 agents. Then, under Algorithm 1 (denoted by A),

we have
E[rewA (Iorder,ψ)]

opt(Iorder)
≤ E[rewA (I,ψ)]

opt(I)
. (2)

With a slight abuse of notation, let opt(n) be the optimal clairvoyant cumulative

expected reward under an online ordered arrival sequence I with ni ∈ {1,2} type i agents.

Similarly, rewA (n,ρ) is the (expected) reward of Algorithm 1 under ρ and an online

ordered arrival sequence I with ni type i agents. Then, Lemma 1 allows us to rewrite the

CR of Algorithm 1 as follows

CRA = inf
(h,`)

Eψ
[
inf
I

E[rewA (I,ψ)]

opt(I)

]
= inf

(h,`)
Eψ
[
rewA (n,ρ)

opt(n)

]
= inf

(h,`)
En
[
E[rewA (n,ρ)]

opt(n)

]
. (3)
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Note that in the inner expectation of the last expression, we take expectation w.r.t. any

randomness in the algorithm and ρ given a realization of n.

To bound CRA, we define the following good event, denoted by, G(ψ; (h, `)), as the event

under which Algorithm 1 correctly assumes that type 1 agents have a higher expected

reward than type 2 agents when the sample information is ψ and the market size for type

1 and 2 agents is respectively h and `:

G(ψ; (h, `)) = {r̂1 > r̂2}=

{∑s1
j=1 ρ1,j

s1
>

∑s2
j=1 ρ2,j

s2

}
. (4)

Then, given a realization of s or equivalently n, we have

E[rewA (n,ρ)] = E[rewA (n,ρ) ·1(G(ψ; (h, `)))] +E[rewA (n,ρ) ·1(GC(ψ; (h, `)))]

=E[rewA (n,ρ)
∣∣G(ψ; (h, `))] ·Pr(G(ψ; (h, `)))

+E[rewA (n,ρ)
∣∣GC(ψ; (h, `))] ·Pr(GC(ψ; (h, `))) , (5)

where 1(A) is 1 if an event A occurs and zero otherwise. Here, given n = (n1, n2),

the expectation is taken on ρ1,j ∼ Ber(r1) for j ∈ [s1] and ρ2,j ∼ Ber(r2) for j ∈ [s2],

where Ber(r) is a Bernoulli distribution with a success probability of r ∈ [0,1]. Further,

G(ψ; (h, `)) is the good event defined in Equation (4). In Equation (5), the expression

E[rewA (n,ρ)
∣∣G(ψ; (h, `))] presents the reward of Algorithm 1 under a specific realization

of n when the good event G(ψ; (h, `)) happens. Note that for a given realization of n and

under the good event, the algorithm’s action and hence its reward does not depend on

ρ. This is because when the good event happens, the algorithm assigns a protection level

x1 to type 1, where x1 only depends on s1, not ρ. Finally, in Pr(G(ψ; (h, `))), we take

expectation with respect to ρ and any randomness in the algorithm in defining r̂i, i∈ [2],

given a realization of n.

To bound the CR of Algorithm 1, we consider the following three cases based on the

number of type 1 and 2 agents chosen by the adversary (i.e., h and `):

Case 1. In this case, the number of type 1 agents is small (less than
√
m). That is,

(h, `)∈R1, where R1 = {(h, `) : h<
√
m,`≥ 0}.

Case 2. In this case, while the number of type 1 agents is large, the number of type 2

agents is small. That is, (h, `)∈R2, where R2 = {(h, `) : h≥
√
m,` <

√
m}.

Case 3. In this case, the numbers of both type 1 and 2 agents are large. That is,

(h, `)∈R3, where R3 = {(h, `) : h≥
√
m,`≥

√
m}.
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Observe that the worst case CR of Algorithm 1 can be written as

min
i∈[3]

{
inf

(h,`)∈Ri
En
[
E[rewA (n,ρ)]

opt(n)

]}
, (6)

where by Equation (5), for any i∈ [3], we have

inf
(h,`)∈Ri

En
[
E[rewA (n,ρ)]

opt(n)

]
= inf

(h,`)∈Ri

{
En

[
E[rewA (n,ρ)

∣∣G(ψ; (h, `))] ·Pr(G(ψ; (h, `)))

opt(n)

]

+En

[
E[rewA (n,ρ)

∣∣GC(ψ; (h, `))] ·Pr(GC(ψ; (h, `)))

opt(n)

]}
.

In the rest of the paper, we use the following shorthand notation to simplify the exposition:

E[rewA (n,ρ)
∣∣G(ψ; (h, `))] = rewA (n,ρ;G)

E[rewA (n,ρ)
∣∣GC(ψ; (h, `))] = rewA

(
n,ρ;GC

)
.

With this notation, we have

inf
(h,`)∈Ri

En
[
E[rewA (n,ρ)]

opt(n)

]
= inf

(h,`)∈Ri

{
En

[
rewA (n,ρ;G) ·Pr(G(ψ; (h, `)))

opt(n)

]

+En

[
rewA

(
n,ρ;GC

)
·Pr(GC(ψ; (h, `)))

opt(n)

]}
. (7)

Having defined this shorthand notation, in the following, we present three main lem-

mas: Lemmas 2, 3, and 4, where each of these lemmas provides a lower bound on

inf(h,`)∈Ri En

[
E[rewA(n,ρ)]

opt(n)

]
for one of the regions Ri, i∈ [3].

Lemma 2 (Region R1). Let R1 = {(h, `) : h<
√
m,`≥ 0}. Then, we have

inf
(h,`)∈R1

En

[
E[rewA (n,ρ)]

opt(n)

]
≥CR1 ,

where

CR1 = min

{(
1− 1− p

p
√
m

)+

,1− r1− r2
(r1− r2) + r2

√
m

}
,

and y+ = max{y,0}.

Lemma 2 shows when (h, `) falls into region R1, the CR of Algorithm 1 is lower bounded

by CR1. From the expression of CR1, the asymptotic bound in regionR1 is 1−Θ(1/(p
√
m)),

and based on the result we will present in Section 5, this bound is tight with respect to
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both p and m. The bound of 1−Θ(1/(p
√
m)) is achieved when the total number of arrivals

is less than m (i.e., n1 +n2 ≤m ). When the total number of arrivals is greater than m, a

better asymptotic bound of 1−Θ(1/
√
m)—which does not depend on p—can be obtained.

To show Lemma 2, by Equation (7), we need to bound En
[
rewA(n,ρ;G)·Pr(G(ψ;(h,`)))

opt(n)

]
and

En
[
rewA(n,ρ;GC)·Pr(GC(ψ;(h,`)))

opt(n)

]
respectively. As in this region, h can be very small, we cannot

use any concentration inequality to bound the expectation over n. Instead, we bound

rewA(n,ρ;G)
opt(n)

and
rewA(n,ρ;GC)

opt(n)
for any realization of n by considering different ranges for the

number of agents of type i∈ [2] in the online arrival sequence.

Lemma 3 (Region R2). Let R2 = {(h, `) : h≥
√
m,` <

√
m}. Then, we have

inf
(h,`)∈R2

En

[
E[rewA (n,ρ)]

opt(n)

]
≥CR2 ,

where

CR2 = min

{(
1− 1√

m

)(
1− 1

m

)
,
h1
m

}
.

Here, h1 = h0(1− p)−
√
p(1− p)h0 − β√

h0
, h0 = min{y ≥ 0 : p(m−

√
m)

1−p ≥ yp+
√
y}, and β =

0.4215 · p
2+(1−p)2
p(1−p) .

Lemma 3 shows when (h, `) falls into region R2, the CR of Algorithm 1 is lower bounded

by CR2. In the expression of CR2, h0 = m−
√
m

1−p + 1
2p2 +

√
1

4p4 + (m−
√
m)

p2(1−p) , and as p= ω(1/
√
m),

we have h0 = m
1−p −Θ(

√
m

1−p), h1 = m−Θ(
√
m), and h1

m
= 1−Θ(1/

√
m). This implies that

the asymptotic bound in region R2 is 1−Θ(1/
√
m), which is tight with respect to m, but

is not related to p.

To show Lemma 3, we consider three factors which contribute to the loss of Algorithm 1,

where for a realization of n and ρ, the (normalized) loss of Algorithm A is opt(n)−rewA(n,ρ)
opt(n)

=

1 − rewA(n,ρ)
opt(n)

. These factors are: (i) protecting the wrong (low-reward) type, (ii) over-

protecting the right (high-reward) type, and (iii) under-protecting the right type. In case

(i), as the number of type 2 agents is very small (` <
√
m), the loss caused by wrongfully

protecting type 2 agents is bounded by 1/
√
m, and hence, the CR is lower bounded by

1− 1/
√
m. This bound is obtained by considering the worst case among any realization of

n1 and n2.

To bound the expected loss caused by over- or under-protecting type 1 agents for cases

(ii) and (iii), we use concentration inequalities, as the number of type 1 agents is large under
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regionR2. In doing so, we face one main challenge: In computing the expected (normalized)

loss (or equivalently the expected CR), it is hard to compute the expectation w.r.t. n as

both the reward/loss of the algorithm (the numerator in the CR, i.e., rewA (n,ρ)) and

the optimal clairvoyant solution (the denominator in the CR, i.e., opt(n)) are random

variables. Recall that after choosing h and `, the number of agents ni’s in the arrival

sequence are random.

To overcome this challenge, based on the value of h, we split the region R2 into two

sub-regions R2 and R2, where R2 = {(h, `) : (h, `) ∈R2, h < h0} and R2 = {(h, `) : (h, `) ∈

R2, h≥ h0}. In each of the sub-regions, we can deal with the aforementioned expectation

challenge by bounding the optimal clairvoyant solution in the denominator. The splitting

allows us to (i) provide a tight bound on opt(n) in each of the sub-regions. This then

further enables us to only focus on computing the expectation for the numerator. We show

that for the sub-region R2, the CR can be lower bounded by (1− 1√
m

)(1− 1
m

), and for

the sub-region R2, the CR can be bounded by min{1− 1√
m
, h1

m
}. As the former term (i.e.,

(1− 1√
m

)(1− 1
m

)) is dominated by the latter (i.e., min{1− 1√
m
, h1

m
}), we have the CR for

R2 is at least min
{(

1− 1√
m

)(
1− 1

m

)
, h1

m

}
.

Lemma 4 (Case 3: region R3). Let R3 = {(h, `) : h ≥
√
m,` ≥

√
m}. Then,

inf(h,`)∈R3 En

[E[rewA(n,ρ)]
opt(n)

]
is at leastCR3, m≥m1,

CR3, m<m1.
,

where

CR3 = (1− 1

m
)2(1− 1

(
√
mp−m1/4)2

)2W

CR3 = V ·min

{
(1− 1

m2
)W,

1

2
(1− 1

m2
)W +

1

2
min

{
(1− 1

`20
)α,1− 1− p

pm
`1

}}
.

Here, V = 1 − 2(1 − p)
√
m, W = min

{
1− 1√

m
, h1

m

}
, h1 = h0(1 − p) −

√
p(1− p)h0 − β√

h0
,

β = 0.4215 · p
2+(1−p)2
p(1−p) , h0 = min{y ≥ 0 : p(m−

√
m)

1−p ≥ yp+
√
y}, m1 = miny≥1/p4

{
y : r1 − r2 >

2

y1/8
√
y1/4p−1

}
, `1 =

√
p(1− p)`0 + β√

m
+ `0p, and `0 = min{y : (1− p)y−√y≥m}.

Remark 1. We provide the exact formula for `0 and m1 here. Note that `0 = min{y :

(1− p)y−√y≥m} can be written as m
1−p +

1+
√

4m(1−p)+1

2(1−p2)
. In addition, m1 = miny≥1/p4

{
y :
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r1 − r2 > 2

y1/8
√
y1/4p−1

}
can be written as m1 = ( b+

√
b2+4ac
2a

)4, where a= (4− 3p)p, b= (1−

p)(4 − 3p)
1
2 and c = 4(1−p)2

(r1−r2)2 . Further note that as m→∞, inf(h,`)∈R3 En

[E[rewA(n,ρ)]
opt(n)

]
=

CR3 = 1−max{Θ(1/
√
m),Θ(1/(p2m))}.

Lemma 4 shows that when (h, `) falls into region R3, the CR of Algorithm 1 is lower

bounded by CR3. From the expression of CR3 and Remark 1, the asymptotic bound in

region R3 is 1−max{Θ(1/
√
m),Θ(1/(p2m))}. This shows that our algorithm has a better

asymptotic CR in region R3, compared with region R1. (Recall that the asymptotic CR in

region R1 is 1−Θ(1/p
√
m) and p= ω(1/

√
m).) The fact that region R1 is more challenging

is because under region R1, the number of type 1 agents, i.e., h, is small and hence the

sample information may not be informative enough.

To show Lemma 4, the main idea is similar to the one in region R2. As the number of

type 1 agents is still large in R3, to bound the loss caused by over- or under-protecting

type 1 agents, we can use concentration inequalities to show that either the bad situation

(i.e., over- or under-protecting type 1 agents) does not happen or if it happens, it does not

have a significant amount of loss.

However, as the number of type 2 agents is also large in R3, to bound the loss caused

by wrongfully protecting type 2 agents, we need to further split the analysis into two

parts based on the number of resources m. When m≥m1, we show that the probability

that Algorithm 1 wrongfully protects type 2 agents is small because, in this case, we have

enough samples to get an accurate estimation of the reward of each type. When m<m1,

we directly compute this loss. The main challenge is still dealing with the expectation of

a fraction of two random variables. To handle this challenge, we again split region R3

into two sub-regions: R3 and R3, where R3 = {(h, `) : (h, `)∈R3, ` > `0} and R3 = {(h, `) :

(h, `) ∈ R3, ` ≤ `0}. By providing a proper bound for the optimal clairvoyant solution in

the denominator, we then show that the CR under region R3 is at least CR3 and the CR

under region R3 is at least CR3.

Next, by putting the results of Lemmas 2, 3, and 4, we get the following theorem.

Theorem 1 (Competitive ratio of Algorithm 1). Consider the model presented in

Section 2, where the expected rewards of ri, i ∈ {1,2} are unknown to the decision-maker.

Let h0 = min{y ≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}= Θ( m

1−p), h1 = h0(1− p)−
√
p(1− p)h0 − β√

h0
=

1−Θ(
(1+
√
p)√

m
), V = 1−2(1−p)

√
m = 1−Θ((1−p)

√
m), W = min

{
1− 1√

m
, h1

m

}
= 1−Θ( 1√

m
),
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`0 = min{y : (1− p)y −√y ≥m} = Θ( m
1−p), `1 =

√
p(1− p)`0 + β√

m
+ `0p = 1−Θ(

(1+
√
p)√

m
),

α = r2
r1
> 0, and β = 0.4215 · p

2+(1−p)2
p(1−p) . Then, for any m ≥ 2 and p ∈ (0,1), the CR of

Algorithm 1, denoted by CRA, is lower bounded by:

CRA ≥

min
{

CR1,CR2,CR3

}
, m≥m1,

min
{

CR1,CR2,CR3

}
, m<m1.

,

where m1 = miny≥1/p4

{
y : r1− r2 > 2

y1/8
√
y1/4p−1

}
, and

CR1 = min

{(
1− 1− p

p
√
m

)+

,1− r1− r2
(r1− r2) + r2

√
m

}
,

CR2 = min

{(
1− 1√

m

)(
1− 1

m

)
,
h1
m

}
,

CR3 = (1− 1

m
)2(1− 1

(
√
mp−m1/4)2

)2W

CR3 = V ·min

{
(1− 1

m2
)W,

1

2
(1− 1

m2
)W +

1

2
min

{
(1− 1

`20
)α,1− 1− p

pm
`1

}}
.

To provide insights into the lower bound in Theorem 1, before we formally present the

asymptotic CR of Algorithm 1, we provide an example to see how the CR of Algorithm 1

vary with m and p.

4.2. A Simple Example: Evaluating the Lower Bound in Theorem 1

Example 1. Consider a setting in which r1 = 0.9, and r2 is uniformly drawn from the

interval (0.5,0.9); that is, r2 ∼Uniform(0.5,0.9). Here, we would like to study how the true

CR (which will be defined below) of Algorithm 1 and its lower bound in Theorem 1 change

as a function of m and p. To do so, we consider two scenarios. In first scenario, we fix the

sampling probability p at 0.3, and we let the number of resources m∈ {10,35, . . . ,360,385}.

For each value ofm, we generate 300 instances where an instance is determined by a realized

value of r2 ∼Uniform(0.5,0.9). In the second scenario, we fix the number of resources m to

be 200 and we let the sampling probability p ∈ {0.1,0.15, . . . ,0.55,0.6}. For each value of

p, we generate 300 instances where again an instance is determined by the realized value

of r2.

For each instance of both scenarios, we then compute three quantities : (i) the true CR of

Algorithm 1, (ii) the lower bound on CR of Algorithm 1, which is presented in Theorem 1,

and (iii) 1/(2−r2/r1) = 1/(2−α). The true CR of the algorithm is obtained by considering
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all the possible values for h and `, and only focusing on ordered arrival sequences in which

type 2 agents arrive first. Note that focusing on ordered arrival sequences is without loss

of generality as shown in Lemma 1. The last quantity 1/(2−α) is the optimal CR when

ri, i ∈ [2], is known, but no sample information is available. We use this quantity as a

benchmark.

Figure 1 shows the expected value of these three quantities versus m in the first scenario

where we fix the sampling probability p = 0.3. Here, the expectation is with respect to

r2. The figure shows both the true CR and its lower bound in Theorem 1 improves as m

increases. Our lower bound, however, gets tighter as m increases. Nonetheless, our lower

bound is quite loose when m is small. This is mainly because of our loose lower bound

for CR1, where we recall that CR1 is the lower bound on the CR of the algorithm when

h≤
√
m. To characterize CR1, we present a universal lower bound for any realization n,

which leads to a loose bound; see Lemma 2 and its proof.

What is quite interesting is that the true CR of the algorithm exceeds the benchmark of

1/(2−α) when m≥ 35. Recall that the benchmark is the optimal CR when ri’s are known,

but sample information is not available. This highlights that for large enough m, the value

of the sample information outweighs the drawbacks of not knowing the true rewards.

Figure 2 shows the average of these three quantities versus p in the second scenario

where m= 200. The figure shows that our lower bound gets tighter as p increases. When

p≥ 0.4, we can find that the lower bound is almost equal to the true CR of Algorithm 1.

In addition, with m= 200, even if the sampling probability is as small as 0.1, the true CR

of Algorithm 1 is still higher than the benchmark. In addition, we observe that both the

lower bound on the CR (given by Theorem 1) and the true CR of Algorithm 1 are larger

in the high sampling probability case.

4.3. Asymptotic Competitive Ratio of Algorithm 1

Here, we present an asymptotic CR of Algorithm 1 as a function of m and p when m goes

to infinity.

Proposition 2 (Asymptotic Competitive Ratio of Algorithm 1). Consider the

model presented in Section 2, where the expected rewards of ri, i ∈ {1,2} is unknown to

the decision-maker. As m goes to infinity, the worst-case CR of Algorithm 1 scales with

1−Θ(1/(p
√
m)).
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Figure 1 p= 0.3

Figure 2 m= 200

Figure 3 The CR of Algorithm 1, the lower bound on the CR of Algorithm 1 presented in Theorem 1, and the

bound in Ball and Queyranne (2009) (i.e., E[1/(2−α)]). Here, r1 = 0.9, and r2 is uniformly drawn from the

interval (0.5,0.9).

Proposition 2 is shown in Section C in the appendix. Proposition 2 shows that the CR

of Algorithm 1 goes to one as m goes to infinity if p= ω(1/
√
m). The asymptotic CR of

the algorithm (i.e., 1 − Θ(1/(p
√
m))) is indeed tight for any p = ω(1/

√
m); see Section

5 for an upper bound on the CR of any deterministic and randomized algorithms when

p = ω(1/
√
m). 11 Note that even when p is a constant, it is not obvious why achieving

asymptotic optimality is possible using Algorithm 1. Suppose that m is large and p is

constant. If the adversary chooses a large market size (i.e., when both h and ` are large), for

a constant value of p, the number of agents in the sample set is large, providing significant

information. However, the market size is chosen adversarially and hence it can be small

either for type 1 or 2 agents, and in such a case, the sample information is not very

11 For the case where p=O(1/
√
m), in Section 5, we further present a non-asymptotic upper bound. This bound also

shows that when p=O(1/m), no randomized and deterministic algorithms can be asymptotically optimal.
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informative. (Recall that the asymptotic CR of Algorithm 1 is governed by region R1,

where the number of type 1 agent is low.) Nevertheless, it turns out Algorithm 1 can very

well handle the difficult cases where the market size is small, achieving an asymptotically

optimal CR.

5. Upper Bound on the Competitive Ratio of All Deterministic and
Randomized Algorithms

In our problem setting, the average rewards of agents are unknown, but the decision-maker

can learn about them with the help of the sample information. In this section, we relax

the problem a little bit by considering setting in which the decision-maker knows r1 and r2

in advance. We present an upper bound on the CR of any deterministic and randomized

algorithm in the aforementioned relaxed setting when the number of resources m goes to

infinity. Clearly, any upper bound for this relaxed setting is also a valid upper bound for

our original setting in Section 2.

First, in Section 5.1, we consider the case where p = ω(1/
√
m). For the case of p =

ω(1/
√
m), we present an upper bound on the CR of any deterministic and randomized

algorithms under the relaxed setting. We show that the CR of any randomized and deter-

ministic algorithm is upper bounded by 1−Θ(1/(p
√
m)) when p= ω(1/

√
m), implying the

asymptotic optimality of Algorithm 1; see Proposition 2.

Put differently, the asymptotic CR of our algorithm—which does not use any feedback

throughout the allocation period to tune its estimates for ri’s—matches the upper bound

on the CR of any deterministic and randomized algorithm in the relaxed setting where ri’s

are known in advance. This implies that asymptotically, feedback during the allocation

period does not add any value in improving the CR of algorithms. The fact that feedback

throughout the allocation period is not useful is due to the adversarial nature of arrival

sequences. Under adversarial arrivals, the decision-maker cannot control for what type of

agents she receives feedback; this is governed by the adversarially-chosen order.

Second, in Section 5.2, we consider the case where p=O(1/
√
m). For this case where the

sampling probability is quite small even for large values of m, we present a non-asymptotic

upper bound. Our bound shows that when p = O(1/m), the CR of any randomized and

deterministic algorithm is upper bounded by 1/(2−α) as m increases. This is mainly due

to the lack of adequate sample information when p=O(1/m).
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5.1. Upper Bound for p= ω(1/
√
m)

Consider the case of p = ω(1/
√
m). Under this case, in Theorem 2, we first present an

upper bound of 1 − Θ(1/(p
√
m)) on the CR of any deterministic algorithm under the

relaxed setting. Second, in Theorem 3, we show that the same upper bound holds for any

randomized algorithm.

Theorem 2 (Upper Bound of Any Deterministic Algorithm for p= ω(1/
√
m)).

Consider a special case of our model, presented in Section 2, where the expected rewards

of ri, i ∈ {1,2} is known to the decision-maker. When p = ω(1/
√
m), as the number

of resources m goes to infinity, any deterministic algorithm has the CR of at most

1−Θ(1/(p
√
m)).

The proof of Theorem 2 is presented in Section D. To show Theorem 2, we construct the

following input family F: Let h= 0 and h̄= pm. The input family F contains all (h, `) such

that h ∈ [h, h̄] and ` = 10000·m
p

. For any h ∈ [h, h̄], we then denote Ih as a random arrival

sequence under which n2 type 2 agents arrive followed by n1 type 1 agents, where we recall

that n1 ∼Bin(h,1− p), n2 ∼Bin(`,1− p). We characterize an upper bound on the CR of

any deterministic algorithm under the family F.

In this family, because `�m, we know there will be more than m type 2 agents showing

up. Therefore, the number of type 2 agents in the sample does not impact the accep-

tance/rejection decisions. Then, given that the online arrival sequences Ih are all ordered,

any deterministic algorithm has to decide about how many type 2 agents they accept pro-

vided that they observe s1 samples from type 1 agents. Put differently, any deterministic

algorithm can be represented by a mapping that maps s1 to the number of type 2 agents

it accepts. The proof of Theorem 2 then shows that the best CR under any such map-

ping is 1−Θ(1/(p
√
m)). The main challenge in showing this result is characterizing the

optimal mapping. To overcome this, instead of characterizing the optimal mapping, we

first construct a specific mapping under which upon observing s1 type 1 agents, we accept

m− s1 1−pp type 2 agents. Observe that s1
1−p
p

is the expectation of the number of type 1

agents who will arrive given that there are s1 type 1 agents in the sample. Lemma 13 shows

that under this mapping, the CR is at most 1−Θ(1/(p
√
m)). To complete the proof of

Theorem 2, we then compare any other mappings with this specific mapping; see Lemma

14.

Next, we derive an upper bound on the CR of all randomized algorithms.
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Theorem 3 (Upper Bound of Any Randomized Algorithms for p= ω(1/
√
m)).

Consider a special case of our model, presented in Section 2, where the expected rewards

of ri, i ∈ {1,2} is known to the decision-maker. Then, when p = ω(1/
√
m), as the

number of resources m goes to infinity, any randomized algorithm has the CR of at most

1−Θ(1/(p
√
m)).

To show Theorem 3, unfortunately, we cannot use Von Neuman/Yao principle Seiden

(2000). This is because in our setting, even when the input (h, `) is realized, due to our

sampling procedure, the online arrival sequence is still random. This is different from Von

Neuman/Yao principle, because Von Neuman/Yao principle can only be applied to the

model without any randomness. Nonetheless, in Lemma 15, we derive a result similar to

the Von Neuman/Yao principle that can be applied to our setting. We then apply Lemma

15 by constructing a distribution over the input family F introduced above. This leads to

the desired upper bound. See Section E for the proof of Theorem 3.

5.2. Non-asymptotic Upper Bound for any p

In the previous section, we give a tight asymptotic upper bound for p= ω(1/
√
m). There

are two remaining questions: (i) Does there exist any non-asymptotic upper bound (even

if it is loose)? (ii) What is the asymptotic upper bound when p goes to zero very fast as

m grows? In this section, we try to answer these two questions.

The following theorem (Theorem 4) presents a non-asymptotic upper bound on the CR

of any deterministic or randomized algorithms as a function p and m. The theorem further

shows that when functions p= O(1/m), achieving asymptotic optimality is not possible.

With p=O(1/m), the asymptotic upper bound is equal to 1
2−α , which is the bound in Ball

and Queyranne (2009). This shows that when p goes to 0 very fast, the sample information

is not adequate enough to make an impact. We note that the upper bound in Theorem 4

can be loose because to compute the upper bound, we consider a relaxed setting where the

rewards are known to the decision-maker. Even so, in light of the impossibility results in

Theorem 4, in Section J, we present a simple algorithm whose CR is 0.5 for any value of

p and m. While this CR does not match the upper bound in Theorem 4, the CR is tight

when r2→ 0 and p=O(1/m).

Theorem 4 (Non-Asymptotic Upper Bound of Any Algorithms for any p).

Any deterministic or randomized algorithm cannot achieve a CR better than
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m
m+min{h̃,m}(1−α) + 1

h̃2 , where h̃ is the smallest integer such that h̃p +
√
h̃ log(h̃) ≥ 1, and

α= r2/r1. In addition, when p=O(1/m), no algorithm can obtain a CR better than 1
2−α

as m→∞.

The proof is in Section F. Figure 4 depicts the upper bound in Theorem 4 versus m

with p= 1/
√
m and p= 1/m, respectively. Here, r1 = 0.9 and r2 = 0.5. As a benchmark,

in both figures, we also include 1/(2− r2/r1), which is the bound in Ball and Queyranne

(2009). As expected, we observe that when p = 1/m, the upper bound converges to the

benchmark. When p= 1/
√
m, however, the upper bound goes to 1 because this bound is

loose.

To show Theorem 4, we construct an input family F1 as follows: The input family F1

contains all (h, `) such that h ∈ [0, bm/pc] and ` = d10000·m
p
e. For any h ∈ [0, bm/pc], we

then denote Ih as an ordered random arrival sequence under which n2 ∼ Bin(`,1 − p)
type 2 agents arrive followed by n1 ∼ Bin(h,1− p) type 1 agents. We then show that no

algorithm can do well simultaneously on arrival sequences Ih for any h ∈ [0, h̃], where h̃

is the smallest integer such that h̃p+
√
h̃ log(h̃)≥ 1. (Asymptotically, h̃= Θ(1/p)) Under

these arrival sequences, with high probability, s1 = 0. But these sequences vary a lot in

terms of the number of type 1 agents. Yet it is not possible to distinguish them using the

sample information.

6. A Case Study on COVID-19 Dataset

In this section, we do a case study in which we apply Algorithm 1 to the COVID-19-

associated hospitalizations problem in the US. We use Algorithm 1 to allocate hospital

resources (e.g., a medicine) to arriving COVID-19 patients sequentially. This case study

allows us to evaluate Algorithm 1 in real-world inspired settings. It further allows us to

see how robust the algorithm is to the estimation errors in the sampling probability p. We

observe that the average CR of the algorithm even for small values of m (m< 50) is at least

0.88, and the algorithm maintains its performance when it does not know the true value

of the sampling probability. Further, we demonstrate the value of the sample information

and running a test period by comparing our algorithm with a benchmark that does not

use the sample information.

Dataset. Here, we use the “Laboratory-Confirmed COVID-19-Associated Hospital-

izations” dataset. This dataset contains the number of bi-weekly cases of COVID-19-

associated hospitalizations in the US from March 7th, 2020 to February 5th, 2022 across
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Figure 4

Figure 5

Figure 6 (a) Upper bound in Theorem 4 for p= 1/
√
m and p= 1/m, and the bound in Ball and Queyranne

(2009). Here, r1 = 0.9, and r2 = 0.5. (b) Number of middle-age patients and senior patients over weeks

five age groups of patients: 0-4 years, 5-17 years, 18-49 years, 50-64 years, and 65+ years.

Because the number of 0-17 years old patients is small, we discard them in our analysis.

We then consider two groups/types of patients: middle-age patients (18-64 years), and

senior patients (65+ years). In our studies, the middle-age patients are considered to be

the low-reward agents (i.e., type 2 is our setting), and senior patients are considered to

be high-reward agents (i.e., type 1 in our setting). This assumption is partly motivated

by high death-rate of senior patients when contracting COVID-19 (The-New-York-Times

2022).

Simulation setup. In our studies, given the description of our dataset, we consider the

allocation problem of a resource (e.g., certain medicine) over the course of two weeks, where

each resource can be assigned to at most one patient and each patient needs one unit of the

resource. For each such period, we determine the number of hospitalized patients of the two

aforementioned types (i.e., h and `) using our dataset. (Note that we have 83 periods in our

dataset.) The value of h and ` over 83 periods can be found in Figure 5. At the beginning

of each of the periods, we observe the (realized) effectiveness of the resource for a sample of
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hospitalized patients, where each of the (h+ `) hospitalized patients falls into the sample

with probability p. These sampled patients are, for example, the patients that arrive at

the beginning of the two-week period during which rationing the resource has not started

yet. Let n1 and n2 be the number of hospitalized patients of types 1 and 2 who did not

fall into the sample. We assume that the order over these n1 +n2 patients are completely

random. That is, we consider uniform permutations over these patients, modeling more

realistic scenarios where the order over patients are not chosen adversarially.

We consider 9 problem classes where each problem class is determined by two parameters

(p, γ). Here, p ∈ {0.1,0.15,0.2} is the sampling probability, and γ ∈ {0.3,0.5,0.7} deter-

mines the scarcity of the resource. In particular, we set m= γ · (ĥ+ ˆ̀), where ĥ and ˆ̀ are

respectively the number of type 1 and type 2 patients in the previous period (i.e., the last

two weeks). By setting m in this way, we would like to capture the hospital’s inventory

planning decisions based on the most recent observed demand. Further, in choosing the

values for the number of resources m, we let γ be less than one. This allows us to model

scenarios where resources are scarce. When resources are not scarce, the problem is not

challenging.

For each problem class, we generate 1000 instances, where each instance is determined by

(n1, n2) and an order over n1 +n2 patients. For each of the 9 problem classes, we evaluate

the performance of four algorithms: (i) Algorithm 1 that has access to the true value of p,

(ii) an algorithm that does not use sample information (which we will define later in this

section), (iii) an adaptive version of Algorithm 1 that has access to the true value of p (see

Section 4 for the description of this algorithm), and (iv) Algorithm 1 that has only access

to the noisy estimate of p, denoted by p̂, and uses p̂ in place of p. Here, p̂∼Uniform(p, p̄),

E[p̂] = p, and standard error of (p̂) is set to 0.3p. For example, if p= 0.1, we have p≈ 0.05

and p̄≈ 0.15.

The second algorithm is similar to Algorithm 1 in the sense that it also assigns protection

levels to either type 1 or type 2 agents. But, unlike Algorithm 1, it does not use the sample

information to set the protection level and decide what type of agents to protect. This

algorithm, which is parameterized by x, works as follows: with a probability 1/2, it assigns

a protection level of x ∈ {0,1, . . . ,m} to type 1 agents. Otherwise, it assigns a protection

level of x to type 2 agents. The optimal (CR-maximizing) value for x can be calculated as
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a function of α= r2/r1 and m.12 Although without the sample information, rewards r1 and

r2, and hence α are unknown, to give the algorithm an extra benefit, in our case study, we

set x optimally. We highlight that we use this algorithm in our case study to shed light on

the value of the sample information.

Finally, we note that in all of our evaluations, we assume that r1 = 0.6 and r2 = 0.2.

We also try to let ri’s take other values: the take-away messages of our case study do not

change.

Performance evaluation. Table 1 presents the worst-case and average CR of the four

algorithms across the 82 13 allocation periods for each of our 9 problem classes, where in

each allocation period, the CR is the worse case (minimum) reward over optimal clairvoyant

reward among the 1000 instances. Then, the worst-case and average CR reported in Table

1 are computed by taking the minimum and average over the CR of 82 allocation periods.

Interestingly, for all problem classes, the average CR of our algorithm and its noisy

version is between 0.88 and 0.97 while the average CR of the algorithm that does not use

the sample information can be as low as 0.66. We also observe that Algorithm 1 and the

adaptive version have almost the same CR. This is because, under the adaptive algorithm,

in average (in worst case respectively), we change our decision about whom to protect less

than 1 time (twice respectively).

In addition, for all four algorithms, if we fix γ, we observe that by increasing the sampling

probability p, both the average and worst-case CR increase. This observation is consistent

with the result in Proposition 2. However, if we fix the sampling probability p, there is no

clear pattern of how the CR changes when γ increases.

Overall, we observe that Algorithm 1 with true value of p and Algorithm 1 with noisy

p̂ significantly outperform the naive algorithm that does not take advantage of the sample

information.

This suggests the importance using the sample information even when we do not have

access to the true value of p.

One surprising result is that: among all 9 problem classes and 4 algorithms, the worst

CR happens in the second allocation period among the 82 periods. (Recall that we did

12 The optimal value for x is 2−2α
2−α m.

13 Since in each two-week period, we set m as a function of demand in the previous two-week period, we cannot have
the results for the first two-week period.
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not analyze the first allocation period because how we set m.) From Figure 5, we can find

that the second allocation period has the smallest number of type 1 and 2 patients. Hence,

this observation is consistent with the insights from our theoretical result, which show that

when the market size is small, the CR is also small.

Table 1 The CR of four algorithms in Section 6. The standard error of average CRs of the four algorithms is

less than 0.001.

Value of p p=0.1 p=0.15 p=0.2
Value of γ γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.3 γ = 0.5 γ = 0.7 γ = 0.3 γ = 0.5 γ = 0.7

Alg. 1 Avg. CR 0.977 0.953 0.961 0.978 0.962 0.968 0.978 0.965 0.973
with true p Worst CR 0.791 0.763 0.811 0.808 0.787 0.824 0.811 0.771 0.862

Alg that doesn’t Avg. CR 0.656 0.693 0.838 0.657 0.711 0.872 0.671 0.737 0.912
use samples Worst CR 0.567 0.573 0.767 0.589 0.649 0.810 0.593 0.671 0.860

Adaptive version of Avg. CR 0.979 0.955 0.962 0.980 0.962 0.968 0.979 0.967 0.973
Alg. 1 with true p Worst CR 0.800 0.766 0.811 0.837 0.792 0.831 0.866 0.791 0.864

Alg. 1 with Avg. CR 0.953 0.892 0.888 0.944 0.889 0.910 0.931 0.881 0.917
noisy p Worst CR 0.790 0.723 0.775 0.817 0.800 0.811 0.799 0.781 0.849

7. Extensions and Discussions

In this section, we discuss some extensions of our model. In Section 7.1, we study a set-

ting where the number of resources during the test period is limited, and in Section 7.2,

we investigate a strong clairvoyant benchmark that knows the realized reward of agents.

In Section 7.3, we discuss how to modify Algorithm 1 when the sampling probability is

different across different types of agents. We further investigate how the modified version

of Algorithm 1 performs in the worst case. In Section 7.4, we present an extension of

Algorithm 1 when there are more than two types of agents.

7.1. Capacity Constraints during the Test Period

So far, we have assumed that there is no capacity constraint during the test period in the

sense that any agent in the test period gets one unit of the resource. However, in practice,

decision-makers may limit the number of available resources during the test period due to

the cost of testing the market. Here, we show that when the number of available resources

during the test period is ω(
√
m) (e.g., Θ(m1/2+ε) for any ε > 0) the same asymptomatic

CR, presented in Proposition 2, continues to hold.

Let mt and ma =m be the number of available resources during the test and allocation

periods, respectively. Further, recall that si, i∈ {1,2}, is the number of agents of type i in

the sample, where we assume that si’s are known to the decision-maker when enforcing the
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capacity constraint.14 To enforce the capacity constraint, when s1 +s2 ≤mt, clearly, we can

accept all the (sampled) agents in the test period. On the other hand, when s1 + s2 >mt

with s1, s2 > mt/2, we accept mt/2 agents of type i ∈ {1,2}. Finally, when s1 + s2 > mt

with either s1 or s2 (not both) is greater than mt/2, we accept a total of mt agents, while

making sure all the agent of the type with a lower number of samples is accepted. At the

end of the test period, for simplicity, we assume that the leftover units do not carry over

to the allocation period.

The following proposition presents the asymptotic CR of Algorithm 1 with a slight

modification: in calculating the empirical average awards r̂i’s, instead of using si’s, we use

the number of accepted agents of type i at the end of the test period.

Proposition 3 (Capacity Constraint during the Test Period). Consider the

model presented in Section 7.1 where the number of resources during the test period is at

most mt. Then, when mt = ω(
√
m), the worst-case CR of a modified version of Algorithm

1, stated above, scales with 1−Θ(1/(p
√
m)) as m goes to infinity. Here, m is the number

of resources during the allocation period.

The proof can be found in Section G. The proof is similar to that of Theorem 2. As

the main difference, we need to re-evaluate the probability of good event which is needed

in the proof of region R3. Proposition 3 shows that even when the number of resources

during the test period is quite small, Algorithm 1 maintains its good performance.

7.2. A Different Notion of Competitive Ratio using Realized Rewards

In our setting, we compared the performance of our algorithm w.r.t. an optimal clairvoyant

benchmark that knows the arrival sequence and the expected reward of the agents in

advance, but does not know the realized rewards of the agents. See Equation (1) for the

definition of our CR notion. This benchmark is indeed consistent with the benchmark used

in Ball and Queyranne (2009). Nevertheless, one may wonder how our algorithm performs

against a stronger benchmark that also knows the realized reward of the agents, denoted

by R = {Rt}t∈[|I|]. (Here, when zt = i, the realized reward Rt ∼ Ber(ri), and the realized

reward is not known at the time of the decision.) Such a clairvoyant benchmark only

accepts agents with realized reward of one, where we recall that the realized reward of

agents is either zero or one.

14 That is, all agents who respond to the outreach program arrive first. After their arrivals, we decide about allocating
resources to them.
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Let opt-re(R, I) be the maximum realized reward under R and the arrival sequence

I, where “re” stands for “realized.” Further, let rew-reA(R, I,ψ) be the realized reward

of an algorithm A under R, arrival sequence I, and the sample information ψ. Then, the

CR of an algorithm A w.r.t. the strong benchmark opt-re(R, I), denoted by CR-re, is

defined as

CR-reA = inf
I

E
[
inf
R

E[rew-reA(R, I,ψ)]

opt-re(R, I)

]
, (8)

where the inner expectation is w.r.t. any randomness in algorithm A, and the outer expec-

tation is w.r.t. the sample information and realized rewards R. We refer to CR-reA as the

realized CR of algorithm A.

In this section, we first show that for any randomized and deterministic algorithm A,

the realized CR cannot exceed r2 even when expected rewards are known. See Proposition

4. This highlights that is is very challenging to beat the realized benchmark opt-re(R, I).

We then revisit Example 1 in which we evaluate Algorithm 1 using the realized CR. The

example shows that the realized CR of Algorithm 1 converges to r2 as m increases, implying

Algorithm 1 might be also optimal in terms of the realized CR.

Proposition 4 (Upper Bound on the Realized CR). Consider a relaxed version

of our setting where the expected rewards are known, but we still have access to sample

information ψ that reveals some information about the market size h and `. Then, the

realized CR of any deterministic or randomized algorithm (per Equation (8)) is at most

r2.

The proof can be found in Appendix H. By Proposition 4, r2 is an upper bound among all

deterministic and randomized algorithms for our setting where the expected rewards are

unknown. In light of the lower bound in Proposition 4, next we revisit Example 1 where

we evaluate Algorithm 1 and the algorithm of Ball and Queyranne (2009) (called the BQ

algorithm) using the notion of realized CR.

Example 2 (Revisiting Example 1). Consider the same setting in Example 1

with the sampling probability p = 0.3, m ∈ {10,35, . . . ,360,385}, r1 = 0.9, and r2 ∼

Uniform(0.5,0.9). For this setting, we compute four quantities: (i) the CR of Algorithm 1

per Equation 1, (ii) the realized CR of Algorithm 1 per Equation (8), (iii) the CR of the

BQ algorithm (i.e., 1/(2− r2/r1) = 1/(2−α)), (iv) the realized CR of the BQ algorithm.
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(Recall that (i) and (iii) are computed in Example 1 and here they are just used for com-

parison.) Note that the BQ algorithm is evaluated in a setting where the expected rewards

are known. To compute these quantities (i.e., quantities (i), (ii), and (iv)), we considered

all the possible values for h and `, any arrival order, and the realization of reward.

Figure 7 shows the expected value of these four quantities versus m with p= 0.3. Here,

the expectation is with respect to r2. The figure shows as expected, the realized CR of

Algorithm 1 and the BQ algorithm is much smaller than their CR per Equation (1). As

another important observation, the realized CR of Algorithm 1 goes to E[r2], which is the

upper bound shown in Proposition 4. In addition, in terms of realized CR, Algorithm 1

outperforms the BQ algorithm for m≥ 60, which is consistent with what we observed in

Example 1.

Figure 7 The CR and the realized CR of Algorithm 1 and the BQ algorithm, where the CR is computed using

Equation (1) and the realized CR is computed using Equation (8). Here, p= 0.3, r1 = 0.9, and r2 is uniformly

drawn from the interval (0.5,0.9).

7.3. Heterogeneous Sampling Probability

In our setting, we assumed that any of the h+ ` agents reacts to the outreach program

with probability p. In practice, however, different types of agents may react to the outreach

program differently. To capture that, here we study a setting where type i∈ {1,2} agents

react to the outreach program (i.e., falls into the sample set) with probability pi.

For this setting, let us consider a slightly modified version of Algorithm 1. In this modified

algorithm, once r̂1 > r̂2 (r̂1 ≤ r̂2 respectively), the algorithm assigns a protection level of

min{m,s1 1−p1

p1
} (min{m,s2 1−p2

p2
} respectively) to type 1 (type 2 respectively). The following

theorem presents a lower bound on the CR of this modified algorithm.
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Proposition 5 (Heterogeneous p). Consider the model presented in Section 2,

where the expected rewards of ri, i∈ {1,2} is unknown to the decision-maker. Let the sam-

pling probability of type 1, 2 agents be p1, p2 respectively. Then, the asymptotic CR of the

modified algorithm, defined above, equals to

CR = 1−Θ

(
max{ 1

p1
√
m
,

1

min{p1, p2}2m
}
)
.

The proof can be found in Section I. From the expression of the CR, we can find that if

p1 < p2, then Θ( 1
p1
√
m

) is the dominant term if and only if p1 = ω(1/
√
m). That is, in this

case, the asymptotic CR is 1−Θ( 1
p1
√
m

). If p1 ≥ p2, then Θ( 1
p1
√
m

) is the dominant term if

and only if p1

p2
2

= o(
√
m).

7.4. Beyond Two Types of Agents

So far, we have assumed that there are only two types of agents, and under this assumption,

we designed an asymptotically optimal algorithm (Algorithm 1). Here, we show how to

generalize Algorithm 1 to a setting with k≥ 3 type. In the generalized algorithm, similar to

Algorithm 1, we first estimate the average reward of each type of agents using the sample

information. We then decide about an order over the agents using the estimated rewards,

and follow a nesting protection level policy given the order; see Algorithm 2. Consider

an order (j1, j2, . . . , jk) over types and protection levels x1, x2, . . . , xk. Given this order and

protection levels x1, x2, . . . , xk, the nested protection policy works as follows. It accepts the

arriving agent of type ji if and only if (i) there is resource left (ii) the total number of

accepted agents of type jq for q= i, i+ 1, . . . , k is less than m−xi−1. Here, we set x0 = 0.

Algorithm 2 Online Resource Allocation Algorithm for k types of Agents
Input: The number of resources m and sample information ψ = (s,ρ), where s = (s1, s2, . . . , sk), ρ =

(ρ1,ρ2, . . . ,ρk), and for any i∈ [k], ρi = {ρi,1, ρi,2, . . . , ρi,si}.

1. If the number of samples for type i∈ [k], i.e., si, is positive, define r̂i =
∑si

j=1 ρi,j

si
as an estimate of the expected

reward of type i∈ [k]. Otherwise, r̂i ∼ uniform(0,1).

2. Sort r̂i for i∈ [k] from the largest to the smallest, i.e., r̂j1 ≥ r̂j2 . . .≥ r̂jk .

3. For i∈ [k− 1], we give xi = min{m, 1−p
p

∑i
q=1 sjq} protection level to type j1, j2, . . . , ji agents and run a nested

protection level policy with the order j1, j2, . . . , jk and protection levels xi, i∈ [k].

We believe that Algorithm 2 is also asymptotically optimal although we find it hard to

characterize a lower bound on its CR due to a large number of cases/regions that one needs

to consider in its analysis. To demonstrate its good performance though, in the following

we present an example in which we evaluate Algorithm 2 numerically.
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Example 3. Consider a setting in which r1 = 0.9, r2 ∼ Uniform(0.5,0.9), and r3 ∼

Uniform(0.1,0.5). Figure 8 shows the average of (i) the true CR of Algorithm 2, and (ii)

1/(3− r3/r2− r2/r1) versus m when p= 0.3. Here, the average is taken w.r.t. the random-

ness in r2 and r3 in our 300 randomly generated instances. Note that 1/(3− r3/r2− r2/r1)

is the optimal CR in Ball and Queyranne (2009) for a setting with three types and known

rewards. We use 1/(3− r3/r2− r2/r1) as a benchmark to measure the value of the sample

information. To compute the true CR, we take all h, `≥ 0, and for each (h, `), we simulate

1000 instances with random order (the first instance is fixed to be the ordered instance).

By taking the minimum CR among all sequences described above, we compute the true

CR.

Figure 8 shows that by increasing m, the CR of Algorithm 2 improves. In addition, the

true CR of the algorithm exceeds the benchmark when m≥ 60. This highlights that even

in the 3-type case, for large enough m, the value of the sample information outweighs the

drawbacks of not knowing the true rewards.

Figure 9 shows the average of the true CR of Algorithm 2 and the benchmark ver-

sus p when m = 200. Interestingly, we observe that when m = 200, even if the sampling

probability is as low as 0.1, the true CR is much larger than the benchmark.

8. Concluding Remarks and Future Directions

In this paper, we consider an online resource allocation problem in which the decision-

maker has uncertainty about the arrival process, as well as, the obtained rewards upon the

allocation. The decision-maker has access to the sample information that is often acquired

through an initial test period. We study how to optimally exploit the sample information

that provides partial knowledge about the arrival process and rewards. We propose a

protection-level algorithm that achieves the competitive ratio of 1−Θ(1/(p
√
m)) and show

that the obtained competitive ratio is asymptotically tight in terms of both the initial

number of resources m and the sampling probability p.

Our result shows that the sample information can be significantly beneficial, and hence

opens up several new directions for future research. One natural direction is to study

how to optimize the number of resources m upon receiving the sample information. While

in many settings, due to a long lead production time, it is not possible to react to the

sample information to optimize the inventory decisions, for some other settings when
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Figure 8 p= 0.3

Figure 9 m= 200

Figure 10 The CR of Algorithm 2, and the benchmark in Ball and Queyranne (2009). Here, r1 = 0.9, r2 is

uniformly drawn from the interval (0.5,0.9), and r3 is uniformly drawn from the interval (0.1,0.3).

products/resources are produced domestically, the decision-makers can better plan their

inventory decisions using the sample information. Another research question of interest is

to study how to generalize our setting to the network revenue management problem where

there are multiple types of agents and multiple types of resources. The network revenue

management problem under adversarial arrival settings does not admit a constant compet-

itive ratio. Thus, it is interesting to explore if one can even obtain a constant competitive

ratio under adversarial arrival setting in the presence of sample information.
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Appendix A: Proof of Proposition 1

We show the results for the three scenarios respectively. Recall that in scenario 1, p= 0; that is, no sample

information is available. For this scenario, even if the decision-maker knows the rewards ri (i∈ [2]), without

any sample information, as shown in Ball and Queyranne (2009), 1/(2 − α) is an upper bound for any

algorithm.

Now consider scenario 2, where p is completely unknown. Suppose that the decision-maker has access to

some sample information (s1, s2), which means that there are s1 type 1 agents and s2 type 2 agents in the

sample. As p is completely unknown, p can be any real number between 0 and 1. If p→ 0, the number of

arriving agents of type 1 n1→∞ and n2→∞. If p= 1, we have n1 = n2 = 0. Therefore, the decision-maker

has no demand information because ni can be any non-negative real number for i ∈ {1,2}. Thus, again by

Ball and Queyranne (2009), the upper bound of CR among all deterministic and randomized algorithms is

1/(2−α).

Appendix B: Proof of Statements in Section 4.1

B.1. Proof of Lemma 1

We will show that for any realization of (n1, n2) and sample information ψ, we have rewA (Iorder,ψ) ≤

rewA (I,ψ). This implies that rewA(Iorder,ψ)

opt(Iorder)
≤ rewA(I,ψ)

opt(I)
, as opt(I) = opt(Iorder). The last inequality is the

desired result.

It remains to show that rewA (Iorder,ψ)≤ rewA (I,ψ). First consider a case where under ψ, r̂1 > r̂2. In

this case, Algorithm 1 assigns a protection level of x1 = s1(1− p)/p to type 1 agents. Then, it is clear that

(i) the number of accepted type 2 agents under Iorder is larger than or equal to that under I, and (ii) the

number of accepted type 1 agents under Iorder is smaller than or equal to that under I. Hence in this case,

Algorithm 1 under Iorder obtains a lower reward than I. On the other hand, when r̂1 ≤ r̂2, Algorithm 1 assigns

a protection level of x2 = s2(1−p)/p to type 2 agents. Again, in this case, we have (i) the number of accepted

type 2 agents under Iorder is larger than or equal to that under I, and (ii) the number of accepted type 1

agents under Iorder is smaller than or equal to that under I. Hence, we have rewA (Iorder,ψ)≤ rewA (I,ψ).

B.2. Proof of Lemma 2

By Equation (7), inf(h,`)∈R1
Eψ
[
rewA(n,ρ;G)

opt(n)

]
can be lower bounded as follows:

inf
(h,`)∈R1

Eψ
[
E[rewA (n,ρ)]

opt(n)

]
≥ inf

(h,`)∈R1

{
min

{
En

[
rewA (n,ρ;G)

opt(n)

]
,

En

[
rewA

(
n,ρ;GC

)
opt(n)

]}}
. (9)

In light of Equation (9), we divide the rest of the proof into two parts where in the first part, for any

realization of s, we bound rewA(n,ρ;G)

opt(n)
and in the second part, we bound

rewA(n,ρ;GC)
opt(n)

.

Part 1: bounding rewA(n,ρ;G)

opt(n)
. Recall that for a fixed realization of s (or equivalently n), rewA (n,ρ;G) is

the reward of our algorithm when there are ni type i ∈ {1,2} agents in the online arrival sequence given
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that r̂1 > r̂2. (See the definition of the good event G(ψ; (h, `)) in Equation (4)). Conditioned on r̂1 > r̂2,

Algorithm 1 assigns a protection level of x1 = min{m, 1−p
p
s1} to type 1 agents, and hence we have

rewA (n,ρ;G) = min

{
n2,

(
m− 1− p

p
s1

)+
}
· r2

+ min

{
m−min

{
n2,

(
m− 1− p

p
s1

)+
}
, n1

}
· r1 , (10)

where min

{
n2,
(
m− 1−p

p
s1

)+
}

is the number of accepted agents of type 2 and

min

{
m−min

{
n2,
(
m− 1−p

p
s1

)+
}
, n1

}
is the number of accepted agents of type 1. In what follows, we

bound rewA(n,ρ;G)

opt(n)
by considering the following cases:

• Case 1: n2 < m− n1. In this case, under the optimal clairvoyant algorithm, all agents are accepted

as we have min{(m − n1)+, n2} = n2, and hence opt(n) = n2r2 + n1r1. In addition, the number of

accepted type 1 agents under Algorithm 1, i.e., min

{
m−min

{
n2,
(
m− 1−p

p
s1

)+
}
, n1

}
, is n1; see

Equation (10). To see why note that min

{
n2,
(
m− 1−p

p
s1

)+
}
≤ n2, and we have n1 <m− n2 ≤m−

min

{
n2,
(
m− 1−p

p
s1

)+
}

, which implies that min

{
m−min

{
n2,
(
m− 1−p

p
s1

)+
}
, n1

}
= n1. Then, by

Equation (10), we have

rewA (n,ρ;G)

opt(n)
=

min

{
n2,
(
m− 1−p

p
s1

)+
}
· r2 +n1r1

n2r2 +n1r1

≥
min

{
n2,
(
m− 1−p

p
s1

)+
}

n2

= min

1,

(
m− 1−p

p
s1

)+

n2


=

(
m− 1−p

p
s1

)+

n2

>

(
m− 1−p

p
s1

)+

m−n1

≥

(
m− 1−p

p
h
)+

m
≥
(

1− 1− p
p

1√
m

)+

,

where in the last inequality holds because in region R1, h<
√
m.

• Case 2: n2 ≥m−n1. In this case, the optimal clairvoyant algorithm, cannot accept all the agents in the

online arrival sequence as we have min{(m−n1)+, n2}=m−n1. In addition, since n1 ≤ h<
√
m<m,

we have opt(n) = n1r1 +(m−n1)r2. Next, to bound rewA(n,ρ;G)

opt(n)
, we consider the following two subcases:

— Case 2.1: min{m−min{n2, (m− 1−p
p
s1)+}, n1}=m−min{n2, (m− 1−p

p
s1)+}. In this case, Algo-

rithm 1 does not accept all type 1 agents (see Equation (10)): the number of accepted type 1 agents

is m−min{n2, (m− 1−p
p
s1)+}. Then, by Equation (10), we have

rewA (n,ρ;G)

opt(n)
=

min{n2, (m− 1−p
p
s1)+}r2 + (m−min{n2, (m− 1−p

p
s1)+})r1

(m−n1)r2 +n1r1

≥ mr2

(m−h)r2 +hr1

≥ mr2

(m−
√
m)r2 +

√
mr1

= 1−
√
mr1−

√
mr2√

mr1 + (m−
√
m)r2

.

The first inequality is due to min{n2, (m − 1−p
p
s1)+}r2 + (m − min{n2, (m − 1−p

p
s1)+})r1 ≥

min{n2, (m− 1−p
p
s1)+}r2 + (m−min{n2, (m− 1−p

p
s1)+})r2 =mr2.
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— Case 2.2: min{ 1−p
p
s1, n1} = n1. In this case, Algorithm 1 accepts all type 1 agents. We further

have n2 ≥m−n1 ≥ (m− 1−p
p
s1)+. Then, by Equation (10), we have

rewA (n,ρ;G)

opt(n)
=

min{n2, (m− 1−p
p
s1)+}r2 +n1r1

(m−n1)r2 +n1r1

=
(m− 1−p

p
s1)+r2 +n1r1

(m−n1)r2 +n1r1

≥
(m− 1−p

p
s1)+

m−n1

≥
(m− 1−p

p
h)+

m
≥
(

1− 1− p
p

1√
m

)+

.

Putting these cases together, we have

rewA (n,ρ;G)

opt(n)
≥min

{(
1− 1− p

p

1√
m

)+

,1−
√
mr1−

√
mr2√

mr1 + (m−
√
m)r2

}
. (11)

Part 2: bounding
rewA(n,ρ;GC)

opt(n)
. Recall that for fixed realization of s, rewA

(
n,ρ;GC

)
is the reward of our

algorithm when there are ni type i ∈ {1,2} agents in the online arrival sequence and r̂1 ≤ r̂2. In this case,

the algorithm assigns a protection level of x2 = 1−p
p
s2, and hence we have

rewA

(
n,ρ;GC

)
≥min{m,n2} · r2 + min{n1, (m−n2)+} · r1. (12)

To bound our desired ratio, we consider the following cases:

• Case 1: n2 ≤m−n1. In this case, we have min{m,n2}= n2, and min{n1, (m−n2)+}= n1, and hence,

by Equation (12), rewA

(
n,ρ;GC

)
≥ n1 · r1 +n2 · r2. Thus, we have

rewA

(
n,ρ;GC

)
opt(n)

≥ n1r1 +n2r2

n1r1 +n2r2

= 1.

• Case 2: n2 >m− n1. In this case, we have min{n1, (m− n2)+} = (m− n2)+, min{(m− n1)+, n2} =

m−n1. Then, by Equation (12), we have

rewA

(
n,ρ;GC

)
opt(n)

≥ min{m,n2}r2 + (m−n2)+r1

n1r1 + (m−n1)r2

≥ mr2√
mr1 + (m−

√
m)r2

= 1−
√
mr1−

√
mr2√

mr1 + (m−
√
m)r2

.

Considering the following two cases, we have

rewA

(
n,ρ;GC

)
opt(n)

≥ 1−
√
mr1−

√
mr2√

mr1 + (m−
√
m)r2

. (13)

By plugging in Equations (11) and (13) into Equation (9), we get the desired result.

B.3. Proof of Lemma 3

We follow similar steps in the proof of Lemma 2. That is, we bound

inf
(h,`)∈R2

Es

[
E[rewA (n,ρ)]

opt(n)

]
≥ inf

(h,`)∈R2

{
min

{
En

[
rewA (n,ρ;G)

opt(n)

]
,

En

[
rewA

(
n,ρ;GC

)
opt(n)

]}}
. (14)

In light of Equation (14), we divide the rest of the proof into two parts where in the first part, for any

realization of s, we bound
rewA(n,ρ;GC)

opt(n)
and in the second part, we bound En

[
rewA(n,ρ;G)

opt(n)

]
. While bounding

the former ratio is straightforward, bounding the latter one is quite involved. This is because when the
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good event G(ψ; (h, `)) happens, Algorithm 1 may still over-protect or under-protect type 1 agents given

the randomness in the sample information. As h is large in this case, the number of type 1 agents that the

algorithm over-protects or under-protects can be large too, leading to a low reward for the algorithm under

some realization of s. Nonetheless, we show that the expected reward of the algorithm, in this case, is still

large once we take expectation with respect to s.

Part 1: bounding
rewA(n,ρ;GC)

opt(n)
. Recall that for fixed realization of s, rewA

(
n,ρ;GC

)
is the reward of our

algorithm when there are ni type i ∈ {1,2} agents in the online arrival sequence and r̂1 ≤ r̂2. In this case,

the algorithm assigns a protection level of x2 = min{m, 1−p
p
s2}, and hence we have

rewA

(
n,ρ;GC

)
≥min{m,n2}r2 + min{n1, (m−n2)+}r1.

As ` <
√
m, we have n2 ≤ ` <

√
m<m. Hence,

rewA

(
n,ρ;GC

)
opt(n)

≥
rewA

(
n,ρ;GC

)
n1r1 + min{m−n1, n2}r2

=
n2r2 + min{m−n2, n1}r1

n1r1 + min{m−n1, n2}r2

≥min

{
n1r1 +n2r2

n1r1 +n2r2

,
(m−n2)r1 +n2r2

n1r1 + (m−n1)r2

}
a
=

(m−n2)r1 +n2r2

n1r1 + (m−n1)r2

≥ (m−
√
m)r1

mr1

= 1− 1√
m
.

The second inequality is because when min{m−n2, n1}= n1, we have n2 <m−n1 and min{m−n1, n2}= n2,

and when min{m−n2, n1}=m−n2, we have m−n1 <n2 min{m−n1, n2}=m−n1.

Part 2: bounding inf(h,`)∈R2
En

[
rewA(n,ρ;G)

opt(n)

]
. We begin by partitioning region R2 based on the number of

type 1 agents, (i.e. h):

R2 = {(h, `) : (h, `)∈R2, h≥ h0} R2 = {(h, `) : (h, `)∈R2, h < h0} ,

where h0 = min{y ≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}. Then, inf(h,`)∈R2

En

[
rewA(n,ρ;G)

opt(n)

]
is equal to the minimum of

inf(h,`)∈R2
En

[
rewA(n,ρ;G)

opt(n)

]
and inf(h,`)∈R2

En

[
rewA(n,ρ;G)

opt(n)

]
. We bound the first ratio (i.e., the one concerns R2)

in Lemma 5 and the second ratio (i.e., the one concerns R2) will be bounded in Lemma 6. In addition,

h0 >
√
m is guaranteed because h0 = m−

√
m

1−p + 1
2p2

+
√

1
4p4

+ (m−
√
m)

p2(1−p) >m−
√
m+

√
2(m−

√
m)>

√
m for all

m> 0.

Lemma 5. Let R2 = {(h, `) : (h, `) ∈R2, h < h0}, where R2 = {(h, `) : h≥
√
m,` <

√
m}, h0 = min{y ≥ 0 :

p(m−
√
m)

1−p ≥ yp+
√
y}. Then,

inf
(h,`)∈R2

En

[
rewA (n,ρ;G)

opt(n)

]
≥ (1− 1√

m
)(1− 1

m
) .

Lemma 5 gives the lower bound of the ratio conditional on the good event happens. In this case, the

algorithm gives a certain protection level to type 1 agents. Then, we show that when (h, `)∈R2, with high

probability, the number of type 2 agents is less than the total number of resources minus the protection level.

Thus, in this regime, we do not reject any type 2 agents with high probability. Conditional on this event, we

can obtain a lower bound of the ratio for any realization s.

Next, we lower bound inf(h,`)∈R2
En

[
rewA(n,ρ;G)

opt(n)

]
in Lemma 6.
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Lemma 6. Let R2 = {(h, `) : (h, `) ∈ R2, h ≥ h0}, where R2 = {(h, `) : h ≥
√
m,` <

√
m}, where h1 =

h0(1− p)−
√
p(1− p)h0− β√

h0

, β = 0.4215 · p
2+(1−p)2

p(1−p) , h0 = min{y≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}. Then,

inf
(h,`)∈R2

En

[
rewA (n,ρ;G)

opt(n)

]
≥min

{
1− 1√

m
,
h1

m

}
.

To show Lemma 6, notice that given the good event happens, the algorithm may over- or under-protect

type 1 agents. If it under-protects type 1 agents, we further split the analysis into two cases: the number of

type 2 agents is less than, or is larger than the total number of resources minus the protection level. In both

cases, we can easily find a lower bound for any realization s. If the algorithm over-protects type 1 agents,

then it accepts all arriving type 1 agents, but some resources are wasted due to over-protecting. In this case,

we lower bound the ratio by a linear function with respect to the number of arriving type 1 agents, n1. Then,

we used the results in Nagaev and Chebotarev (2011) and Berend and Kontorovich (2013) to estimate the

conditional expectation of n1 given that the algorithm over-protects type 1 agents.

Finally, by Lemmas 5 and 6, we have the following inequality, which is the desired result.

inf
(h,`)∈R2

Es

[
rewA (n,ρ;G)

opt(n)

]
≥CR2 = min

{(
1− 1√

m

)(
1− 1

m

)
,
h1

m

}
.

B.3.1. Proof of Lemma 5 Define event E0 as {n2 ≤ m − 1−p
p
s1}. We provide a lower bound on

En

[
rewA(n,ρ;G)

opt(n)

]
as follows:

inf
(h,`)∈R2

En

[
rewA (n,ρ;G)

opt(n)

]
= inf

(h,`)∈R2

En

[
rewA (n,ρ;G)

opt(n)

∣∣EC0]Pr(EC0 ) +En

[
rewA (n,ρ;G)

opt(n)

∣∣E0]Pr(E0)

≥ inf
(h,`)∈R2

En

[
rewA (n,ρ;G)

opt(n)

∣∣E0]Pr(E0) (15)

In light of Equation (15), we will provide a lower bound for En

[
rewA(n,ρ;G)

opt(n)

∣∣E0] and Pr(E0).

Part 1: bounding En

[
rewA(n,ρ;G)

opt(n)

∣∣E0]. For a fixed realization of s (or equivalently n), we have

rewA (n,ρ;G) = min

{
n2,

(
m− 1− p

p
s1

)+
}
· r2

+ min

{
m−min

{
n2,

(
m− 1− p

p
s1

)+
}
, n1

}
· r1 (16)

Conditional on E0 = {n2 ≤m− 1−p
p
s1}, we have min{n2, (m− 1−p

p
s1)+} = n2, and min{m−min{n2, (m−

1−p
p
s1)+}, n1}= min{m−n2, n1}. Then, we have

rewA

(
n,ρ;GC

)
opt(n)

≥
rewA

(
n,ρ;GC

)
n1r1 + min{m−n1, n2}r2

=
n2r2 + min{m−n2, n1}r1

n1r1 + min{m−n1, n2}r2

≥min

{
n1r1 +n2r2

n1r1 +n2r2

,
(m−n2)r1 +n2r2

n1r1 + (m−n1)r2

}
=

(m−n2)r1 +n2r2

n1r1 + (m−n1)r2

≥ (m−
√
m)r1

mr1

= 1− 1√
m
. (17)
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The second inequality is because when min{m − n2, n1} = n1, we have min{m − n1, n2} = n2, and when

min{m−n2, n1}=m−n2, we have min{m−n1, n2}=m−n1.

Part 2: bounding Pr(E0). We want to show that Pr(E0) is a high probability event for (h, `) ∈ R2. As

`∈
√
m for any (h, `)∈R2, we have n2 ≤

√
m. Then, because E0 = {n2 ≤m− 1−p

p
s1}, we have

Pr(E0) = Pr

(
1− p
p

s1 ≤m−n2

)
≥Pr

(
1− p
p

s1 ≤m−
√
m

)
= Pr

(
s1 ≤

p(m−
√
m)

1− p

)
.

Next, we show that with high probability, the upper bound of s1 is no more than p(m−
√
m)

1−p . Because s1 ∼

Bin(h,p), by Hoeffding’s inequality, we have

Pr(|s1−hp| ≤
√
h)≥ 1− 1

h2
≥ 1− 1

m
.

This implies that s1 ≤ hp+
√
h happens with high probability. We then have

1− 1

m
≤Pr(s1 ≤ hp+

√
h)≤Pr(s1 ≤ h0p+

√
h0)≤Pr

(
s1 ≤

p(m−
√
m)

1− p

)
, (18)

where the second inequality holds because hp +
√
h is an increasing function, and h < h0 in region R2.

These imply that hp+
√
p≤ h0p+

√
p0. The last inequality holds because p(m−

√
m)

1−p ≥ h0p+
√
h0. Recall that

h0 = min{y≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}.

By Equations (17) and (18), we have

inf
(h,`)∈R2

En

[
rewA (n,ρ;G)

opt(n)

∣∣E0]Pr(E0)≥ (1− 1√
m

)(1− 1

m
) , (19)

which is the desired result.

B.3.2. Proof of Lemma 6 We define event E1 = {n1 >
1−p
p
s1}. We then have

inf
(h,`)∈R2

En

[
rewA (n,ρ;G)

opt(n)

]
≥ inf

(h,`)∈R2

{
min

{
En

[
rewA (n,ρ;G)

opt(n)

∣∣E1] ,
En

[
rewA (n,ρ;G)

opt(n)

∣∣EC1]
}}

(20)

We will provide the lower bound of inf(h,`)∈R2
En

[
rewA(n,ρ;G)

opt(n)

∣∣E1] in the first part of the proof, and the

lower bound of inf(h,`)∈R2
En

[
rewA(n,ρ;G)

opt(n)

∣∣EC1 ] in the second part of the proof.

Part 1: bounding inf(h,`)∈R2
En

[
rewA(n,ρ;G)

opt(n)

∣∣E1]. We then have

inf
(h,`)∈R2

En

[rewA (n,ρ;G)

opt(n)

∣∣E1]
≥ inf

(h,`)∈R2

min

{
En

[rewA (n,ρ;G)

opt(n)

∣∣E1,EC0 ],En

[rewA (n,ρ;G)

opt(n)

∣∣E1,E0]} ,
where we recall EC0 = {n2 >m− 1−p

p
s1}.

To provide a lower bound for En

[
rewA(n,ρ;G)

opt(n)

∣∣E1,EC0 ], we note that under event EC0 , we have n2 >m− 1−p
p
s1,

and hence

En

[
rewA (n,ρ;G)

opt(n)

∣∣E1,EC0]≥ (m− 1−p
p
s1)+r2 + min{m, 1−p

p
s1}r1

mr1

≥ (m−n2)r1

mr1

≥ 1− 1√
m
. (21)
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Then, we give a lower bound to En

[ rewA(n,ρ;G)

opt(n)

∣∣E1,E0]. Conditional on E1 and E0, we have 1−p
p
s1 ≥m−n2

and 1−p
p
s1 ≤ n1. That is, the number of type 1 agents in the online arrival sequence is greater than or equal

to the protection level of Algorithm 1 for type 1 agents (i.e., 1−p
p
s1 ≤ n1), and in addition, the algorithm

ends up rejecting some of type 2 agents as 1−p
p
s1 ≥m−n2. Therefore, we have

En

[
rewA (n,ρ;G)

opt(n)

∣∣E1,E0]≥ (m− 1−p
p
s1)+r2 + min{m, 1−p

p
s1}r1

mr1

≥ (m−n2)r1

mr1

≥ 1− 1√
m
,

where the last inequality holds because n2 ≤ `≤
√
m for any (h, `)∈R2.

Part 2: bounding inf(h,`)∈R2
En

[
rewA(n,ρ;G)

opt(n)

∣∣EC1 ]. Recall that for a fixed realization of s (or equivalently n),

rewA (n,ρ;G) = min

{
n2,

(
m− 1− p

p
s1

)+
}
· r2

+ min

{
m−min

{
n2,

(
m− 1− p

p
s1

)+
}
, n1

}
· r1 .

Conditional on EC1 = {n1 ≤ 1−p
p
s1}, we do not receive enough number of type 1 agents and thus, we have

min

{
m−min

{
n2,

(
m− 1− p

p
s1

)+
}
, n1

}
= min

{
max

{
m−n2,min{m, 1− p

p
s1}
}
, n1

}
= n1 .

That is, Algorithm 1 accepts all type 1 agents in the online arrival sequence. Then, we have

En

[rewA (n,ρ;G)

opt(n)

∣∣EC1 ]≥En

[min
{
n2, (m− 1−p

p
s1)+

}
· r2 +n1r1

mr1

∣∣EC1 ]≥ 1

m
En

[
n1

∣∣EC1 ].
We will show that En

[
n1

∣∣EC1 ]≥ h1, where h1 = h0(1− p)−
√
p(1− p)h0− β√

h0

and β = 0.4215 · p
2+(1−p)2

p(1−p) .

Since EC1 = {n1 ≤ 1−p
p
s1}= {h(1− p)−n1 ≥ 0}, and h(1− p) = E[h(1− p)], we have

En

[
n1

∣∣EC1 ]= h(1− p)−En

[
h(1− p)−n1

∣∣h(1− p)−n1 ≥ 0
]

≥ h(1− p)−Es [|h(1− p)−n1|]−
β√
h

≥ h(1− p)−
√
p(1− p)h− β√

h

≥ h0(1− p)−
√
p(1− p)h0−

β√
h0

= h1 ,

where the first inequality holds because by Nagaev and Chebotarev (2011), we have
∣∣∣Es[(h(1−p)−n1)

∣∣{h(1−

p)−n1 ≥ 0}
]
−Es [|h(1− p)−n1|]

∣∣∣≤ β√
h
. The second inequality follows from Berend and Kontorovich (2013)

that shows Es [|h(1− p)−n1|] ≤
√
p(1− p)h. The third inequality holds because when h > h0, h(1− p)−√

p(1− p)h− β√
h

is a non-decreasing function for any p. To see why note that

∂(h(1− p)−
√
p(1− p)h− β√

h
)

∂h
≥ (1− p)− 1

2

√
p(1− p) 1√

h
≥ 0 . (22)

where the last inequality holds for any h≥ 1
4

p

1−p , and we have h0 >
m−
√
m

1−p > 1
4

p

1−p for all m≥ 2.
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B.4. Proof of Lemma 4

By Equation (7), we have

inf
(h,`)∈R3

Eψ
[
rewA (n,ρ;G)

opt(n)

]
= inf

(h,`)∈R3

{
En

[
rewA (n,ρ;G) ·Pr(G(ψ; (h, `)))

opt(n)

]

+En

[
rewA

(
n,ρ;GC

)
·Pr(GC(ψ; (h, `)))

opt(n)

]}
(23)

We split the analysis into two cases based on the initial number of resources m. In the first case, we

assume that m≥m1, and in the second case, we assume that m<m1. Here, m1 = miny≥1/p4
{
y : r1 − r2 >

2

y1/8
√
y1/4p−1

}
is a constant that only depends on p, r1, and r2. Case 1 is considered in Lemma 7 while case

2 is studied in Lemma 8.

Lemma 7. Let R3 = {(h, `) : h≥
√
m,`≥

√
m}. Let m1 = miny≥1/p4

{
y : r1− r2 >

2

y1/8
√
y1/4p−1

}
.

When the initial number of resources m≥m1, we have

inf
(h,`)∈R3

En

[
rewA (n,ρ)

opt(n)

]
≥ (1− 1

m
)2(1− 1

(
√
mp−m1/4)2

)2W .

where W = min
{

1− 1√
m
, h1

m

}
, h1 = h0(1−p)−

√
p(1− p)h0− β√

h0

, β = 0.4215 · p
2+(1−p)2

p(1−p) , and h0 = min{y≥

0 : p(m−
√
m)

1−p ≥ yp+
√
y}.

To show Lemma 7, we observe that when the initial number of resources m≥m1, the good event happens

with high probability. Then, conditional on the algorithm protects type 1 agents, we give the lower bound of

the ratio by the similar methodology introduced in Lemma 5 and Lemma 6: we discuss whether the algorithm

over- or under-protects type 1 agents, and whether the number of type 2 agents in the arriving sequence is

less than, or is larger than the total number of resources minus the protection level.

Lemma 8. Let R3 = {(h, `) : h≥
√
m,`≥

√
m}, m1 = miny≥1/p4

{
y : r1 − r2 >

2

y1/8
√
y1/4p−1

}
, and α= r2

r1
.

When the initial number of resources m<m1, we have

inf
(h,`)∈R3

En

[
E[rewA (n,ρ)]

opt(n)

]
≥ V ·min

{
(1− 1

m2
)W,

1

2
(1− 1

m2
)W +

1

2
min

{
(1− 1

`20
)α,1− 1− p

pm
`1

}}
.

where V = 1−2(1−p)
√
m, W = min

{
1− 1√

m
, h1

m

}
, h1 = h0(1−p)−

√
p(1− p)h0− β√

h0

, β = 0.4215 · p
2+(1−p)2

p(1−p) ,

h0 = min{y≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}, `0 = min{y : (1− p)y−√y≥m}, and `1 =

√
p(1− p)`0 + β√

m
+ `0p.

To show Lemma 8, we should use a different technique rather than the one we use in Lemma 7. This is

because if the initial number of resources m<m1, the bad event is no longer a rare event. Then, if the good

event happens, the ratio is derived in Lemma 7. If the bad event happens, the algorithm gives protection level

to type 2 agents. Then, we first consider that if the algorithm under-protects tyepe 2 agents, the algorithm

accepts all type 2 agents, and give the remaining resources to type 1 agents. In this case, the ratio is bounded

by α. Otherwise, if the algorithm over-protects type 2 agents, the algorithm rejects some type 1 agents and

wastes some resources. Then, we use concentration inequality to bound the loss.
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B.4.1. Proof of Lemma 7 We start by defining the event

E2(h, `) =
{
s1 ∈ [hp−

√
h,hp+

√
h]}∩ {s2 ∈ [`p−

√
`, `p+

√
`]
}
.

Under event E2(h, `), both s1 and s2 are concentrated around their average. Recall that s1 ∼ Bin(h,p) and

s2 ∼Bin(`, p). By Equation (7), we have

inf
(h,`)∈R3

Eψ
[
rewA (n,ρ)

opt(n)

]
(24)

≥ inf
(h,`)∈R3

En

[
rewA (n,ρ;G) ·Pr(G(ψ; (h, `)))

opt(n)

∣∣E2(h, `)

]
Pr(E2(h, `)) . (25)

We lower bound Pr(E2(h, `)) in Part 1 of the proof. Next, we explain how to handle the conditional expectation

in Equation (25). We start by defining the following event

E3 =

{
r̂1 ∈ [r1−

1
√
s1

, r1 +
1
√
s1

]}∩ {r̂2 ∈ [r2−
1
√
s2

, r2 +
1
√
s2

]

}
.

Under event E3, our estimates for r1 and r2 are concentrated around their true values. The conditional

expectation in Equation (25) is lower bounded as follows:

inf
(h,`)∈R3

En

[
rewA (n,ρ;G) ·Pr(G(ψ; (h, `)))

opt(n)

∣∣E2(h, `)

]
≥ inf

(h,`)∈R3

En

[
rewA (n,ρ;G) ·Pr(G(ψ; (h, `)))

opt(n)

∣∣E2(h, `),E3
]

Pr(E3|E2(h, `)) (26)

Given (26), we lower bound Pr(E3|E2(h, `)) in part 2 of the proof. In part 3, conditioned on E2(h, `),E3, we

show that Pr(G(ψ; (h, `))), for any realization s, equals to 1 in part 3. Finally, in part 4, we we lower bound

inf(h,`)∈R3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E3
]
.

Part 1: bounding Pr(E2(h, `)). By Hoeffding’s inequality, we have

Pr(s1 ∈ [hp−
√
h,hp+

√
h])≥ 1− 1

h2
≥ 1− 1

m
,

Pr(s2 ∈ [`p−
√
`, `p+

√
`])≥ 1− 1

`2
≥ 1− 1

m
.

The last steps of both equations are because in region R3, we have h≥
√
m, `≥

√
m. Then, because s1 and

s2 are independent of each other, we have

Pr(E2(h, `)) = Pr
(
s1 ∈ [hp−

√
h,hp+

√
h]
)
·Pr

(
s2 ∈ [`p−

√
`, `p+

√
`]
)
≥ (1− 1

m
)2.

Part 2: bounding Pr(E3|E2(h, `)). Conditioned on s1, we know r̂1 = Bin(s1,r1)

s1
, and similarly conditioned

on s2, r̂2 = Bin(s2,r2)

s2
. Then, Hoeffding’s inequality implies that

Pr

(
r̂1 ∈ [r1−

1
√
s1

, r1 +
1
√
s1

]
∣∣∣ s1 = s̃1

)
≥ 1− 1

s̃2
1

. (27)

Now consider event E2(h, `) that implies that s1 ≥ hp−
√
h. As shown in in the proof of Lemma 5, hp−

√
h

is an increasing function for any h ≥
√
m, and hence under event E2(h, `), s1 ≥ hp −

√
h ≥
√
mp −m1/4.

Applying this lower bound on s1 to Equation (27) leads to

Pr

(
r̂1 ∈ [r1−

1
√
s1

, r1 +
1
√
s1

]
∣∣ E2(h, `)

)
≥ 1− 1

(
√
mp−m1/4)2

.
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Note that the same inequality holds r2 and its estimate. As a result, we have

Pr(E3|E2(h, `))≥ (1− 1

(
√
mp−m1/4)2

)2.

Part 3: bounding Pr(G(ψ; (h, `))) conditioned on events E2(h, `) and E3. We show that conditioned on

E2(h, `) and E3, for any realization s, Pr(G(ψ; (h, `))) = 1. We show this by proving r̂1 ≥ r̂2 always happens

under events E2(h, `) and E3. Under events E2(h, `) and E3, we know that (i) s1, s2 ≥
√
mp−m1/4 and (ii)

r̂1 ∈ [r1 − 1√
s1
, r1 + 1√

s1
] and r̂2 ∈ [r2 − 1√

s2
, r2 + 1√

s2
]. To show the result, we confirm that the lower bound

on r̂1 is smaller than the upper bound on r̂2. That is,

r2 +
1
√
s2

≤ r1−
1
√
s1

for any s1, s2 ≥
√
mp−m1/4

Given the lower bound on s1 and s2, it suffices to show that

r2 +
1√√

mp−m1/4
≤ r1−

1√√
mp−m1/4

⇐⇒ r1− r2 ≥
2

m1/8
√
m1/4p− 1

Be definition of m1, the above inequality holds for any m≥m1. Recall that m1 = miny≥1/p4
{
y : r1 − r2 >

2

y1/8
√
y1/4p−1

}
.

Part 4: bounding inf(h,`)∈R3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E3
]
. First, observe that the ratio rewA(n,ρ;G)

opt(n)
is inde-

pendent with E3 because both the reward under the good event rewA (n,ρ;G), and the optimal reward, i.e.,

opt(n), do not depend on r̂1 and r̂2. We can simply delete E3, and bound inf(h,`)∈R3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `)
]
.

We begin by partitioning region R3 based the number of type 1 agents, (i.e.. h):

R1
3 = {(h, `) : (h, `)∈R3, h < h0} and R2

3 = {(h, `) : (h, `)∈R3, h≥ h0},

where h0 = min{y ≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}. Then, inf(h,`)∈R3

En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `)
]

is equal to the mini-

mum of inf(h,`)∈R1
3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `)
]

and inf(h,`)∈R2
3
En

[
rewA(n,ρ;G)

opt(n)
|E2(h, `)

]
.

Lemma 9. Let R1
3 = {(h, `) : (h, `)∈R3, h < h0}. We then have

inf
(h,`)∈R1

3

En

[rewA (n,ρ;G)

opt(n)

∣∣E2(h, `)
]
≥ 1− 1√

m
,

where h0 = min{y≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y} and event E2(h, `) is defined in Equation (24).

The proof of Lemma 9 is similar to the proof of Lemma 5, and is presented in Section B.4.3.

Lemma 10. Let R2
3 = {(h, `) : (h, `)∈R3, h≥ h0}. We then have

inf
(h,`)∈R2

3

En

[rewA (n,ρ;G)

opt(n)

∣∣E2(h, `)
]
≥ h1

m
,

where h1 = h0(1−p)−
√
p(1− p)h0− β√

h0

, β = 0.4215 · p
2+(1−p)2

p(1−p) , and h0 = min{y≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}.

Further, event E2(h, `) is defined in Equation (24).

The proof of Lemma 10 is similar to the proof of Lemma 6 and for completeness, is presented in Section

B.4.4. Lemmas 9 and 10 imply that

inf
(h,`)∈R3

En

[
rewA (n,ρ;G)

opt(n)

]
≥min

{
1− 1√

m
,
h1

m

}
=W .

Finally, by the results in parts 1-4, we have

inf
(h,`)∈R3

En

[
rewA (n,ρ;G)

opt(n)

]
≥ (1− 1

m
)2(1− 1

(
√
mp−m1/4)2

)2W ,

which is the desired result.
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B.4.2. Proof of Lemma 8 In Equation (7), we have

inf
(h,`)∈R3

Es

[
rewA (n,ρ)

opt(n)

]
= inf

(h,`)∈R3

{
En

[
rewA (n,ρ;G) ·Pr(G(ψ; (h, `)))

opt(n)

]

+En

[
rewA

(
n,ρ;GC

)
· (1−Pr(G(ψ; (h, `))))

opt(n)

]}
. (28)

Define event E5 = {s1 6= 0}∩ {s2 6= 0}. We can lower bound Equation (28) by

inf
(h,`)∈R3

Es

[
rewA (n,ρ)

opt(n)

]
≥ inf

(h,`)∈R3

Eψ
[
rewA (n,ρ)

opt(n)

∣∣E5]Pr(E5)

≥ inf
(h,`)∈R3

{
En

[
rewA (n,ρ;G) ·Pr(G(ψ; (h, `)))

opt(n)

∣∣E5]

+En

[
rewA

(
n,ρ;GC

)
· (1−Pr(G(ψ; (h, `))))

opt(n)

∣∣E5]} Pr(E5). (29)

Note that

Pr(E5) = 1−Pr(EC5 )≥ 1−Pr(s1 = 0)−Pr(s2 = 0)

= 1−
(
h

0

)
(1− p)h−

(
`

0

)
(1− p)` ≥ 1− 2

(√
m

0

)
(1− p)

√
m = 1− 2(1− p)

√
m. (30)

We denote V as 1− 2(1− p)
√
m. Furthermore, conditioned on event E5, it is obvious that the probability of

the good event G(ψ; (h, `)) = {r̂1 ≥ r̂2} is greater than or equal 1/2. This is because when event E5 holds,

(i) our estimate for ri, i ∈ {1,2} is simply the sample average of the si realized rewards, and (ii) we have

r1 > r2. In light of Equation (29), if En

[
rewA(n,ρ;G)

opt(n)

∣∣E5]< En

[
rewA(n,ρ;GC)

opt(n)

∣∣E5], then Equation (29) is lower

bounded by setting the probability of the good event to be 1.

inf
(h,`)∈R3

Es

[
rewA (n,ρ)

opt(n)

∣∣E5]≥ inf
(h,`)∈R3

En

[
rewA (n,ρ;G)

opt(n)

∣∣E5] . (31)

Otherwise, Equation (29) is lower bounded by setting the probability of good event to be 1
2
.

inf
(h,`)∈R3

Es

[
rewA (n,ρ)

opt(n)

∣∣E5]≥ inf
(h,`)∈R3

1

2
En

[
rewA (n,ρ;G)

opt(n)

∣∣E5]+
1

2
En

[
rewA

(
n,ρ;GC

)
opt(n)

∣∣E5] (32)

Given Equations (31) and (32), we need to bound En

[
rewA(n,ρ;G)

opt(n)

∣∣E5] and En

[
rewA(n,ρ;GC)

opt(n)

∣∣E5]. Notice that

the former ratio can be lower bounded by

En

[rewA (n,ρ;G)

opt(n)

∣∣E5]≥En

[rewA (n,ρ;G)

opt(n)

∣∣E5,E2(h, `)
]

Pr(E2(h, `))

=En

[rewA (n,ρ;G)

opt(n)

∣∣E2(h, `)
]

Pr(E2(h, `)) ,

where event E2(h, `) =
{
s1 ∈ [hp−

√
h,hp+

√
h]}∩ {s2 ∈ [`p−

√
`, `p+

√
`]
}

. The equality holds because

E2(h, `)⊂E5. Then, by part 1 and 4 of the proof of Lemma 7, we have the former ratio is bounded by

En

[rewA (n,ρ;G)

opt(n)

∣∣E5]≥ (1− 1

m
)2W, (33)

where W = min
{

1− 1√
m
, h1

m

}
.
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Bounding the latter ratio, i.e., En

[
rewA(n,ρ;GC)

opt(n)

∣∣E5], is quite involved because when the bad event

GC(ψ; (h, `)) happens, Algorithm 1 may over-protect or under-protect type 2 agents given the randomness

in the sample information. Over-protecting type 2 agents leads to reject a certain number of type 1 agents

and waste some of the resources. As ` is large in this case, the number of wasted resources can be large too.

Under-protecting type 2 agents leads to accept many type 1 agents, which is a good thing for the algorithm.

Nonetheless, we provide the lower bound of the ratio below and show that it is still not too small in this

case once we take expectation with respect to s.

We begin by partitioning region R3 based the number of type 2 agents chosen by the adversary, (i.e. `):

R3 = {(h, `) : (h, `)∈R3, ` > `0} R3 = {(h, `) : (h, `)∈R3, `≤ `0} ,

where `0 = min{y : (1 − p)y −√y ≥m}. Then, inf(h,`)∈R3
En

[ rewA(n,ρ;GC)
opt(n)

∣∣E5] is equal to the minimum of

inf(h,`)∈R3
En

[ rewA(n,ρ;GC)
opt(n)

∣∣E5] and inf(h,`)∈R3
En

[ rewA(n,ρ;GC)
opt(n)

∣∣E5]. We bound the first ratio (i.e., the one con-

cerns R3) in Lemma 11 and the second ratio (i.e., the one concerns R3) will be bounded in Lemma 12.

Lemma 11. Let R3 = {(h, `) : (h, `)∈R3, ` > `0}, where R3 = {(h, `) : h≥
√
m,`≥

√
m}, and `0 = min{y :

(1− p)y−√y≥m}. Then,

inf
(h,`)∈R3

En

[
rewA

(
n,ρ;GC

)
opt(n)

∣∣E5]≥ (1− 1

`20
)α ,

where α= r2
r1

.

In this case, we show that with high probability, the number of type 2 agents in the online arrival sequence

n2 ≥m. Then, the algorithm accepts m type 2 agents, and the ratio is bounded by α.

Lemma 12. Let R3 = {(h, `) : (h, `)∈R3, `≤ `0}, where R3 = {(h, `) : h≥
√
m,`≥

√
m}, and `0 = min{y :

(1− p)y−√y≥m}. Let β = 0.4215 · p
2+(1−p)2

p(1−p) and `1 =
√
p(1− p)`0 + β√

m
+ `0p. Then,

inf
(h,`)∈R3

En

[
rewA

(
n,ρ;GC

)
opt(n)

∣∣E5]≥min

{
α,1− 1− p

pm
`1

}
.

To show Lemma 12, we define event E4 = {n2 ≥ 1−p
p
s2}. Under this event the number of type 2 agents

is greater than or equal to the protection level assigned to this type of agents. Then, we provide the lower

bound of inf(h,`)∈R3
En

[ rewA(n,ρ;GC)
opt(n)

∣∣E5] by further conditioning on either E4 or EC4 . For the part with E4, we

do not reject type 1 agents unless there is no resource remaining. Therefore, the lower bound can be bounded

by α. For the part with EC4 , we directly calculate how many resources we waste, and then provide a lower

bound.

Finally, combining the results from Lemmas 11 and 12, we have

inf
(h,`)∈R3

En

[
rewA

(
n,ρ;GC

)
opt(n)

∣∣E5]≥min

{
(1− 1

`20
)α,1− 1− p

pm
`1

}
. (34)

Combining the results from Equations (31), and (33), we have if (1− 1
m

)2W ≤min
{

(1− 1
`20

)α,1− 1−p
pm

`1

}
,

inf
(h,`)∈R3

En

[
rewA (n,ρ)

opt(n)

∣∣E5]≥ (1− 1

m
)2W. (35)
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Otherwise, by Equations (32), and (34), we have

inf
(h,`)∈R3

En

[
rewA (n,ρ)

opt(n)

∣∣E5]≥ 1

2
(1− 1

m
)2W +

1

2
min{(1− 1

`20
)α,1− 1− p

pm
`1}. (36)

Therefore, combining the results in Equations (29), (30), and (35), (36), we have

inf
(h,`)∈R3

En

[
rewA (n,ρ)

opt(n)

]
≥ V ·min

{
(1− 1

m2
)W,

1

2
(1− 1

m2
)W +

1

2
min

{
(1− 1

`20
)α,1− 1− p

pm
`1

}}
,

where recall that V = 1− 2(1− p)
√
m.

B.4.3. Proof of Lemma 9 Recall that E0 = {n2 > m − 1−p
p
s1}. We provide a lower bound of

En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `)
]

by considering the conditional expectation on EC0 .

inf
(h,`)∈R1

3

En

[
rewA (n,ρ;G)

opt(n)

∣∣E2(h, `)

]
≥ inf

(h,`)∈R1
3

En

[
rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),E0
]

Pr(E0|E2(h, `)). (37)

In light of Equation (37), we will provide a lower bound for En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E0
]

and Pr(E0|E2(h, `)).

Part 1: bounding En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E0
]
. For a fixed realization of s (or equivalently n), we have

rewA (n,ρ;G) = min

{
n2,

(
m− 1− p

p
s1

)+
}
· r2

+ min

{
m−min

{
n2,

(
m− 1− p

p
s1

)+
}
, n1

}
· r1 (38)

Conditional on E0 = {n2 ≤m− 1−p
p
s1}, we have min{n2, (m− 1−p

p
s1)+} = n2, and min{m−min{n2, (m−

1−p
p
s1)+}, n1}= min{m−n2, n1}. Then, we have

rewA

(
n,ρ;GC

)
opt(n)

≥
rewA

(
n,ρ;GC

)
n1r1 + min{m−n1, n2}r2

=
n2r2 + min{m−n2, n1}r1

n1r1 + min{m−n1, n2}r2

≥min

{
n1r1 +n2r2

n1r1 +n2r2

,
(m−n2)r1 +n2r2

n1r1 + (m−n1)r2

}
=

(m−n2)r1 +n2r2

n1r1 + (m−n1)r2

≥ (m−
√
m)r1

mr1

= 1− 1√
m
. (39)

The second inequality is because when min{m − n2, n1} = n1, we have min{m − n1, n2} = n2, and when

min{m−n2, n1}=m−n2, we have min{m−n1, n2}=m−n1.

Part 2: bounding Pr(E0|E2(h, `)). We want to show that Pr(E0|E2(h, `)) equals 1 for (h, `)∈R1
3. As `∈

√
m

for any (h, `)∈R1
3, we have n2 ≤

√
m. Then, because E0 = {n2 ≤m− 1−p

p
s1}, we have

Pr(E0|E2(h, `)) = Pr

(
1− p
p

s1 ≤m−n2|E2(h, `)

)
≥Pr

(
1− p
p

s1 ≤m−
√
m|E2(h, `)

)
= Pr

(
s1 ≤

p(m−
√
m)

1− p
|E2(h, `)

)
.
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Next, we show that conditional on E2(h, `), the upper bound of s1 is no more than p(m−
√
m)

1−p . If E2(h, `)

happens, we have s1 ≤ hp+
√
h. We then have

s1 ≤ hp+
√
h⇒ s1 ≤ h0p+

√
h0 ≤ s1⇒

p(m−
√
m)

1− p
,

where the second inequality holds because hp +
√
h is an increasing function, and h < h0 in region R2.

These imply that hp+
√
p≤ h0p+

√
p0. The last inequality holds because p(m−

√
m)

1−p ≥ h0p+
√
h0. Recall that

h0 = min{y≥ 0 : p(m−
√
m)

1−p ≥ yp+
√
y}. This means that

Pr(EC0 |E2(h, `)) = 1. (40)

By Equations (39) and (40), we have

inf
(h,`)∈R1

3

En

[
rewA (n,ρ;G)

opt(n)

∣∣E0]Pr(E0)≥ (1− 1√
m

) , (41)

B.4.4. Proof of Lemma 10 Recall that E1 = {n1 >
1−p
p
s1}. We bound En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `)
]

by

considering the conditional expectation on E1 and EC1 respectively.

inf
(h,`)∈R2

3

En

[
rewA (n,ρ;G)

opt(n)

∣∣E2(h, `)

]
≥ inf

(h,`)∈R2
3

{
min

{
En

[
rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),E1
]
,

En

[
rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),EC1
]}}

(42)

We will provide the lower bound of inf(h,`)∈R2
3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E1
]

in the first part of the proof, and

the lower bound of inf(h,`)∈R2
3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),EC1
]

in the second part of the proof.

Part 1: bounding inf(h,`)∈R2
3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E1
]
. We then have

inf
(h,`)∈R2

3

En

[rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),E1
]

≥ inf
(h,`)∈R2

3

min

{
En

[rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),E1,EC0
]
,

En

[rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),E1,E0
]}

,

where we recall EC0 = {n2 >m− 1−p
p
s1}.

To provide a lower bound for En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E1,EC0
]
, we note that under event EC0 , we have n2 >

m− 1−p
p
s1, and hence

En

[
rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),E1,EC0
]
≥

(m− 1−p
p
s1)+r2 + min{m, 1−p

p
s1}r1

mr1

≥ (m−n2)r1

mr1

≥ 1− 1√
m
. (43)

Then, we give a lower bound to En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),E1,E0
]
. Conditional on E1 and E0, we have 1−p

p
s1 ≥

m−n2 and 1−p
p
s1 ≤ n1. That is, the number of type 1 agents in the online arrival sequence is greater than

or equal to the protection level of Algorithm 1 for type 1 agents (i.e., 1−p
p
s1 ≤ n1), and in addition, the

algorithm ends up rejecting some of type 2 agents as 1−p
p
s1 ≥m−n2. Therefore, we have

En

[
rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),E1,E0
]
≥

(m− 1−p
p
s1)+r2 + min{m, 1−p

p
s1}r1

mr1

≥ (m−n2)r1

mr1

≥ 1− 1√
m
,
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where the last inequality holds because n2 ≤ `≤
√
m for any (h, `)∈R2

3.

Part 2: bounding inf(h,`)∈R2
3
En

[
rewA(n,ρ;G)

opt(n)

∣∣E2(h, `),EC1
]
. Recall that for a fixed realization of s (or equiv-

alently n),

rewA (n,ρ;G) = min

{
n2,

(
m− 1− p

p
s1

)+
}
· r2

+ min

{
m−min

{
n2,

(
m− 1− p

p
s1

)+
}
, n1

}
· r1 .

Conditional on EC1 = {n1 ≤ 1−p
p
s1}, we do not receive enough number of type 1 agents and thus, we have

min

{
m−min

{
n2,

(
m− 1− p

p
s1

)+
}
, n1

}
≥min

{
max

{
m−n2,

1− p
p

s1

}
, n1

}
= n1 .

That is, Algorithm 1 accepts all type 1 agents in the online arrival sequence. Then, we have

En

[rewA (n,ρ;G)

opt(n)

∣∣E2(h, `),EC1
]
≥En

[min

{
n2,
(
m− 1−p

p
s1

)+
}
· r2 +n1r1

mr1

∣∣E2(h, `),EC1
]

≥ 1

m
En

[
n1

∣∣E2(h, `),EC1
]
.

We will show that En

[
n1

∣∣E2(h, `),EC1
]
≥ h1, where h1 = h0(1 − p) −

√
p(1− p)h0 − β√

h0

and β = 0.4215 ·
p2+(1−p)2

p(1−p) .

Since EC1 = {n1 ≤ 1−p
p
s1}= {h(1− p)−n1 ≥ 0}, we have

En[n1|EC1 ,E2(h, `)]

= h(1− p)−En[h(1− p)−n1

∣∣{h(1− p)−n1 ≥ 0},E2(h, `)]

= h(1− p)−En[h(1− p)−n1

∣∣{h(1− p)−n1 ≥ 0}∩ {h(1− p)−
√
h≤ n1 ≤ h(1− p) +

√
h}]

= h(1− p)−En[h(1− p)−n1

∣∣{0≤ h(1− p)−n1 ≤
√
h}]

≥ h(1− p)−En[h(1− p)−n1

∣∣{h(1− p)−n1 ≥ 0}]

=En[n1|EC1 ].

The inequality is because

En[h(1− p)−n1

∣∣{0≤ h(1− p)−n1 ≤
√
h}]

≤En[h(1− p)−n1

∣∣{0≤ h(1− p)−n1 ≤
√
h}] +En[h(1− p)−n1

∣∣{h(1− p)−n1 ≥
√
h}]

=En[h(1− p)−n1

∣∣{h(1− p)−n1 ≥ 0}].

Next, we have

En

[
n1

∣∣EC1 ]= h(1− p)−En

[
h(1− p)−n1

∣∣h(1− p)−n1 ≥ 0
]

≥ h(1− p)−Es [|h(1− p)−n1|]
∣∣− β√

h

≥ h(1− p)−
√
p(1− p)h− β√

h

≥ h0(1− p)−
√
p(1− p)h0−

β√
h0

= h1 ,
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where the first inequality holds because by Nagaev and Chebotarev (2011), we have
∣∣∣En[(h(1−p)−n1)

∣∣{h(1−

p)−n1 ≥ 0}
]
−En [|h(1− p)−n1|]

∣∣∣≤ β√
h
. The second inequality follows from Berend and Kontorovich (2013)

that shows En [|h(1− p)−n1|] ≤
√
p(1− p)h. The third inequality holds because when h > h0, h(1− p)−√

p(1− p)h− β√
h

is a non-decreasing function for any p. To see why note that

∂(h(1− p)−
√
p(1− p)h− β√

h
)

∂h
≥ (1− p)− 1

2

√
p(1− p) 1√

h
≥ 0 , (44)

where the last inequality holds for any h≥ 1
4

p

1−p , and we have h0 >
m−
√
m

1−p > 1
4

p

1−p for all m≥ 2.

B.5. Proof of Lemma 11

As `0 = min{y : (1− p)y−√y≥m}, by Hoeffding’s inequality, we have

Pr(n2 ≥m) = Pr(Bin(`0,1− p)≥m)≥ 1− 1

`20
.

Given that n2 ≥m, the worst case is where the decision-maker accepts m type 2 agents, and the CR is lower

bounded by mr2
mr1

= α.

B.5.1. Proof of Lemma 12 We have

inf
(h,`)∈R3

En

[
rewA

(
n,ρ;GC

)
opt(n)

]
= inf

(h,`)∈R3

min

{
En

[
rewA

(
n,ρ;GC

)
opt(n)

∣∣{n2 ≥m}

]
,

En

[
rewA

(
n,ρ;GC

)
opt(n)

∣∣{n2 <m}

]}
(45)

We have discussed in the proof of Lemma 11 that En

[
rewA(n,ρ;GC)

opt(n)

∣∣{n2 ≥m}
]
≥ α. Then, given Equation

(45), we provide a lower bound to En

[
rewA(n,ρ;GC)

opt(n)

∣∣{n2 <m}
]
.

Conditional on event {n2 < m}, the algorithm accepts all n2 type 2 agents. If n2 is larger than the

protection level min{m, 1−p
p
s2}, the algorithm accepts as many type 1 agents as possible with the remaining

m− n2 units of the resource. If n2 is small than the protection level min{m, 1−p
p
s2}, the algorithm rejects

some type 1 agents because we can accept at most (m− 1−p
p
s2)+ type 1 agents. Then, we have

En

[
rewA

(
n,ρ;GC

)
opt(n)

∣∣{n2 <m}

]
≥En

[
n2r2 + min{n1,m−max{n2,min{m, 1−p

p
s2}}}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

]
.

We define the event E4 = {n2 ≥ 1−p
p
s2}. Then, we have

En

[
n2r2 + min{n1,m−max{n2,min{m, 1−p

p
s2}}}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

]

≥min

{
En

[
n2r2 + min{n1,m−max{n2,min{m, 1−p

p
s2}}}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

∣∣E4] ,
En

[
n2r2 + min{n1,m−max{n2,min{m, 1−p

p
s2}}}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

∣∣EC4
]}

. (46)

Conditioned on E4, for any realization s, we have

n2r2 + min{n1,m−max{n2,min{m, 1−p
p
s2}}}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

=
n2r2 + min{n1, (m−n2)}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

≥ mr2

mr1

= α.
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When E4 happens, the number of arriving type 2 agents is larger than the protection level, and the

algorithm accepts all the arriving agents until there is no resource left. If OPT does not use all resources,

then the algorithm accepts everyone, and hence the above ratio will be one. If OPT uses all resources, then

the algorithm also uses all resources, and thus, this bound clearly holds.

Conditioned on EC4 , we have n2 <
1−p
p
s2. Then,

n2r2 + min{n1,m−max{n2,min{m, 1−p
p
s2}}}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

=
n2r2 + min{n1, (m− 1−p

p
s2)+}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

≥
n2r2 + (m− 1−p

p
s2)+r1

mr1

.

The inequality is because if n1 < m− 1−p
p
s2, then the algorithm accepts n2 type 2 agents and n1 type 1

agents, and the ratio is 1. Then, we have

En

[
n2r2 + min{n1,m−max{n2,min{m, 1−p

p
s2}}}r1

min{m,n1}r1 + min{n2, (m−n1)+}r2

∣∣EC4
]
≥En

[
n2r2 + (m− 1−p

p
s2)+r1

mr1

∣∣EC4
]

=En

[
(m− 1−p

p
s2)+r1

mr1

∣∣EC4
]

≥En

[
(m− 1−p

p
s2)r1

mr1

∣∣EC4
]

= 1− 1− p
pm

En

[
s2

∣∣EC4 ] . (47)

Since EC4 = {s2 ≥ `p}, we have

En

[
s2

∣∣s2 ≥ `p
]

=En

[
s2− `p

∣∣s2 ≥ `p
]

+ `p

≤En [|s2− `p|] +
β√
`

+ `p

≤
√
p(1− p)`+

β√
`

+ `p

≤
√
p(1− p)`0 +

β√
m

+ `0p

= `1 ,

where the first inequality holds because by Nagaev and Chebotarev (2011), we have
∣∣∣En

[
s2− `p

∣∣s2 ≥ `p
]
−

En [|s2− `p|]
∣∣∣ ≤ β√

`
. The second inequality follows from Berend and Kontorovich (2013) that shows

En [|s2− `p|]≤
√
p(1− p)`..

Finally, we have

inf
(h,`)∈R3

En

[
rewA

(
n,ρ;GC

)
opt(n)

]
≥min

{
α,1− 1− p

pm
`1

}
.

Appendix C: Proof of Proposition 2

To show the asymptotic result, we only need to consider the case that m≥m1. We can write the CR as

CRA ≥min
{

CR1,CR2,CR3

}
.

To show the result, we will show how CR1,CR2, and CR3 scale with m. First it is easy to see that CR1 =

min

{(
1− 1−p

p
√
m

)+

,1− r1−r2
(r1−r2)+r2

√
m

}
scales with 1−Θ(1/(p

√
m)). Similarly, it is easy to see that CR2 =
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min
{(

1− 1√
m

)(
1− 1

m

)
, h1

m

}
scales with 1−Θ(1/

√
m). This is because h0 = m−

√
m

1−p + 1
2p2

+
√

1
4p4

+ (m−
√
m)

p2(1−p) ,

and h1 = h0(1− p)−
√
p(1− p)h0− β√

h0

=m− (1 +
√
p)
√
m− o(

√
m). Then, we have h1

m
= 1−Θ(1/

√
m).

To complete the proof, we show how

CR3 = (1− 1

m
)2(1− 1

(
√
mp−m1/4)2

)2W

scales with m. Observe that (1− 1
m

)2(1− 1
(
√
mp−m1/4)2

)2 = 1−Θ(1/(p2m)). When p= ω(1/
√
m), Θ(1/(p2m))

is dominated by Θ(1/(p
√
m)). Further, by the analysis for CR2, we know that W = min

{
1− 1√

m
, h1

m

}
also

scales with 1−Θ(1/
√
m). Putting these together, we conclude that CRA = 1−Θ(1/(p

√
m)), as desired.

Appendix D: Proof of Theorem 2

We construct the following input family F: let h = 0 and h̄ = pm. The input family F contains all (h, `)

such that h ∈ [h, h̄] and ` = 10000·m
p

. For any h ∈ [h, h̄], we then denote Ih as a random arrival sequence

under which n2 type 2 agents arrive followed by n1 type 1 agents, where we recall that n1 ∼ Bin(h,1− p),
n2 ∼Bin(`,1−p). We denote Ih as the random arrival sequences, where in Ih, n2 type 2 agents arrive followed

by n1 type 1 agents.

Our goal is to characterize an upper bound on the CR of any deterministic algorithm under the family

F. Consider a specific input h ∈ [h, h̄]. The decision maker gets the sample (s1, s2) at the beginning of the

allocation period, where s1 ∼ Bin(h,p), and s2 ∼ Bin(`, p). As we select ` to be a super large constant, we

have with probability 1, s2�m. Therefore, under the family F, the decision-maker knows that there will

be more than m type 2 agents showing up. Based on the structure that all type 2 agents arrive before all

type 1 agents, any deterministic algorithm has to decide how many type 2 agents they accept if they observe

(s1, s2). As s2 is always larger than m, it does not impact the decisions. Put differently, any deterministic

algorithm can be represented by a mapping z(·): [0, h̄]→ [0,m], such that once they observe (s1, s2), they

will accept m−z(s1) type 2 agents. (As the number of type 1 agents, h, is less than m, the number of type 1

agents in the online arrival sequence n1 <m.) Let A be an algorithm associated with mapping z. We define

the following loss function for algorithm A under arrival sequence I and sample information s:

 LA (I,s) = opt(I)−rewA (I,s) . (48)

(Note that since r1 and r2 are known, we can replace ψ= (s,ρ) with s.) In the rest of this proof, we use the

shorthand of  L (I,s, z) and rew (I,s, z) in place of  LA(I, s) and rewA (I,s), respectively. Then, the CR of

a deterministic algorithm A with mapping z(·) on family F is at least

CR(z) = 1− sup
(h,`)∈F

Es
[

 L (I,s, z)

opt(I)

]
. (49)

In what follows, we provide an upper bound on CR(z) in Equation (49). To do so, we consider the following

two cases:

• Case 1: n1 ≥ z(s1). In this case, the number of type 1 agent arriving online (which is a random variable)

is larger than the remaining number of resources after we accept m − z(s1) type 2 agents. Therefore,

the decision-maker accepts m− z(s1) type 2 agents and z(s1) type 1 agents. The loss (i.e., the difference

between the optimal clairvoyant cumulative expected reward and what the decision-maker gets which is

defined in Equation (48)) is then (n1− z(s1))(r1− r2).
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• Case 2: n1 < z(s1). In this case, the number of type 1 agent arriving online is less than the remaining

number of resources after we accept m− z(s1) type 2 agents. Therefore, the decision-maker accepts m−

z(s1) type 2 agents and n1 type 1 agents. Therefore, we waste z(s1)−n1 units of resources. In this case,

the loss, defined in Equation (48), is (z(s1)−n1)r2.

Putting these two cases together, we have

 L (I,s, z) = (n1− z(s1))(r1− r2)1(n1 ≥ z(s1)) + (z(s1)−n1)r21(n1 < z(s1))

= (n1− z(s1))r11(n1 ≥ z(s1)) + (z(s1)−n1)r2 .

Hence, an upper bound on the CR of any deterministic algorithm on family F, denoted by CR, is at least

CR = max
z

CR(z)

= 1−min
z

max
h∈[h,h̄]

Es
[

 L (I,s, z)

opt(I)

]
= 1−min

z
max
h∈[h,h̄]

Es
[

(n1− z(s1))r11(n1 ≥ z(s1)) + (z(s1)−n1)r2

n1r1 + (m−n1)r2

]
, (50)

where CR(z) is defined in Equation (49).

Although we can solve this minmax optimization problem by some solver because the objective function is

convex in every dimension, we cannot calculate the value of the optimal solution in a closed form. Therefore,

we develop the analysis below to show that CR is 1−Θ( 1
p
√
m

).

In our analysis, we first focus on a specific mapping: z(s1) = 1−p
p
s1 for any s1 ∈ [0, h̄]. (Since s1 ≤ h̄=mp,

we have z(s1)≤m.) For this mapping, we calculate the CR of its associated deterministic algorithm. Second,

we compare any other feasible mappings with this mapping to show our result. We want to highlight that this

mapping (i.e., z(s1) = 1−p
p
s1) is not the optimal mapping: The optimal mapping should depend on r1 and

r2, but we cannot find its closed form. This mapping is considered as a benchmark with which we compare

all other mappings.

Lemma 13 (The CR under Mapping z(·)). Consider the following mapping z : [0, h̄]→ [0,m] such that

z(s1) = 1−p
p
s1 for any s1 ∈ [0, h̄]. Then, for any value of m

max
h∈[h,h̄]

Es
[

 L (I,s, z)

opt(I)

]
≤ r1

√
1− p
r2

1

p
√
m

+

√
2βr1

p
√
pr2

1

m
√
m
,

and

max
h∈[h,h̄]

Es
[

 L (I,s, z)

opt(I)

]
≥ 1

2
√

2

√
1− p 1

p
√
m
− β

p
√
p

1

m
√
m
,

where β = 0.4215 · p
2+(1−p)2

p(1−p) . This implies that CR(z) = 1−Θ( 1
p
√
m

).

By Lemma 13, we have under that particular mapping z, we have CR(z) = 1−Θ( 1
p
√
m

) over input family

F. The next lemma shows that there does not exist any other mapping ẑ(·) such that the CR over F is

1− o( 1
p
√
m

).

Lemma 14 (Other Mappings). Consider the setting in Section D and the input family F. For this

setting, there does not exist any mapping ẑ(·) such that the competitive ratio over F is 1− o( 1
p
√
m

).
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To show this, we compare all other mappings ẑ : [0, h̄]→ [0,m], with z(s1) = 1−p
p
s1, and using contradiction,

we assume that there exists a mapping ẑ which achieves the CR of 1 − o( 1
p
√
m

). As z achieves a CR of

1−Θ( 1
p
√
m

), the difference between the CR under ẑ and z is at least Θ( 1
p
√
m

). This gives constraints that

ẑ and z should be different on a set, and the difference between ẑ and z on the points in this set is lower

bounded. Then, we further claim that for a mapping ẑ which has a certain difference compared to z, the CR

is at least 1−Ω( 1
p
√
m

), which gives a contradiction and shows the best algorithm (mapping) can only achieve

an asymptotic CR of 1−Θ( 1
p
√
m

).

D.1. Proof of Lemma 13

The proof has two parts. In the first part, we present an upper bound on maxh∈[h,h̄] Es
[

 L(I,s,z)

opt(I)

]
and in the

second part, we present a lower bound on the same quantity.

First part: upper bound. By definition, z(s1) = 1−p
p
s1 for any s1 ∈ [0, h̄], and hence we have n1 − z(s1) =

h− s1− 1−p
p
s1 = h− 1

p
s1. Similarly, z(s1)−n1 = 1

p
s1−h. Then, by Equation (50), we have

max
h∈[h,h̄]

Es
[

 L (I,s, z)

opt(I)

]
≤ max
h∈[h,h̄]

Es
[

(n1− z(s1))r11(n1 ≥ z(s1)) + (z(s1)−n1)r2

mr2

]
=

1

m
max
h∈[h,h̄]

Es
[
(h− 1

p
s1)

r1

r2

1(h− 1

p
s1 ≥ 0) + (

1

p
s1−h)

]
=

1

m
max
h∈[h,h̄]

Es
[
(h− 1

p
s1)

r1

r2

1(h− 1

p
s1 ≥ 0)

]
=

r1

mpr2

max
h∈[h,h̄]

Es [(hp− s1)1(hp− s1 ≥ 0)] .

The second to last equation follows because Es[ 1
p
s1 − h] = 0. Recall that s1 ∼ Bin(h,p). Next, we bound

Es [(hp− s1)1(hp− s1 ≥ 0)]. We will show that

max
h∈[h,h̄]

Es [(hp− s1)1(hp− s1 ≥ 0)] ≤ 1

2

√
1− p

√
m+

√
2β
√
pm

, (51)

where β = 0.4215 · p
2+(1−p)2

p(1−p) . This confirms that

max
h∈h,h̄]

Es
[

 L (I,s, z)

opt(I)

]
≤ r1

mpr2

(
1

2

√
1− p

√
m+

√
2β
√
pm

)

=
r1

√
1− p

r2p
√
m

+

√
2βr1

p
√
pr2

1

m
√
m
,

which is the desired result.

It remains to show Equation (51). By Nagaev and Chebotarev (2011), we have∣∣Es [(hp− s1)1(hp− s1 ≥ 0)] − 1

2
Es [|hp− s1|]

∣∣≤ β√
h
. (52)

In addition, Berend and Kontorovich (2013) provides a sharp estimate of Es [|hp− s1|] :

1√
2

√
1− p
p

h≤Es [|hp− s1|] ≤
√

1− p
p

h. (53)

This leads to

Es [(hp− s1)1(hp− s1 ≥ 0)] ≤ 1

2
Es [|hp− s1|] +

β√
h
≤ 1

2

√
1− p
p

h+
β√
h
. (54)
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Therefore, for large enough m , we have

max
h∈[h,h̄]

Es [(hp− s1)1(hp− s1 ≥ 0)] ≤
√

1− p
p

h̄+ 0.4215
β√
h

=
1

2

√
1− p

√
m+

√
2β
√
pm

, (55)

which is the desired result.

Second part: lower bound. Here, we present a lower bound on maxh∈[h,h̄] Es
[
L(I,s,z)

opt(I)

]
, following similar

steps in the first part. By definition,

max
h∈[h,h̄]

Es
[

 L (I,s, z)

opt(I)

]
≥ max
h∈[h,h̄]

Es
[

(n1− z(s1))r11(n1 ≥ z(s1)) + (z(s1)−n1)r2

mr1

]
≥ 1

m
max
h∈[h,h̄]

Es
[
(h− 1

p
s1)1(h− 1

p
s1 ≥ 0) + (

1

p
s1−h)

]
=

1

m
max
h∈[h,h̄]

Es
[
(h− 1

p
s1)

r1

r2

1(h− 1

p
s1 ≥ 0)

]
=

1

mp
max
h∈[h,h̄]

Es [(hp− s1)1(hp− s1 ≤ 0)]

≥ 1

mp
max
h∈[h,h̄]

(
1

2
Es [|hp− s1|]

∣∣− β√
h

)
≥ 1

mp
max
h∈[h,h̄]

(
1

2
√

2

√
1− p
p

h− β√
h

)
=

1

mp

(
1

2
√

2

√
(1− p)m− β

√
pm

)
=

1

2
√

2

√
(1− p) 1

p
√
m
− β

p
√
p

1

m
√
m
.

The second to last inequality is due to Equation (52). The last inequality is due to Equation (53).

D.2. Proof of Lemma 14

Consider any arbitrary mapping ẑ(·). By Equation (50), we have

CR(ẑ) = 1− max
h∈[h,h̄]

Es
[

 L (I,s, ẑ)

opt(I)

]
≤ 1− max

h∈[h,h̄]
Es
[

(n1− ẑ(s1))r11(n1 ≥ ẑ(s1)) + (ẑ(s1)−n1)r2

mr2

]
= 1− 1

m
max
h∈[h,h̄]

Es
[
(n1− ẑ(s1))

r1

r2

1(n1 ≥ ẑ(s1)) + (ẑ(s1)−n1)

]
.

Let ŷ(s1) = s1 + ẑ(s1) for any s1 ∈ [0, h̄]. Then, since n1 + s1 = h, we have

CR(ẑ) ≤ 1− 1

m
max
h∈[h,h̄]

Es
[
(h− ŷ(s1))

r1

r2

1(h≥ ŷ(s1)) + (ŷ(s1)−h)

]
.

Our goal to show that CR(ẑ) = 1−Ω( 1
p
√
m

). We show this by contradiction. Contrary to our claim, suppose

that there exists a feasible mapping y0(·) with y0(s1) = s1 + z0(s1) under which

lim
m→∞

max
h∈[h,h̄]

Es
[
(h− y0(s1)) r1

r2
1(h≥ y0(s1)) + (y0(s1)−h)

]
p
√
m

= 0 . (56)

Note that if Equation (56) holds, we have CR(z0) = 1− o( 1
p
√
m

). Now observe that
(
(h− y0(s1)) r1

r2
1(h ≥

y0(s1))
)
≥ 0, and hence if Equation (56) holds, we must have

lim
m→∞

max
h∈[h,h̄]

Es [y0(s1)−h]

p
√
m

≤ 0. (57)
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Next we consider two cases. In the first case, we assume that limm→∞maxh∈[h,h̄]
Es[y0(s1)−h]

p
√
m

< 0 and we reach

a contradiction under this assumption. In the second case, assume that limm→∞maxh∈[h,h̄]
Es[y0(s1)−h]

p
√
m

= 0

and again reach a contradiction.

Case 1: limm→∞maxh∈[h,h̄]
Es[y0(s1)−h]

p
√
m

< 0. Suppose that limm→∞maxh∈[h,h̄]
Es[y0(s1)−h]

p
√
m

= η < 0. Then, we

show that y0(·) does not satisfy Equation (56), which is a contradiction. The left hand side of Equation (56)

can be written as

lim
m→∞

max
h∈[h,h̄]

Es1∼Bin(h,p)

[
(h− y0(s1)) r1

r2
1(h≥ y0(s1)) + (y0(s1)−h)

]
p
√
m

≥ lim
m→∞

max
h∈[h,h̄]

Es1∼Bin(h,p)

[
(h− y0(s1)) r1

r2
+ (y0(s1)−h)

]
p
√
m

=−r1

r2

η+ η=−r1− r2

r2

η > 0,

which implies that Equation (56) does not hold and hence it is a contradiction.

Case 2: limm→∞maxh∈[h,h̄]
Es[y0(s1)−h]

p
√
m

= 0. Here, we compare y0(·) and y(·) where we recall y(s1) = s1 +

z(s1) = 1
p
s1 for any s1 ∈ [0, h̄]. We then show a contradiction. In Lemma 13, we have shown that if y(s1) = 1

p
s1

(or equivalently z(s1) = 1−p
p
s1), then for any h∈ [h, h̄], we have

lim
m→∞

Es1∼Bin(h,p)

[
(h− y(s1)) r1

r2
1(h≥ y(s1)) + (y(s1)−h)

]
p
√
m

= lim
m→∞

Es1∼Bin(h,p)

[
(h− s1

p
) r1
r2

1(h≥ s1
p

) + ( s1
p
−h)

]
p
√
m

> 0. (58)

Let Equation (56) takes its maximum at h= h0 ∈ [h, h̄], and notice that h0 is a function with respect to

m. Also, note that Equation (58) holds for any h, including h0. Hence, by subtracting Equation (58) from

Equation (56) evaluated at h0, we have

lim
m→∞

1

p
√
m

(
Es1∼Bin(h0,p)

[
(h0p− s1)

r1

r2

1(h0p≥ s1) + (s1−h0p)

]

−Es1∼Bin(h0,p)

[
(h0p− y0(s1)p)

r1

r2

1(h0 ≥ y0(s1)) + (y0(s1)−h0)

] )
> 0. (59)

Now recall that under this case, we have limm→∞
Es1∼Bin(h0,p)[y0(s1)p−h0p]

p
√
m

= 0 where s1 ∼ Bin(h0, p). This

implies that limm→∞
Es1∼Bin(h0,p)[s1−y0(s1)p]

√
mp

= 0, as E[s1] = h0p. Therefore, Equation (59) can be written as

lim
m→∞

1

p
√
m

(
Es1∼Bin(h0,p)

[
(h0p− s1)

r1

r2

1(h0p≥ s1)− (h0p− y0(s1)p)
r1

r2

1(h0 ≥ y0(s1))

])
> 0. (60)

Next, let sequence qd(m) = |y0(d)p−d|
p
√
m

for d∈ [0, h̄], We define set D as follows

D= {d∈ [0, h̄] : lim
m→∞

qd(m)> 0}.

By definition qd(m) is non-negative for all d, and hence we define the complement of set D as follows

DC = {d∈ [0, h̄] : lim
m→∞

qd = 0}. (61)



64 Golrezaei, Jaillet, and Zhou: Online Resource Allocation with Samples

Then, we can write the inner term of Equation (60) as

Es1∼Bin(h0,p)

[
(h0p− s1)

r1

r2

1(h0p≥ s1)− (h0p− y0(s1)p)
r1

r2

1(h0 ≥ y0(s1))

]
=
∑
d∈D

Pr(s1 = d)

[
(h0p− d)

r1

r2

1(h0p≥ d)− (h0p− y0(d)p)
r1

r2

1(h0 ≥ y0(d))

]
+
∑
d∈DC

Pr(s1 = d)

[
(h0p− d)

r1

r2

1(h0p≥ d)− (h0p− y0(d)p)
r1

r2

1(h0 ≥ y0(d))

]
.

In Step (i), we show that

lim
m→∞

1

p
√
m

∑
d∈DC

Pr(s1 = d)

[
(h0p− d)

r1

r2

1(h0p≥ d)− (h0p− y0(d)p)
r1

r2

1(h0 ≥ y0(d))

]
= 0 . (62)

In Step (ii), we show that

lim
m→∞

∑
d∈D

Pr(s1 = d)> 0.

By these two equations, we can make a contradiction of Equation (57).

Step (i): Observe that
∑

d∈DC Pr(s1 = d)≤ 1, and hence we have

lim
m→∞

1

p
√
m

∑
d∈DC

Pr(s1 = d)

[
(h0p− d)

r1

r2

1(h0p≥ d)− (h0− y0(d))
r1

r2

1(h0p≥ y0(d)p)

]
≤ lim
m→∞

1

p
√
m

r1

r2

max
d∈DC

[(h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1(h0 ≥ y0(d))] . (63)

The inner term of the above equation can then be written as

(h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1(h0p≥ y0(d)p)

=
(
(h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1h0p≥y0(d)p

)
1(d< y0(d)p)

+ ((h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1(h0p≥ y0(d)p))1(d≥ y0(d)p) .

Notice that

((h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1(h0 ≥ y0(d)))1(d< y0(d)p)

= ((h0p− d−h0p+ y0(d)p)1(h0p≥ y0(d)p) + (h0p− d)1(d≤ h0p≤ y0(d)p))1(d< y0(d)p)

= ((y0(d)p− d)1(h0p≥ y0(d)p) + (h0p− d)1(d≤ h0p≤ y0(d)p))1(d< y0(d)p)

≤ (|y0(d)p− d|+ (y0(d)p− d))1(d< y0(d)p)

≤ 2 (|y0(d)p− d|)1(d< y0(d)p).

Similarly, we have

((h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1(h0 ≥ y0(d)))1(d≥ y0(d)p)≤ 2 (|y0(d)p− d|)1(d≥ y0(d)p).

Therefore, the inner term of Equation (63) is upper bounded by

(h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1(h0p≥ y0(d)p)≤ 2|y0(d)p− d|. (64)
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Using this in Equation (64) gives us

lim
m→∞

1

p
√
m

r1

r2

max
d∈DC

[(h0p− d)1(h0p≥ d)− (h0p− y0(d)p)1(h0 ≥ y0(d))]

≤ lim
m→∞

1

p
√
m

r1

r2

max
d∈DC

[2|y0(d)p− d|]

= lim
m→∞

2r1

r2

max
d∈DC

|y0(d)p− d|
p
√
m

,

= 0 ,

which is what we wanted to show. Note that the last equation holds because of definition of DC in Equation

(61).

Step (ii): By Equation (60) and the inequality above we have

lim
m→∞

1

p
√
m

∑
d∈D

Pr(s1 = d)

[
(h0p− d)

r1

r2

1(h0p≥ d)− (h0p− y0(d)p)
r1

r2

1(h0 ≥ y0(d))

]
> 0. (65)

Notice that for d∈D, we have limm→∞
|y0(d)p−d|
p
√
m

> 0. We define c1, c2 > 0 be the constant such that

sup
d∈D

lim
m→∞

|y0(d)p− d|
p
√
m

= c1 and inf
d∈D

lim
m→∞

|y0(d)p− d|
p
√
m

= c2.

Recall that D= {d∈ {0,1, . . . ,} : limm→∞ qd(m)> 0}, where qd(m) = |y0(d)p−d|
p
√
m

for d∈ {0,1, . . .}.

By Equation (64), we have

(h0p− d)
r1

r2

1(h0p≥ d)− (h0p− y0(d)p)
r1

r2

1(h0 ≥ y0(d))≤ 2
r1

r2

|y0(d)p− d|.

Therefore, Equation (65) can be upper bounded as

0< lim
m→∞

1

p
√
m

∑
d∈D

Pr(s1 = d)2
r1

r2

|y0(d)p− d| ≤ 2c1
r1

r2

lim
m→∞

∑
d∈D

Pr(s1 = d), (66)

which implies that

lim
m→∞

∑
d∈D

Pr(s1 = d)> 0. (67)

We are now ready to show the contraction. Recall that in the current case, we assumed that

limm→∞
Es

(
y0(s1)−h0

)
p
√
m

= 0, which implies that limm→∞
Es|y0(s1)−h0|

p
√
m

= 0. As in Steps (i) and (ii), we have

shown that limm→∞
1

p
√
m

∑
d∈DC Pr(s1 = d)

[
(h0p− d) r1

r2
1(h0p≥ d)− (h0p− y0(d)p) r1

r2
1(h0 ≥ y0(d))

]
= 0

and limm→∞
∑

d∈D Pr(s1 = d)> 0, by the following chain of equations we have the desired contradiction.

lim
m→∞

Es|y0(s1)−h0|
p
√
m

= lim
m→∞

1

p
√
m

(∑
d∈D

Pr(s1 = d)|y0(d)p−h0p|+
∑
d∈DC

Pr(s1 = d)|y0(d)p−h0p|

)

= lim
m→∞

1

p
√
m

(∑
d∈D

Pr(s1 = d)|y0(d)p− d+ d−h0p|

+
∑
d∈DC

Pr(s1 = d)|y0(d)p− d+ d−h0p|

)

= lim
m→∞

1

p
√
m

(∑
d∈D

Pr(s1 = d)|y0(d)p− d+ d−h0p|+
∑
d∈DC

Pr(s1 = d)(d−h0p)

)
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≥ lim
m→∞

1√
m

 ∑
d∈[h0]

(d−h0p) +
∑
d∈D

Pr(s1 = d)|y0(d)p− d|


=Es [s1−h0p] + lim

m→∞

1

p
√
m

∑
d∈D

Pr(s1 = d)|y0(d)p− d|

≥ lim
m→∞

∑
d∈D

Pr(s1 = d)c2

> 0 .

The first inequality holds because DC = {d ∈ [0, h̄] : limm→∞ qd(m) = 0}, where qd(m) = |y0(d)p−d|
p
√
m

for d ∈

[0, h̄]. The third equation is due to definition of DC. The fourth inequality is because |y0(d)p − d + d −

h0p| ≥ |y0(d)p − d| + (d − h0p). The last inequality is from Equation (67). This is a contradiction to

limm→∞maxh∈[h,h̄]
Es[y0(s1)−h]

p
√
m

= 0.

Put the two cases together, we conclude that there does not exist such mapping y0(·) with which the

competitive ratio on family of F is 1− o( 1
p
√
m

).

Appendix E: Proof of Theorem 3

We construct the following random input distribution by taking advantage of input family F that we used in

the proof of Theorem 2. Recall that under a given input h, ` in family F, Ih is the random arrival sequence

such that n2 type 2 agents arrive first followed by n1 type 1 agents, where n1 ∼Bin(h,1−p), n2 ∼Bin(`,1−p),

and `= 10000·m
p

, and h∈ [h, h̄] with h= 1
2
pm and h̄= pm. Then, in our random input distribution, we choose

one of the feasible h∈ [h, h̄] uniformly at random; that is Pr(Uniform[h, h̄] = h) = 1
h̄−h+1

for any h∈ [h, h̄].

Observe that due to our sampling procedure, even when the input h∈ [h, h̄] is realized, the online arrival

sequence I = Ih is still random. That prevents us from applying the Von Neuman/Yao principle Seiden (2000)

to our setting. At least in a footnote, clarify what the Von Neuman/Yao principle is and why we cannot

use it in our setting. Nonetheless, we derive a result similar to the Von Neuman/Yao principle that can be

applied to our setting.

Lemma 15 (Von Neuman/Yao principle: from deterministic to randomized inputs). Consider

a setting where the adversary chooses a meta input X ∈X , and then based on the meta input X, a random

input X̃ from a distribution D(X) is realized. For any random or deterministic algorithm A and meta input

X ∈ X , let CA(X̃) ∈ [0,1] be the (realized) reward of algorithm A under input X̃ over the reward of the

optimal in-hindsight algorithm that knows X̃ in advance, where X̃ ∼D(X). Then, EX̃∼D(X)[CA(X̃)] is the

competitive ratio of algorithm A under meta input X, where the expectation is with respect to X̃ and any

randomness in algorithm A.

Now, let Ad be the set of all deterministic algorithms. Let P be a probability distribution over any deter-

ministic algorithms. Define A∼ P as an algorithm chosen according to probability distribution P . 15 Further,

let Q be a probability distribution over the meta inputs in X , and let X ∼Q denote a random meta input

15 By Yao (1977), Ball and Queyranne (2009), any randomized algorithm may be viewed as a random choice A∼ P
among deterministic algorithms.
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chosen according to Q. Then, for any distribution P over algorithms, distribution Q over meta inputs, we

have

min
X∈X

EA∼P [EX̃∼D(X)[CA(X̃)]] ≤ max
A∈Ad

EX∼Q[EX̃∼D(X)[CA(X̃))]]. (68)

The proof can be found in Section E.1. We now ready to show the result using Lemma 15. Here, our meta

inputs are (h, `) ∈ F and our inputs are online arrival sequence Ih. Furthermore, the distribution over our

meta inputs, i.e., Q in Lemma 15, is uniform distribution. Recall that Pr(Uniform[h, h̄] = h) = 1
h̄−h+1

for any

h∈ [h, h̄].

Our goal here is to upper bound the competitive ratio of any randomized algorithm on family F, defined

above. That is, for any distribution P over any feasible deterministic algorithms A, we would like to bound

the following quantity

CRrand := min
Î∈F

EA∼P [EI [CRA(I)] .

By Lemma 15, we have

CRrand ≤ max
A∈Ad

EÎ∼Q[EI [CRA(I)]] = max
A∈Ad

EÎ∼Q
[
EI
[
rewA(I)

opt(I)

]]
,

where Ad is the set of all deterministic algorithms. Since Q is a uniform distribution over any h∈ [h, h̄], we

have

CRrand ≤
1

h̄−h+ 1
· max
A∈Ad

h̄∑
h=h

Es1∼Bin(h,p)

[
rewA (Ih, s1)

opt(Ih)

]
, (69)

where Ih is an arriving instance that a huge number of type 2 agents arrive first, and followed by h type 1

agents. Îh is a random variable which is consisted of Ih with a uniform distribution on h∈ [h, h̄]. Recall that

under Îh, rewA does not depend on s2�m, and hence we denote rewA(I,s) with rewA(I, s1). We would

like to show that for any deterministic algorithm A∈Ad, we have

1

h̄−h+ 1
·
h̄∑

h=h

Es1∼Bin(h,p)

[
rewA (Ih, s1)

opt(Ih)

]
= 1−Θ(

1

p
√
m

) .

By Equation (56) in the proof of Theorem 2, it suffices to show that there does not exist a mapping

y0(·) : {0, . . . , h̄}→ {0,1, . . . ,m}, such that

lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

Es1∼Bin(h,p)

[
(h− y0(s1)) r1

r2
1(h≥ y0(s1)) + (y0(s1)−h)

]
p
√
m

= 0 . (70)

Recall that under family F, any deterministic algorithm can be presented with such a mapping.

We show this by contradiction. Contrary to our claim, suppose there exists a mapping y0(·) such that

Equation (70) holds. This and the fact that (h− y0(s1)) r1
r2

1(h≥ y0(s1))≥ 0, imply that

lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

Es1∼Bin(h,p) [y0(s1)−h]

p
√
m

≤ 0. (71)

Next we consider two cases. In the first case, we assume that

limm→∞
1

h̄−h+1

∑h̄

h=h

Es1∼Bin(h,p)[y0(s1)−h]

p
√
m

< 0 and we reach a contradiction under this assumption. In the

second case, assume that limm→∞
1

h̄−h+1

∑h̄

h=h

Es1∼Bin(h,p)[y0(s1)−h]

p
√
m

= 0 and again reach a contradiction.
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Case 1: limm→∞
1

h̄−h+1

∑h̄

h=h

Es1∼Bin(h,p)[y0(s1)−h]

p
√
m

< 0. Suppose that

limm→∞
1

h̄−h+1

∑h̄

h=h

Es1∼Bin(h,p)[y0(s1)−h]

p
√
m

= η < 0. Then, we show that y0 does not satisfy Equation (70),

which is a contradiction. The left hand side of Equation (70) can be written as

lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

Es1∼Bin(h,p)

[
(h− y0(s1)) r1

r2
1(h≥ y0(s1)) + (y0(s1)−h)

]
p
√
m

≥ lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

Es1∼Bin(h,p)

[
(h− y0(s1)) r1

r2
+ (y0(s1)−h)

]
p
√
m

=−r1

r2

η+ η

=−r1− r2

r2

η

> 0,

which contradicts Equation (70).

Case 2: limm→∞
1

h̄−h

∑h̄

h=h

Es1∼Bin(h,p)[y0(s1)−h]

p
√
m

= 0. Similar to the proof of Theorem 2, we compare y0(·)
and y(·), where y(s1) = s1

p
for any s1 ∈ {0,1, . . . , h}, and then show a contradiction. Equation (58) in the

proof of Theorem 2 has shown that if y(s1) = s1
p

, then for any h∈ [h, h̄],

lim
m→∞

Es1∼Bin(h,p)

[
(h− y(s1)) r1

r2
1(h≥ s1

p
) + (y(s1)−h)

]
p
√
m

> 0. (72)

By subtracting Equation (72) from Equation (70), we have

lim
m→∞

1

p
√
m

1

h̄−h

h̄∑
h=h

(
Es
[
(hp− s1)

r1

r2

1(hp≥ s1) + (s1−hp)
]

−Es
[
(hp− y0(s1)p)

r1

r2

1(hp≥ y0(s1)p) + (y0(s1)p−hp)
] )

> 0. (73)

As in this case, we have limm→∞
1

h̄−h+1

∑h̄

h=h
Es[s1−y0(s1)p]

p
√
m

= 0, Equation (73) can be written as

lim
m→∞

1

p
√
m

(
1

h̄−h+ 1

h̄∑
h=h

Es
[
(hp− s1)

r1

r2

1(hp≥ s1)− (hp− y0(s1)p)
r1

r2

1(hp≥ y0(s1)p)

])
> 0. (74)

Using the same set D defined in the proof of Theorem 2 and following similar steps, we can show that

lim
m→∞

1

p
√
m

 1

h̄−h+ 1

h̄∑
h=h

∑
d∈DC∩[h]

Pr(s1 = d)

[
(hp− d)

r1

r2

1(hp≥ d)− (hp− y0(d)p)
r1

r2

1(hp≥ y0(d)p)

] = 0,

(75)

Therefore, we have

lim
m→∞

1

p
√
m

 1

h̄−h+ 1

h̄∑
h=h

∑
d∈D∩[h]

Pr(s1 = d)

[
(hp− d)

r1

r2

1(hp≥ d)− (hp− y0(d)p)
r1

r2

1(hp≥ y0(d)p)

] > 0.

(76)

By the above inequality and following similar steps in the proof of Theorem 2, we can show that

lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

∑
d∈D∩[h]

Pr(s1 = d)> 0. (77)
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We are now ready to show the contradiction using the assumption in this case, i.e.,

lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

Es [y0(s1)−h]

p
√
m

= 0 .

We have that

lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

Es [y0(s1)−h]

p
√
m

= lim
m→∞

1

p
√
m

1

h̄−h+ 1

h̄∑
h=h

 ∑
d∈D∩[h]

Pr(s1 = d)(y0(d)p−hp) +
∑

d∈DC∩[h]

Pr(s1 = d)(y0(d)−h)


= lim
m→∞

1

p
√
m

1

h̄−h+ 1

h̄∑
h=h

 ∑
d∈D∩[h]

Pr(s1 = d)(y0(d)p− d+ d−hp) +
∑

d∈DC∩[h]

Pr(s1 = d)(
d

p
−h)


= lim
m→∞

1

p
√
m

1

h̄−h+ 1

h̄∑
h=h

∑
d∈[h]

(d−hp) +
∑

d∈D∩[h]

Pr(s1 = d)(y0(d)p− d)


= lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

Ed∼Bin(h,p) [d−hp] + lim
m→∞

1

p
√
m

1

h̄−h+ 1

h̄∑
h=h

∑
d∈D∩[h]

Pr(s1 = d)(y0(d)p− d)

= lim
m→∞

1

p
√
m

1

h̄−h+ 1

h̄∑
h=h

∑
d∈D∩[h]

Pr(s1 = d)(y0(d)p− d)

≥ lim
m→∞

1

h̄−h+ 1

h̄∑
h=h

∑
d∈D∩[h]

Pr(s1 = d)c2

> 0,

The last inequality is from Equation (77). This is a contradiction to the assumption in case 2. Therefore,

there does not exist a mapping y0(·) with which we can achieve a competitive ratio of 1− o( 1
p
√
m

).

E.1. Proof of Lemma 15

Let P (A) be the probability of choosing an algorithm A. Further, let Q(X) be the probability of choosing

meta input X ∈X . We start from the right hand side of Equation (68):

max
A∈Ad

EX∼Q[EX̃∼D(X)[CA(X̃))]] =
∑
A∈Ad

P (A) · max
A∈Ad

EX∼Q[EX̃∼D(X)[CA(X̃))]]

≥
∑
A∈Ad

P (A) ·EX∼Q[EX̃∼D(X)[CA(X̃))]]

=
∑
A∈Ad

P (A) ·
∑
X∈X

Q(X) ·EX̃∼D(X)[CA(X̃))]

=
∑
X∈X

Q(X) ·
∑
A∈Ad

P (A) ·EX̃∼D(X)[CA(X̃))]

=
∑
X∈X

Q(X) ·EA∼P [EX̃∼D(X)[CA(X̃)]]

≥ min
X∈X

EA∼P [EX̃∼D(X)[CA(X̃)]] ,

where the last inequality is the desired result.
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Appendix F: Proof of Theorem 4

We define a family of arriving sequence F1 as follows: The input family F1 contains all (h, `) such that

h∈ [0,m/p] and `= 10000·m
p

. For any h∈ [0,m/p], we then denote Ih as an ordered random arrival sequence

under which n2 ∼ Bin(`,1− p) type 2 agents arrive followed by n1 ∼ Bin(h,1− p) type 1 agents. Then, we

characterize an upper bound on the CR of any deterministic algorithm under the family F1. Similar to the

proof of Theorem 2, given that the online arrival sequences Ih are all ordered, any deterministic algorithm

has to decide about how many type 2 agents they accept provided that they observe s1 samples from type

1 agents. Put differently, any deterministic algorithm can be represented by a mapping that maps s1 to the

number of type 2 agents it accepts.

We pick two sequences I0 and Ih̃ inside the family F1, where under I0, no type 1 agents arrive and under

Ih̃, the market size for type 1 agents is h̃. Here, h̃ is the smallest integer such that h̃p+
√
h̃ log(h̃)≥ 1. It is

easy to see that h̃≤ 1/p and h̃=O(1/p).

For the sequence I0, Pr(s1 = 0) = 1 because h = 0. For the sequence Ih̃, Pr(s1 = 0) ≥ 1− 1
h̃2 because by

Hoeffding’s inequality,

Pr

(
s1−E[s1]≥

√
h̃ log(h̃)

)
≤ 1

h̃2
. (78)

As E[s1] = h̃p, Equation (78) is equivalent to

Pr

(
s1− h̃p≥

√
h̃ log(h̃)

)
= Pr(s1 ≥ h̃p+

√
h̃ log(h̃)) ≤ Pr(s1 ≥ 1)≤ 1

h̃2
,

which implies that

Pr(s1 = 0)≥ 1− 1

h̃2
.

Now suppose that an algorithm accepts m− x type 2 agents if the decision-maker observes s1 = 0. Then

the CR under I0 is m−x
m

= 1− x
m

. The expected CR under Ih̃ (denoted by CR(Ih̃)) is bounded by

CR(Ih̃) = E[CR(Ih̃)|s1 = 0] Pr(s1 = 0) +E[CR(Ih̃)|s1 ≥ 1] Pr(s1 ≥ 1)

≤ (m−x)r2 +xr1

min{h̃,m}r1 + (m− h̃)+r2

+
1

h̃2
,

where we use the fact that Pr(s1 = 0)≤ 1 and E[CR(Ih̃)|s1 ≥ 1]≤ 1. Therefore, the CR is bounded by

min{1− x

m
,

(m−x)r2 +xr1

min{h̃,m}r1 + (m− h̃)+r2

+
1

h̃2
}.

To find the optimal x, we can let the two terms above be equal, and we have

x∗ =m− m2

m+ min{h̃,m}(1−α)
−m 1

h̃2
,

and the upper bound of CR can be calculated as

1− x∗

m
≤ m

m+ min{h̃,m}(1−α)
+

1

h̃2
,

which is the desired result.

The proof for randomized algorithms is omitted because we can apply Lemma 15 and use the similar

method in the proof of Theorem 2 to derive the upper bound among all randomized algorithms.
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Appendix G: Proof of Proposition 3

The proof is similar to the proof of Theorem 1, where there is no capacity constraint during the test period.

When there is a capacity constraint (i.e., when the number of resources during the test period ismt = ω(
√
m)),

the number of samples is not longer s1 and s2 under the case of s1 + s2 >mt. This, in turn, influences the

estimation of r̂i, i∈ {1,2}, and the probability of the good event that r̂1 > r̂2.

We note that in the proof of Theorem 1, the only place we needed a (lower) bound on the probability of

the good event is in the analysis of the third region R3 = {(h, `) : h≥
√
m,`≥

√
m}. The results for the other

two regions are still valid. Hence, in the following, we focus on the third region.

Given that h, `≥
√
m in the third region and s1 + s2 >mt, we split the analysis into two cases:

1. s1 > mt/2, s2 > mt/2. In this case, the decision-maker accepts mt/2 each type agents. Then, r̂i =
Bin(mt/2,ri)

mt/2
, i ∈ {1,2}. Then, we replace si by mt/2 in the proof of Lemma 7 and as mt = ω(

√
m), we

can get the same asymptotic result.

2. s1 <mt/2, s2 >mt/2 or s1 >mt/2, s2 <mt/2. Without loss of generality, we analyze the first case (i.e.,

s1 <mt/2, s2 >mt/2). In this case, we accept s1 type 1 agents and mt − s1 type 2 agents. Then, r̂1

remains the same and r̂2 = Bin(mt−s1,r2)

mt−s1
. Then, we replace s2 by mt− s1 in the proof of Lemma 7 and

as mt = ω(
√
m), we can also get the same asymptotic result.

Appendix H: Proof of Proposition 4

Consider the instance I which contains `= 10000·m
p·r2

type 2 agents and 0 type 1 agent. Then, in the online arrival

sequence, with probability 1, the number of realized rewards of 1 is larger than m. Therefore, opt-re(R, I) =

m almost surely.

As the realization of each arriving agent is independent and follows Ber(r2), any algorithm cannot predict

the realization of the arriving agent. If one accepts an agent, then the expectation of reward we get is

1 · Pr(Ber(r2) = 1) + 0 · Pr(Ber(r2) = 0) = r2. The best algorithm can accept m type 2 agents due to the

resource constraint. Therefore, the realized competitive ratio is at most mr2
m

= r2.

Appendix I: Proof of Proposition 5

We first consider region R1. From Lemma 2, CR is 1−Θ(1/
√
m) which does not depend on p in all cases

except {n2 <m−n1} or {n2 ≥m−n1}∩{n1 ≤ 1−p1
p1

s1}. Now, suppose that we apply the modified version of

Algorithm 1.This means we give protection level min{ 1−p1
p1

s1,m} to type 1 agent when the algorithm believes

type 1 is the high-reward type and give protection level min{ 1−p2
p2

s2,m} to type 2 agent when the algorithm

believes type 2 is the high-reward type. As the CR does not depend on p, in all cases except {n2 <m−n1}

or {n2 ≥m−n1}∩ {n1 ≤ 1−p1
p1

s1}, the CR is still 1−Θ(1/
√
m).

For the case of n2 <m−n1, we have

rewA (n,ρ;G)

opt(n)
=

min

{
n2,
(
m− 1−p1

p1
s1

)+
}
· r2 +n1r1

n2r2 +n1r1

≥
min

{
n2,
(
m− 1−p1

p1
s1

)+
}

n2

= min

1,

(
m− 1−p1

p1
s1

)+

n2





72 Golrezaei, Jaillet, and Zhou: Online Resource Allocation with Samples

=

(
m− 1−p1

p1
s1

)+

n2

>

(
m− 1−p1

p1
s1

)+

m−n1

≥

(
m− 1−p1

p1
h
)+

m
≥
(

1− 1− p1

p1

1√
m

)+

,

where in the last inequality holds because in region R1, h<
√
m.

For the case {n2 ≥m−n1}∩ {n1 ≤ 1−p1
p1

s1}, we have

rewA (n,ρ;G)

opt(n)
=

min{n2, (m− 1−p1
p1

s1)+}r2 +n1r1

(m−n1)r2 +n1r1

=
(m− 1−p1

p1
s1)+r2 +n1r1

(m−n1)r2 +n1r1

≥
(m− 1−p1

p1
s1)+

m−n1

≥
(m− 1−p1

p1
h)+

m
≥
(

1− 1− p1

p1

1√
m

)+

.

For any other cases, we still have the CR is 1 − Θ(1/
√
m). Totally, we have the modified version of

Algorithm 1 in R1 has a CR of 1−Θ(1/(p1

√
m)).

Next, from Lemma 3, in region R2, CR is 1−Θ(1/
√
m), which does not depend on p. Therefore, the

modified version also achieves a CR of 1−Θ(1/
√
m).

Finally, from Lemma 4, in region R3, for m ≥m1, CR3 = 1−Θ(1/(p2m)); and for m<m1, CR3 = 1−

Θ(1/
√
m). Again, if we apply the modified version of Algorithm 1, for m<m1, the CR is still 1−Θ(1/

√
m).

Otherwise, from the proof of Lemma 7, we have

CR3 ≥ (1− 1

(
√
mp1−m1/4)2

)(1− 1

(
√
mp2−m1/4)2

) = 1−Θ(
1

min{p1, p2}2m
).

To summarize, we have the modified version of Algorithm 1 has a CR of

1−Θ(max{ 1

p1

√
m
,

1

min{p1, p2}2m
}).

Appendix J: Algorithm for Sampling Probability p=O(1/
√
m)

Algorithm 3 Algorithm 3 for p=O(1/
√
m)

Input: The number of resources m.

1. With probability 1/2, we only accept type 1 agents. With probability 1/2, we only

accept type 2 agents.

Theorem 5 (Competitive Ratio of Algorithm 3). Consider the model presented in Section 2, where

the expected rewards of ri, i∈ {1,2} is unknown to the decision-maker. For p=O(1/
√
m) and for any m> 0,

the CR of Algorithm 3 is 1/2.

Proof of Theorem 5 With probability 0.5, we reject all type 2 agents and accept all type 1 agents, and

with probability 0.5, we reject all type 1 agents and accept all type 2 agents. Then, we have

E[rewA (I)]

opt(I)
=

1
2

min{n1,m}r1 + 1
2

min{n2,m}r2

min{n1,m}r1 + min{n2, (m−n1)+}r2

≥ 1

2
,

where the last inequality is due to min{n2, (m−n1)+} ≤min{n2,m}.

�
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Appendix K: Partially Known Sampling Probability

In our setting, we assume that the sampling probability p is known to the decision-maker, and we show

that under this assumption, Algorithm 1 obtains an asymptotically optimal CR. However, as we show in

Section 3, obtaining the same result is not possible when p is completely unknown, justifying our assumption.

Nonetheless, here we would like to study a setting in which the decision-maker (before the test period starts)

obtains an estimate of the sampling probability, denoted p̂, where p̂ ∈ [p(1− δ), p(1 + δ)] for some δ ∈ (0,1).

Here, p is the true (unknown) sampling probability and δ measures how accurate the estimate is. Such an

estimate can be obtained using previous allocation periods in which the same outreach program is used.

For this setting, let us consider a variation of Algorithm 1 under which the algorithm pretends the estimated

sampling probability to be the true probability. That is, when the algorithm protects type 1 agents (i.e.,

r̂1 > r̂2), the algorithm gives a protection level of min{m,s1
1−p̂
p̂
} to type 1 agent. Otherwise, the algorithms

gives min{m,s2
1−p̂
p̂
} protection level to type 2 agent. The following example shows that Algorithm 1 is quite

robust to the estimation error in the sampling probability under adversarial arrivals. Recall that in Section

6, we show that Algorithm 1 with noisy p performs extremely good under stochastic arrivals.

Example 4. Let CR(p; p̂) be the worst case CR of Algorithm 1 with input p̂ and the true sampling

probability p. Then, we measure the robustness of Algorithm 1 using the following measure that we refer to

as robustness ratio:

sup
p̂∈[p(1−δ),p(1+δ)]

CR(p;p)−CR(p; p̂)

CR(p;p)
.

Observe that the smaller the robustness ratio, the better. The CR is calculated by taking the minimum value

among 5000 generated arrival instances.

Figures 13 and 15 present the robustness ratio versus p with δ ∈ {0.1,0.2}, r1 = 0.9, and r2 = 0.5 for the

case of m = 30 and m = 200, respectively. The figures show the robustness ratio mainly depends on the

estimation error δ. When δ = 0.1, the robustness ratio is in the range of 1%− 6%. That is, the CR can drop

by at most 6% when we have 10% estimation error in p. Similarly, when with δ = 0.2, the robustness ratio

is in the range of 1− 12%. These results confirm the robustness of Algorithm 1 to the estimation error in p.
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Figure 11 δ= 0.1, m= 30

Figure 12 δ= 0.2, m= 30

Figure 13 Robustness of Algorithm 1 to the estimation error in p for m= 30. Here, r1 = 0.9, and r2 = 0.5.
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Figure 14 δ= 0.1, m= 200

Figure 15 δ= 0.2, m= 200

Figure 16 Robustness ratio of Algorithm 1 in p for m= 200. Here, r1 = 0.9, and r2 = 0.5.
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