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In online advertising markets, setting budget and return on investment (ROI) constraints are two prevalent

ways to help advertisers (i.e. buyers) utilize limited monetary resources efficiently. In this work, we provide a

holistic view of ROI and budget constrained markets. We first tackle the buyer’s bidding problem subject

to both budget and ROI constraints in repeated second-price auctions. We show that the optimal buyer

hindsight policy admits a “threshold-based" structure that suggests the buyer win all auctions during which

her valuation-to-expenditure ratio is greater than some threshold. We further propose a threshold-based

bidding framework that aims to mimic the hindsight bidding policy by learning its threshold. We show

that when facing stochastic competition, our algorithm guarantees the satisfaction of both budget and ROI

constraints and achieves sublinear regret compared to the optimal hindsight policy. Next, we study the

seller’s pricing problem against an ROI and budget constrained buyer. We establish that the seller’s revenue

function admits a bell-shaped structure, and then further propose a pricing algorithm that utilizes an episodic

binary-search procedure to identify a revenue-optimal selling price. During each binary search episode, our

pricing algorithm explores a particular price, allowing the buyer’s learning algorithm to adapt and stabilize

quickly. This, in turn, allows our seller algorithm to achieve sublinear regret against adaptive buyer algorithms

that quickly react to price changes.

Key words : Online advertising, bidding under financial constraints, return-on-investment, pricing

1. Introduction

In online advertising markets, advertisers run ad campaigns in which they bid and compete for

ad impressions through various forms of repeated auctions. To efficiently utilize limited monetary

resources that are allocated to a certain campaign, advertisers’ bidding strategies are typically subject
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to financial constraints. Such constraints generally include budget and return-on-investment (ROI)

constraints. Budget constraints primarily reflect advertisers’ monetary limits due to organizational

planning, while ROI constraints enforces the desired performance/return on the amount of capital

spent Kireyev et al. (2016), Golrezaei et al. (2018), Balseiro et al. (2019b). Both constraints are

empirically validated in practice (see e.g. Auerbach et al. (2008), Golrezaei et al. (2018)). In this

work, we study these financial considerations from two complementary aspects in online advertising

markets:

From the perspective of a buyer (advertiser), what is an optimal bidding strategy that achieves a

high utility while maintaining both budget and ROI constraints in the long run? From the perspective

of a seller (mechanism designer), what is an optimal pricing strategy against a buyer with both budget

and ROI constraints who aims to learn her bidding strategy?

Bidding under ROI and budget constraints. We consider a buyer who participates in

repeated second price auctions with some predesignated budget and target ROI, and aims to maximize

quasi-linear utility. The buyer is subject to a budget constraint which sets a cap on the her total

expenditure; and also an ROI constraint that requires the total accumulated valuation divided by

total expenditure to be at least the target ROI. The problem of interest is to learn how to bid under

both constraints.

The problem of learning how to bid only under a budget constraint has been studied extensively

in the literature,1 and is closely related to the more general area of online resource allocation subject

to capacity or packing constraints, which includes but is not limited to online knapsack Vaze (2018),

Zhou et al. (2008), packing Seiden (2002), Buchbinder and Naor (2009), Feldman et al. (2010),

Kesselheim et al. (2014), secretary problems Babaioff et al. (2007, 2008), Arlotto and Gurvich (2019).

One of the common approaches for the problem with only budget constraints is the adaptation of a

“pacing” strategy, which is motivated by the primal-dual framework (see Balseiro and Gur (2019),

1 We refer readers to Balseiro et al. (2021), Balseiro and Gur (2019) for a comprehensive study on budget management

strategies and their influences to the overall market. Also see Feldman et al. (2007) for a study on advertiser budget

optimization for search-based auctions.
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Balseiro et al. (2020a)). Although these primal-dual algorithms for budget constrained problems are

shown to have near-optimal performances in their settings, they cannot be generalized to deal with

ROI constraints as they cannot guarantee the buyer achieves a predetermined ROI target over all

auctions; see Section 3 for an example. Particularly, when there is no ROI constraint and one only

needs to deal with budget constraints, primal-dual algorithms would terminate when the budget is

depleted, making use of the fact that total buyer expenditure always increases in time. However,

this hard-stopping procedure is not valid with ROI constraints as the realized ROI may increase or

decrease over time, and can possibly drop below the buyer’s target ROI at some point.

Given this crucial observation, rather than designing a bidding strategy based on the primal-dual

framework, we develop a bidding strategy that is motivated by the structure of the optimal solution

to the primal (hindsight) problem. This solution admits a “threshold-based” structure that suggests

the buyer’s optimal strategy is to win all auctions during which the “value-to-cost ratio” is greater

than some threshold. This structure then inspires our threshold-based bidding algorithm which in

every period randomizes over two possible bids. We show that in a stochastic setting, our algorithm

can obtain a T -period regret in the order of O(
√
T ).

Pricing against single buyer with ROI and budget constraints. We complement our

study on learning how to bid with the seller’s online pricing problem: we focus on designing seller

pricing policies against a budget and ROI constrained buyer. In our pricing problem, as our of

our main challenges, both the buyer and seller adopt online algorithms to achieve their respective

objectives. Hence, the environment faced by the seller is neither stochastic nor adversarial. A similar

pricing problem is studied in Braverman et al. (2018), where they show that when an unconstrained

quasi-linear buyer adopts a certain class of learning algorithms, which they refer to as “mean-based”

algorithms (e.g. Follow the Perturbed Leader algorithm and EXP3), the seller can extract the buyer’s

entire surplus; see Deng et al. (2019) for an extension of this work. In our work, due to the existence

of the ROI and budget constraints, it is not possible to extract the buyer’s entire surplus. Nonetheless,

we show that the seller can learn a revenue-optimal selling price by suffering an additive (sublinear)

revenue loss.
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Designing pricing algorithms that eventually learn revenue-optimal selling price is cumbersome, as

the buyer’s model primitives (i.e. budget rate, target ROI, valuation distribution) are not known to

the seller. We overcome this hurdle by identifying a bell-shaped structure of the seller’s per-period

revenue function given that the buyer is clairvoyant and acts optimally. We exploit this bell-shaped

structure by designing an episodic binary search pricing algorithm. The episodic structure enables

the buyer’s algorithm to adapt to changes in prices and roughly speaking, allows the seller to obtain

regret in the order of how well the buyer reacts to changes in seller’s prices. This holds for our

proposed buyer bidding algorithm and any other buyer algorithm that is adaptive to changes in

prices.

We refer readers to Appendix A for an extended literature review.

2. Preliminaries

Notation. Let R+ be all strictly positive real numbers. For integer N ∈N, denote [N ] = {1,2 . . .N}

and ∆N =
{
p∈ [0,1]N :

∑
n∈[N ] p

n = 1
}
be the N -dimensional probability simplex. For a real number

x∈R, denote (x)+ as its positive part. For a vector a, denote ‖a‖ as the Euclidean norm of a. For

any two vectors a,b∈Rn, let min{a,b}= (min{ai, bi})i∈[n] be the element-wise minimum. We write

a� b if and only if ai ≤ bi and a� b if and only if ai ≥ bi for all i∈ [n].

Model. Consider a buyer competing in repeated second price auctions over a finite time horizon

T > 2. During each period t∈ [T ], the buyer observes her (private) valuation vt > 0 for the auctioned

ad impression, and then submits a bid value bt > 0. If bt is greater than the highest competing

bid dt > 0, the buyer wins the auction and pays dt. Otherwise the buyer pays nothing. At the

end of the period, the buyer observes dt regardless of whether she won the auction or not. We

assume that the per-period valuation and competing bid pair (vt, dt) is supported on some finite set

W = {(v1, d1) . . . (vK , dK)},2 which is known to the buyer. We call the occurrence of (vt, dt) = (vk, dk)

a type-k arrival during period t. For Sections 3, 4, and 5, where we study bidder’s bidding problem,

2 Continuous supports can be handled by discretization. This will cause additional buyer revenue loss, but by choosing

proper discretization sizes, buyer’s regret (defined later in Equation (3)) can remain sublinear in T .
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we assume there is a time-invariant occurrence distribution p= (p1 . . . pK)∈∆K , unknown to the

buyer, such that that P ((vt, dt) = (vk, dk)) = pk > 0 for ∀ t∈ [T ].

We assume all valuations and highest competing bids are strictly positive and bounded, and{
(vk, dk)

}
k∈[K]

are ordered such that v1

d1 > · · ·> vK

dK
. Denoting θk = vk

dk
, k ∈ [K+1] as the value-to-cost

ratio of the type-k arrival, we thus have θ1 > θ2 > . . . > θK > θK+1 = 0, where we define vK+1 = 0

and dK+1 =∞. We also write d̄= maxk∈[K] d
k and d= mink∈[K] d

k.

Buyer’s objective. The buyer aims to maximize her cumulative expected utility

E
[∑

t∈[T ] (vt−αdt)zt
]
, where zt = I{bt ≥ dt} is an indicator of whether the buyer won the auction in

period t. The expectation is taken over {(vt, dt)}t∈[T ] and possibly the randomness in bids {bt}t∈[T ].

Here, α≥ 0 can be viewed as the buyer’s private capital cost that normalizes the buyer’s accumulated

valuation with total expenditure. For simplicity, we assume vk−αdk 6= 0 for all k ∈ [K]. The private

capital cost utility model, which includes the quasi-linear (α= 1) and value-maximizing (α= 0)

utility models, is studied in various settings (e.g. see Balseiro et al. (2019b)).

Buyer’s financial constraints and feasible bidding strategies. They buyer employs bidding

strategies that respect both a budget constraint and an ROI constraint. More specifically, a buyer

(non-anticipating) bidding strategy β (possibly randomized) induces bids {bβt }t∈[T ] where each

bid value bβt can only depend on {(vτ , dτ , bβτ )}τ∈[t−1] ∪ {vt} and the randomness in the strategy.

Consequently, the resulting bids {bβt }t of strategy β should satisfy the following constraints:

ROI :
∑

t∈[T ] E
[
(vt− γdt) I

{
bβt ≥ dt

}]
≥ 0, Budget :

∑
t∈[T ] E

[
dtI
{
bβt ≥ dt

}]
≤ ρT . (1)

Here, ρ > 0 is called the budget rate, γ is the buyer’s target ROI such that γ > α > 0,3 and the

expectations are taken w.r.t. randomness in {(vt, dt, bβt )}t∈[T ]. Note that satisfying the ROI con-

straint guarantees the buyer’s returns (measured by total accumulated value divided by total

expenditure) are at least the target ROI γ, which can be seen by rewriting the ROI constraint as∑
t∈[T ] E[vtI

{
bβt ≥ dt

}
]/
∑

t∈[T ] E[dtI
{
bβt ≥ dt

}
]≥ γ.

3 Note that when γ ≤ α, the ROI constraint becomes redundant.
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We remark that both budget and ROI constraints are studied in an expected sense. Such “soft”

constraints are useful in practice due to the fact that real-world advertisers typically engage in many

different online advertising campaigns, so it is reasonable to maintain these financial constraints on

an aggregate level. We note that such soft financial constraints are also studied in mechanism design

and online learning literature such as Vaze (2018), Golrezaei et al. (2018).

Buyer’s regret. We evaluate any bidding strategy by comparing its cumulative utility to the

best achievable utility in hindsight, which, for any realization X = {(vt, dt)}t∈[T ] is defined as

OPT(X;α,γ, ρ) = maxz∈[0,1]T
∑

t∈[T ] (vt−αdt)zt

s.t.
∑

t∈[T ] (vt− γdt)zt ≥ 0,
∑

t∈[T ] dtzt ≤ ρT
(2)

Note that we considered the LP-relaxation (i.e., zt ∈ [0,1] rather than zt ∈ {0,1}) of the hindsight

problem as our benchmark. Also note in contrast with the soft ROI and budget constraints that are

considered in expectation (see Equation (1), the constraints in the hindsight benchmark are “hard”

constraints. Later in Theorem 2 we relate the optimization problems w.r.t. hard and soft constraints.

We quantitatively measure the performance of any bidding strategy β that satisfies both ROI and

budget constraints in Equation (1) against the aforementioned benchmark using the notion of regret:

Regβ(T,α,γ, ρ) =E
[
OPT(X;α,γ, ρ)−

∑
t∈[T ] (vt−αdt) I

{
bβt ≥ dt

}]
, (3)

where the expectation is again w.r.t. all randomness over X = {(vt, dt)}t∈[T ] and {b
β
t }t∈[T ].

3. A Primal-dual View for Financial Constraints and Failure of Pacing

The primal dual framework coupled with “pacing” has been widely used to resolve the online bidding

problem under a a hard budget constraint (see Balseiro et al. (2020b,a)). Nevertheless, in this

section we argue that naively applying these approaches to the bidding problem under a single ROI

constraint does not necessarily guarantee satisfaction of the ROI constraint in the long run.

Overview of the primal-dual view and a pacing policy for budget constraints. Consider

the primal and Lagrangian of the problem where only the budget constraint is present:

PrimalB = maxz∈[0,1]T
∑

t∈[T ] (vt−αdt)zt s.t.
∑

t∈[T ] dtzt ≤ ρT

LB(z, λ) = λρT +
∑

t∈[T ] (vt− (α+λ)dt)zt ,

(4)
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where λ≥ 0 is the dual variable w.r.t. the budget constraint. The dual function is defined as

DualB(λ) = maxz∈[0,1]T L
B(z, λ) =LB(z∗(λ), µ) = λρT +

∑
t∈[T ] (vt− (α+λ)dt)+ , (5)

where z∗t (λ) = arg maxzt∈[0,1]L
B(z, λ) = arg maxzt∈[0,1] (vt− (α+λ)dt)zt is referred to as the optimal

hindsight auction outcome in period t w.r.t. some fixed λ≥ 0. It is easy to observe that z∗t (λ) =

I{vt− (α+λ)dt ≥ 0}. Note that

E [PrimalB]≤minλ≥0 E [DualB(λ)] = T minλ≥0 λρ+
∑

k∈[K] p
k (vk− (α+λ)dk)+ , (6)

which also induces an optimal dual variable λ∗ = arg minλ≥0 E [DualB(λ)]. The primal-dual approach

aims to achieve this dual function upper bound via approximating the optimal outcome z∗t (λ∗)

in Equation (5) through submitting a so-called “paced bid” bt = vt
α+λ∗ . This is because by doing

so the realized outcome zt is identical to the optimal outcome z∗t (λ∗), i.e. zt = I{bt ≥ dt}= I{vt ≥

(α+ λ∗)dt} = z∗t (λ
∗). As λ∗ is typically unknown, the primal-dual framework is usually coupled

with some learning algorithm such as dual Mirror Descent (e.g. see Balseiro et al. (2020b,a)) that

maintains an estimate λ̂≥ 0 over time, and submits a corresponding paced bids bt = vt
α+λ̂

. During

the run of the learning algorithm, the buyer intentionally stops the algorithm once the budget is

depleted to ensure the budget constraint is satisfied. Previous works show that pacing under this

primal-dual framework yields sublinear buyer regret against the dual upper bound in Equation (6);

e.g. see Balseiro et al. (2021).

Failure of the primal-dual view and pacing policy ROI constraints. Analogously, the

primal-dual framework and pacing can also be applied to the online bidding problem with a single

ROI constraint:

PrimalR = maxz∈[0,1]T
∑

t∈[T ] (vt−αdt)zt s.t.
∑

t∈[T ] (vt− γdt)zt ≥ 0 ,

LR(z, µ) =
∑

t∈[T ] ((1 +µ)vt− (α+ γµ)dt)zt ,

DualR(µ) = maxz∈[0,1]T L
R(z, µ) =

∑
t∈[T ] ((1 +µ)vt− (α+ γµ)dt)+ ,

(7)

where µ≥ 0 is the dual variable corresponding to the ROI constraint, and µ∗ = arg minµ≥0 E
[
DualR(µ)

]
is the optimal dual variable. In this case, the paced bids become bt = (1+µ̂)vt

α+γµ̂
, where µ̂ is some
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estimate of µ∗. However, we present a simple problem instance that demonstrates this pacing strategy

motivated by the dual variable does not necessarily guarantee a nonegative expected cumulative

ROI balance, even when the optimal dual variable is known.

Example 1 Assume α = 0, vt = v > 0 for all t ∈ [T ], and dt = v
2γ

w.p. p and 3v
2γ

w.p. 1 − p

for some p ∈ (0,1/2). Then, E [DualR(µ)] = pvT
(
1 + µ

2

)
+

+ (1 − p)vT
(
1− µ

2

)
+

and hence µ∗ =

arg minµ≥0 E [DualR(µ)] = 2. In a hypothetical ideal world where the buyer knows µ∗, the paced bid

value during period t∈ [T ] is bt = (1+µ∗)vt
γµ∗ = 3v

2γ
. However, the cumulative expected ROI of this pacing

strategy is
∑

t∈[T ] E [(vt− γdt) I{bt ≥ dt}] = pT
(
v− v

2

)
I{ 3v

2γ
≥ v

2γ
}+ (1 − p)T

(
v− 3v

2

)
I{ 3v

2γ
≥ 3v

2γ
} =

Tv
(
p− 1

2

)
< 0. The final inequality follows from p < 1

2
.

We remark that although pacing under the primal-dual framework allows the buyer to approximate

the dual upper bound with sublinear loss, the pacing strategy alone does not necessarily guarantee

primal feasibility (e.g. satisfaction of the budget or ROI constraint), so typically a “stopping mechanic”

is imposed. For instance, for online bidding with a hard budget (i.e.
∑

t∈[T ] dtzt ≤ ρT w.p.1), the

budget constraint is satisfied by terminating the pacing algorithm once budget is depleted. The

rationale behind such a hard stopping time procedure is that total expenditure is non-decreasing over

time. Nevertheless, such a hard stopping procedure is not applicable for the ROI problem since per

period ROI balance (vt− γdt)zt may be strictly negative, which means the cummulated ROI balance

until period t, namely
∑

τ∈[t] (vτ − γdτ )zτ , may drop below 0 as time proceeds. This motivates the

needs for alternative bidding frameworks to ensure ROI and budget constraint satisfaction.

4. A Reformulated Problem and the Threshold-based Optimal Solution

In this section, we first introduce a reformulation for OPT({vt, dt}t∈[T ] ;α,γ, ρ) whose closed form

solution admits what we refer to as a “threshold-based structure”. This insight will later motivate

our bidding strategy in a very straightforward manner. To begin with, we consider the following

optimization problem for any n∈RK+ and c > 0:

U(n;α,γ, c) = maxx∈[0,1]K
∑

k∈[K] n
k (vk−αdk)xk

s.t.
∑

k∈[K] n
k (vk− γdk)xk ≥ 0,

∑
k∈[K] n

kdkxk ≤ c
(8)
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Here, the decision variables xk can be interpreted as the proportion of auctions during type-k arrivals

won by the buyer. The following proposition shows that U(n;α,γ, ρT ) and OPT({vt, dt}t∈[T ] ;α,γ, ρ)

are closely related.

Proposition 1 Define Nk =
∑

t∈[T ] I
{

(vt, dt) = (vk, dk)
}
, and write N = (Nk)k∈[K]. Note that Nk

is a random variable, and E [Nk] = pkT . Then OPT({vt, dt}t∈[T ] ;α,γ, ρ) =U(N ;α,γ, ρT ).

The proof of this proposition can be found in Appendix D.1. Before we discuss the solution to the

reformulated problem, we introduce the notion of a threshold vector to simplify notation.

Definition 1 (Threshold vectors) We say that an K-dimensional vector x ∈RK is a threshold

vector if it takes the form of x = (1 . . .1, q,0 . . .0), where the first J ∈ {0, . . .K} entries are 1’s,

followed by some number q ∈ [0,1), and trailing with (K − J − 1)+ 0’s.4 Any threshold vector is

uniquely characterized by its dimension K, as well as, a tuple (J, q)∈ {0, . . .K}× [0,1), so we denote

the vector as ψ(J, q). In the special case when J =K, take q= 0.

We remark that for any two threshold vectors a,b of the same dimension, min{a,b} is also a

threshold vector. Furthermore, either a� b or a� b. Using this definition of threshold vectors, the

following Theorem 1 states that the optimal solution to U(n;α,γ, c) is a threshold vector.

Theorem 1 (Threshold-based solution) Fix n∈RK+ , c > 0, γ > 0, and let nK+1 =∞. Define 5

r= max
{
k ∈ [K] :

∑
`∈[k] n

` (v`− γd`)≥ 0
}
, qR =

∑
k∈[r] n

kwk

nr+1·|wr+1| ,

b= max
{
k ∈ [K] :

∑
`∈[k] n

`d` ≤ c
}
, and qB =

c−
∑
k∈[b] n

kdk

nb+1·db+1 ,

(9)

If we let xR =ψ(r, qR) and xB =ψ(b, qB) be two threshold vectors, then x∗ = min{xR,xB,ψ(κα,0)} is

an optimal solution to U(n;α,γ, c). Here, κα = max{k ∈ [K] : vk − αdk ≥ 0}.6 Furthermore, x∗ is

also a threshold vector characterized by tuple (J, q) where

J = min{r, b, κα}, q= x∗,J+1 = min
{
xB,J+1, xR,J+1

}
· I{J + 1≤ κα} . (10)

4 For the edge case of (1, . . .1)∈RK , J =K and hence the number of trailing 0’s is (K − J − 1)+ = 0.

5 In the rest of the paper B, R will be the shorthand notation for “Budget” and “ROI” respectively.

6 ψ(κα,0) is the threshold vector whose first κα entries are 1’s while the rest are 0.
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Remark 1 We note that the variables (b, r, J, qB, qR, q,xB,xR,x∗) in Theorem 1 depend on the param-

eters n, α, γ, c. In the rest of the paper, if not stated otherwise, we set n = p and c = ρ when

computing the aforementioned variables.

For the proof of this theorem, please see Appendix D.2. The structure of the optimal solution x∗

that we characterized in Theorem 1 suggests in hindsight the buyer should win all auctions with

arrival types 1,2 . . . , J where the threshold J = min{r, b, κα}, and win a q proportion of the auctions

with arrival type J + 1 while ignoring all other arrival types J + 2 . . .K.

Threshold-based bidding strategies. Now, we demonstrate how we can transform the idea of

having the bidder “win all auctions with arrival types 1, . . . J” as illustrated in Theorem 1 into a

practical bidding strategy. We point out that instead of considering a threshold for arrival types, we

can equivalently study the value-to-cost ratio for each arrival type. Since the value-to-cost ratios (i.e.,

θi = vi/di, i∈ [K]) are ordered such that θ1 > . . . θK , Theorem 1 suggests that the buyer wins the

auction during period t if the value-to-cost ratio vt/dt is at least θJ , and win with probability 1− q

if vt/dt is θJ+1. This value-to-cost ratios viewpoint thus motivates the following bidding strategy

which we call a threshold-based bidding strategy.

Definition 2 (Threshold-based bidding strategy) Recall that θk = vk/dk for any k ∈ [K]. For

some threshold type k ∈ [K] and remainder probability q ∈ [0,1), a threshold-based bidding strategy,

denoted by β(v;k, q), maps valuation v to bid value v/θk w.p. q and v/θk+1 w.p. 1− q.

In the threshold-based strategy, when the buyer submits vt/θk, she wins the auction if vt/θk ≥ dt,

which is equivalent to having the value-to-cost ratio during the current period vt/dt to be greater than

the threshold value-to-cost ratio θk. Similarly, submitting bid value vt/θk+1 allows the buyer to win

the auction if current period value-to-cost ratio is greater than θk+1. In light of this threshold-based

bidding strategy, the following theorem states that submitting threshold bids w.r.t. the optimal

threshold θJ and remainder probability q is not only optimal, but also satisfies both budget and

ROI constraints. The proof of this theorem is detailed in Appendix D.3.
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Theorem 2 (Optimal threshold-based bidding for known p) Let (J, q) be defined as Theo-

rem 1 w.r.t. n = p and c = ρ. If for each period t ∈ [T ] the buyer submits threshold bid bt =

β(vt, J, q), then E[
∑

t∈[T ] (vt−αdt) I{bt ≥ dt}] = TU(p;α,γ, ρ)≥ E[OPT({vt, dt}t∈[T ] ;α,γ, ρ)]. Fur-

thermore, this bidding strategy satisfies both budget and ROI constraints in Equation (1).

We remark that when capital cost α≥ 1, the optimal threshold θJ = max{θb, θr, α} ≥ 1, suggesting

the buyer should always underbid. This means overbidding is possible when 0<α< 1.

5. Online Threshold Bidding Algorithm

In this section, we introduce our bidding framework that harnesses the threshold-based bidding

structure described in Theorem 2. We refer to our proposed bidding framework as Conservative

Threshold-based Bidding under Budget and ROI Constraints (CTBR). The framework consists of

three components, namely learning algorithm A; confidence bound `t, and threshold-based bidding.

Learning algorithm A. The framework takes in any learning algorithm A that maps the current

distribution estimate p̂t and historical data {vτ , dτ , bτ}τ∈[t−1] to an updated estimate. We point

out that a merit of the CTBR framework is that the freedom to choose any learning algorithms

enables advertisers to customize their own learning algorithms according to practical considerations,

including but not limited to employing non-standard learning algorithms that are robust to corrupted

or outlier data that is perhaps originated from behavioral anomalies or market shocks (e.g. see

Lykouris et al. (2018), Gupta et al. (2019)). Here, we present two simple learning algorithms as

illustrative examples, namely empirical estimation (EE) and Stochastic Gradient Descent (SGD).

Let st = (I{(vt, dt) = (v1, d1)} , . . . , I{(vt, dt) = (vK , dK)}) ∈ {0,1}K characterize the occurrence of

each arrival type in period t. Then the two algorithms update estimates for p as followed:

EE: p̂t+1 = (t · p̂t + st)/(t+ 1), SGD : p̂t+1 = arg minp̃∈∆K‖p̃− (p̂t− ηtĝt)‖. (11)

where for SGD, ĝt = p̂t− st is a stochastic gradient of the function f(p̃) = 1
2
‖p̃−p‖2 at the point

p̃= p̂t, and ηt is called the step size at period t. We note that SGD is generally associated with

either vanishing step sizes (e.g. ηt = 1/
√
t or 1/t), or constant step sizes that can possibly depend on
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the total number of periods T . For more details on related descent methods, see e.g. Cohen (1981),

Boyd et al. (2004).

Confidence bound `t. The CTBR algorithm also takes in a sequence of confidence bounds

{`t}t∈[T ] to construct conservative estimates of the optimal arrival-type threshold J and the remainder

probability q based off A’s distribution update p̂t; see Equations (12) and (13). Recall that the

1− q is the winning probability that the buyer hopes to attain during type-(J + 1) arrivals. The

confidence bounds in r̂t and b̂t allow the buyer to obtain more accurate estimates for the threshold

types r and b respectively when t increases (see Lemma 3 of Appendix E.1). On the other hand, the

confidence bounds in the estimates q̂Rt and q̂Bt make bids more likely to take the smaller value vt/θĴt

rather than the larger value vt/θĴt+1 (since θĴt < θĴt+1). We note that bidding smaller values results

in higher ROI and lower expenditure, and hence the bias towards lower values of q̂t helps the buyer

satisfy both budget and ROI constraints. 7 We remark that these confidence bounds can be viewed

as the estimation accuracy of the input algorithm A: later in Theorem 3 and 4, we show that when

`t satisfies ‖p− p̂t‖ ≤ `t with high probability, CTBR achieves low regret. That being said, as we

show via numerical studies in Section 5.1, satisfying the condition ‖p− p̂t‖ ≤ `t is not essential in

the sense that CTBR algorithm maintains good performance even for naive choices of `t.

Threshold-based bidding. Motivated by the threshold-based bidding strategy in Theorem 2,

CTBR submits a threshold-based bid (see Definition 2) w.r.t. the conservative estimates of the

optimal arrival-type threshold J and the remainder probability q.

The bidding framework is detailed in Algorithm 1, in which for notational simplicity, for any

k ∈ [K + 1], we define wk = vk − γdk (where wK+1 =−∞). We further assume wk 6= 0 so that the

buyer’s hindsight problem U(p;α,γ, ρ) admits a unique optimal threshold-based solution. Also, in

7 Smaller bids result in lower marginal expenditures, and thus higher realized ROI. For instance, assume dt = 1 w.p.

1/3 and dt = 2 w.p. 2/3. If the buyer with fixed valuation 1 submits bid value 1, she only wins the auction and attains

value 1 when the highest competing bid is 1. Hence, both her expected accumulated value and expected expenditure

are 1× 1/3 = 1/3, so her realized ROI is 1/3
1/3

= 1. If the buyer submits bid value 2, she always wins the auction and

attains value 1, but her expected expenditure is 1× 1/3 + 2× 2/3 = 5/3, resulting in a lower realized ROI of 1
5/3

= 3/5.
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the remaining we will assume
∑

k∈[r] p
kwk 6= 0,

∑
k∈[J] p

kwk 6= 0, and ρ−
∑

k∈[b] p
kwk 6= 0 to rule out

edge cases that complicate analysis without providing additional insights.

Algorithm 1 Conservative Threshold-based Bidding under Budget and ROI Constraints: CTBRA
Input: Learning algorithm A, time-dependent confidence bound `t (possibly depending on T ).

1: Initialize Ĵ1 = 1, p̂1 = (1/K . . .1/K)∈∆K , q̂1 = 0.

2: for t= 1,2, . . . do

3: Follow threshold-based bidding strategy: Observe valuation vt and submit threshold bid bt = β(vt, Ĵt, q̂t).

After submitting bid bt, observe highest competing bid dt.

4: Update estimate of distribution p by invoking algorithm A: p̂t+1 =A
(
p̂t,{vτ , dτ , bτ}τ∈[t]

)
.

5: Update threshold vectors: x̂B
t+1 =ψ

(
b̂t+1,

(
q̂Bt+1

)
+

)
and x̂R

t+1 =ψ
(
r̂t+1,

(
q̂Rt+1

)
+

)
, where

r̂t+1 = max
{
k ∈ [K] :

∑
`∈[k] p̂

`
t+1w

` ≥−
√
Kw̄`t

}
and q̂Rt+1 =

∑
`∈[r̂t+1]

p̂`tw
`−(
√
K+2)w̄`t

p̂
r̂t+1+1

t

∣∣∣wr̂t+1+1
∣∣∣

b̂t+1 = max
{
k ∈ [K] :

∑
`∈[k] p̂

`
t+1d

` ≤ ρ+
√
Kd̄`t

}
and q̂Bt+1 =

ρ−
∑
`∈[b̂t+1]

p̂`td
`−(
√
K+2)d̄`t

p̂
b̂t+1+1

t

∣∣∣∣db̂t+1+1
∣∣∣∣ .

(12)

6: Update the threshold-based bidding strategy: Calculate x̂t = min
{
x̂B
t+1, x̂

R
t+1,ψ(κα,0)

}
=ψ(Ĵt+1, q̂t+1)

where Ĵt+1 and q̂t+1 are:

Ĵt+1 = min
{
r̂t+1, b̂t+1, κα

}
and q̂t+1 = min

{
x̂
R,Ĵt+1
t+1 , x̂

B,Ĵt+1
t+1

}
· I
{
Ĵt+1 + 1≤ κα

}
. (13)

7: end for

Remark 2 In Equation (12), we always have q̂Rt+1, q̂
B
t+1 < 1. This is easy to see via combining

two observations: (1) p̂r̂t+1+1
t > 0, and wr̂t+1+1 < 0. These inequalities hold because if p̂r̂t+1+1

t = 0

or wr̂t+1+1 ≥ 0,
∑

`∈[r̂t+1+1] p̂
`
t+1w

` ≥
∑

`∈[r̂t+1] p̂
`
t+1w

` ≥−
√
Kw̄`A(t, δ), which contradicts the max-

imality of r̂t+1; (2) By the maximality of r̂t+1, we know that
∑

`∈[r̂t+1+1] p̂
`
t+1w

` <−
√
Kw̄`t < 0 so∑

`∈[r̂t+1] p̂
`
t+1w

` <−p̂r̂t+1+1
t+1 wr̂t+1+1. Dividing both sides by −p̂r̂t+1+1

t+1 wr̂t+1+1 > 0 concludes q̂Rt+1 < 1.

A similar argument also implies q̂Bt+1 < 1.

As of our main result for this section, we theoretically show performance guarantees for our

proposed CTBR framework. Due to space limitations, in the following theorem, we present an

informal statement on the regret of CTBR. For a more detailed statement, we refer readers to

Theorem 8 in Appendix B where we include additional results and discussion for Section 5.
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Theorem 3 (Regret of CTBR) Let {p̂t}t∈[T ] be the estimates of learning algorithm A and

assume the input confidence bound `t : (0,1)→R+is decreasing in t, limt,T→∞ `t = 0, 8 and satisfies

P (‖p− p̂t‖ ≤ `t) ≥ 1− 1
T
. Then for large T , bidding according to CTBRA satisfies both ROI and

budget constraints in Equation (1), and the regret is Reg(p, T,α, γ, ρ) = Õ(
∑

t∈[T ] `t).

To put the performance of the CTBR framework in more detailed context, in the following

theorem, we present CTBRA’s regret when the learning algorithm A is EE and SGD respectively;

see Equation (11). We again refer readers to Theorem 9 in Appendix B for a formal version of the

statement.

Theorem 4 (CTBRA with EE and SGD) (i) When A is EE, or SGD with vanishing step

size ηt = 1/t, CTBRA with input confidence bound `t = Θ(1/
√
t) incurs a regret of Õ(

√
T ). (ii)

When A is SGD with constant step size ηt = η = T−2/3, CTBRA with input confidence bound `t =

Θ((1− 2η)
t/2

+
√
η) incurs a regret of Õ

(
T 2/3

)
. Finally, in the aforementioned scenarios (i) and

(ii), CTBRA satisfies both budget and ROI constraints in Equation (1).

5.1. Numerical Study on Learning How to Bid

This section presents a numerical study regarding the CTBR framework. We consider three regimes,

namely ROI dominant, Budget dominant, α dominant, each corresponding to model primitives

(α,γ, ρ,p) such that in the optimal solution of the reformulated problem U(p;α,γ, ρ) in Equation (8),

the ROI constraint is binding, the budget constraint is binding, and both constraints are non-binding,

respectively. With a slight abuse of notation, we use R,B, and A to denote the ROI dominant, Budget

dominant, and α dominant regimes respectively.

Our experimental setup is described as followed. We fix capital cost α= 1 and consider three

sets of parameters (γB, ρB) = (1.2,0.05), (γR, ρR) = (2.1,0.4) and (γA, ρA) = (1.2,0.4), associated with

each regime respectively. For each regime y= R,B,A we generate N = 100 probability distributions

8 Note that the confidence bound `t may depend on both the current period t and total horizon length T ; e.g. see

SGD with constant step sizes in Theorem 4
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P y,i ∈∆K (i= 1, . . .N) uniformly at random such that {(α,γy, ρy,P y,i)}i∈[N ] belong to the respective

regimes. Here, each of the K entries in P y,i are sampled from Uniform(0,1), and then rescaled by

the sum of all entries to form a probability distribution. Then, for each set of model primitives

(α,γy, ρy,P y,i) (y ∈ {R,B,A}, i ∈ [N ]), we sample T = 10,000 independent pairs {(vt, dt)}t∈[T ] from

P y,i ∈∆K supported on W ⊆{0.2,0.4,0.6,0.8,1}2 where K = |W|= 19.

CTBR implementation robust to `t. Although buyers may not know the exact `t that satisfies

the high probability bound condition in Theorem 3, here we demonstrate that from a practical

viewpoint CTBR is robust to simple choices of `t. For y ∈ {R,B,A} and each set of model primitives

in {(α,γy, ρy,P y,i)}i∈[N ], we run CTBREE with confidence bound `t = t−s

max{d̄,w̄}
√
K

for s= 1
2
, 2

3
, 3

4
,1

respectively over the T periods. Here max{d̄, w̄}
√
K is a normalization factor for illustrative purposes.

In Figure 1, we observe that for all s, CTBREE achieves high utility and a realized target ROI

greater than the target most of the time, demonstrating that CTBR with naively chosen confidence

bounds produces fairly robust outcomes in general scenarios. An interesting insight from Figure 1

is the tradeoff between utility and realized ROI as s varies: at fixed t, larger s corresponds to the

buyer being more aggressive and thus willing to win auctions with smaller value-to-cost ratios9 via

submitting larger bids. This would result in higher utility but reduce realized ROI as the marginal

cost increases. Finally, we comment that the worst case realized ROI occurs in the ROI dominant

regime (where the buyer aims for a 210% return) for s= 1/2. Here, ROI target is achieved in only

∼ 65% of instances, yet we note that this is mainly because as s decreases, CTBREE converges more

slowly, so our T = 10,000 is relatively small and CTBREE did not yet converge for s= 1/2. For

more details on convergence see Figure 4 in Appendix C.

Comparison with benchmark bidding algorithms. We also compare CTBR with four bench-

mark bidding algorithms, namely Conserv , Budget-Pacing, ROI-Pacing and Pacing. Fixing buyer

parameters (α,γ, ρ), submitted bids for each benchmark are as followed. Conserv simply bids vt/γ

9 Equation (12) states that larger `t yields larger r̂t+1 and b̂t+1. This may result in a larger estimate for the threshold

arrival type J , corresponding to smaller values of θĴ and thus higher thresholded bids bt = vt/θ
Ĵ .
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in each period to guarantee realized ROI is greater than the target ROI γ with probability 1. For

the other pacing-type algorithms, denote λ̂t and µ̂t as the estimated dual variables in period t corre-

sponding to the budget constraint and ROI constraints respectively for the optimization problem in

Equation (2). Then, Budget-Pacing bids vt
α+λ̂t

, ROI-Pacing bids (1+µ̂t)vt
α+γµ̂t

, and Pacing bids (1+µ̂t)vt
α+γµ̂t+λ̂t

.

Note that the dual variables λ̂t and µ̂t are updated via projected stochastic sub-gradient descent (see

Balseiro et al. (2021)). We include the pseudocode of each benchmark in Appendix C. For CTBR

we run CTBREE with confidence bound `t = t−1

max{d̄,w̄}
√
K
. In Figure 2 (Left), we observe CTBREE

achieves nearly the largest per period utility
∑

t∈[T ](vt− dt)zt/T in all regimes, and significantly

outperforms pacing-type strategies. This is primarily because the benchmark algorithms either

deplete their budget too slowly (e.g. see the budget depletion trajectory for these benchmarks in

the α-dominant regime in Figure 2 (Right)), resulting in less auction wins and hence lower total

utility; or they deplete their budget too quickly (e.g. see the budget depletion trajectory for Conserv,

ROI-Pacing and Pacing in the Budget-dominant regime), and miss out opportunities to learn the

best bidding strategy, leading to low overall utility. In contrast, CTBR strikes a balance between

“learning" and “budget depletion" so that the improvement of bidding decisions occurs at a moderate

rate as expenditure increases.

Figure 1 CTBR robustness. The figure shows performance metrics for CTBREE run with `t = t−s

max{d̄,w̄}
√
K

for s=

1
2
, 2

3
, 3

4
,1 in ROI dominant (Left) and budget dominant regimes (Right). For α dominant regimes, all metrics

are nearly the same across s and due to space limits we omit the results. Per period utility is normalized by

Optimal utility U(p;α,γ, ρ). Each box plot is w.r.t. N = 100 probability instances. Results suggests even for

simple choices of `t, CTBR can achieve high utility while maintaining ROI constraints in most scenarios.
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Figure 2 Performance comparison with benchmarks. (Left): Normalized per-period utility. Each box plot is con-

structed with N = 100 probability instances. (Right): Trajectory for proportion of budget depleted. The

shaded area represents the standard deviation of budget depletion over N = 100 probability instances. These

results suggest CTBR outforms other benchmarks because, universally across all regimes, CTBR maintains

a better balance between budget depletion and learning optimal bidding decisions.

6. Pricing Against an ROI and Budget Constrained Buyer

Here, we take the alternative perspective of the seller and consider the pricing problem against

a single ROI and budget constrained buyer. In this scenario, the second price auction effectively

becomes a posted price auction, where the seller’s price takes the role of highest competing bid value

dt. More specifically, the buyer still decides on some bid value bt, but instead of having the buyer

actually submit the bid, the buyer decides to take the item at period t and pay price dt if bt ≥ dt,

or leave the item and pay nothing otherwise. That being said, any bidding strategy (e.g. CTBRA)

for the second price auction can be effectively transformed into a “take or leave” strategy for the

posted price auction. We note that the seller does not get to observe the buyer’s “bid” but instead

only knows whether the buyer took the item or not.

Seller’s pricing problem. Consider the seller committing to a finite price set D= {Dm}m∈[M ]

where D1 > · · ·>DM . The seller sets a price dt ∈D during each period against a value-maximizing

buyer (whose capital cost α = 0). 10 Then, the buyer observes both dt and its valuation vt and

10 In the posted price setting, assuming the buyer’s capital cost α= 0 is without loss of generality. This is because

before the buyer makes a take/leave decision, she gets to observe both her valuation vt and price dt. Hence, in the

buyer’s hindsight problem OPT({vt, dt}t∈[T ] ;α,γ, ρ) defined in Equation (2), the buyer can rescale her valuations

by setting ṽt = vt − αdt as well as her target ROI γ̃ = γ − α. This will result in the equivalent hindsight problem

ÕPT({ṽt, dt}t∈[T ] ; 0, γ̃, ρ) := maxz∈[0,1]T
∑
t∈[T ] ṽtzt s.t.

∑
t∈[T ] (ṽt− γ̃dt)zt ≥ 0,

∑
t∈[T ] dtzt ≤ ρT , which implies

that we can simply assume α= 0.
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makes a take/leave decision zt ∈ {0,1} based on some learning algorithm that satisfies both ROI

and budget constraint in Equation (1). Here, we assume that the buyer’s valuations are supported

on the set V = {V n}n∈[N ] where V 1 > · · ·>V N and associated with some probability distribution

g ∈ ∆N such that P(vt = V n) = gn for any period t ∈ [T ]. On a separate note, {Dm}m∈[M ] and

{V n}n∈[N ] can be thought of as the unique values of highest competing bids and valuations in the

set W = {(vk, dk)}k∈[K] of the previous sections, i.e. W = V ×D, where K = MN . Furthermore,

imposing any distribution g̃ ∈∆M on support D, combined with distribution g on V, induces a

product distribution p= g× g̃ over W.

The buyer’s target ROI γ and budget rate ρ are private to the buyer and is unknown to the

seller. Both the seller and the buyer do not know the valuation distribution g, and hence learn how

to price and make take/leave decisions respectively as time proceeds. In other words, the posted

price auction involves a two-sided learning paradigm where both the seller and buyer adopt different

online decision-making strategies that interact with one another. Our goal is to better understand

whether we can design an effective pricing algorithm facing an environment that is driven by the

buyer’s unknown algorithm.

Seller’s regret. We evaluate the performance of any sequence of pricing decision {dt}t∈[T ] ∈DT

by benchmarking its realized revenue, namely
∑

t∈[T ] dtzt, to the maximum revenue that could have

been obtained if the seller had set a fixed price over all T periods assuming the buyer makes optimal

decisions. Mathematically, we first rewrite the buyer’s problem in Equation (8) as followed for any

fixed seller price d∈D as

U(d) = maxx∈[0,1]N
∑

n∈[N ] g
nV nxn s.t.

∑
n∈[N ] g

n (V n− γd)xn ≥ 0, and d
∑

n∈[N ] g
nxn ≤ ρ . (14)

In light of Theorem 1, we let xd ∈ [0,1]N be the unique optimal threshold solution to U(d) for any

d∈D, and note that the optimal solution induces a per-period expenditure of

π(d) := d
∑

n∈[N ] g
nxnd , (15)
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which is also the expected per-period revenue of the seller when the buyer knows g and acts optimally.

We will refer to π(·) as the seller’s revenue function. Here, we remark that
∑

n∈[N ] g
nxnd is the

probability that the buyer decides to take price d. Then, for any sequence of pricing decisions

{dt}t∈[T ] ∈DT , we define the seller’s regret over T periods to be

Regsell = T maxd∈D π(d)−
∑

t∈[T ] E [dtzt] , (16)

where the expectation is taken w.r.t. {(vt, dt)} and randomness in the buyer’s strategy.

The benchmark U(d) is in fact equivalent to our definition of U(p; 0, γ, ρ) in Section 4. Assume the

seller sets price dt =Dm ∈D for some m∈ [M ] and for all t∈ [T ]. In this case the buyer’s hindsight

benchmark is given by OPT({vt,Dm}t∈[T ] ; 0, γ, ρ). Under this fixed price scenario, dt can be viewed

as being drawn from the distribution em ∈∆M (m’th unit vector in RM), which then induces the

product distribution p= g×em ∈∆K overW . Then, it is not difficult to see for any m∈ [M ], U(Dm)

is equivalent to U(g×em; 0, γ, ρ).11 This equivalency between U(d) and U(p; 0, γ, ρ) suggests that

the benchmark U(d) indeed implies optimal buyer actions, as for any m∈ [M ] such that Dm ∈D, we

have U(Dm) =U(g×em; 0, γ, ρ)≥E
[
OPT({vt,Dm}t∈[T ] ; 0, γ, ρ)

]
, where the final inequality follows

from Theorem 2.

Finally, we remark the seller’s regret resembles that of anM -arm multi-arm bandit (MAB) problem

(see Lattimore and Szepesvári (2020) for a detailed introduction), where we can view each price

Dm ∈D as an arm and Dmzt to be the reward by pulling arm m. Nevertheless, we point out that

our problem is more complex as the seller’s reward Dmzt for setting price Dm during period t is

related to the buyer-specific algorithm, which likely depends on the buyer’s past decisions as well

as past prices set by the seller. Although our pricing problem is more difficult than MAB which

11 Consider any decision vector x̃ ∈ [0,1]K that is feasible to U(g × em; 0, γ, ρ). Using the definition that p =

g × em, we have pk = gn is (vk, dk) = (V n,Dm) and pk = 0 otherwise. Thus, the objective of U(g × em; 0, γ, ρ),

namely
∑
k∈[K] p

kvkx̃k =
∑
n∈[N ]

∑
k:vk=VN p

kvkx̃k =
∑
n∈[N ] g

nV nxn where xn is the change of variable for x̃k when

k ∈ [N ] satisfies (vk, dk) = (V n,Dm). A similar argument shows that the two constraints are also equivalent, i.e.∑
k∈[K] p

kdkx̃k =Dm∑
n∈[N ] g

nxn and
∑
k∈[K] p

k
(
vk − γdk

)
x̃k =

∑
n∈[N ] g

n (V n− γDm)xn.
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typically requires the decision maker to explore all M arms, in the next section we demonstrate

that by exploiting the special structures of our problem, we only need to explore O(log(M)) arms

(prices).

6.1. Bell-shaped Structure of the Revenue Function

In this section, we first motivate our pricing algorithm by analyzing some underlying structures

of the seller revenue π(d) defined in Equation (15). The goal of this section is to develop efficient

ways to identify arg maxd∈D π(d) by avoiding exploring each possible price in D which will result

in a regret that scales linearly in the number of prices M . In the rest of the paper, we make the

following assumption to rule out trivial problem instances (e.g. cases when the optimal solution xd

corresponding to some d∈D has all 0 entries or when one of the constraints are redundant):

Assumption 1 For any d ∈ D, assume V N − γd < 0, V 1 − γd > 0 and
∑

n∈[N ](V
n − γd)gn 6= 0.

Furthermore, assume d̄ > ρ and d< ρ.

To begin with, we categorize all prices d∈D according to whether constraints are binding under

the corresponding optimal solution xd.

Definition 3 Fix target ROI γ, budget rate ρ, valuation distribution g ∈∆K and selling price d∈D.

Recall xd is the optimal threshold-based solution to U(d) in Equation (14). Then we say d is

• Non-binding, if under xd, both constraints are non binding, i.e., d
∑

n∈[N ] g
nxnd < ρ and∑

n∈[N ] (V
n− γd)gnxnd > 0;

• Budget binding if under xd, the budget constraints is binding, i.e. d
∑

n∈[N ] g
nxnd = ρ and∑

n∈[N ](V
n− γd)gnxnd ≥ 0;

• ROI binding if under xd, the ROI constraint is binding, i.e.
∑

n∈[N ](V
k − γd)gnxnd = 0 and

d
∑

n∈[N ] g
nxnd ≤ ρ.

It is apparent that any price d ∈ D must belong to at least one of these categories. Also, if a

price is non-binding, it cannot be budget binding or ROI binding. However, it may be possible

that a price d is both budget binding and ROI binding. This can only occur for certain model
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primitives ρ, γ,g. We also point out that for any budget binding price d∈D, the seller would like to

extract the entire budget from the buyer since the per-period revenue under optimal buyer action is

π(d) = d
∑

n∈[N ] g
nxnd = ρ.

Our main result of this subsection is the following Theorem 5, which states that as we traverse

D in increasing price order, prices are first non-binding and the revenue π(d) increases in d; then

prices become budget binding, where revenue remains constant at π(d) = ρ; finally prices become

ROI binding, where π(d) decreases in d. The proof can be found in Appendix F.1.

Theorem 5 (Bell-shaped Structure of the Revenue Function) Suppose that Assumption 1

holds. Then, the following hold

1. For any non-binding prices d, d̃, if d< d̃ then π(d)<π(d̃).

2. If d is budget binding, any price d̃ > d cannot be non-binding, which means d̃ is budget binding

or ROI binding.

3. If d is ROI binding, then any d̃ > d must also be ROI binding. Furthermore, π(d)>π(d̃).

We provide an illustration of Theorem 5 in Figure 3 that depicts the “non-binding → budget binding

→ ROI binding” transition phenomenon, as well as a corresponding revenue “increase → plateau

→ decrease”, as we traverse prices in increasing order. We note that for specific model primitives

g, γ, ρ, there may exists no budget binding prices (as shown in right subfigure in Figure 3), meaning

that there are scenarios in which it is impossible for the buyer to extract the entire buyer budget.

Nevertheless, this transition phenomena suggests that we can efficiently identify the maximizing

revenue arg maxd∈D π(d) by utilizing a simple binary search approach. Hence, we utilize this structure

of π(d) to motivate our pricing algorithm.

6.2. Pricing Algorithm against an ROI and Budget Constrained Buyer

The main challenge the seller faces is her lack of knowledge on the buyer’s model primitives, namely

the buyer’s valuation distribution g, target ROI γ and budget rate ρ. Furthermore, the seller has

limited information feedback as she only observes whether the buyer took the price or not, i.e., the

seller only observes the outcome zt ∈ {0,1}. This lack of information makes it very difficult for the
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seller to estimate the buyer’s model primitives. Nevertheless, we propose a simple pricing algorithm

that bypasses this lack of knowledge via exploiting the price transition phenomenon as characterized

in Theorem 5 and Figure 3. We demonstrate that this algorithm achieves good performance when

facing a general class of algorithms that is adaptive to nonstationary environments.

Figure 3 Seller revenue function bell-shape structure. Model primitives: number of unique buyer valuations N = 6,

valuation set V = (0.6,0.5,0.4,0.3,0.2,0.1), valuation distribution g = (0.1,0.1,0.2,0.1,0.2,0.3), number of

unique selling prices M = 21, seller price set D= (0.5,0.48 . . .0.1), buyer budget rate ρ= 0.2, capital cost

α= 0. The left and right subfigures correspond to target ROI γ = 1.3 and 1.7 respectively. In both cases,

prices transition from non-binding to budget binding, and finally to ROI binnding. Revenue π(d) increases

as in d when prices are non-binding, decreases in d when prices are ROI binding, and remains at ρ when

prices are budget binding. Note that when γ = 1.7, there are no budget binding prices.

Our proposed pricing algorithm consists of an exploration phase and an exploitation phase. During

the exploration phase, the algorithm searches for a revenue maximizing price D∗ ∈ arg maxd∈D π(d)

through an episodic structure: the seller initiates the first episode E1, and fixes the price chosen in

this episode D1 for E consecutive periods. At the end of the episode (i.e. after E periods since the

beginning of the episode), the seller records the average per-period revenue π̂(D1) = D1
E

∑
t∈E1 zt,

where zt ∈ {0,1} indicates whether the buyer takes the price at time t∈ E1. The process then repeats

as the seller moves on to episodes E2, . . . This exploration phase eventually terminates when the

seller has explored enough prices. The seller’s pricing decision in each episode is governed by a binary

search procedure over the set D, such that every price is chosen at most once across all episodes, and

the exploration phase will have O(log(M)) episodes. Our pricing algorithm is shown in Algorithm 2.
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We note that our proposed algorithm does not try to learn the buyer’s model primitives. We

further point out that such a binary-search approach is a natural choice to identify revenue-optimal

prices in the simplest monopolistic pricing setting under a typical unimodal assumption, 12 and

one may wonder whether this approach can have good performances against a much more complex

setting where the buyer is ROI and budget constrained and aims to learn her optimal bidding

strategy. Surprisingly, in the next section we are in fact able to show this simple approach achieves

good performances against buyers who are adaptive to price changes.

Algorithm 2 Binary Search Exploration Exploitation
Input: Episode length E.

1: Initialize iteration index iter = 1.

2: [Exploration]:

3: Set D1 for E consecutive periods, and record per-period revenue π̂
(
D1
)
. Then set DM for E consecutive periods,

and record per-period revenue π̂
(
DM

)
.

4: Set m∗← arg maxm∈{1,M} π̂ (Dm) L = 1, R=M , med = bL+R
2
c.

5: while L<R do

6: iter← iter+ 1.

7: if per-period revenue π̂
(
Dk
)
is not recorded for k= med,med+ 1 then

8: Set price Dk for E consecutive periods and record per-period revenue π̂
(
Dk
)
for k=med,med+ 1

9: end if

10: if π̂
(
Dmed)< π̂ (Dmed+1

)
then

11: Set m∗← arg maxm∈{m∗,med+1} π̂ (Dm), L←med+ 1, med←bL+R
2
c

12: else

13: Set m∗← arg maxm∈{m∗,med} π̂ (Dm), R←med− 1, med←bL+R
2
c

14: end if

15: end while

16: [Exploitation]: Set price Dm∗ for the remaining periods.

12 In monopolistic pricing, the revenue-optimal price p∗ is charachterized by p∗ = arg maxp pF (p), where F is the cdf

of buyer valuations. A typical assumption is such that the function pF (p) is unimodal.
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6.3. Regret Analysis of Our Pricing Algorithm

In this section, we provide theoretical guarantees for our proposed pricing algorithm against a class

of buyer’s bidding strategies. Recall that the seller is pricing against a buyer who is subject to

both budget and ROI constraints, and adopts some algorithm that satisfies both ROI and budget

constraint in Equation (1) to maximize total cumulative value. The class of strategies that we

consider imposes some notion of adaptiveness to non-stationary environments, as discussed in the

following definition.

Definition 4 ( ξ-Adaptive Bidding Strategies) Assume the T -period horizon is divided into H

consecutive episodes E1 . . .EH , i.e.
∑

h∈[H] |Eh|= T . In each episode h ∈ [H] , the seller sets a fixed

price Dh ∈D, and the buyer decides on a binary sequence of take-or-leave actions {zt}t∈[T ] ∈ {0,1}T .

Then we say a buyer’s strategy is ξ-adaptive for ξ ∈ (0,1) if

1. Adaptivity: there exists a universal error function φ : N×N→ [0,1] decreasing in the first

argument such that for all episodes h = 1,2, . . .H,
∣∣∣ 1
|Eh|

∑
t∈Eh

zt− π(Dh)

Dh

∣∣∣ ≤ φ(|Eh|, T ) w.p. at

least 1− 1
T
;13

2. Stability: there exists a minimum episode length E0 = Ω(T 1−ξ) such that φ(|Eh|, T )< G
2d̄

for

any episode h whose length |Eh| ≥E0. Here G := mind,d̃∈D:π(d) 6=π(d̃)

∣∣∣π(d)−π(d̃)
∣∣∣ is the minimum

gap between any two non equal revenues corresponding to prices in D.

Note that the error function φ(|Eh|, T ) does not depend on the actual price Dh set in episode h∈ [H].

The first adaptivity condition characterizes the buyer algorithm’s ability to adapt and optimally react

to prices across different episodes. The term
∣∣∣ Dh|Eh|∑t∈Eh

zt−π(Dh)
∣∣∣ is the seller’s average revenue

loss, relative to the revenue from optimal buyers, over a certain period under fixed price Dh. However,

the term can alternatively be viewed as the buyer’s deviation from optimal behavior induced by the

optimal threshold solution xDh because π(Dh)

Dh
=
∑

n∈[N ] g
nxnDh is the optimal probability of which

the buyer should take price Dh. The first adaptivity condition hence states that the buyer’s deviation

13 Note that zt for any t∈ Eh would also depend on the price Dh.
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from optimality under a fixed price is bounded. The second stability condition states that for long

enough episodes, the deviation of buyer behavior from optimality stabilizes and reaches a certain

low point, namely G
2d̄
. Additionally, the stability condition states that a ξ-adaptive algorithm will

require an order of Ω(T 1−ξ) periods to stabilize. Thus, the larger ξ, the more stable the algorithm is.

Finally, we remark that if error function φ for some buyer algorithm is independent of T , then the

stability condition would be easily satisfied.

The main result of this subsection is presented in Theorem 6, which characterizes the performance

of our pricing algorithm against any ξ-adaptive buyer algorithm. The proof of Theorem 6 can be

found in Appendix F.2.

Theorem 6 (Pricing against ξ-adaptive buyer strategies) Assume the buyer runs some ξ-

adaptive algorithm with error function φ. Fix ε ∈ (0, ξ) and let Tε > 0 satisfy φ(T 1−ξ+ε, T ) < G
2d̄

for all T > Tε. 14 Then, if the seller adopts the pricing strategy in Algorithm 2 with episode length

E = T 1−ξ+ε over a time horizon T > max
{
Tε,
(
4d̄ blog2(M)c+ 4d̄

) 1
ξ−ε
}
, under Assumption 1 the

seller’s regret is bounded as

Regsell ≤ 2d̄ (blog2(M)c+ 1) ·T 1−ξ+ε + 2d̄T ·φ
(
T
2
, T
)

+ d̄ (blog2(M)c+ 1)
2
/2 . (17)

Theorem 6 delineates how a ξ-adaptive algorithm’s adaptivity and stability properties factor into

seller regret (see discussion after Definition 4 for details on adaptivity and stability). The first

term T 1−ξ+ε in the seller’s regret corresponds to the buyer algorithm’s stability property, which

characterize its length of periods needed to stabilize in each episode; the second term φ
(
T
2
, T
)

corresponds to the adaptivity property, which represents the buyer’s deviation from the optimal

threshold-based strategy characterized by the optimal solution xd to U(d) for any price d ∈ D.

Finally, we remark that the seller does not need to know the exact value of ξ, as some lower bound ξ

would be sufficient.

14 Tε exists because the minimum episode length from the stability condition can be taken as E0 = T 1−ξ+ε for large

enough T so that φ(T 1−ξ+ε, T )< G
2d̄
. Here, we also used the fact that φ is decreasing in its first argument.
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We note that ξ-adaptivity is not at all restrictive. We will show that our CTBRA coupled with

the simple SGD learning algorithm and constant step sizes is 1
3
-adaptive.

Theorem 7 (CTBR with constant step size SGD is 1
3
-adaptive) There exists some T0 ∈N

such that for all T > T0, CTBR equipped with SGD with constant step size η = T−
2
3 is 1

3
-adaptive.

The corresponding minimum episode length can be taken as E0 = T
2
3 +ε for some ε = Θ(1/ log(T ))

and ε < 1/3.

The proof for Theorem 7 is provided in Appendix F.3. We remark that although SGD with

constant step size is adaptive, SGD with vanishing step size is not adaptive. To see this intuitively,

consider the entire horizon T being split equally into two halves. Suppose that the difference between

the prices in the two halves is large. From Theorem 9, we know that SGD with vanishing step size

adjusts to the fixed price quickly at a 1√
t
rate in the first half. But when the algorithm enters the

second half, all step sizes are less than 2
T
, which does not provide enough flexibility for the algorithm

to adapt to the new price.

Corollary 1 (Seller’s regret against CTBRA with constant step size SGD) Let T > T0

where T0 is defined in Theorem 7. Assume the buyer runs CTBRA with SGD and constant step size

η = T−
2
3 . Then for a fixed ε∈ (0, 1

3
) and ε= Θ(1/ log(T )), if the seller sets prices with episode length

E = T
2
3 +ε using Algorithm 2, then for all T >max

{
T0,
(
4d̄ blog2(M)c+ 4d̄

) 1
1
3−ε

}
, the seller’s regret

is bounded as

Regsell ≤ 2d̄H̃ ·T 2
3 +ε + 4d̄

√
T log (2T 2) + T

2
+C

(
Ã+ B̃

)
T

2
3 + d̄H̃2/2 = Θ(T

2
3 +ε) ,

where H̃ = blog2(M)c+ 1, C and S are defined as in Theorem 9, Ã =
√

2 + 16
√

log (T 2 log (T )),

B̃ = 2
√

(1 + 72 log (T 2 log (T ))), and T = min

{
t∈ [T ] : Ã

(
1− 2T−

2
3

)t
+ B̃T−

1
3 <S

}
= Θ(T

1
3 ).

The proof for Corollary 1 can be found in Appendix F.4.
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Appendix. Appendices for Bidding and Pricing in Budget and ROI Constrained

Markets

Appendices are organized as followed. In Appendix A, we present an extended literature review and discuss

some broader related works. In Appendices B and C, we include additional material/results/discussions to

Sections 5 and 5.1, respectively. All proofs of our theoretical results are included in Appendices D, E and F.

Specifically, in Appendix D we provide proofs for our theoretical results in Section 4, while in appendices E

and F we present the proofs for our results in Sections 5 and 6, respectively.

A. Extended Literature Review

As the most closely related works have been discussed in the introduction section, here we only further discuss

broader related works.

Other related work in online resource allocation There has been extensive research on online resource

allocation with budget/capacity constraints (see e.g. Kleinberg (2005), Devanur and Hayes (2009), Agrawal

et al. (2016)) and here we briefly discuss those that are the most relevant.15 Zhou et al. (2008) studies the

budget-constrained bidding problem for sponsored search in an adversarial setting and present an algorithm

with competitive ratio that depends on upper and lower bounds on the value-to-cost ratios; Babaioff et al.

(2007), Arlotto and Gurvich (2019) study variants of the knapsack and secretary problems under the random

order arrival model and stochastic arrival model, respectively, both presenting near optimal algorithms in their

respective settings. Our work differs from this line of research as we incorporate an ROI constraint while also

considering the problem of how to price against budget and ROI constrained buyers. Finally, Agrawal et al.

(2014) utilizes a primal-dual framework to study online linear programming (LP) with packing constraints,

where the positive-valued constraint matrix is revealed column by column (each column corresponds to a

highest competing bid dt) along with the corresponding objective coefficient (corresponding to utility vt−αdt).

15 The buyer’s online bidding problem can be viewed as an online resource allocation problem. However, a key difference

is that in bidding, the buyer does not observe the highest competing bid dt (equivalently the amount of resource

depleted) before making a decision; as in the resource allocation problem, both the reward and resource depletion

are revealed before decision making. Therefore, to apply a resource allocation algorithm in the bidding problem, one

must additionally impose some bidding mechanic that indirectly achieves the desired allocation through constructing

appropriate bid values.
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Their algorithm determines the decision variable corresponding to the arriving column based on the dual

variables of past revealed columns.

Mechanism design and market equilibrium for budget and ROI constrained buyers One relevant line

of research addresses the mechanism design problem for budget or ROI constrained buyers. As one of the

pioneering works regarding mechanism for financially constrained buyers, Laffont and Robert (1996) derives

the optimal mechanism for symmetric buyers and public budget information. On the contrary, a more recent

paper Pai and Vohra (2014) studies the general multidimensional mechanism design setting against buyers

with private budgets. Regarding ROI constrained buyers, Golrezaei et al. (2018) shows that the optimal

mechanism for symmetric ROI-constrained buyers is either second-price auctions with reduced reserve prices

or subsidized second-price auctions. The work also derives an optimal mechanism for asymmetric ROI buyers.

There is also a wide range of work that study dynamic mechanism design for budget constrained buyers, and

we refer the reader to the survey Bergemann and Said (2010) and references therein.

Online bidding in repeated auctions under feedback constraints Other than budget capacities and ROI

targets, buyers are also typically constrained in terms of the amount information available as they participate

in auctions. For example, Balseiro et al. (2019a) studies bidding problem in first price auctions under different

feedback structures where an unconstrained quasi-linear buyer only observes whether or not she wins the

auction, and Han et al. (2020b,a) study a similar problem where the buyer also gets to observe the highest

competing bid if she did not win the auction. As another related work, Weed et al. (2016) studies the bidding

problem where the buyer does not know her valuation before submitting her bid, and only observes her

valuation if she wins the auction. The work considers the stochastic and adversarial highest competing bid

settings, and presents algorithms that build on the UCB and EXP3 algorithms, respectively.

Selling to truthful and strategic buyers Kleinberg and Leighton (2003) studies the scenario where the

seller sell items through a repeated posted price mechanism to a single truthful buyer who simply accepts

the price if her valuation is greater than the offered price. the work presents optimal algorithms in the

settings where the buyer’s valuations are fixed, stochastic and adversarial, respectively. Amin et al. (2013) also

concerns selling through a posted price mechanism, but to a strategic buyer who may choose not to accept a

price bellow her valuation (or accept a price above her valuation). The work presents learning algorithms in

both the fixed valuation and stochastic valuation settings under the assumption that discount their utilities

over time. Other related works include Golrezaei et al. (2020) which studies the dynamic pricing problem
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for repeated contextual second price auctions facing multiple strategic buyers. The work proposes learning

algorithms that are robust to buyers’ strategic behavior under various seller information structures and

provides corresponding performance guarantees. Golrezaei et al. (2019) relaxes several assumptions for one of

the settings in Golrezaei et al. (2020), and presents an algorithm with improved performance guarantees.

Finally, Balseiro et al. (2019c) considers the dynamic mechanism design problem against strategic buyers,

and further identifies a class of problems in which the optimal mechanism is to simply repeat some static

mechanism over time.

Online optimization with covering constraints The buyer’s ROI constraint takes the form of a long-term

covering constraint. The related problem of optimization under online covering constraints have been studied

in Alon et al. (2003), Azar et al. (2013, 2014). However, the setting in these works differ from ours: Instead

of making irrevocable online decisions, these works focus on updating a decision vector upon the arrival of

a covering constraint each period such that this constraint is satisfied. In other words, they consider the

decision problem where covering constraints are satisfied in each period, while our buyers of interest only

need to satisfy the covering (ROI) constraint in the long run. Another key difference is that in these works

the covering constraints are all positive, which means these constraints can be easily satisfied (per period) by

increasing each entry of the decision vector. On the contrary, in our problem the ROI balance per period

(vt− γdt)zt may be negative, and hence makes constraint satisfaction more difficult.

B. Additional Material for Section 5 Online Threshold Bidding Algorithm

The following Theorem 8 is a more detailed version of Theorem 3 in Section 5, which provides a general

regret upper bound for our CTBR framework w.r.t. any input learning algorithm A.

Theorem 8 (Regret of CTBR) Let {p̂t}t∈[T ] be the estimates of learning algorithm A. Assume there

exists estimation error function `t : (0,1) → R+ decreasing in t so that P (‖p− p̂t‖ ≤ `t) ≥ 1 − 1
T
, and

limt→∞ `t <S, where 16

S := 1
2

min

{
pb+1, pr+1,

−
∑
k∈[r+1] p

kwk

√
Kw̄

,
∑
k∈[r] p

kwk

(
√
K+1)w̄

,
∑
k∈[b+1] p

kdk−ρ
√
Kd̄

,
ρ−
∑
k∈[b] p

kdk

(
√
K+1)d̄

}
.

16 The definition r= max
{
k ∈ [K] :

∑
`∈[k] p

`
(
v`− γd`

)
≥ 0
}
implies pr+1 > 0 and

∑
k∈[r+1] p

kwk < 0 always hold. In

the edge case where r=K, we defined dK+1 =∞, so wK+1 =−∞. Similarly, the definition of b always implies pb > 0

and
∑
k∈[b+1] p

kdk > ρ.
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Define TA = min{t∈ [T ] : `t <S} to be the earliest period t under which the `t falls bellow S. Then for large

enough T such that

T >max
{

2TA, 4w̄(TA+1)∑
k∈[J] p

kwk

}
, and

∑T

t=TA+1 `t > 2 (TA+ 1) , (18)

bidding according to CTBRA with confidence bound `t satisfies both ROI and budget constraints in

Equation (1). Furthermore, Reg(p, T,α, γ, ρ) ≤ maxk∈[K] |vk−αdk| ·
(

2TA+ 1 +C
∑

t∈[T ] `t

)
, where C =

max
{
w̄
w
, d̄
d

}(
3
√
K + 5

)
.

The proof for Theorem 8 can be found in Appendix E.1. Here, we provide some intuition for the conditions

and results of Theorem 8. The variable TA can be viewed as the number of periods required for the input

algorithm A to produce sufficiently accurate estimates. Hence, the first condition in Equation (18), namely

T >max
{

2TA, 4w̄(TA+1)∑
k∈[J] p

kwk

}
simply states the horizon length should be large enough for the algorithm to

stabilize. We also note that TA is possibly a function of T , so as long as it is sublinear in T , the first condition

is automatically fulfilled for large enough T . Regarding the second condition in Equation (18), the term∑T

t=TA+1 `t is required to be large. This is because `t represents how conservative the buyer is in terms of

her estimations for the remainder probabilities q̂Rt+1 and q̂Bt+1 (see Equation (12)): the larger `t, the more

conservative the buyer is, and hence the more likely the buyer can satisfy both budget and ROI constraints.

On the contrary, the term
∑T

t=TA+1 `t also appears in the regret, which highlights a very natural trade-off

between constraint satisfaction and overall utility loss.

The following Theorem 9 is a more detailed version of Theorem 4 in Section 5, which characterizes regret

upper bounds for our CTBR framework when the input learning algorithm A is EE, SGD with vanishing

step size, and SGD with constant step size, respectively.

Theorem 9 (CTBRA with EE and SGD) Recall the EE and SGD algorithms described in Equation

(11), and let {p̂t}t∈[T ] be the corresponding estimates for p. Then the following hold:

1. When A is EE, the corresponding error function in Theorem 8 is `t =
√

2K log(2T )

t
. Then, there exists

some T0 <∞ such that for all T > T0, the regret of CTBRA is

Reg(p, T,α, γ, ρ)≤ max
k∈[K]

∣∣vk−αdk∣∣ ·(2TA+ 1 +C
√

2KT log(T )
)
, (19)

where TA and C are defined in Theorem 8. Here TA = Θ(log(T )), so Reg(p, T,α, γ, ρ) = Õ(
√
T ).
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2. When A is SGD with vanishing step size ηt = 1
t
, then `t =

√
600 log(T log(T ))+12

t
. Then, there exists some

T1 <∞ such that for all T > T1, the regret of CTBRA is

Reg(p, T,α, γ, ρ)≤ max
k∈[K]

∣∣vk−αdk∣∣ ·(2TA+ 1 + 2C
√
T
√

600 log (T log (T )) + 12
)
, (20)

Here TA = Θ(log(T )), so Reg(p, T,α, γ, ρ) = Õ(
√
T ).

3. If SGD is run with constant step size ηt = η ∈ (0,1), the corresponding error function in Theorem 8 is

`t =A (1− 2η)
t−1
2 +B

√
η, where

A=

√
2 + 16

√
log (T log (T )), B = 2

√
(1 + 72 log (T log (T ))) . (21)

Then, by taking η= T−
2
3 , there exists some T2 <∞ such that for all T > T2, the regret of CTBRA is

Reg(p, T,α, γ, ρ)≤ max
k∈[K]

∣∣vk−αdk∣∣ ·(2TA+ 1 +C(A/2 +B)T
2
3

)
. (22)

Here TA = Θ(T
1
3 ), so Reg(p, T,α, γ, ρ) = Õ(T

2
3 ).

Finally, in each of the above scenarios, CTBRA satisfies both budget and ROI constraints in Equation (1).

Here, the high probability bounds for the event ‖p− p̂t‖ ≤ `t when A is EE directly follows from Proposition 1

of Qian et al. (2020) which is a restatement of the concentration inequalities for multinomial random variables

developed in Weissman et al. (2003).17 Hence the proof for the case where A is EE directly follows from

Theorem 8 and hence will be omitted. The high probability bound for SGD with vanishing step sizes follows

exactly from Proposition 1 in Rakhlin et al. (2011), but for completeness we include it in our Appendix E.2.

The high probability bound for constant step size is based on a modification of that proof, and also provided

in the same appendix.

C. Additional Material for Section 5.1 Empirical Study on Learning How to Bid

CTBP implementation robust to `t. In the following Figure 4, we illustrate the rate of convergence of

CTBREE, with confidence bound `t = t−s

max{d̄,w̄}
√
K

for s∈ { 1
2
, 2

3
, 3

4
,1}.

17 The high probability bounds in Qian et al. (2020) or Weissman et al. (2003) are w.r.t. the `1 norm. That is, the

resuls therein imply that for A= EE, P (‖p− p̂t‖1 ≤ `t)≥ 1− 1
T
. Nevertheless, since ‖p− p̂t‖1 ≥ ‖p− p̂t‖, we have

P (‖p− p̂t‖ ≤ `t)≥ P (‖p− p̂t‖1 ≤ `t)≥ 1− 1
T
.
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Figure 4 Convergence of CTBREE. Recalling x̂t defined in Algorithm 1 to be the estimate of the optimal threshold-

based solution x∗ w.r.t. a set of model primitives (α,γy, ρy,P y,i), this figure shows the estimation error

‖x̂t −x∗‖ over time for CTBREE with confidence bound `t = t−s

max{d̄,w̄}
√
K

for s ∈ { 1
2
, 2

3
, 3

4
,1}. The shaded

area delineates the standard deviation of the estimation error over N = 100 probability instances. We omit

the α-dominant regime as all CTBREE converge to x∗ very quickly and all lines nearly overlap. This figure

suggests that larger s yields faster convergence of CTBREE to the optimal threshold-based solution.

Comparison with benchmark bidding algorithms. Here, we present the pseudocode for our considered

benchmark bidding algorithms Conserv, Budget-Pacing, ROI-Pacing and Pacing, respectively. First, recall

λ̂t and µ̂t are estimates of the optimal dual variables w.r.t. the budget constraint and ROI constraint,

respectively, in the buyer’s hindsight optimization problem OPT({(vt, dt)}t∈[T ] ;α,γ, ρ) defined in Equation

(2). Also recall ρ > 0 is the budget rate, γ > 0 is the buyer’s target ROI, α ∈ (0, γ) is the buyer’s private

capital cost, and zt ∈ {0,1} is the indicator variable that denotes whether the buyer won the item in period t.

The benchmark bidding algorithms proceed as followed:

• Conserv: for t∈ [T ], observe vt and bid bt = vt/γ.

• Budget-Pacing: for t∈ [T ], observe vt and bid bt = vt
α+λ̂t

. Then observe payment dtzt and update

λ̂t+1 = Π[0,λ̄]

(
λ̂t− η̄t (ρ− dtzt)

)
. (23)

• ROI-Pacing: For t ∈ [T ], observe vt and bid bt = (1+µ̂t)vt
α+γµ̂t

. Then, observe payment dtzt and auction

outcome zt. Update

µ̂t+1 = Π[0,µ̄] (µ̂t− η̄t (vtzt− γdtzt)) . (24)

• Pacing: Observe vt and bid bt = (1+µ̂t)vt
α+γµ̂t+λ̂t

. Then, observe payment dtzt and auction outcome zt. Update

λ̂t+1 and µ̂t+1 according to Equations (23) and (24), respectively.
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In the above algorithms, ΠC is the projection onto a set C, and µ̄, λ̄ are upper bounds for the corresponding

optimal dual variables. Note that subgradient descent step-sizes η̄t are typically chosen to be in the order of

O(1/
√
T ) to yield optimal bidding performance (see Balseiro et al. (2021)).

D. Proofs for Section 4

Definition 5 Recall in Definition 1, we defined ψ(J, q) to be a K-dimensional threshold vector. For any

other dimension K ′ 6=K, we will add a subscript and use ψK′ to denote threshold vectors in RK′ .

D.1. Proof of Proposition 1

We rewrite OPT({vt, dt}t∈[T ] ;α,γ, ρ) defined in Equation (2) by grouping all periods t during which a type k

arrival occurs:

OPT({vt, dt}t∈[T ] ;α,γ, ρ) = maxz∈[0,1]T
∑

k∈[K] (vk−αdk)
(∑

t:(vt,dt)=(vk,dk) zt

)
s.t.

∑
k∈[K] (vk− γdk)

(∑
t:(vt,dt)=(vk,dk) zt

)
≥ 0∑

k∈[K] d
k
(∑

t:(vt,dt)=(vk,dk) zt

)
≤ ρT

Since
∑

t:(vt,dt)=(vk,dk) zt ∈ [0,Nk], applying the change of variables
∑

t:(vt,dt)=(vk,dk) zt =Nkxk for all k ∈ [K]

with some decision variable xk ∈ [0,1] yields the desired result. �

D.2. Proof for Theorem 1

Our proof relies on the following lemma, whose proof can be found in Appendix D.4.1.

Lemma 1 Consider {(ai, bi)}i∈[m] where (ai, bi) ∈ R+ ×R+ for all i ∈ [m]. Assume a1

b1
> a2

b2
· · ·> am

bm
, and

denote bm+1 =∞. Then, for some c > 0, (i) the unique optimal solution to

Knapsack= max
y∈[0,1]m

∑
i∈[m]

aiyi s.t.
∑
i∈[m]

biyi ≤ c ,

is the m-dimensional threshold vector18 y∗ = ψm(J, q) ∈ [0,1]m where J = max{i ∈ [m] :
∑

j∈[i] b
j ≤ c}, and

q=


c−
∑
i∈[J] b

i

bJ+1 J ≤m− 1

0 J =m

. (ii) for any e≥ 0, the following optimization problem

Negval-Knapsack= max
y∈[0,1]m

∑
i∈[m]

(
ai− ebi

)
yi s.t.

∑
i∈[m]

biyi ≤ c ,

18 Here, we recall ψm denotes m-dimensional threshold vectors for any m∈N, and for simplicity we omit the subscript

if we are working with K-dimensional threshold vectors
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admits a unique optimal solution which is the threshold vector min{y∗,ψ(κe,0)}, where κe = max{i ∈ [m] :

ai ≥ ebi}.

We now return to our proof for Theorem 1, which consists of 3 steps:

1. We show that XB := min{xB,ψ(κα,0)} is the unique optimal solution to the “budget only” problem:

P-Budget= max
x∈[0,1]K

∑
k∈[K]

nk
(
vk−αdk

)
xk s.t.

∑
k∈[K]

nkdkxk ≤ c , (25)

where we recall xB =ψ(b, qB)∈ [0,1]K is the threshold vector defined in the statement of the lemma.

2. We show that XR := min{xR,ψ(κα,0)} is the unique optimal solution the “ROI constraint only” problem:

P-ROI= max
x∈[0,1]K

∑
k∈[K]

nk
(
vk−αdk

)
xk s.t.

∑
k∈[K]

nk
(
vk− γdk

)
xk ≥ 0 , (26)

where we recall xR =ψ(b, qR)∈ [0,1]K is the threshold vector defined in the statement of the lemma.

3. We show that x∗ = min{XB,XR}= min{xB,xR,ψ(κα,0)} is feasible to U(n;α,γ, c). In other words, we

show x∗ is feasible to both P-Budget and P-ROI. The rest of the proof is almost trivial: P-Budget,

P-ROI and U(n;α,γ, c) have the same objective functions, while each of P-Budget and P-ROI has one

less constraint than U(n;α,γ, c), respectively. So P-Budget≥U(n;α,γ, c) and P-ROI≥U(n;α,γ, c). If

x∗ =XB and x∗ is feasible to U(n;α,γ, c), then P-Budget=U(n;α,γ, c) and XB is the unique optimal

solution to both P-Budget and U(n;α,γ, c). A similar argument holds for the case when x∗ =XR.

Proof for (1) Since
nk(vk−αdk)

nkdk
= θk−α and θ1 > · · ·> θK , applying Lemma 1 (ii) with m=K, ak = nkvk,

bk = nkdk, c= c and e= α allows us to directly conclude that min{xB,ψ(κα,0)} is the unique optimal solution

to P-Budget.

Proof for (2) Let x̃ ∈ [0,1]K be any optimal solution to P-ROI. Recall κγ = max{k ∈ [K] : vk ≥ γdk} so

that vk ≥ γdk for all k≤ κγ . 19 Then it is easy to see for any k ∈ [κγ ], x̃k = 1. This is because if there exists

some j ≤ κγ such that x̃j < 1, then the solution x= (x̃1 . . . x̃j−1,1, x̃j+1, . . . x̃K) is feasible and yields a strictly

larger objective than x̃:

∑
k∈[K]

nk
(
vk−αdk

)
xk−

∑
k∈[K]

nk
(
vk−αdk

)
x̃k =

(
vj −αdj

)
(1− x̃j)> 0 . (27)

19 Recall κα = max{k ∈ [K] : vk ≥ αdk}, so κγ <κα because α< γ and v1

d1
> v2

d2
> . . . v

K

dK
.
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Note that the final inequality cannot be equal because we assumed x̃j < 1 and vk 6= αdk for all k ∈ [K]. Hence,

the optimal solution to P-ROI takes the form of x̃ = (1 . . .1︸ ︷︷ ︸
κγ 1’s

, ỹκγ+1, . . . ỹK) ∈ [0,1]K . Hence, we know that

ỹ := (ỹκγ , . . . ỹK) must satisfy

ỹ ∈ arg max
x∈[0,1]K−κγ

K∑
k=κγ+1

nk
(
vk−αdk

)
xk s.t.

K∑
k=κγ+1

nk
(
γdk− vk

)
xk ≤ c̃ , (28)

where we defined c̃=
∑

k∈[κγ ] n
k (vk− γdk)> 0. Note that we have γdk − vk > 0 for all k = κγ + 1 . . .K. By

simple calculations it is easy to see that for any i, j ∈ {κγ + 1 . . .K}, we have

vi

di
>
vj

dj
⇐⇒

(
1− α

γ

)
nivi

ni (γdi− vi)
>

(
1− α

γ

)
njvj

nj (γdj − vj)
.

Hence nkvk

nk(γdk−vk)
decreases in k for k ∈ {κγ + 1 . . .K}. Therefore, in the context of Lemma 1 (ii), if we let

with ai =
(

1− α
γ

)
nivi, bi = ni (γdi− vi), and e= α

γ
, we have ai− ebi = ni (vi−αdi). So further setting c= c̃

in Lemma 1 (ii), we get

ỹ= min

(1 . . . 1︸ ︷︷ ︸
entries yκγ+1,...yr̃

, q̃r,0 . . . ,0),ψK−κγ (κα−κγ ,0)

∈ [0,1]K−κγ ,

where

r̃= max

k ∈ {κγ + 1 . . .K} :

k∑
i=κγ+1

ni
(
γdi− vi

)
≤ c̃

 (i)
= max

k ∈ [K] :
∑
i∈[k]

ni
(
vi− γdi

)
≥ 0

= r

q̃R =
c̃−
∑r̃

k=κγ+1 n
k (γdk− vk)

(γdr̃+1− vr̃+1)nr̃+1

(ii)
=

∑
k∈[r̃] (vk− γdk)nk

(γdr̃+1− vr̃+1)nr̃+1
= qR .

Here, in (i) and (ii) we used the definition of c̃=
∑

k∈[κγ ] n
k (vk− γdk)> 0 and rearranged terms. Combining

the fact that the optimal solution to P-ROI is x̃= (1 . . .1︸ ︷︷ ︸
κγ 1’s

, ỹκγ+1, . . . ỹK)∈ [0,1]K , and ỹ is uniquely determined

by Equation (28), we can conclude that x̃= min{ψ(r, qR),ψ(κα,0)}= min{xR,ψ(κα,0)} is the unique optimal

solution to P-ROI.

Proof for (3) We use the following lemma whose proof can be found in Appendix D.4.2.

Lemma 2 (Ordering property for threshold vectors) Consider {ai}i∈[m] ∈ R+ and {bi}i∈[m] ∈ R

where there exists some j ∈ [m] such that bi > 0 for all i = 1 . . . j and bi < 0 for all i = j + 1, . . .m. Let

Z,Y ∈ [0,1]m be two threshold vectors such that Y = ψm(JY , qY ), Z = ψm(JZ , qZ), and Z � Y . Then the

following hold:

(i)
∑

i∈[m] a
iZi ≥

∑
i∈[m] a

iY i.

(ii) If
∑

i∈[m] b
iZi ≥ 0 then

∑
i∈[m] b

iY i ≥ 0. Furthermore, if bJY +1 < 0, then
∑

i∈[m] b
iY i ≥

∑
i∈[m] b

iZi ≥ 0.
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(iii) If
∑

i∈[m] b
iY i < 0 then

∑
i∈[m] b

iZi < 0.

Since nkdk > 0 for all k ∈ [K] and x∗ = min{XB,XR} �XB, we can apply Lemma 2 (i) with m = K,

ak = nkdk, Z =XB and Y =x∗, which yields
∑

k∈[K] n
kdkx∗,k ≤

∑
k∈[K] n

kdkXB,k ≤ c, where the last inequality

is due to the fact that XB is feasible to P-Budget. This implies x∗ is also feasible to P-Budget.

On the other hand, x∗ = min{XB,XR} �XR. Since nk (vk− γdk)> 0 for k= 1 . . . κγ and nk (vk− γdk)< 0

for k= κγ +1 . . .K, we apply Lemma 2 (ii) with m=K, bk = nk (vk− γdk), Z =XR and Y =x∗, which shows

∑
k∈[K]

nk
(
vk− γdk

)
XR,k

(i)

≥ 0
(ii)
=⇒

∑
k∈[K]

nk
(
vk− γdk

)
x∗,k ≥ 0 ,

where (i) follows from the fact that XR is feasible to P-ROI and (ii) follows from Lemma 2 (ii). Hence x∗ is

also feasible to P-ROI. �

D.3. Proof of Theorem 2

Let (J, q) be defined as Theorem 1 w.r.t. n= p and c= ρ. If for each period t∈ [T ] the buyer submits the

threshold bid bt = β(vt, J, q), then

E
[ ∑
t∈[T ]

(vt−αdt) I{bt ≥ dt}
]

= TU(p;α,γ, ρ)≥E
[
OPT({vt, dt}t∈[T ] ;α,γ, ρ)

]
.

Let x∗ be the optimal solution to U(p;α,γ, ρ). According to Theorem 1 x∗ is the threshold vector ψ(J, q)

where J ∈ [K] and q ∈ [0,1) are the optimal threshold type and remained probability as defined in Theorem 1.

To show the proposed bidding strategy is B-feasible and achieves a utility equal to TU(p;α,γ, ρ), we show

the following:

1. Budget constraint satisfied:
∑

t∈[T ] E [dtI{bt ≥ dt}] = T
∑

k∈[K] p
kdkx∗,k ≤ ρT .

2. ROI constraint satisfied:
∑

t∈[T ] E [wtI{bt ≥ dt}] = T
∑

k∈[K]w
kdkx∗,k ≥ 0.

3. Optimal utility:
∑

t∈[T ] E [(vt−αdt) I{bt ≥ dt}] = T
∑

k∈[K] (vk−αdk)x∗,k = TU(p;α,γ, ρ).

To prove (1), consider the following

E [dtI{bt ≥ dt}] = (1− q)E
[
dtI
{ vt
θJ
≥ dt

}]
+ qE

[
dtI
{ vt
θJ+1

≥ dt
}]

= (1− q)
∑
k∈[K]

dkpkI
{
θk ≥ θJ

}
+ q

∑
k∈[K]

dkpkI
{
θk ≥ θJ+1

}
=

∑
k∈[J]

dkpk + qdJ+1pJ+1 (i)
=

∑
k∈[K]

dkpkx∗,k ,

where in the last equality we used the fact that x∗ =ψ(J, q). Multiplying both sides by T concludes (1). The

proofs for (2) and (3) are identical to that of (1) simply by replacing dt with wt and vt−αdt respectively.
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To show TU(p;α,γ, ρ) ≥ E
[
OPT({vt, dt}t∈[T ] ;α,γ, ρ)

]
, we first dualize OPT({vt, dt}t∈[T ] ;α,γ, ρ). Let

µ,λ≥ 0 be the dual variables associated with the ROI and budget constraint, respectively. We then have

E
[
OPT({vt, dt}t∈[T ] ;α,γ, ρ)

]
≤ E

 max
z∈[0,1]T

∑
t∈[T ]

((1 +µvt)− (α+ γµ+λ)dt)zt

+λρT

≤
∑
t∈[T ]

E
[
((1 +µvt)− (α+ γµ+λ)dt)+

]
+λρT = T

∑
k∈[K]

pk
(
(1 +µvk)− (α+ γµ+λ)dk

)
+

+λρT .

(29)

Similarly, if we dualize U(p;α,γ, ρ), again with dual variables µ,λ≥ 0 that corresponds to the ROI and

budget constraint, respectively:

U(p;α,γ, ρ)
(i)

≤ max
x∈[0,1]K

∑
k∈[K]

(
(1 +µvk)− (α+ γµ+λ)dk

)
pkxk +λρ

=
∑
k∈[K]

pk
(
(1 +µvk)− (α+ γµ+λ)dk

)
+

+λρ .

Note that if we define µ̃, λ̃= arg minµ,λ≥0

∑
k∈[K] ((1 +µvk)− (α+ γµ+λ)dk)+ +λρ, then by strong duality

(i) becomes an equality w.r.t. µ̃, λ̃, and hence

U(p;α,γ, ρ) =
∑
k∈[K]

pk
(

(1 + µ̃vk)−
(
α+ γµ̃+ λ̃

)
dk
)

+
+ λ̃ρ.

Since Equation (29) holds for all µ,λ≥ 0, we can conclude

E
[
OPT({vt, dt}t∈[T ] ;α,γ, ρ)

]
≤ T

∑
k∈[K]

pk
(

(1 + µ̃vk)−
(
α+ γµ̃+ λ̃

)
dk
)

+
+ λ̃ρT = TU(p;α,γ, ρ) .

�

D.4. Additional Proofs for Appendix D

D.4.1. Proof for Lemma 1 The problem in (i) is exactly the well-studied 0-1 knapsack problem with

arbitrary item sizes (see e.g. Dantzig (1957)), and we will omit the proof here. For (ii), let ỹ be any optimal

solution to Negval-Knapsack. We claim that for any i > κe, ỹi = 0. This is easy to see because if there exists

some j > κe s.t. ỹj > 0, then the solution y = (ỹ1 . . . ỹj−1,0, ỹj−1, . . . ỹm) is feasible to Negval-Knapsack, and

also yields a strictly larger objective than that of ỹ since∑
i∈[m]

(
ai− ebi

)
ỹi−

∑
i∈[m]

(
ai− ebi

)
yi =

(
aj − ebj

)
ỹj < 0,

where we used the fact that aj < ebj by the definition of κe. Hence, the optimal solution to problem

to Negval-Knapsacktakes the form of ỹ = (ỹ1, ỹ2 . . . ỹκe ,0, . . .0) ∈ [0,1]m. Furthermore, we observe that

ỹe := (ỹ1, y2 . . . ỹκe) must be the optimal solution to

max
y∈[0,1]κe

∑
i∈[κe]

(
ai− ebi

)
yi s.t.

∑
i∈[κe]

biyi ≤ c .
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Now, since ai− ebi ≥ 0 for all i∈ [κe], and a1−eb1
b1

> · · ·> aκe−ebκe
bκe

(due to the fact that ai−ebi
bi

= ai

bi
− e and the

decreasing ordering of a
i

bi
’s in i), we can apply (i) and conclude that ỹe is uniquely determined by the threshold

vector ψκe(Je, qe) ∈ Rκe , where Je = max{i ∈ [κe] :
∑

j∈[i] b
j ≤ c} and qe =


c−
∑
i∈[Je] b

i

bJe+1 Je ≤ κe− 1

0 Je = κe

. Note

that J ≥ Je always holds, and recall y∗ =ψm(J, q) . It remains to consider two scenarios

• If Je = κe, then J ≥ Je = κe, so y∗ � ψm(κe,0)∈Rm, and hence min{y∗,ψ(κe,0)}= ψm(κe,0). On the

other hand, ỹ= (ỹ1, ỹ2 . . . ỹκe ,0, . . .0) = (1 . . .1︸ ︷︷ ︸
Je 1’s

,0, . . .0) =ψ(κe,0), so ỹ= min{y∗,ψm(κe,0)}.

• If Je ≤ κe − 1, then Je = J and qe = q. So min{y∗,ψm(κe,0)} = y∗. On the other hand, ỹ =

(ỹ1, ỹ2 . . . ỹκe ,0, . . .0) = (1 . . .1︸ ︷︷ ︸
Je 1’s

, qe,0, . . .0), so ỹ= y∗ = min{y∗,ψm(κe,0)}.

�

D.4.2. Proof for Lemma 2

(i) Since ai > 0 for all i ∈ [m], and Z � Y (i.e. Zi ≥ Y i for all i ∈ [m]), it is easy to see
∑

i∈[m] a
iZi ≥∑

i∈[m] a
iY i.

(ii) Note that Y JY +1 = qY while Y i = 0 for all i > JY + 1. We prove the claim by contradiction. Assume∑
i∈[m] b

iY i < 0, then it is easy to see bJY +1 < 0. This is because if bJY +1 > 0, then bi > 0 for all i= 1 . . . JY + 1

by the definition of {bi}i∈[m], and hence
∑

i∈[m] b
iY i =

∑
i∈[JY +1] b

iY i ≥ 0 contradicting our assumption.

Next, since
∑

i∈[m] b
iY i < 0≤

∑
i∈[m] b

iZi, we have
∑

i∈[m] b
i(Zi−Y i)≥ 0. On the other hand,∑

i∈[m] b
i(Zi−Y i)

(i)
=
∑m

i=JY +1 b
i(Zi−Y i)

(ii)

< 0 .

Here, (i) follows from the definition of a threshold vector so that Y i = 1 for all i= 1 . . . JY and also Zi = 1 for

all i= 1 . . . JY due to Z �Y . (ii) follows from the fact that bJY +1 < 0 so bi < 0 for all i≥ JY + 1 due to the

definition of {bi}i∈[m]. Hence, we arrive at a contradiction, which allows us to conclude the first half of the

claim, i.e.
∑

i∈[m] b
iZi ≥ 0 implies

∑
i∈[m] b

iY i ≥ 0.

We now show the second half of the claim i.e. bJY +1 < 0 implies
∑

i∈[m] b
iY i ≥

∑
i∈[m] b

iZi ≥ 0. If bJY +1 < 0,

then bi < 0 for all i= JY + 1 + . . . JZ + 1, and hence∑
i∈[m] b

i(Zi−Y i) = bJY +1(ZJY +1−Y JY +1) +
∑JZ+1

i=JY +2 b
iZi

(i)

< 0 .

Note that in the above inequality the summand
∑JZ+1

i=JY +2 b
iZi does not exist if JY = JZ , and in (i) we also

used the fact that Y i = 0 for all i > JY + 1 using the definition of a threshold veector.

(iii) We again use a contradiction argument by assuming
∑

i∈[m] b
iZi ≥ 0, and the rest of the proof is

almost identical to that of (ii) so we will omit it here. �
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E. Proofs for Section 5

E.1. Proof for Theorem 8

Define the event Gt = {‖p̂t−p‖< `t}, and recall that P(Gt)≥ 1− 1
T
, wk = vk− γdk, w̄= maxk∈[K] |vk− γdk|,

and d̄= maxk∈[K] d
k. As in the proof of Theorem 2, we recognize that for any t∈ [T ],

E
[
wtI{bt ≥ dt}

∣∣∣x̂t]=
∑
k∈[K]

wkpkx̂kt and E
[
dtI{bt ≥ dt}

∣∣∣x̂t]=
∑
k∈[K]

dkpkx̂kt ,

where x̂t =ψ(Ĵt+1, q̂t+1) as defined in Equation (13) in Algorithm 1, and bt is the threshold bid β(vt, Ĵt, q̂t).

Hence, to show that Algorithm 1 satisfies both ROI and budget constraint in Equation (1), it suffices to show

∑
t∈[T ]

∑
k∈[K]

E
[
wkpkx̂kt

]
≥ 0, and

∑
t∈[T ]

∑
k∈[K]

E
[
dkpkx̂kt

]
≤ ρT .

Our results rely on the following lemma which mainly states that when the estimate p̂t for p is accurate

for large t, then the corresponding estimates b̂t, r̂t, q̂Rt , q̂Bt are all accurate. See proof in Appendix E.3.1.

Lemma 3 Assume event Gt = {‖p̂t−p‖< `t} holds for t≥TA = min{t∈ [T ] : `t <S}, where S is defined in

the statement of Theorem 8. Then, the following conditions hold

Condition (i): b̂t = b and hence Ĵt = J . Condition (ii): q̂Rt , q̂Bt > 0.

Condition (iii): w̄ · `t ≤
∑

k∈[K] x̂
R,k
t pkwk ≤

(
3
√
K + 5

)
w̄`t and d̄ · `t ≤ ρ −

∑
k∈[K] x̂

B,k
t pkdk ≤(

3
√
K + 5

)
d̄`t.

Condition (iv): |(qR− q̂Rt )pr+1| ≤ w̄
w

(
3
√
K + 5

)
`t and |(qB− q̂Bt )pb+1| ≤ d̄

d

(
3
√
K + 5

)
`t.

The remaining proof consists of 3 parts: (1) proving ROI constraint is satisfied; (2) proving budget constraint

is satisfied; (3) upper bounding regret.

(1) Proving ROI constraint is satisfied. i.e., E
[∑

t∈[T ]

∑
k∈[k] x̂

k
t p
kwk

]
≥ 0. We lower bound the

realized ROI balance as followed:

E

∑
t∈[T ]

∑
k∈[K]

x̂kt p
kwk

 ≥ − w̄TA+
∑
t>TA

∑
k∈[K]

(
E
[
x̂kt p

kwkI{Gt}
]

+E
[
x̂kt p

kwkI{Gct }
])

(30)

≥ − w̄TA+
∑
t>TA

E

∑
k∈[K]

x̂kt p
kwkI{Gt}

− w̄ ∑
t>TA

P (Gct )
(i)

> − w̄TA+
∑
t>TA

E

∑
k∈[K]

x̂kt p
kwkI{Gt}

− w̄
(ii)

≥


−w̄TA+

∑
t>TA

(∑
k∈[J] p

kwk
)
P (Gt)− w̄, if wJ+1 > 0

−w̄TA+ w̄
∑

t>TA
`tP (Gt)− w̄, if wJ+1 < 0

,
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where (i) follows from P (Gct ) = P (‖p̂t−p‖> `t)< 1
T
; For (ii) we have two scenarios: when wJ+1 > 0, we know

that wk > 0 for all k≤ J+1, so
∑

k∈[K] x̂
k
t p
kwk =

∑
k∈[J] p

kwk + q̂tp
J+1wJ+1 ≥

∑
k∈[J] p

kwk where we used the

definition of the threshold vector x̂t =ψ(Ĵt, q̂t) and Ĵt = J under event Gt for t > TA according to Lemma 3

(i). For the scenario when wJ+1 < 0, we have Reg(p, T,α, γ, ρ)≤maxk∈[K] |vk−αdk| ·
(

2TA+ 1 +C
∑

t∈[T ] `t

)
,

where for (iii) we applied the ordering property for threshold vectors in Lemma 2 (ii) where we take Y = x̂t,

Z = x̂R
t using the fact that ψ(Ĵt, q̂t) = x̂t = min{x̂R

t, x̂
B
t,ψ(κα,0)} � x̂R

t =ψ(Ĵ R
t , q̂

R
t ) and wĴt+1 =wJ+1 < 0, and

for (iv) we directly applied Lemma 3 (iii) as we assumed t > TA and the event Gt holds.

It remains to further lower bound Equation (30) under the two scenarios wJ+1 > 0 and wJ+1 < 0. When

wJ+1 > 0, we have

E

∑
t∈[T ]

∑
k∈[K]

x̂kt p
kwk

 ≥ − w̄TA+
∑
t>TA

∑
k∈[J]

pkwk

P (Gt)− w̄

≥ − w̄TA+

(
1− 1

T

)
(T −TA)

∑
k∈[J]

pkwk

− w̄ (i)

≥ T

4

∑
k∈[J]

pkwk

− w̄ (TA+ 1)
(ii)

≥ 0 ,

where in (i) we used the condition 1
T
< 1

2
and T > 2TA. Furthermore, (ii) follows from our assumption that

T > 4w̄(TA+1)∑
k∈[J] p

kwk
. When wJ+1 < 0, we have

E

∑
t∈[T ]

∑
k∈[K]

x̂kt p
kwk

 ≥ − w̄TA+ w̄
∑
t>TA

`tP (Gt)− w̄ ≥ − w̄TA+

(
1− 1

T

)
w̄
∑
t>TA

`t− w̄

(i)

≥ w̄

2

∑
t>TA

`t− w̄ (TA+ 1)
(ii)

≥ 0 ,

where in (i) we used the condition 1
T
< 1

2
. Moreover, (ii) follows from the condition

∑
t>TA

`t > 2 (TA+ 1).

Proving budget constraint is satisfied. i.e., E
[∑

t∈[T ]

∑
k∈[k] x̂

k
t p
kdk
]
≤ ρT . Using the ordering prop-

erty for threshold vectors in Lemma 2 (i), since pkdk ≥ 0 for all k and x̂t = min{x̂B
t, x̂

R
t,ψ(κα,0)} � x̂B

t, we

have
∑

k∈[K] x̂
k
t p
kdk ≤

∑
k∈[K] x̂

B,k
t pkdk for all t∈ [T ].Hence,

E

∑
t∈[T ]

∑
k∈[K]

x̂kt p
kdk

 ≤ E

∑
t∈[T ]

∑
k∈[K]

x̂B,k
t pkdk


≤ d̄TA+

∑
t>TA

E

∑
k∈[K]

x̂B,k
t pkdkI{Gt}

+
∑
t>TA

E

∑
k∈[K]

x̂B,k
t pkdkI{Gct }


(i)

≤ d̄TA+
∑
t>TA

(
ρ− d̄`t

)
P (Gt) + d̄ (T −TA)

1

T

< d̄TA+
∑
t>TA

(
ρ− d̄`t

)
+ d̄ < ρT − d̄

(∑
t>TA

`t−TA− 1

)
(ii)

< ρT .

where (i) follows directly from Lemma 3 (iii) since t > TA and we assume event Gt holds; (ii) follows from∑
t>TA

`t > 2 (TA+ 1).
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Bounding regret. As in the proof of Theorem 2, it is easy to see for any t ∈ [T ],

E
[
(vt−αdt) I{bt ≥ dt}

∣∣∣x̂t]=
∑

k∈[K] (vk−αdk)pkx̂kt . Then, we can bound the regret as follows:

Reg(p, T,α, γ, ρ)

= E
[
OPT({vt, dt}t∈[T ] ;α,γ, ρ)

]
−
∑
t∈[T ]

E

∑
k∈[K]

(
vk−αdk

)
I{bt ≥ dt}


(i)

≤ T ·U(p;α,γ, ρ)−
∑
t∈[T ]

E

∑
k∈[K]

(
vk−αdk

)
I{bt ≥ dt}


(ii)

≤ 2TA max
k∈[K]

∣∣vk−αdk∣∣+ ∑
t>TA

u (p;α,γ, ρ)−E

∑
k∈[K]

(
vk−αdk

)
I{bt ≥ dt}


= 2TA max

k∈[K]

∣∣vk−αdk∣∣+ ∑
t>TA

u (p;α,γ, ρ)−E

E
∑
k∈[K]

(
vk−αdk

)
I{bt ≥ dt}

∣∣∣x̂t


= 2TA max
k∈[K]

∣∣vk−αdk∣∣+ ∑
t>TA

u (p;α,γ, ρ)−E

∑
k∈[K]

(
vk−αdk

)
I{bt ≥ dt}

pkx̂kt


(iii)
= 2TA max

k∈[K]

∣∣vk−αdk∣∣+ ∑
t>TA

E

∑
k∈[K]

(
vk−αdk

) (
x∗,k− x̂kt

)
pk


≤ 2TA max

k∈[K]

∣∣vk−αdk∣∣+ max
k∈[K]

∣∣vk−αdk∣∣ ∑
t>TA

E

∑
k∈[K]

∣∣x∗,k− x̂kt ∣∣pk
 . (31)

Here, (i) follows from upper bounding OPT({vt, dt}t∈[T ] ;α,γ, ρ) with T ·U(p;α,γ, ρ) as shown in Lemma 2;

(ii) follows from U(p;α,γ, ρ)≤maxk∈[K] |vk−αdk| and
∣∣∣∑k∈[K] (vk−αdk) I{bt ≥ dt}

∣∣∣≤maxk∈[K] |vk−αdk|

for all t∈ [T ]; (iii) follows from the definition of x∗ =ψ(J, q) being the optimal solution of u (p;α,γ, ρ).

Now, considering E
[∑

k∈[K] |x∗,k− x̂kt |pk
]
for all t > TA, we have

E

∑
k∈[K]

∣∣x∗,k− x̂kt ∣∣pk
 (i)

< E

∑
k∈[K]

∣∣x∗,k− x̂kt ∣∣pkI{Gt}
+

1

T

(ii)
= E

[
|q− q̂t|pJ+1I{Gt}

]
+

1

T
.

In (i) we used the fact that |x∗,k− x̂kt | ≤ 1 for all k ∈ [K] since x∗,k, x̂kt ∈ [0,1] and P (Gct )< 1
T
. In (ii), we first

evoked Theorem 1 such that x∗ =ψ(J, q); then we used the definition x̂t =ψ(Ĵt, q̂t) and according to Lemma

3 (i) we have Ĵt = J under event Gt for t > TA. Plugging this back into Equation (31), we get

Reg(p, T,α, γ, ρ)≤ max
k∈[K]

∣∣vk−αdk∣∣(2TA+ 1 +
∑
t>TA

E
[
|q− q̂t|pJ+1I{Gt}

])
.

Therefore, it now remains to show that under event Gt for t > TA, we have

∣∣(q̂t− q)pJ+1
∣∣ ≤ max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)
`t . (32)
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First, recall the definitions J = min{b, r, κα},

q̂t
(i)
= min

{
x̂R,J+1
t , x̂B,J+1

t , I{κα ≥ J + 1}
}

and q= min
{
xR,J+1, xB,J+1, I{κα ≥ J + 1}

}
.

The definition in (i) should be q̂t = min
{
x̂R,Ĵt+1
t , x̂B,Ĵt+1

t , I
{
κα ≥ Ĵt

}}
, but again under event Gt for t > TA,

Lemma 3 states that Ĵt = J .

If J + 1>κα, then we know that q̂t = q = 0 so the inequality in Equation (32) trivially holds. If J + 1≤ κα,

then either J = r or J = b. Furthermore, q̂t = min
{
x̂R,J+1
t , x̂B,J+1

t

}
and q = min{xR,J+1, xB,J+1}. Hence, in the

following we consider each of the four events:

• {xR,J+1 ≤ xB,J+1}∩
{
x̂R,J+1 ≤ x̂B,J+1

t

}
• {xR,J+1 >xB,J+1}∩

{
x̂R,J+1 > x̂B,J+1

t

}
• {xR,J+1 ≤ xB,J+1}∩

{
x̂R,J+1 > x̂B,J+1

t

}
• {xR,J+1 >xB,J+1}∩

{
x̂R,J+1 ≤ x̂B,J+1

t

}
We observe that if the event {xR,J+1 ≤ xB,J+1} ∩

{
x̂R,J+1 ≤ x̂B,J+1

t

}
holds, then J = r, so pJ+1 = pr+1, as

well as q = qR and q̂t = x̂R,r+1
t = q̂Rt . In this case Equation (32) holds directly as a result of Lemma 3 (iv).

Similarly, if the event {xJ+1,R >xB,J+1}∩
{
x̂R,J+1 > x̂B,J+1

t

}
holds, then J = b, so pJ+1 = pb+1 as well as q = qB

and q̂t = x̂B,b+1
t = q̂Bt , so Equation (32) again holds directly as a result of Lemma 3 (iv).

Now, consider the scenario where the event {xR,J+1 ≤ xB,J+1}∩
{
x̂R,J+1 > x̂B,J+1

t

}
holds, which implies J = r

and Ĵt = b, as well as q̂t = x̂B,J+1
t = q̂Bt , and q= xR,J+1 = qR. Since b̂t = b and r̂t = r under event Gt, we know

that J = r= b, which further implies pJ+1 = pb+1 = pr+1. Therefore,

q̂tp
J+1 = x̂B,J+1

t pJ+1
(i)

< x̂R,J+1pJ+1 = q̂Rtp
r+1

(iii)

≤ qRpr+1︸ ︷︷ ︸
=qpJ+1

+ max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)
`t

qRpr+1︸ ︷︷ ︸
=qpJ+1

= xR,J+1pJ+1
(ii)

≤ xB,J+1pJ+1 = qBpb+1
(iv)

≤ q̂Btp
b+1︸ ︷︷ ︸

=q̂tpJ+1

+ max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)
`t .

(33)

Here (i) and (ii) are valid because the event{xR,J+1 ≤ xB,J+1} ∩
{
x̂R,J+1 > x̂B,J+1

t

}
holds; both (iii) and (iv)

follow from Lemma 3 (iv). Hence combining the above inequalities we can conclude

|q− q̂t|pJ+1 ≤max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)
`t . (34)

Following the same analysis, when the event {xR,J+1 >xB,J+1}∩
{
x̂R,J+1 ≤ x̂B,J+1

t

}
holds, we can again show

J = r= b, so pJ+1 = pb+1 = pr+1, and also q̂t = x̂R,J+1
t = q̂Rt , and q= xB,J+1 = qB. Using a similar argument as

in Equation (33), we can conclude |q− q̂t|pJ+1 ≤max
{
w̄
w
, d̄
d

}(
3
√
K + 5

)
`t. �
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E.2. Proof for Theorem 9

For both SGD with vanishing and constant step sizes, we only need to show ‖p∗− p̂t‖ ≤ `t w.p. at least 1− 1
T
,

and check that there exists some T̃ <∞ such that for all T > T̃ , the following conditions hold

T >max

{
2TA,

4w̄ (TA+ 1)∑
k∈[J] p

kwk

}
and

T∑
t=TA+1

`t > 2 (TA+ 1) ,

where TA = min{t∈ [T ] : `t <S} for S defined in Theorem 8. Note that TA can possibly depend on T since

`At may depend on T . Then, we can further bound the regret by applying Theorem 8.

In the following proof, recall

st =
(
I
{

(vt, dt) = (v1, d1)
}
, . . . , I

{
(vt, dt) = (vK , dK)

})
.

Furthermore, let Ft be the sigma algebra generated by {(vτ , dτ )}τ∈[t].

Proof for SGD with vanishing step size

Here, we utilize the following Lemma which is equivalent to Proposition 1 in Rakhlin et al. (2011). The proof

is exactly the same as that in Rakhlin et al. (2011), but for completeness we will include it in Appendix E.3.2

Lemma 4 Assume (vt, dt) ∼ p∗ ∈ ∆k for all t ∈ [T ], and let {p̂t}t∈[T ] be the estimates for p∗ generated

by SGD with vanishing step size ηt = 1
t
for all t. Then w.p. at least 1− δ for some δ ∈ (0,1/e), we have

‖p∗− p̂t‖ ≤
√

600 log( log(T )
δ )+12

t
.

Now, returning to the proof for SGD with vanishing step sizes, we can simply take δ = 1
T

and set

`t =
√

600 log(T log(T ))+12

t
, which yields the desired high probability bound in the Theorem statement.

We now show that there exists some T1 <∞ such that for all T > T1 the following conditions always hold.

T >max

{
2TA,

4w̄ (TA+ 1)∑
k∈[J] p

kwk

}
and

T∑
t=TA+1

`t > 2 (TA+ 1) ,

where TA = min{t∈ [T ] : `t <S}. It is easy to see that TA =

⌈√
600 log(T log(T ))+12

S

⌉
= Θ(log(T )). Therefore,

for any large enough T , we must have T >max
{

2TA, 4w̄(TA+1)∑
k∈[J] p

kwk

}
= Θ(log(T )).

Next, we show that we can satisfy this condition
∑T

t=TA+1 `t > 2 (TA+ 1) for large enough T . Recall that

`t =
√

600 log(T log(T ))+12

t
and note that

T∑
t=TA+1

1√
t

=

T∑
t=TA+1

∫ t+1

t

1√
t
dτ ≥

T∑
t=TA+1

∫ t+1

t

1√
τ
dτ =

∫ T+1

TA+1

1√
τ
dτ

=2
(√

T + 1−
√
TA+ 1

)
= Θ(

√
T ) .

(35)
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Therefore, for any large enough T , we must have
∑T

t=TA+1 `t ≥Θ(
√
T )> 2 (TA+ 1) = Θ(log(T )).

To bound the regret of the CTBR with SGD and vanishing step size η = 1
t
, by applying Theorem

8 we only need to bound
∑

t∈[T ] `t. Using a similar integration argument as in Equation (35), we have∑T

t=TA+1
1√
t
≤
∫ T

0
1√
t

= 2
√
T . This allows us to bound the regret as followed:

Reg(p, T,α, γ, ρ)
(i)

≤ max
k∈[K]

∣∣vk−αdk∣∣ ·
2TA+ 1 +C

∑
t∈[T ]

`t


≤ max

k∈[K]

∣∣vk−αdk∣∣ ·(2TA+ 1 + 2C
√
T ·
√

600 log (T log (T )) + 12
)

where (i) follows from Theorem 8. �

Proof for SGD with constant step size

For the high probability bound for SGD with constant step sizes, we prove a slightly more general result, as

described in the following Lemma. The proof can be found in Appendix E.3.3

Lemma 5 Assume (vt, dt)∼ p∗ ∈∆k for all t= s, s+ 1, . . . for some starting point s∈ [T ], and let {p̂t}t∈[T ]

be the estimates for p∗ generated by SGD with constant step size ηt = η ∈ (0,1/4) for all t. Then for any

distribution ps at the starting point, w.p. at least 1− δ for some δ ∈ (0,1/e), we have

‖p∗− p̂t‖ ≤

√√√√2 + 16

√
log

(
log (T )

δ

)
(1− 2η)

t−s
2 + 2

√(
1 + 72 log

(
log (T )

δ

))
·√η .

Returning to the proof for Theorem 9 with constant SGD step sizes, we can set the starting point s= 1

and δ = 1
T
in Lemma 5, which concludes that loss function `t can be taken as

`t =

√
2 + 16

√
log (T log (T ))︸ ︷︷ ︸
A

(1− 2η)
t−1
2 + 2

√
(1 + 72 log (T log (T )))︸ ︷︷ ︸

B

√
η .

We now show that when we take η = T−
2
3 , there exists some T2 <∞ such that for all T > T2 the following

conditions always hold.

T >max

{
2TA,

4w̄ (TA+ 1)∑
k∈[J] p

kwk

}
and

T∑
t=TA+1

`t > 2 (TA+ 1) ,

where TA = min{t∈ [T ] : `t <S}. It is easy to see that

TA = 1 + 2

⌈
log
(
S−B√η

)
log(i) + log (1− 2η)

⌉
= 1 + 2


log(S) + log

(
1− B

S
T−

1
3

)
log(i) + log

(
1− 2T−

2
3

)
 . (36)

Since limT→∞
B
S
T−

1
3 = 0 and limT→∞ = T−

2
3 = 0, we know that for large T , log

(
1− B

S
T−

1
3

)
= Θ(BT−

1
3 ) =

Θ(T−
1
3 ) and log

(
1− 2T−

2
3

)
= Θ(T−

2
3 ), so TA = Θ(T

1
3 ). Therefore, for any large enough T , we must have

T >max
{

2TA, 4w̄(TA+1)∑
k∈[J] p

kwk

}
= Θ(T

1
3 ).
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On the other hand, note that
∑T

t=TA+1 `t >B(T −TA)
√
η =B(T −TA)T−

1
3 = Θ(T

2
3 ), where in the last

equality we used the fact that TA = Θ(T
1
3 ). Therefore, for any large enough T , we must have

∑T

t=TA+1 `t ≥

Θ(T
2
3 )> 2 (TA+ 1) = Θ(T

1
3 ).

Finally, to bound the regret for the CTBR with SGD and constant step size η = T−
2
3 , by applying Theorem

8 we only need to bound
∑

t∈[T ] `t:∑
t∈[T ]

`t =
A√

1− 2η

∑
t∈[T ]

(√
1− 2η

)t
+TB

√
η =

A√
1− 2η

∑
t∈[T ]

(√
1− 2η

)t
+BT

2
3

≤ A√
1− 2η

· 1

1−
√

1− 2η
+BT

2
3 =

A√
1− 2η

1 +
√

1− 2η

2η
+BT

2
3

<
A

2η
+BT

2
3 =

(
A

2
+B

)
T

2
3 .

(37)

In the first equation, we recall `t =A(1− 2η)
t−1
2 +B

√
η= A√

1−2η

(√
1− 2η

)t
+B
√
η. �

E.3. Additional Proofs for Appendix E

E.3.1. Proof for Lemma 3

Proof of part (i) Recall the definitions in Algorithm 1: r̂t = max
{
k ∈ [K] :

∑
`∈[k] p̂

`
tw

` ≥−
√
Kw̄`t

}
and

b̂t = max
{
k ∈ [K] :

∑
`∈[k] p̂

`
td
` ≤ ρ+

√
Kd̄`t

}
. Then to show r̂t+1 = r and b̂t+1 = b, it suffices to show

∑
`∈[r]

p̂`tw
` ≥−

√
Kw̄`t and

∑
`∈[r+1]

p̂`tw
` <−

√
Kw̄`t (38)

∑
`∈[b]

p̂`tw
` ≤ ρ+

√
Kd̄`t and

∑
`∈[b+1]

p̂`tw
` >ρ+

√
Kd̄`t . (39)

We first show Equation (38). Under the event Gt = {‖p̂t−p‖< `t}, we have

∣∣∣∑
`∈[r]

p̂`tw
`−
∑
`∈[r]

p`w`
∣∣∣≤ ‖w‖ · ‖p̂t−p‖ (i)

≤
√
Kw̄`t (40)

∣∣∣ ∑
`∈[r+1]

p̂`tw
`−

∑
`∈[r+1]

p`w`
∣∣∣≤ ‖w‖ · ‖p̂t−p‖ (ii)

≤
√
Kw̄`t , (41)

where both (i) and (ii) follow from the fact that event Gt holds. From Equation (40), we have

∑
`∈[r]

p̂`tw
` ≥

∑
`∈[r]

p`w`−
√
Kw̄`t

(i)

≥ −
√
Kw̄`t , (42)

where (i) follows from the fact that
∑

`∈[r] p
`w` ≥ 0 by the definition of r= max

{
k ∈ [K] :

∑
`∈[k] p

`w` ≥ 0
}
.

On the other hand, Equation (41), implies:

∑
`∈[r+1]

p̂`tw
` ≤

∑
`∈[r+1]

p`w` +
√
Kw̄`t

(i)

≤ −2
√
Kw̄`t +

√
Kw̄`t =−

√
Kw̄`t ,
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where (i) holds due to the definition of TA such that for t > TA, we have `t <−
∑
`∈[r+1] p

`w`

2
√
Kw̄

=⇒
∑

`∈[r+1] p
`w` <

−2
√
Kw̄`t. Hence we have shown Equation (38) which implies r̂t = r.

The proof for Equation (39) is basically identical: we first recognize

∣∣∣∑
`∈[b]

p̂`td
`−
∑
`∈[b]

p`d`
∣∣∣≤ ‖d‖ · ‖p̂t−p‖ ≤√Kd̄`t (43)

∣∣∣ ∑
`∈[b+1]

p̂`td
`−

∑
`∈[b+1]

p`d`
∣∣∣≤ ‖d‖ · ‖p̂t−p‖ ≤√Kd̄`t . (44)

Then Equation (43) implies

∑
`∈[b]

p̂`td
` ≤

∑
`∈[b]

p`d` +
√
Kd̄`t

(i)

≤ ρ+
√
Kd̄`t , (45)

where (i) follows from b= max
{
k ∈ [K] :

∑
`∈[k] p

`d` ≤ ρ
}
. On the other hand, Equation (44) implies

∑
`∈[b+1]

p̂`td
` ≥

∑
`∈[b+1]

p`d`−
√
Kd̄`t

(i)

≥ ρ+ 2
√
Kd̄`t−

√
Kd̄`t = ρ+

√
Kd̄`t ,

where (i) holds due to the definition of TA such that for t > TA, we have `t <
∑
`∈[b+1] p

`d`−ρ

2
√
Kd̄

=⇒
∑

`∈[b+1] p
`d` >

ρ+ 2
√
Kd̄`t. Hence we have shown Equation (39) which implies b̂t = b. Finally, we can conclude that

Ĵt = min
{
b̂t, r̂t, κα

}
= min{r, b, κα}= J .

Proof of part (ii) Here, we want to show that q̂Rt , q̂Bt > 0 for any t≥TA when event Gt holds. When event

Gt holds, we have

∑
k∈[r̂t]

p̂ktw
k (i)

=
∑
k∈[r]

p̂ktw
k

(ii)

≥
∑
k∈[r]

pkwk−
√
Kw̄`t (46)

where in (i) we used the result in part (i) of the lemma, and (ii) follows from Equation (42). Hence, from the

definition of q̂Rt+1 we get

q̂Rt+1 =

∑
k∈[r̂t]

p̂ktw
k−
(√

K + 2
)
w̄`t

p̂
r̂t+1+1
t |wr̂t+1+1|

(i)

≥

∑
k∈[r] p

kwk− 2
(√

K + 1
)
w̄`t

p̂
r̂t+1+1
t |wr̂t+1+1|

(ii)

> 0 ,

Here, (i) follows from Equation (46); (ii) follows from `t <S ≤
∑
k∈[r] p

kwk

2(
√
K+1)w̄

. Recall the definition of

S :=
1

2
min

pb+1, pr+1,
−
∑

k∈[r+1] p
kwk

√
Kw̄

,

∑
k∈[r] p

kwk(√
K + 1

)
w̄
,

∑
k∈[b+1] p

kdk− ρ
√
Kd̄

,
ρ−

∑
k∈[b] p

kdk(√
K + 1

)
d̄

 ,

and TA = min{t∈ [T ] : `t <S}. A similar argument also shows that under event Gt for t > TA, q̂Bt+1 > 0;
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Proof of part (iii) We first show the following result w.r.t. the ROI constraint for t > TA under event Gt:

0< w̄`t ≤
∑
k∈[K]

x̂R,k
t pkwk ≤

(
3
√
K + 5

)
w̄`t . (47)

The lower bound holds because

∑
k∈[K]

x̂R,k
t pkwk =

∑
k∈[r̂t]

pkwk + (q̂Rt )+ p
r̂t+1wr̂t+1 (i)

=
∑
k∈[r]

pkwk + (q̂Rt )+ p
r+1wr+1

(ii)
=

∑
k∈[r]

pkwk + q̂Rtp
r+1wr+1 ,

(48)

where in (i) we evoked Lemma 3 (i) such that for t > TA, r̂t = r, and (ii) follows from Lemma 3 (ii) such

that q̂Rt > 0 for all t > TA. Now, recalling the definition

q̂Rt =

∑
k∈[r] p̂

k
tw

k− (
√
K + 2)w̄`t

p̂r+1
t |wr+1|

(i)
= −

∑
k∈[r] p̂

k
tw

k− (
√
K + 2)w̄`t

p̂r+1
t wr+1

,

where in (i) we used the fact that r= r̂ under event Gt for t > TA, so wr+1 =wr̂t+1 < 0 where the inequality

follows from Remark 2. Hence we have

q̂Rtp
r+1wr+1 = q̂Rt p̂

r+1
t wr+1 + q̂Rt

(
pr+1− p̂r+1

t

)
wr+1

(i)
= −

∑
k∈[r]

p̂ktw
k

+
(√

Kw̄`t + 2w̄`t

)
+ q̂Rt

(
pr+1− p̂r+1

t

)
wr+1

(ii)

≥ −

∑
k∈[r]

p̂ktw
k

+
(√

Kw̄`t + 2w̄`t

)
− w̄`t

(iii)

≥ −

∑
k∈[r]

pkwk +
√
Kw̄`t

+
√
Kw̄`t + w̄`t

= −

∑
k∈[r]

pkwk

+ w̄`t .

Equality (i) follows from the definition of q̂Rt(> 0). Both (ii) and (iii) follow from ‖p̂t − p‖ ≤ `t under the

event Gt which implies
∑

k∈[r] (pk− p̂kt )wk ≤ ‖w‖ · ‖p̂t−p‖ ≤
√
Kw̄`t by Cauchy-schwarz, and pr+1− p̂r+1

t ≤

‖p̂t−p‖ ≤ `t. Plugging this back into Equation (48) yields our desired inequality in Equation (47) that lower

bounds the single period ROI balance. To show the upper bound, first note that

∑
k∈[K]

x̂R,k
t pkwk

(i)
=

∑
k∈[r]

pkwk + q̂Rtp
r+1wr+1 (ii)

= (q̂Rt − qR)pr+1wr+1 ,
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where (i) follows from Equation (48) and (ii) follows from the definition of qR such that pr+1wr+1qR +∑
k∈[r] p

kwk = 0. In the following we show |(q̂Rt − qR)pr+1wr+1| ≤
(

3
√
K + 5

)
w̄`t. Consider the following

∣∣(q̂Rt − qR)pr+1wr+1
∣∣

=
∣∣∣pr+1

(∑
k∈[r] p̂

k
tw

k−
(√

K + 2
)
w̄`t

p̂r+1
t

−
∑

k∈[r] p
kwk

pr+1

)∣∣∣
=
∣∣∣(pr+1

p̂r+1
t

− 1
)
·
(∑
k∈[r]

p̂ktw
k
)

+
∑
k∈[r]

p̂ktw
k−

∑
k∈[r]

pktw
k
∣∣∣+(√K + 2

)
w̄`t ·

pr+1

p̂r+1
t

≤
∣∣pr+1− p̂r+1

t

∣∣ ·
∣∣∣∑k∈[r] p̂

k
tw

k

∣∣∣
p̂r+1
t

+
∣∣∣ ∑
k∈[r]

(
p̂kt − pkt

)
wk
∣∣∣+(√K + 2

)
w̄`t ·

pr+1

p̂r+1
t

(i)

≤ `t ·

∣∣∣∑k∈[r] p̂
k
tw

k

∣∣∣
p̂r+1
t

+
√
Kw̄`t +

(√
K + 2

)
w̄`t ·

pr+1

p̂r+1
t

(ii)

≤ w̄`t +
√
Kw̄`t +

(√
K + 2

)
w̄`t ·

pr+1

p̂r+1
t

(iii)

≤
(

3
√
K + 5

)
w̄`t .

(49)

Here, in (i) we utilized the fact that under event Gt, ‖p− p̂t‖ ≤ `t, so
∣∣pr+1− p̂r+1

t

∣∣ ≤ ‖p− p̂t‖ ≤ `t, and∣∣∣∑k∈[r] (p̂kt − pkt )wk
∣∣∣≤ ‖w‖ · ‖p− p̂t‖ ≤√Kw̄`t. In (ii) we used the fact that

∑
k∈[r̂t+1] p̂

k
tw

k < 0 according to

Algorithm 1, so

∑
k∈[r̂t+1]

p̂ktw
k <−p̂r̂t+1wr̂t+1 =⇒

∑
k∈[r+1] p̂

k
tw

k

p̂r+1

(iv)
=

∑
k∈[r̂t+1] p̂

k
tw

k

p̂r̂t+1
<−wr̂t+1 ≤ w̄ ,

where the equality in (iv) follows from r= r̂t under event Gt for t > TA. Finally, (iii) in Equation (49) holds

because for t > TA we have `t ≤ S ≤ pr+1

2
and hence p̂r+1

t ≥ pr+1− `t ≥ pr+1

2
.

We now turn to show the following upper and lower bounds w.r.t. the budget constraint in a similar fashion:

0< d̄`t ≤ ρ−
∑
k∈[K]

x̂B,k
t pkdk ≤

(
3
√
K + 5

)
d̄`t .

For the lower bound, we start off with the relation

ρ−
∑
k∈[K]

x̂B,k
t pkdk

(i)
=

∑
k∈[b+1]

xB,kpkdk−
∑

k∈[b̂t+1]

x̂B,k
t pkdk

(ii)
=

(
qB+1−

(
q̂B+1
t

)
+

)
pb+1db+1

(iii)
=

(
qB+1− q̂B+1

t

)
pb+1db+1 ,

(50)

where (i) follows from the definition of xB; (ii) follows from the fact that b= b̂t under event Gt for t > TA, and

(iii) follows from q̂B+1
t > 0 for t > TA according to Lemma 3 (ii). Then, we have

(
qB+1− q̂B+1

t

)
pb+1db+1 (i)

= ρ−
∑
k∈[b]

pkdk− q̂B+1
t pb+1db+1

=
(
ρ−

∑
k∈[b]

pkdk
)
− q̂B+1

t p̂b+1
t db+1 + q̂B+1

t

(
p̂b+1
t − pb+1

)
db+1
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(ii)
=
(
ρ−

∑
k∈[b]

pkdk
)
−
(
ρ−

∑
k∈[b]

p̂kt d
k−
(√

K + 2
)
d̄`t
)

+ q̂B+1
t

(
p̂b+1
t − pb+1

)
db+1

=
(√

K + 2
)
d̄`t +

∑
k∈[b]

(
p̂kt − pk

)
dk + q̂B+1

t

(
p̂b+1
t − pb+1

)
db+1

(iii)

≥
(√

K + 2
)
d̄`t−

√
Kd̄`t− d̄`t = d̄`t .

Here (i) follows from the definition of qB+1 such that
∑

k∈[b] p
kdk + qB+1pb+1db+1 = ρ; (ii) follows from the

definition of q̂B+1
t and the fact that b= b̂t under event Gt for t > TA; (iii) follows from |pb+1− p̂b+1| ≤ ‖p− p̂t‖ ≤

`t and
∣∣∣∑k∈[b] (p̂kt − pk)dk

∣∣∣≤√Kd̄‖p− p̂t‖ ≤ d̄`t. Combining this with Equation (50) yields the desire lower

bound.

On the other hand for the upper bound w.r.t. the budget constraint, we start from Equation (50),∣∣∣ρ− ∑
k∈[K]

x̂B,k
t pkdk

∣∣∣ =
∣∣(qB+1− q̂B+1

)∣∣pb+1db+1

=

∣∣∣∣∣∣pb+1

ρ−∑k∈[b] p̂
k
t d
k−
(√

K + 2
)
d̄`t

p̂b+1
−
ρ−

∑
k∈[r] p

kdk

pb+1

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
pb+1

p̂b+1
− 1

)
·

ρ−∑
k∈[b]

p̂kt d
k

−∑
k∈[b]

p̂kt d
k +

∑
k∈[b]

pkt d
k

∣∣∣∣∣∣+
(√

K + 2
)
d̄`t ·

pb+1

p̂b+1

≤
∣∣pb+1− p̂b+1

∣∣ ·
∣∣∣ρ−∑k∈[b] p̂

k
t d
k

∣∣∣
p̂b+1

+

∣∣∣∣∣∣
∑
k∈[b]

(
p̂kt − pkt

)
dk

∣∣∣∣∣∣+
(√

K + 2
)
d̄`t ·

pb+1

p̂b+1

(i)

≤ `t ·

∣∣∣ρ−∑k∈[b] p̂
k
t d
k

∣∣∣
p̂b+1

+
√
Kd̄`t +

(√
K + 2

)
d̄`t ·

pb+1

p̂b+1

(ii)

≤ d̄`t +
√
Kd̄`t +

(√
K + 2

)
d̄`t ·

pb+1

p̂b+1

(iii)

≤
(

3
√
K + 5

)
d̄`t ,

(51)

Here, in (i) we utilized the fact that under event Gt, ‖p− p̂t‖ ≤ `t, so |pb+1− p̂b+1| ≤ ‖p− p̂t‖ ≤ `t, and∣∣∣∑k∈[b] (p̂kt − pkt )dk
∣∣∣≤ ‖d‖ · ‖p− p̂t‖ ≤√Kd̄`t. In (ii) we used the fact that

∑
k∈[b̂t]

p̂kt d
k ≤ ρ<

∑
k∈[b̂t+1] p̂

k
t d
k

according to Algorithm 1, so

0≤ ρ−
∑
k∈[̂bt]

p̂kt d
k < p̂b̂t+1db̂t+1 =⇒ 0≤

ρ−
∑

k∈[b+1] p̂
k
t d
k

p̂b+1

(iv)
=

ρ−
∑

k∈[b̂t+1] p̂
k
t d
k

p̂b̂t+1
<db̂t+1 ≤ d̄ ,

where the equality in (iv) follows from b= b̂t under event Gt for t > TA. Finally, (iii) in Equation (51) holds

because for t > TA we have `t ≤ S ≤ pb+1

2
, and hence p̂b+1 ≥ pb+1− `t ≥ pb+1

2
.

Proof for Lemma 3 (iv) In Equation (49) within the proof of (iii),we showed

∣∣(q̂Rt − qR)pr+1wr+1
∣∣≤ (3

√
K + 5

)
w̄`t .
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Hence using the fact that |wr+1| ≥w, we get |(q̂Rt − qR)pr+1| ≤
(

3
√
K + 5

)
w̄
w
`t. Similarly, in Equation (51)

within the proof of (iii), we showed |(q̂Bt − qB)pb+1db+1| ≤
(

3
√
K + 5

)
d̄`t, so using the fact that |dr+1| ≥ d, we

get |(q̂Bt − qB)pb+1| ≤
(

3
√
K + 5

)
d̄
d
`t. �

E.3.2. Proof for Lemma 4 Recall the updates step of SGD: p̂t+1 = arg minp̃∈∆K
‖p̃−(p̂t− ηt (p̂t− st))‖.

Then, the contraction property for projections imply

‖p− p̂t+1‖2 ≤ ‖p− (p̂t− ηt (p̂t− st))‖2 = ‖p− p̂t‖2 + 2ηt〈p− p̂t, p̂t− st〉+ η2
t ‖p̂t− st‖2 .

Hence, we have

‖p− p̂t+1‖2 ≤ ‖p− p̂t‖2 + 2ηt〈p− p̂t, p̂t− st〉+ η2
t ‖p̂t− st‖2

(i)

≤ ‖p− p̂t‖2 + 2ηt〈p− p̂t, p̂t− st〉+ 4η2
t = (1− 2ηt)‖p− p̂t‖2 + 2ηt 〈p− p̂t,p− st〉︸ ︷︷ ︸

:=Zt

+4η2
t

=

(
1− 2

t

)
‖p− p̂t‖2 +

2

t
Zt +

4

t2
,

(52)

where in (i) we used the fact that ‖p̂t− st‖ ≤ ‖p̂t‖+ ‖st‖ ≤ 2.

Now, telescoping the above recursive inequality until t= 2 we get

‖p− p̂t+1‖2 ≤ 2

t∑
τ=2

1

τ

(
t∏

j=τ+1

(
1− 2

j

))
Zτ + 4

t∑
τ=2

1

τ2

(
t∏

j=τ+1

(
1− 2

j

))
(i)
= 2

t∑
τ=2

1

τ

(
τ (τ − 1)

t(t− 1)

)
Zτ + 4

t∑
τ=2

1

τ2

(
τ (τ − 1)

t(t− 1)

)
(ii)

≤ 2

t(t− 1)

t∑
τ=2

(τ − 1)Zτ +
4

t
.

(53)

Here, (i) and (ii) follow from:

t∏
j=τ+1

(
1− 2

j

)
=

t∏
j=τ+1

j− 2

j
=
τ (τ − 1)

t(t− 1)
, and

t∑
τ=2

1

τ2

(
τ (τ − 1)

t(t− 1)

)
=

t∑
τ=2

τ − 1

t(t− 1)τ
<

1

t
.

Then it is easy to see E
[
(t− 1)Zt

∣∣∣Ft−1

]
= (t− 1)E

[
〈p− p̂t,p− st〉

∣∣∣Ft−1

]
= 0 for all t∈ [T ], so {(τ − 1)Zτ}τ

is a martingale difference sequence w.r.t. the filtration {Ft}t. Furthermore, (τ − 1)Zτ for all τ ≤ t is bounded

uniformly by

|(τ − 1)Zτ |= (τ − 1) |〈p− p̂τ ,p− sτ 〉| ≤ (τ − 1)‖p− p̂t‖ · ‖p− sτ‖ ≤ 2 (τ − 1)≤ 2 (t− 1)

and the conditional variance of 2 (τ − 1)Zτ is bounded as followed w.p. 1:

Var
(

(τ − 1)Zτ

∣∣∣Fτ−1

)
= (τ − 1)

2 E
[
〈p− p̂τ ,p− sτ 〉2

∣∣∣Fτ−1

] (i)

≤ 4 (τ − 1)
2 ‖p− p̂τ‖2 ,
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where in the final inequality we used Cauchy-Schwarz and ‖p− ŝt‖ ≤ 2. Hence, using Lemma 7, w.p. at least

1− δ for any δ ∈ (0,1/e) the following holds for any t= 2 . . . T :

t∑
τ=2

(τ − 1)Zτ ≤

√
log

(
log (T )

δ

)
max

8

√√√√ t∑
τ=2

(τ − 1)
2 ‖p− p̂τ‖2,4 (t− 1)

√
log

(
log (T )

δ

)
≤

√
log

(
log (T )

δ

)8

√√√√ t∑
τ=2

(τ − 1)
2 ‖p− p̂τ‖2 + 4 (t− 1)

√
log

(
log (T )

δ

) .

Plugging this back into Equation (53), w.p. at least 1− δ we have

‖p− p̂t+1‖2 ≤
2

t(t− 1)

√
log

(
log (T )

δ

)8

√√√√ t∑
τ=2

(τ − 1)
2 ‖p− p̂τ‖2 + 4(t− 1)

√
log

(
log (T )

δ

)+
4

t

=

16

√
log
(

log(T )

δ

)
t(t− 1)︸ ︷︷ ︸
:= b

t(t−1)

√√√√ t∑
τ=2

(τ − 1)
2 ‖p− p̂τ‖2 +

8 log
(

log(T )

δ

)
+ 4

t︸ ︷︷ ︸
:= c

t

. (54)

The remaining is an induction argument, where we find some constant a > 0 independent of t such that

‖p− p̂t‖2 ≤ a
t
for all t∈ [T ] (induction hypothesis). 20 Equation (54) and the induction hypothesis imply

b

t(t− 1)

√√√√ t∑
τ=2

(τ − 1)
2 ‖p− p̂τ‖2 +

c

t
≤ b

t(t− 1)

√√√√ t∑
τ=2

(τ − 1)
2 a

τ
+
c

t

≤ b

t(t− 1)

√√√√a

t∑
τ=2

(τ − 1) +
c

t
=

b√
2t(t− 1)

√
a+

c

t
=

1

t+ 1

(
b(t+ 1)√
2t(t− 1)

√
a+

c(t+ 1)

t

)

≤ 1

t+ 1
· 3

2

(
b
√
a+ c

)
.

where in the last inequality we used that fact that for all t ≥ 2, t+1√
2t(t−1)

≤ 3
2
and t+1

t
≤ 3

2
. Hence, it

suffices to have a > 0 such that 3
2

(b
√
a+ c) ≤ a =⇒

√
a ≥ 1

2

(
3b
2

+
√

9b2

4
+ 6c

)
. Using the basic inequality

2 (x2 + y2)≥ (x+ y)2, we can take

a= 600 log

(
log (T )

δ

)
+ 12 =

9b2

4
+ 3c≥ 1

2

(
3b

2
+

√
9b2

4
+ 6c

)2

This concludes that the loss function `t can be taken as `t =

√
600 log( log(T )

δ )+12

t
. �

E.3.3. Proof for Lemma 5 Following the same proof as in Equation (52), we have

‖p∗− p̂t+1‖2 ≤ (1− 2ηt)‖p∗− p̂t‖2 + 2ηt 〈p∗− p̂t,p− st〉︸ ︷︷ ︸
:=Zt

+4η2
t

= (1− 2η)‖p∗− p̂t‖2 + 2ηZt + 4η2 .

20 Note that the variable b here is local to this lemma and different from the budget index.
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Now, telescoping the above recursive inequality until the starting point s∈ [T ], we get

‖p− p̂t+1‖2 ≤ (1− 2η)
t+1−s ‖p∗− p̂s‖2 + 2η

t∑
τ=s

(1− 2η)
t−τ

Zτ + 4η2

t∑
τ=s

(1− 2η)
t−τ

(i)

≤ 2 (1− 2η)
t+1−s

+ 2η (1− 2η)
t

t∑
τ=s

(1− 2η)
−τ
Zτ + 2η . (55)

In (i) we used the fact that
∑t

τ=s (1− 2η)
t−τ ≤

∑t

τ=−∞ (1− 2η)
t−τ

= 1
2η
. We now describe a high

probability bound for the summand
∑t

τ=s (1− 2η)
−τ
Zτ . It is easy to see E

[
(1− 2η)

−τ
Zτ

∣∣∣Fτ−1

]
=

(1− 2η)
−τ E

[
〈p− p̂τ ,p− sτ 〉

∣∣∣Ft−1

]
= 0 so

{
(1− 2η)

−τ
Zτ
}
τ
is a martingale difference sequence w.r.t. the

filtration {Ft}t. Furthermore, (1− 2η)
−τ
Zτ is bounded uniformly by

∣∣(1− 2η)
−τ
Zτ
∣∣ = (1− 2η)

−τ |〈p− p̂t,p− st〉| ≤ (1− 2η)
−τ ‖p− p̂t‖ · ‖p− st‖

≤ 2 (1− 2η)
−τ ≤ 2 (1− 2η)

−t
.

The conditional variance of (1− 2η)
−τ
Zτ is bounded as followed w.p. 1:

Var
(

(1− 2η)
−τ
Zτ

∣∣∣Fτ−1

)
= (1− 2η)

−2τ E
[
〈p− p̂τ ,p− sτ 〉2

∣∣∣Fτ−1

] (i)

≤ 2 (1− 2η)
−2τ ‖p− p̂τ‖2 ,

where in the final inequality we used Cauchy-Schwarz and ‖p− ŝt‖2 ≤ 2. Hence, using Lemma 7, w.p. at least

1− δ for some δ ∈ (0,1/e) the following holds:

t∑
τ=s

(1− 2η)
−τ
Zτ ≤

√
log

(
log (T )

δ

)
max

8

√√√√ t∑
τ=s

(1− 2η)
−2τ ‖p− p̂τ‖2,4 (1− 2η)

−t

√
log

(
log (T )

δ

)
≤

√
log

(
log (T )

δ

)8

√√√√ t∑
τ=s

(1− 2η)
−2τ ‖p− p̂τ‖2 + 4 (1− 2η)

−t

√
log

(
log (T )

δ

) .

Plugging this back into Equation (55) and denoting c=

√
log
(

log(T )

δ

)
, w.p. at least 1− δ we have

‖p− p̂t+1‖2 ≤ 2 (1− 2η)
t+1−s

+ 16ηc (1− 2η)
t

√√√√ t∑
τ=s

(1− 2η)
−2τ ‖p− p̂τ‖2 +

(
2 + 8c2

)
η . (56)

The remaining is again an induction argument, where we find some constants a, b > 0 21 independent of t

(but possibly dependent on T ) such that

‖p− p̂t‖2 ≤ a (1− 2η)
t+1−s

+ bη ∀t= s, s+ 1 . . . .

21 Note that the variable b here is local to this lemma and different from the budget index.
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We do so by considering the induction step, i.e. ‖p− p̂t′‖2 ≤ a (1− 2η)
t′−s

+ bη for all t′ = s, s+ 1 . . . t, and we

aim to show ‖p− p̂t+1‖2 ≤ a (1− 2η)
t+1−s

+ bη. Using the induction hypothesis we have

t∑
τ=s

(1− 2η)
−2τ ‖p− p̂τ‖2 ≤

t∑
τ=s

(1− 2η)
−2τ (

a (1− 2η)
τ−s

+ bη
)

= a (1− 2η)
−s

t∑
τ=s

(1− 2η)
−τ

+ bη

t∑
τ=s

(1− 2η)
−2τ ≤ a

2η
(1− 2η)

−s−t
+
b

2
(1− 2η)

−2t
.

In the last inequality, we used the following

t∑
τ=s

(1− 2η)
−τ

=
1

2η

(
(1− 2η)

−t− (1− 2η)
−(s−1)

)
≤ 1

2η
(1− 2η)

−t

t∑
τ=s

(1− 2η)
−2τ

=
1

1− (1− 2η)
2

(
(1− 2η)

−2t− (1− 2η)
−2(s−1)

)
≤ 1

4η− 4η2
(1− 2η)

−2t ≤ 1

2η
(1− 2η)

−2t
.

where we used the fact that 4η− 4η2 ≥ 2η for any η≤ 1
2
. Hence, combining this with Equation (56), we get

‖p− p̂t+1‖2 ≤ 2 (1− 2η)
t+1−s

+ 16ηc

√
a (1− 2η)

t−s · 1

2η
+
b

2
+
(
2 + 8c2

)
η

(i)

≤ 2 (1− 2η)
t+1−s

+ 16c

√
(1− 2η)

t−s · aη
2

+
(

2 + 8c2 + 16c
√
b
)
η

(ii)

≤
(

2 +
8c

1− 2η

)
(1− 2η)

t+1−s
+
(

2 + 8c2 + 16c
√
b+ 4ac

)
η

(iii)

≤ (2 + 16c) (1− 2η)
t+1−s

+
(

2 + 8c2 + 16c
√
b+ 4ac

)
η , (57)

where in (i) we used the inequality
√
x+ y≤

√
x+
√
y; in (ii) we used the inequality √xy≤ x+y

2
; in (iii) we

recall that η < 1
4
.

Now, if we take a := 2 + 16c= 2 + 16

√
log
(

log(T )

δ

)
, and b such that

b≥ 2 + 8c2 + 4ac+ 16c
√
b=⇒

√
b≥
√

2 + 8c2 + 4ac+ 8c ,

then following Equation (57), we can conclude

‖p− p̂t+1‖2 ≤ (2 + 16c) (1− 2η)
t+1−s

+ bη= a (1− 2η)
t+1−s

+ bη .

To find such a constant b, we use the basic inequality (x+ y)
2 ≤ 2 (x2 + y2), and thus can take

b := 4

(
1 + 72 log

(
log (T )

δ

))
> 4

(
1 + 4c+ 68c2

)
= 2

(
2 + 8c2 + 4ac+ 64c2

)
≥
(√

2 + 8c2 + 4ac+ 8c
)2

.

In the equality, we used the definition a= 2+16c. We conclude the proof by realizing for the a, b that we chose

above, ‖p− p̂t‖2 ≤ a (1− 2η)
t−s

+ bη holds for the base case t= s because trivially ‖p− p̂t‖2 ≤ 2< a+ bη.

Finally, using the inequality
√
x+ y≤

√
x+
√
y concludes the proof. �
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F. Proofs for Section 6

F.1. Proof of Theorem 5

Our proof relies on the following fact

Fact 1 If price d∈D is nonbinding, then the corresponding optimal solution xd to U(d) is xd = (1 . . .1)∈Rn+.

Proof. We prove the claim via contradiction. Assume there is some index k ∈ [N ] such that xkd < 1. Then

consider the solution x= (x1
d . . . x

k−1
d , y, xk+1

d , . . . xnd ) where we replaced the k’th entry of xd with

y= xkd + ε, where ε := min

{
ρ−

∑
n∈[N] g

nxnd

dgk
,

∑
n∈[N] (V n− γd)gnxnd

|V k− γd|gk

}
(i)

> 0 ,

where (i) follows from xd is nonbinding, i.e. ρ>
∑

n∈[N] g
nxnd and

∑
n∈[N] (V n− γd)gnxnd > 0. Then

d
∑
n∈[N]

gnxn = d
∑
n∈[N]

gnxnd + dgkε ≤ d
∑
n∈[N]

gnxn +

ρ− ∑
n∈[N]

gnxnd

= ρ .

On the other hand, if V k− γd> 0, then

∑
n∈[N]

(V n− γd)gnxnd =
∑
n∈[N]

(V n− γd)gnxnd +
(
V k− γd

)
gkε >

∑
n∈[N]

(V n− γd)gnxnd > 0 .

If V k− γd< 0, then

∑
n∈[N]

(V n− γd)gnxnd =
∑
n∈[N]

(V n− γd)gnxnd +
(
V k− γd

)
gkxkdε

≥
∑
n∈[N]

(V n− γd)gnxnd +
(
V k− γd

)
·
∑

n∈[N] (V n− γd)gnxnd

|V k− γd|
= 0

where in the last equality we used |V k− γd|=− (V k− γd) since V k− γd< 0.

The above shows x is feasible to U(d). On the other hand,
∑

n∈[N] V
ngnxnd <

∑
n∈[N] V

ngnxn, so x yields

a strictly larger objective than xd, contradicting the optimality of xd. �

We now return to our proof for Theorem 5.

(1). When both d, d̃ are non-binding, Fact 1 implies xd =xd̃ = (1 . . .1).

π(d) = d
∑
n∈[N]

gnxnd = d
∑
n∈[N]

gn < d̃
∑
n∈[N]

gn = d̃
∑
n∈[N]

gnxn
d̃

= π(d̃) .

(2). We prove this claim by contradiction. Assume d̃ is non-binding and d̃ > d where d is budget binding.

Fact 1 states that xd̃ = (1 . . .1). Hence

ρ= π(d) = d
∑
n∈[N]

gnxnd ≤ d
∑
n∈[N]

gnxn
d̃
< d̃

∑
n∈[N]

gnxn
d̃

(i)

< ρ ,
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where (i) follows from the definition that d̃ is non-binding. Hence we obtain a contradiction, and d̃ cannot be

non-binding. This means d̃ must be budget or ROI binding.

(3). Here we show that if some price d ∈D is ROI binding so that
∑

n∈[N](V
n− γd)gnxnd = 0, any price

d̃ > d must also be ROI binding. We first claim that xd̃ �xd. To show this, we use a contradiction argument.

Assume xd̃ �xd, and let the threshold vector xd be characterized by xd =ψ(J ′, q′). Under Assumption 1, we

note that xd cannot have all 0 entries and hence x1
d > 0. However, since

∑
n∈[N](V

n−γd)gnxdd = 0, it must be

the case that xJ
′+1
d < 0. Now, applying the ordering property for threshold vectors in Lemma 2 (ii) by taking

Z =xd̃ and Y =xd, we have

0 =
∑
n∈[N]

(V n− γd)gnxnd ≥
∑
n∈[N]

(V n− γd)gnxn
d̃
>
∑
n∈[N]

(V n− γd̃)gnxn
d̃
.

In the last inequality we used the fact that d̃ > d. Hence, this contradicts the feasibility of xd̃, so we conclude

that xd̃ �xd. This further implies

ρ≥ d
∑
n∈[N]

gnxkd︸ ︷︷ ︸
=π(d)

(i)
=

1

γ

∑
n∈[N]

V ngnxkd
(ii)

>
1

γ

∑
n∈[N]

V ngnxk
d̃

(iii)

≥ d̃
∑
n∈[N]

gnxk
d̃︸ ︷︷ ︸

=π(d̃)

,

where (i) follows from d being ROI binding, i.e.
∑

n∈[N](V
n − γd)gnxnd = 0; (ii) follows from xd̃ � xd; (iii)

follows from feasibility of d̃ so that
∑

n∈[N](V
n− γd̃)gnxn

d̃
≥ 0. Therefore, ρ≥ π(d)>π(d̃).

Finally, ρ > π(d̃) implies that d̃ is either non-binding or ROI binding. We note that it is not possible for d̃

to be non-binding, because d̃ non-binding implies xd̃ = (1 . . .1) according Fact 1, contradicting xd̃ �xd which

we showed earlier. Here we used the fact that xd 6= (1 . . .1) because xd is ROI binding and Assumption 1

states for any d∈D,
∑

n∈[N](V
n− γd)gn 6= 0. �

F.2. Proof of Theorem 6

For a fixed T we use the shorthand notation φ= φ(E,T ) in this proof. Because φ(T 1−ξ+ε, T )< G
2d̄

for all

T > Tε, and because the exploration episode length is E = T 1−ξ+ε, we know that φ< G
2d̄
.

Recall π(d) := d
∑

n∈[N] g
nxnd for any d ∈D is the per-period seller revenue function defined in Equation

(15), and π̂(Dh) = Dh
|Eh|

∑
t∈Eh

zt the estimate of π(Dh) for episode h∈ [H] (with fixed price Dh). Since our the

binary search procedure in our proposed pricing Algorithm 2 has exactly H = blog2(M)c+ 1 iterations , the

boundedness condition for a ξ-adaptive algorithm can be restated as: w.p. at least 1− 1
T
,∣∣∣∣ π̂(Dh)

Dh

− π(Dh)

Dh

∣∣∣∣=
∣∣∣∣∣ 1

|Eh|
∑
t∈Eh

zt−
π(Dh)

Dh

∣∣∣∣∣≤ φ=⇒ |π̂(Dh)−π(Dh)| ≤Dhφ≤ d̄φ . (58)

Our proof relies on the following lemma:
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Lemma 6 If π̂(Di)≥ π̂(Dj) for some episodes i, j ∈ [H] (i 6= j), then w.p. at least 1− 1
T
, π(Di)≥ π(Dj).

Furthermore, this implies the event G = {π̂(Di)≥ π̂(Dj) =⇒ π(Di)≥ π(Dj) for all i, j ∈ [H]} holds with prob-

ability at least 1− H(H−1)

2T
, where H = blog2(M)c+ 1 is the total number of binary search iterations (i.e.

number of episodes in the exploration phase).

Proof. Because π̂(Di)≥ π̂(Dj), applying Equation (58) for episodes i, j yields

π(Di) + d̄φ≥ π̂(Di)≥ π̂(Dj)≥ π(Dj)− d̄φ=⇒ 2d̄φ≥ π(Dj)−π(Di) ,

Now, contrary to our claim, suppose that π(Di)<π(Dj).We then have

2d̄φ≥ π(Dj)−π(Di)≥G= min
d,d̃∈D:π(d)6=π(d̃)

∣∣∣π(d)−π(d̃)
∣∣∣ ,

which contradicts the definition of ξ-adaptivity such that 2d̄φ <G for episode lengths Ω(T 1−ξ). As there are

H(H − 1)/2 pairs (i, j) such that i 6= j, a simple union bound shows event G holds with probability at least

1− H(H−1)

2T
. �

We now return to our proof of Theorem 6. We first show that under event G =

{π̂(Di)≥ π̂(Dj) =⇒ π(Di)≥ π(Dj) for all i, j ∈ [H]}, we have maxd∈D π(d) = π
(
Dm∗

)
where we recall that

m∗ = arg maxm∈[M] π̂(Dm).

We use an induction argument that shows after each iteration of the binary search procedure in the

exploration phase of Algorithm 2, π(Dm) ≤ π(Dm∗) for all m ≤ L and m ≥ R. The base case is the first

iteration, where we have L= 1, R =M . If m∗ = L = 1, then under event G we get

π̂(D1)≥ π̂(DM)
(i)

=⇒ π(D1)≥ π(DM) .

Hence after the first iteration π(Dm)≤ π(Dm∗) for any m≤ L and m≥R. The case for m∗ = R follows from

the same argument.

Now assume that the induction hypothesis holds, i.e. at the beginning of some iteration with the tuple

(L,R,m∗), we have π(Dm)≤ π(Dm∗) m≤ L and m≥R. According to Algorithm 2, we only need to show two

cases in order to validate the induction procedure.

• Case 1. If π̂(Dmed)< π̂(Dmed+1), then we show π(Dm)≤ π(Dmed+1) for all m= 1 . . .med+ 1

• Case 2. If π̂(Dmed)≥ π̂(Dmed+1), then we show π(Dm)≥ π(Dmed) for all m= med+ 1 . . .M
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Note that under Case 1., med+ 1 will be the new value of m∗ in the next iteration (i.e. the next induction

step). So by showing π(Dm)≤ π(Dmed+1) for all m= 1 . . .med+ 1, we validate the induction hypothesis for

the next induction step. A similar argument holds for Case 2.

Case 1. When π̂(Dmed)< π̂(Dmed+1), under event G we have π(Dmed)≤ π(Dmed+1). We claim that Dmed

cannot be an ROI binding price. Assume the contrary that Dmed is ROI binding. Then, part (3) of Theorem

5 states π(Dmed+1)< π(Dmed), leading to a contradiction. Hence Dmed must be either a nonbinding price

or a budget binding price. Applying part (1) of Theorem 5, we can then conclude that for any m≤med,

π(Dm)≤ π(Dmed), so

π(Dm)≤ π(Dmed)≤ π(Dmed+1) ∀m= 1 . . .med .

At the end of the iteration, as we update m∗+ = med+ 1 (here we denote m∗+ as the updated value to distin-

guish from its initial value at the start of the iteration), we have π(Dm∗+)≥ π(Dmed+1)≥ π(Dmed) . . . π(D1).

On the other hand, since π̂(Dm∗+) = maxm∈{m∗,med+1} π̂(Dm)≥ π̂(Dm∗), event G implies

π(Dm∗+)≥ π(Dm∗)
(i)

≥ π(Dm) ∀m= R . . .M ,

where (i) follows from the induction hypothesis. Therefore, we have

π(Dm∗+)≥ π(Dm) ∀m= R . . .M and m= 1 . . .med+ 1 ,

and by realizing (med+ 1,R,m∗+) is the initial tuple for the next iteration concludes the induction step.

Case 2. The case when π̂(Dmed)≥ π̂(Dmed+1) follows from an identical argument, and we will omit the

details. This concludes the induction proof.

The above implies that when the event G = {π̂(Di)≥ π̂(Dj) =⇒ π(Di)≥ π(Dj) for all i, j ∈ [H]} holds

throughout the exploration phase, the above induction argument implies we have π(Dm∗)≥ π(Dm)for all m∈

[M ]. Hence π(Dm∗) = maxd∈D π(d) w.p. at least 1− H(H−1)

2T
according to Lemma 6 where H = blog2(M)c+ 1.

Furthermore, we point out that in each iteration of the binary search procedure the seller explores at

most two prices. Hence exploration phase, which we denote as E , has length at most 2E (blog2(M)c+ 1) =

2T 1−ξ+ε (blog2(M)c+ 1) periods. Therefore, the seller’s regret can be upper bounded as

Regsell = T max
d∈D

π(d)−
∑
t∈[T ]

E [dtzt] ≤ d̄|E|+
T∑

t=|E|+1

max
d∈D

π(d)−E [dtzt]

(i)

≤ d̄|E|+
∑

t∈[T ]/E

E
[(
π(Dm∗)−Dm∗zt

)
I{G}

]
+ d̄(T − |E|)P (Gc)
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≤ d̄|E|+Dm∗(T − |E|) ·E

∣∣∣∣∣∣π(Dm∗)

Dm∗
− 1

T − |E|
∑

t∈[T ]/E

zt

∣∣∣∣∣∣ I{G}
+ d̄(T − |E|)P (Gc)

(ii)

≤ d̄|E|+ 2d̄T ·φ (T − |E|, T ) + d̄TP (Gc)

(iii)

≤ 2d̄ (blog2(M)c+ 1) ·T 1−ξ+ε + 2d̄Tφ

(
T

2
, T

)
+ d̄ (blog2(M)c+ 1)

2
/2 .

In (i) we used the fact that maxd∈D π(d) = π(Dm∗) under event G and dt =Dm∗ for all exploitation peri-

ods t ∈ [T ]/E ; (ii) directly follows from the definition of event G. In (iii), we used the fact that T >(
4d̄ blog2(M)c+ 4d̄

) 1
ξ−ε , which implies T ξ−ε > 4d̄ blog2(M)c+ 4d̄ and hence T

2
> 2d̄ (blog2(M)c+ 1)T 1−ξ+ε >

|E|. As φ is decreasing in the first argument, we then have φ
(
T
2
, T
)
≥ φ (T − |E|, T ). �

F.3. Proof for Theorem 7

In this proof, we show a more detailed statement by constructively checking the boundedness and stability

conditions for ξ-adaptive algorithms. In particular, let C and S be defined as in Theorems 8 and 9. Define

Ã, B̃ and T as the following:

Ã=

√
2 + 16

√
log (T 2 log (T )), B̃ = 2

√
(1 + 72 log (T 2 log (T ))) ,

and

T = min

{
t∈ [T ] : Ã

(
1− 2T−

2
3

)t
+ B̃T−

1
3 <S

}
= Θ(T

1
3 ) .

To see why , please see Equation (36) and the discussion following Equation (36). Define

φ(τ,T ) =

√
2 log (2T 2)

τ
+
T
τ

+C

(
ÃT

2
3

τ
+ B̃T−

1
3

)
= Θ

(
1√
τ

+
T

2
3

τ
+T−

1
3

)
, (59)

and for any fixed ε∈ (0, 1
3
), assume that entire time horizon T is large such that φ(T

2
3

+ε, T )< G
2d̄
. 22 Let the

entire T periods is divided into H consecutive episodes E1 . . .EH where the price in episode h∈ [H] is fixed to

be Dh ∈D, and the buyer runs CTBRA with SGD and constant step size η= T−
2
3 . We will show that

(1)
∣∣∣ 1
|Eh|

∑
t∈Eh

zt− π(Dh)

Dh

∣∣∣≤ φ(|Eh|, T ) for any episode h∈ [H] w.p. at least 1− 1
T
;

(2) φ(|Eh|, T )< G
2d̄

for any episode h whose length |Eh| ≥ T
2
3

+ε.

Note that showing (1) and (2) would imply that CTBRA with SGD and constant step size is 1
3
-adaptive. We

show (1) first, and then deduct (2) through a simple argument.

22 Note that φ(T
2
3

+ε, T ) = Θ(T−ε) so there always exist large enough T such that φ(T
2
3

+ε, T )< G
2d̄
.
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Our proof for showing (1) consists of 2 main steps, namely Step 1. providing a reformulation for π(Dh);

Step 2. showing a high probability bound for
∑

t∈Eh
zt; and Step 3. bounding π(Dh)−

∑
t∈Eh

zt.

Step 1. Reformulation for π(Dh).

As discussed in Section 6, the sets {Dm}m∈[M] and {V n}n∈[N] can be thought of as the unique values of

highest competing bids and valuations, respectively, in the set W = {(vk, dk)}k∈[K] studied in Sections 4

and 5. In other words, W = V ×D, where K =MN . Furthermore, if we impose any distribution g̃ ∈∆M on

support D, then g̃ combined with the valuation distribution g on V induces a product distribution p= g× g̃

over W. Hence, in each episode where the prices is fixed to Dm for some m∈ [M ], the imposed distribution

g̃ ∈∆M on the support of prices D is the m’th unit vector em ∈∆M . Hence, the valuation-price pairs (vt, dt)

can be viewed as being drawn from the induces product distribution p= g× em ∈∆K over W.

Following this argument, we can denote the induced distributions for the valuation-price pairs (vt, dt) in

each episode h∈ [H] as ph. Hence, we can directly apply Lemma 5 (that we used in the proof of Theorem 9)

with δ = 1
T2 , and conclude for any t∈ Eh, we have w.p. at least 1− 1

T2

‖ph− p̂t‖ ≤
√

2 + 16
√

log (T log (T ))︸ ︷︷ ︸
=Ã

(1− 2η)
t−sh

2 + 2
√

(1 + 72 log (T log (T )))︸ ︷︷ ︸
=B̃

·√η , (60)

where we defined sh to be the first period in episode h, i.e. sh = min{t : t ∈ Eh}, and recall the constant

step size η= T−
2
3 . Furthermore, as argued in Section 6, the problem U(Dh), defined in Equation (14), and

U(ph; 0, γ, ρ) which is defined in Section 4 are equivalent. Hence, the seller’s per-period revenue is

π(Dh) =Dh

∑
n∈[N]

xnDhg
n =Dh

∑
k∈[K]

x∗,kh pkh ,

where xd ∈ [0,1]N is the unique optimal threshold vector solution to U(d) and x∗h ∈ [0,1]K is the unique

optimal threshold vector solution to U(ph; 0, γ, ρ). We let the threshold vector x∗h be characterized by

(Jh, qh)∈ [K]× [0,1). Then we can further write the seller’s revenue for episode h as

π(Dh) =Dh

∑
k∈[K]

x∗,kh pkh =Dh

 ∑
k∈[Jh]

pkh + qhp
Jh+1
h

 .

Note that pkh = 0 for all k ∈ [K] such that dk 6=Dh, and also it must be the case that pJh+1
h > 0.

Step 2. High probability bound for
∑

t∈Eh
zt.
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Let Ft be the sigma algebra generated by {(vτ , dτ , bτ )}τ∈[t], which characterizes all randomness in the

buyer and seller’s behavior up to period t. According to the posted price version of CTBRA, the take/leave

indicator zt = I{bt ≥ dt} where bt is the virtual bid that is not submitted and only used to decide whether to

accept price dt or not during period t. Further, recall the threshold vector x̂t =ψ(Ĵt, q̂t) in CTBRA for t∈ Eh

is the estimate of x∗h, and note that x̂t is Ft−1-measurable. Then, for t∈ Eh we have

E
[
Dhzt

∣∣∣Ft−1

]
= E

[
dtzt

∣∣∣x̂t] = E
[
dtI{bt ≥ dt}

∣∣∣x̂t]
= (1− q̂t)E

[
dtI
{
vt

θĴt
≥ dt

}∣∣∣x̂t]+ q̂tE
[
dtI
{

vt

θĴt+1
≥ dt

}∣∣∣x̂t]
(i)
= (1− q̂t)

∑
k∈[K]

dkpkhI
{
θk ≥ θĴt

}
+ q̂t

∑
k∈[Ĵt]

dkpkhI
{
θk ≥ θĴt+1

}

=
∑
k∈[Ĵt]

dkpkh + q̂td
Ĵt+1pĴt+1

h

(ii)
= Dh

∑
k∈[Ĵt]

pkh + q̂tp
Ĵt+1
h

 ,

where in (i) we used the fact that when period t belongs in episode Eh, (vt, dt)∼ ph; in (ii) we used the fact

that pkh = 0 for all k ∈ [K] such that dk 6=Dh. This implies that by defining Yt =
∑

k∈[Ĵt]
pkh + q̂tp

Ĵt+1
h − zt, the

sequence {Yt}t∈Eh is a martingale difference sequence. Also, since it is easy to see that |Yt| ≤ 1, by Azuma

Hoeffding’s inequality we have for any δ ∈ (0,1)

P
(
G̃
)
≥ 1− δ where G̃ :=


∣∣∣∣∣∣
∑
t∈Eh

∑
k∈[Ĵt]

pkh + q̂tp
Ĵt+1
h − zt

∣∣∣∣∣∣≤√2|Eh| log (2T 2)

 . (61)

In the following we will take δ = 1
T2 so event G̃ holds w.p. at least 1

T2 .

Finally, by applying Lemma 3 (i) for t− sh > T , under event Gt =
{
‖ph− p̂t‖ ≤ Ã (1− 2η)

t−sh
2 + B̃

√
η
}

we

have Ĵt = Jh. Furthermore, following the exact proof of Theorem 8 (where we bound the regret), we can

recover Equation (34), which in the episodic pricing setting states that under event

Gt =
{
‖ph− p̂t‖ ≤ Ã (1− 2η)

t−sh
2 + B̃

√
η
}

for t− sh > T we have

|qh− q̂t|pJh+1 ≤max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)(
Ã (1− 2η)

t−sh
2 + B̃

√
η
)
. (62)

Recall Equation (60) implies event Gt holds w.p. at least 1− 1
T2 .

Step 3. Bounding π(Dh)

Dh
−
∑

t∈Eh
zt.

We now combine the results of Step 1 and Step 2 in the above Equations (61) and (62), when the event
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G̃ ∩ (∩t>T Gt) holds, we have Ĵt = Jh where (Jh, qh)∈ [K]× [0,1) characterized the threshold vector x∗h ∈ [0,1]K

which is the unique optimal threshold vector solution to U(ph; 0, γ, ρ). Hence, we have

∣∣∣∣∣∑
t∈Eh

(
π(Dh)

Dh

− zt
)∣∣∣∣∣ =

∣∣∣∣∣∣
∑
t∈Eh

 ∑
k∈[Jh]

pkh + qpJh+1
h − zt

∣∣∣∣∣∣
(i)

≤

∣∣∣∣∣∣
∑
t∈Eh

 ∑
k∈[Ĵt+1]

pkh + q̂tp
Ĵt+1+1
h − zt

∣∣∣∣∣∣+
∑
t∈Eh

∣∣∣∣∣∣
 ∑
k∈[Jh]

pkh + qpJh+1
h

−
∑
k∈[Ĵt]

pkh + qpĴt+1
h

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
t∈Eh

 ∑
k∈[Ĵt+1]

pkh + q̂tp
Ĵht+1+1
h − zt

∣∣∣∣∣∣+ T +
∑

t−sh>T

|qh− q̂t|pJh+1

(ii)

≤
√

2|Eh| log (2T 2) + T + max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)(
Ã

∑
t−sh>T

(1− 2η)
t−sh

2 + B̃|Eh|
√
η

)
,

where in (i) we used the fact that Jh = Ĵt

(ii) we plugged in the Azuma-Hoeffding inequality result showed in Equation (61) with δ = 1
T2 .

Since Gt holds with probability at least 1− 1
T2 , it is easy to see the event G̃ ∩ (∩t>T Gt) holds with probability

at least 1−T · 1
T2 = 1− 1

T
via applying a union bound. Hence, we have w.p. at least 1− 1

T

∣∣∣∣∣π(Dh)

Dh

− 1

|Eh|
∑
t∈Eh

zt

∣∣∣∣∣
≤

√
2 log (2T 2)

|Eh|
+
T
|Eh|

+ max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)( Ã

|Eh|
∑

t∈Eh:t−sh>T

(1− 2η)
t−sh

2 + B̃
√
η

)
(i)

<

√
2 log (2T 2)

|Eh|
+
T
|Eh|

+ max

{
w̄

w
,
d̄

d

}(
3
√
K + 5

)( Ã

|Eh|
T

2
3 + B̃T−

1
3

)
= φ(|Eh|, T ) .

In (i) we used the fact that
∑

t∈Eh:t−sh>T
(1− 2η)

t−sh
2 <

∑∞
t=0 (1− 2η)

t
2 = 1

1−
√

1−2η
=

1+
√

1−2η

2η
< 1

η
. The final

equality follows from the definition of φ(τ,T ) in Equation (59).

Finally, from the definition of φ(τ,T ) = Θ
(

1√
τ

+ T
2
3

τ
+T−

1
3

)
, we have φ(T

2
3

+ε, T ) = Θ
(

max
{
T−ε, T−

1
3

})
.

Therefore, there exists ε= Θ(1/ log(T )) and T0 > 0 such that φ(T
2
3

+ε, T ) = φ(|Eh|, T )< G
2d̄

for all T > T0. �

F.4. Proof of Corollary 1

In Equation (59) of the proof of Theorem 7 (see Appendix F.3), we characterized the universal error function

φ for constant step size SGD. Simply plugging this error function into the general regret of our proposed

seller algorithm in Theorem 6 yields the desired result. �
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G. Supplementary Lemmas

Lemma 7 (Lemma 3 in Rakhlin et al. (2011)) Let Y1 . . . YT be a martingale difference sequence with

a uniform bound |Yt| ≤ b for all t. Let Vs =
∑

t∈[s] Var (Yt) be the sum of conditional variances of Yt’s up to

index s. Further, let σs =
√
Vs. Then we have, for any δ ∈ (0,1/e) and T ≥ 4,

P

∑
t∈[s]

Yt > 2
√

log(log(T )/δ) ·max
{

2σs, b
√

log(log(T )/δ)
}

for some s < T

≤ δ .
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