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Optimal regret bounds for Multi-Armed Bandit problems are now well documented. They can be classified into two cat-
egories based on the growth rate with respect to the time horizon T : (i) small, distribution-dependent, bounds of order of

magnitude ln(T ) and (ii) robust, distribution-free, bounds of order of magnitude
√

T . The Bandits with Knapsacks model,
an extension to the framework allowing to model resource consumption, lacks this clear-cut distinction. While several
algorithms have been shown to achieve asymptotically optimal distribution-free bounds on regret, there has been little
progress toward the development of small distribution-dependent regret bounds. We partially bridge the gap by design-
ing a general-purpose algorithm with distribution-dependent regret bounds that are logarithmic in the initial endowments
of resources in several important cases that cover many practical applications, including dynamic pricing with limited
supply, bid optimization in online advertisement auctions, and dynamic procurement.

1. Introduction.

1.1. Motivation. Multi-Armed Bandit (MAB) is a benchmark model for repeated decision making in

stochastic environments with very limited feedback on the outcomes of alternatives. In these circumstances,

a decision maker must strive to find an overall optimal sequence of decisions while making as few subop-

timal ones as possible when exploring the decision space in order to generate as much revenue as possible,

a trade-off coined exploration-exploitation. The original problem, first formulated in its predominant ver-

sion in Robbins [21], has spurred a new line of research that aims at introducing additional constraints that

reflect more accurately the reality of the decision making process. Bandits with Knapsacks (BwK), a model

formulated in its most general form in Badanidiyuru et al. [8], fits into this framework and is characterized

by the consumption of a limited supply of resources (e.g. time, money, and natural resources) that comes

with every decision. This extension is motivated by a number of applications in electronic markets such as

dynamic pricing with limited supply, see Besbes and Zeevi [11] and Babaioff et al. [6], online advertising,

see Slivkins [22], online bid optimization for sponsored search auctions, see Tran-Thanh et al. [26], and

crowdsourcing, see Badanidiyuru et al. [7]. A unifying paradigm of online learning is to evaluate algo-

rithms based on their regret performance. In the BwK theory, this performance criterion is expressed as the

gap between the total payoff of an optimal oracle algorithm aware of how the rewards and the amounts of

resource consumption are generated and the total payoff of the algorithm. Many approaches have been pro-

posed to tackle the original MAB problem, where time is the only limited resource with a prescribed time
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horizon T , and the optimal regret bounds are now well documented. They can be classified into two cate-

gories with qualitatively different asymptotic growth rates. Many algorithms, such as UCB1, see Auer et al.

[4], Thompson sampling, see Agrawal and Goyal [3], and ǫ-greedy, see Auer et al. [4], achieve distribution-

dependent, i.e. with constant factors that depend on the underlying unobserved distributions, asymptotic

bounds on regret of order Θ(ln(T )), which is shown to be optimal in Lai and Robbins [19]. While these

results prove very satisfying in many settings, the downside is that the bounds can get arbitrarily large if a

malicious opponent was to select the underlying distributions in an adversarial fashion. In contrast, algo-

rithms such as Exp3, designed in Auer et al. [5], achieve distribution-free bounds that can be computed in an

online fashion, at the price of a less attractive growth rate Θ(
√
T ). The BwK theory lacks this clear-cut dis-

tinction. While provably optimal distribution-free bounds have recently been established, see Agrawal and

Devanur [1] and Badanidiyuru et al. [8], there has been little progress toward the development of asymptot-

ically optimal distribution-dependent regret bounds. To bridge the gap, we introduce a template algorithm

with proven regret bounds which are asymptotically logarithmic in the initial supply of each resource, in

four important cases that cover a wide range of applications:

• Case 1, where there is a single limited resource other than time, which is not limited, and the amount

of resource consumed as a result of making a decision is stochastic. Applications in online advertising, see

Tran-Thanh et al. [23], fit in this framework;

• Case 2, where there are arbitrarily many resources and the amounts of resources consumed as a result of

making a decision are deterministic. Applications to network revenue management of perishable goods, see

Besbes and Zeevi [11], shelf optimization of perishable goods, see Graczová and Jacko [15], and wireless

sensor networks, see Tran-Thanh et al. [25], fit in this framework;

• Case 3, where there are two limited resources, one of which is assumed to be time while the consump-

tion of the other is stochastic, under a nondegeneracy condition. Typical applications include online bid

optimization in sponsored search auctions, see Tran-Thanh et al. [26], dynamic pricing with limited supply,

see Babaioff et al. [6], and dynamic procurement, see Badanidiyuru et al. [7];

• Case 4, where there are arbitrarily many resources, under a stronger nondegeneracy condition than for

Case 3. Typical applications include dynamic ad allocation, see Slivkins [22], dynamic pricing of multiple

products, see Badanidiyuru et al. [8], and network revenue management, see Besbes and Zeevi [11].

In terms of applicability and significance of the results, Case 3 is the most important case. Case 4 is the

most general one but the analysis is more involved and requires stronger assumptions which makes it less

attractive from a practical standpoint. The analysis is easier for Cases 1 and 2 but their modeling power is

more limited.

In fast-paced environments, such as in ad auctions, the stochastic assumptions at the core of the BwK

model are only valid for a short period of time but there are typically a large number of actions to be

performed per second (e.g. submit a bid for a new ad auction). In these situations, the initial endowments

of resources are thus typically large and logarithmic regret bounds can be significantly more attractive than

distribution-free ones.

1.2. Problem statement and contributions. At each time period t ∈ N, a decision needs to be made

among a predefined finite set of actions, represented by arms and labeled k = 1, · · · ,K . We denote by at

the arm pulled at time t. Pulling arm k at time t yields a random reward rk,t ∈ [0,1] (after scaling) and

incurs the consumption of C ∈N different resource types by random amounts ck,t(1), · · · , ck,t(C)∈ [0,1]C

(after scaling). Note that time itself may or may not be a limited resource. At any time t and for any arm k,

the vector (rk,t, ck,t(1), · · · , ck,t(C)) is jointly drawn from a fixed probability distribution νk independently

from the past. The rewards and the amounts of resource consumption can be arbitrarily correlated across

arms. We denote by (Ft)t∈N the natural filtration generated by the rewards and the amounts of resource

consumption revealed to the decision maker, i.e. ((rat,t, cat,t(1), · · · , cat,t(C)))t∈N. The consumption of any

resource i ∈ {1, · · · ,C} is constrained by an initial budget B(i) ∈R+. As a result, the decision maker can
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keep pulling arms only so long as he does not run out of any of the C resources and the game ends at time

period τ∗, defined as:

τ∗ =min{t∈N | ∃i∈ {1, · · · ,C},
t

∑

τ=1

caτ ,τ(i)>B(i)}. (1)

Note that τ∗ is a stopping time with respect to (Ft)t≥1. When it comes to choosing which arm to pull next,

the difficulty for the decision maker lies in the fact that none of the underlying distributions, i.e. (νk)k=1,··· ,K ,

are initially known. Furthermore, the only feedback provided to the decision maker upon pulling arm at (but

prior to selecting at+1) is (rat,t, cat,t(1), · · · , cat,t(C)), i.e. the decision maker does not observe the rewards

that would have been obtained and the amounts of resources that would have been consumed as a result

of pulling a different arm. The goal is to design a non-anticipating algorithm that, at any time t, selects at

based on the information acquired in the past so as to keep the pseudo regret defined as:

RB(1),··· ,B(C) =EROPT(B(1), · · · ,B(C))−E[
τ∗−1
∑

t=1

rat,t], (2)

as small as possible, where EROPT(B(1), · · · ,B(C)) is the maximum expected sum of rewards that can be

obtained by a non-anticipating oracle algorithm that has knowledge of the underlying distributions. Here,

an algorithm is said to be non-anticipating if the decision to pull a given arm does not depend on the future

observations. We develop algorithms and establish distribution-dependent regret bounds, that hold for any

choice of the unobserved underlying distributions (νk)k=1,··· ,K , as well as distribution-independent regret

bounds. This entails studying the asymptotic behavior of RB(1),··· ,B(C) when all the budgets (B(i))i=1,··· ,C
go to infinity. In order to simplify the analysis, it is convenient to assume that the ratios (B(i)/B(C))i=1,···,C
are constants independent of any other relevant quantities and to denote B(C) by B.

ASSUMPTION 1. For any resource i ∈ {1, · · · ,C}, we have B(i) = b(i) · B for some fixed constant

b(i)∈ (0,1]. Hence b= min
i=1,··· ,C

b(i) is a positive quantity.

When time is a limited resource, we use the notation T in place of B. Assumption 1 is widely used in the

dynamic pricing literature where the inventory scales linearly with the time horizon, see Besbes and Zeevi

[11] and Johnson et al. [17]. Assumption 1 will only prove useful when deriving distribution-dependent

regret bounds and it can largely be relaxed, see Section A of the Appendix.

As the mean turns out to be an important statistics, we denote the mean reward and amounts of resource

consumption by µr
k, µ

c
k(1), · · · , µc

k(C) and their respective empirical estimates by r̄k,t, c̄k,t(1), · · · , c̄k,t(C).
These estimates depend on the number of times each arm has been pulled by the decision maker up to, but

not including, time t, which we write nk,t. We end with a general assumption, which we use throughout the

paper, meant to have the game end in finite time.

ASSUMPTION 2. For any arm k ∈ {1, · · · ,K}, we have max
i=1,··· ,C

µc
k(i)> 0.

Note that Assumption 2 is automatically satisfied if time is a limited resource.

Contributions. We design an algorithm that runs in time polynomial in K for which we establish

O(KC · ln(B)/∆) (resp.
√

KC ·B · ln(B)) distribution-dependent (resp. distribution-free) regret bounds,

where ∆ is a parameter that generalizes the optimality gap for the standard MAB problem. We estab-

lish these regret bounds in four cases of increasing difficulty making additional technical assumptions that

become stronger as we make progress towards tackling the general case. We choose to present these inter-

mediate cases since: (i) we get improved constant factors under weaker assumptions and (ii) they subsume

many practical applications. Note that our distribution-dependent regret bounds scale as a polynomial func-

tion of K of degree C, which may be unacceptable when the number of resources is large. We provide

evidence that suggests that a linear dependence on K can be achieved by tweaking the algorithm, at least in



Flajolet and Jaillet: Logarithmic Regret Bounds for BwK

4

some particular cases of interest. Finally, we point out that the constant factors hidden in the O notations are

not scale-free, in the sense that jointly scaling down the amounts of resources consumed at each round along

with their respective initial endowments worsens the bounds. As a consequence, initially scaling down the

amounts of resource consumption in order to guarantee that they lie in [0,1] should be done with caution:

the scaling factors should be as small as possible.

1.3. Literature review. The Bandits with Knapsacks framework was first introduced in its full gener-

ality in Badanidiyuru et al. [8], but special cases had been studied before, see for example Tran-Thanh et al.

[23], Ding et al. [13], and Babaioff et al. [6]. Since the standard MAB problem fits in the BwK framework,

with time being the only scarce resource, the results listed in the introduction tend to suggest that regret

bounds with logarithmic growth with respect to the budgets may be possible for BwK problems but very few

such results are documented. When there are arbitrarily many resources and a time horizon, Badanidiyuru

et al. [8] and Agrawal and Devanur [1] obtain Õ(
√
K ·T ) distribution-free bounds on regret that hold on

average as well as with high probability, where the Õ notation hides logarithmic factors. These results were

later extended to the contextual version of the problem in Badanidiyuru et al. [9] and Agrawal et al. [2].

Johnson et al. [17] extend Thompson sampling to tackle the general BwK problem and obtain distribution-

dependent bounds on regret of order Õ(
√
T ) (with an unspecified dependence on K) when time is a limited

resource, under a nondegeneracy condition. Trovo et al. [27] develop algorithms for BwK problems with a

continuum of arms and a single limited resource constrained by a budget B and obtain o(B) regret bounds.

Combes et al. [12] consider a closely related framework that allows to model any history-dependent con-

straint on the number of times any arm can be pulled and obtain O(K · ln(T )) regret bounds when time

is a limited resource. However, the benchmark oracle algorithm used in Combes et al. [12] to define the

regret is significantly weaker than the one considered here as it only has knowledge of the distributions of

the rewards, as opposed to the joint distributions of the rewards and the amounts of resource consumption.

Babaioff et al. [6] establish a Ω(
√
T ) distribution-dependent lower bound on regret for a dynamic pric-

ing problem which can be cast as a BwK problem with a time horizon, a resource whose consumption is

stochastic, and a continuum of arms. This lower bound does not apply here as we are considering finitely

many arms and it is well known that the minimax regret can be exponentially smaller when we move from

finitely many arms to uncountably many arms for the standard MAB problem, see Kleinberg and Leighton

[18]. Tran-Thanh et al. [24] tackles BwK problems with a single limited resource whose consumption is

deterministic and constrained by a global budget B and obtain O(K · ln(B)) regret bounds. This result was

later extended to the case of a stochastic resource in Xia et al. [30]. Wu et al. [29] study a contextual version

of the BwK problem when there are two limited resources, one of which is assumed to be time while the

consumption of the other is deterministic, and obtain O(K · ln(T )) regret bounds under a nondegeneracy

condition. Logarithmic regret bounds are also derived in Slivkins [22] for a dynamic ad allocation problem

that can be cast as a BwK problem.

Organization. The remainder of the paper is organized as follows. We present applications of the BwK

model in Section 2. We expose the algorithmic ideas underlying our approach in Section 3 and apply theses

ideas to Cases (1), (2), (3), and (4) in Sections 4, 5, 6, and 7 respectively. We choose to discuss each case

separately in a self-contained fashion so that readers can delve into the setting they are most interested in.

This comes at the price of some overlap in the analysis. We relax some of the assumptions made in the

course of proving the regret bounds and discuss extensions in Section A of the Appendix. To provide as

much intuition as possible, the ideas and key technical steps are all included in the main body, sometimes

through proof sketches, while the technical details are deferred to the Appendix.

Notations. For a set S, |S| denotes the cardinality of S while 1S is the indicator function of S. For

a vector x ∈ R
n and S a subset of {1, · · · , n}, xS refers to the subvector (xi)i∈S . For a square matrix A,

det(A) is the determinant of A while adj(A) denotes its adjugate. For x ∈ R, x+ is the positive part of x.

We use standard asymptotic notations such as O(·), o(·), Ω(·), and Θ(·).



Flajolet and Jaillet: Logarithmic Regret Bounds for BwK

5

2. Applications. A number of applications of the BwK framework are documented in the literature. For

the purpose of being self-contained, we review a few popular ones that satisfy our technical assumptions.

2.1. Online advertising.

Bid optimization in repeated second-price auctions. Consider a bidder participating in sealed second-

price auctions who is willing to spend a budgetB. This budget may be allocated only for a period of time (for

the next T auctions) or until it is completely exhausted. Rounds, indexed by t ∈N, correspond to auctions

the bidder participates in. If the bid submitted by the bidder for auction t is larger than the highest bid

submitted by the competitors, denoted by mt, the bidder wins the auction, derives a private utility vt ∈ [0,1]
(whose monetary value is typically difficult to assess), and is charged mt. Otherwise, mt is not revealed

to the bidder and vt cannot be assessed. We consider a stochastic setting where the environment and the

competitors are not fully adversarial: ((vt,mt))t∈N is assumed to be an i.i.d. stochastic process. The goal

for the bidder is to design a strategy to maximize the expected total utility derived given that the bidder has

selected a grid of bids to choose from (b1, · · · , bK) (e.g. b1 = $0.10, · · · , bK = $1). This is a BwK problem

with two resources: time and money. Pulling arm k at round t corresponds to bidding bk in auction t, costs

ck,t =mt · 1bk≥mt
, and yields a reward rk,t = vt · 1bk≥mt

. Weed et al. [28] design bidding strategies for a

variant of this problem where the bidder is not limited by a budget and rk,t = (vt −mt) ·1bk≥mt
.

This model was first formalized in Tran-Thanh et al. [26] in the context of sponsored search auctions.

In sponsored search auctions, advertisers can bid on keywords to have ads (typically in the form of a link

followed by a text description) displayed alongside the search results of a web search engine. When a user

types a search query, a set of relevant ads are selected and an auction is run in order to determine which

ones will be displayed. The winning ads are allocated to ad slots based on the outcome of the auction and,

in the prevailing cost-per-click pricing scheme, their owners get charged only if the user clicks on their

ads. Because the auction is often a variant of a sealed second-price auction (e.g. a generalized second-

price auction), very limited feedback is provided to the advertiser if the auction is lost. In addition, both

the demand and the supply cannot be predicted ahead of time and are thus commonly modeled as random

variables, see Ghosh et al. [14]. For these reasons, bidding repeatedly on a keyword can be formulated

as a BwK problem. In particular, when the search engine has a single ad slot per query, this problem can

be modeled as above: B is the budget the advertiser is willing to spend on a predetermined keyword and

rounds correspond to ad auctions the advertiser has been selected to participate in. If the advertiser wins the

auction, his or her ad gets displayed and he or she derives a utility vt = 1At
, where At is the event that the

ad gets clicked on. The goal is to maximize the expected total number of clicks given the budget constraint.

The advertiser may also be interested in optimizing the ad to be displayed, which will affect the probability

of a click. In this case, the modeling is similar but arms correspond to pairs of bid values and ads.

Dynamic ad allocation. This problem was first modeled in the BwK framework in Slivkins [22]. A

publisher, i.e. the owner of a collection of websites where ads can be displayed, has previously agreed with

K advertisers, indexed by k ∈ {1, · · · ,K}, on a predetermined cost-per-click pk. Additionally, advertiser

k is not willing to spend more than a prescribed budget, Bk, for a predetermined period of time (which

corresponds to the next T visits or rounds). Denote by Ak
t the event that the ad provided by advertiser k gets

clicked on at round t. We consider a stochastic setting where the visitors are not fully adversarial: (1Ak
t
)t∈N

is assumed to be an i.d.d. stochastic process for any advertiser k. The goal for the publisher is to maximize

the total expected revenues by choosing which ad to display at every round, i.e. every time somebody visits

one of the websites. This situation can be modeled as a BwK problem with K + 1 resources: time and

money for each of the K advertisers. Pulling arm k ∈ {1, · · · ,K} at round t corresponds to displaying the

ad owned by advertiser k, incurs the costs ck,t(i) = pk ·1Ak
t
·1i=k to advertiser i ∈ {1, · · · ,K}, and yields

a revenue rk,t = pk ·1Ak
t
.

2.2. Revenue management.
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Dynamic pricing with limited supply. This BwK model was first proposed in Babaioff et al. [6]. An

agent has B identical items to sell to T potential customers that arrive sequentially. Customer t∈ {1, · · · , T}
is offered a take-it-or-leave-it price pt and purchases the item only if pt is no larger than his or her own

valuation vt, which is never disclosed. Customers are assumed to be non-strategic in the sense that their

valuations are assumed to be drawn i.i.d. from a distribution unknown to the agent. The goal for the agent is

to maximize the total expected revenues by offering prices among a predetermined list (p1, · · · , pK). This

is a BwK problem with two resources: time and item inventory. Pulling arm k ∈ {1, · · · ,K} at round t
corresponds to offering the price pk, depletes the inventory of ck,t = 1pk≤vt unit, and generates a revenue

rk,t = pk ·1pk≤vt . Badanidiyuru et al. [8] propose an extension where multiple units of M different products

may be offered to a customer, which then buys as many as needed of each kind in order to maximize his or

her own utility function. In this case, the modeling is similar but arms correspond to vectors of dimension

2M specifying the number of items offered along with the price tag for each product and there are M +1
resources: time and item inventory for each of the M products.

Network revenue management.

Non-perishable goods. This is an extension of the dynamic pricing problem developed in Besbes and

Zeevi [11] which is particularly suited for applications in the online retailer industry, e.g. the online fashion

sample sales industry, see Johnson et al. [17]. Each product m=1, · · · ,M is produced from a finite amount

of C different kinds of raw materials (which may be products themselves). Producing one unit of product

m∈ {1, · · · ,M} consumes a deterministic amount of resource i∈ {1, · · · ,C} denoted by cm(i). Customer

t∈ {1, · · · , T} is offered a productmt ∈ {1, · · · ,M} along with a take-it-or-leave-it price pmt
t and purchases

it if his or her valuation vmt
t is larger than pmt

t . Products are manufactured online as customers order them.

We assume that ((v1t , · · · , vMt ))t∈N is an i.i.d. stochastic process with distribution unknown to the agent.

This is a BwK problem with C + 1 resources: time and the initial endowment of each resource. Given a

predetermined list of arms ((mk, pk))k=1,··· ,K , pulling arm k at round t corresponds to offering product mk

at the price pk, incurs the consumption of resource i by an amount ck,t(i) = cmk
(i) ·1pk≤v

mk
t

, and generates

a revenue rk,t = pk ·1pk≤v
mk
t

.

Perishable goods. This is a variant of the last model developed for perishable goods, with appli-

cations in the food retail industry and the newspaper industry. At each time period t ∈ {1, · · · , T},

a retailer chooses how many units λm
t ∈ N of product m ∈ {1, · · · ,M} to manufacture along with a

price offer for it pmt . At time t, the demand for product m sold at the price p is a random quantity

denoted by dm
t (p). We assume that customers are non-strategic: for any vector of prices (p1, · · · , pm),

((d1
t (p1), · · ·dM

t (pM)))t∈N is an i.i.d. stochastic process with distribution unknown to the agent. Products

perish at the end of each round irrespective of whether they have been purchased. Given a predetermined

list of arms ((λ1
k, p

1
k, · · · , λM

k , pMk ))k=1,··· ,K , pulling arm k at round t corresponds to offering λm
k units of

product m at the price pmk for any m ∈ {1, · · · ,M}, incurs the consumption of resource i by a determinis-

tic amount ck,t(i) =
∑M

m=1λ
m
k · cm(i) (where cm(i) is defined in the previous paragraph), and generates a

revenue rk,t =
∑M

m=1 p
m
k ·min(dm

t (p
m
k ), λ

m
k ).

Shelf optimization for perishable goods. This is a variant of the model introduced in Graczová and

Jacko [15]. Consider a retailer who has an unlimited supply of M different types of products. At each time

period t, the retailer has to decide how many units, λm
t , of each product, m ∈ {1, · · · ,M}, to allocate to

a promotion space given that at most N items fit in the limited promotion space. Moreover, the retailer

also has to decide on a price tag pmt for each product m. All units of product m ∈ {1, · · · ,M} perish

by time period Tm and the retailer is planning the allocation for the next T time periods. At round t,
the demand for product m is a random quantity denoted by dm

t (p). Customers are non-strategic: for any

vector of prices (p1, · · · , pm), ((d1
t(p1), · · ·dM

t (pM )))t∈N is an i.i.d. stochastic process with distribution

unknown to the agent. This is a BwK problem with M+1 resources: time horizon and time after which each

product perishes. Given a predetermined list of arms ((λ1
k, p

1
k, · · · , λM

k , pMk ))k=1,··· ,K satisfying
∑M

m=1λ
m
k ≤

K for any k ∈ {1, · · · ,K}, pulling arm k at round t corresponds to allocating λm
k units of product m to
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the promotion space for every m ∈ {1, · · · ,M} with the respective price tags (p1k, · · · , pMk ), incurs the

consumption of resource i by a deterministic amount ck,t(i) = 1, and generates a revenue rk,t =
∑M

m=1 p
m
k ·

min(dm
t (p

m
k ), λ

m
k ).

2.3. Dynamic procurement. This problem was first studied in Badanidiyuru et al. [7]. Consider a

buyer with a budget B facing T agents arriving sequentially, each interested in selling one good. Agent

t∈ {1, · · · , T} is offered a take-it-or-leave-it price, pt, and makes a sell only if the value he or she attributes

to the item, vt, is no larger than pt. We consider a stochastic setting where the sellers are not fully adver-

sarial: (vt)t∈N is an i.i.d. stochastic process with distribution unknown to the buyer. The goal for the buyer

is to maximize the total expected number of goods purchased by offering prices among a predetermined

list (p1, · · · , pK). This is a BwK problem with two resources: time and money. Pulling arm k at round t
corresponds to offering the price pk, incurs a cost ck,t = pk · 1pk≥vt , and yields a reward rk,t = 1pk≥vt . It

is also possible to model situations where the agents are selling multiple types of products and/or multiple

units, in which case arms correspond to vectors specifying the number of units of each product required

along with their respective prices, see Badanidiyuru et al. [8].

Applications of this model to crowdsourcing platforms are described in Badanidiyuru et al. [7] and

Badanidiyuru et al. [8]. In this setting, agents correspond to workers that are willing to carry out microtasks

which are submitted by buyers (called “requesters”) using a posted-price mechanism. Requesters are typi-

cally submitting large batches of jobs and can thus adjust the posted prices as they learn about the pool of

workers.

2.4. Wireless sensor networks. This is a variant of the model introduced in Tran-Thanh et al. [25].

Consider an agent collecting information using a network of wireless sensors powered by batteries. Acti-

vating sensor k ∈ {1, · · · ,K} consumes some amount of energy, ck, which is depleted from the sensor’s

initial battery level, Bk, and triggers a measurement providing a random amount of information (measured

in bits), rk,t, which is transmitted back to the agent. Sensors cannot harvest energy and the goal for the agent

is to maximize the total expected amount of information collected over T actions. This is a BwK problem

with K+1 resources: time and the energy stored in the battery of each sensor. Pulling arm k ∈ {1, · · · ,K}
corresponds to activating sensor k, incurs the consumption of resource i ∈ {1, · · · ,K} by a deterministic

amount ck,t = ck ·1k=i, and yields a random reward rk,t.

3. Algorithmic ideas.

3.1. Preliminaries. To handle the exploration-exploitation trade-off, an approach that has proved to be

particularly successful hinges on the optimism in the face of uncertainty paradigm. The idea is to consider

all plausible scenarios consistent with the information collected so far and to select the decision that yields

the most revenue among all the scenarios identified. Concentration inequalities are intrinsic to the paradigm

as they enable the development of systematic closed form confidence intervals on the quantities of interest,

which together define a set of plausible scenarios. We make repeated use of the following result.

LEMMA 1. Hoeffding’s inequality Consider X1, · · · ,Xn n random variables with support in [0,1].

If ∀t≤ nE[Xt |X1, · · · ,Xt−1]≤ µ, then P[X1 + · · ·+Xn ≥ nµ+ a]≤ exp(− 2a2

n
) ∀a≥ 0.

If ∀t≤ nE[Xt |X1, · · · ,Xt−1]≥ µ, then P[X1 + · · ·+Xn ≤ nµ− a]≤ exp(− 2a2

n
) ∀a≥ 0.

Auer et al. [4] follow the optimism in the face of uncertainty paradigm to develop the Upper Confidence

Bound algorithm (UCB1). UCB1 is based on the following observations: (i) the optimal strategy always

consists in pulling the arm with the highest mean reward when time is the only limited resource, (ii) infor-

mally, Lemma 1 shows that µr
k ∈ [r̄k,t − ǫk,t, r̄k,t + ǫk,t] at time t with probability at least 1 − 2/t3 for

ǫk,t =
√

2 ln(t)/nk,t, irrespective of the number of times arm k has been pulled. Based on these observa-

tions, UCB1 always selects the arm with highest UCB index, i.e. at ∈ argmaxk=1,··· ,K Ik,t, where the UCB
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index of arm k at time t is defined as Ik,t = r̄k,t + ǫk,t. The first term can be interpreted as an exploita-

tion term, the ultimate goal being to maximize revenue, while the second term is an exploration term, the

smaller nk,t, the bigger it is. This fruitful paradigm go well beyond this special case and many extensions of

UCB1 have been designed to tackle variants of the MAB problem, see for example Slivkins [22]. Agrawal

and Devanur [1] embrace the same ideas to tackle BwK problems. The situation is more complex in this

all-encompassing framework as the optimal oracle algorithm involves pulling several arms. In fact, find-

ing the optimal pulling strategy given the knowledge of the underlying distributions is already a challenge

in its own, see Papadimitriou and Tsitsiklis [20] for a study of the computational complexity of similar

problems. This raises the question of how to evaluate EROPT(B(1), · · · ,B(C)) in (2). To overcome this

issue, Badanidiyuru et al. [8] upper bound the total expected payoff of any non-anticipating algorithm by

the optimal value of a linear program, which is easier to compute.

LEMMA 2. Adapted from Badanidiyuru et al. [8]

The total expected payoff of any non-anticipating algorithm is no greater than B times the optimal value

of the linear program:

sup
(ξk)k=1,··· ,K

K
∑

k=1

µr
k · ξk

subject to

K
∑

k=1

µc
k(i) · ξk ≤ b(i), i=1, · · · ,C

ξk ≥ 0, k= 1, · · · ,K.

(3)

plus the constant term max
k=1,··· ,K
i=1,··· ,C

with µc
k(i)>0

µr
k

µc
k
(i)

.

The optimization problem (3) can be interpreted as follows. For any arm k, B · ξk corresponds to the

expected number of times arm k is pulled by the optimal algorithm. Hence, assuming we introduce a dummy

arm 0 which is equivalent to skipping the current round, ξk can be interpreted as the probability of pulling

arm k at any round when there is a time horizon T . Observe that the constraints restrict the feasible set of

expected number of pulls by imposing that the amounts of resources consumed are no greater than their

respective budgets in expectations, as opposed to almost surely which would be a more stringent constraint.

This explains why the optimal value of (3) is larger than the maximum achievable payoff. In this paper,

we use standard linear programming notions such as the concept of a basis and a basic feasible solution.

We refer to Bertsimas and Tsitsiklis [10] for an introduction to linear programming. A pseudo-basis x is

described by two subsets Kx ⊂{1, · · · ,K} and Cx ⊂ {1, · · · ,C} such that |Kx|= |Cx|. A pseudo-basis x is

a basis for (3) if the matrix Ax = (µc
k(i))(i,k)∈Cx×Kx is invertible. Furthermore, x is said to be a feasible basis

for (3) if the corresponding basic solution, denoted by (ξxk)k=1,··· ,K and determined by ξxk = 0 for k 6∈ Kx

and Axξ
x
Kx

= bCx (where bCx is the subvector (b(i))i∈Cx), is feasible for (3). When x is a feasible basis for

(3), we denote by objx =
∑K

k=1 µ
r
k · ξxk its objective function. From Lemma 2, we derive:

RB(1),··· ,B(C) ≤B · objx∗ −E[
τ∗
∑

t=1

rat,t] +O(1), (4)

where x∗ is an optimal feasible basis for (3). For mathematical convenience, we consider that the game

carries on even if one of the resources is already exhausted so that at is well defined for any t ∈ N. Of

course, the rewards obtained for t ≥ τ∗ are not taken into account in the decision maker’s payoff when

establishing regret bounds.
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3.2. Solution methodology. Lemma 2 also provides insight into designing algorithms. The idea is to

incorporate confidence intervals on the mean rewards and the mean amounts of resource consumption into

the offline optimization problem (3) and to base the decision upon the resulting optimal solution. There

are several ways to carry out this task, each leading to a different algorithm. When there is a time horizon

T , Agrawal and Devanur [1] use high-probability lower (resp. upper) bounds on the mean amounts of

resource consumption (resp. rewards) in place of the unknown mean values in (3) and pull an arm at random

according to the resulting optimal distribution. Specifically, at any round t, the authors suggest to compute

an optimal solution (ξ∗k,t)k=1,··· ,K to the linear program:

sup
(ξk)k=1,··· ,K

K
∑

k=1

(r̄k,t + ǫk,t) · ξk

subject to

K
∑

k=1

(c̄k,t(i)− ǫk,t) · ξk ≤ (1− γ) · b(i), i=1, · · · ,C − 1

K
∑

k=1

ξk ≤ 1

ξk ≥ 0, k=1, · · · ,K,

(5)

for a well-chosen γ ∈ (0,1), and then to pull arm k with probability ξ∗k,t or skip the round with probability

1−∑K

k=1 ξ
∗
k,t. If we relate this approach to UCB1, the intuition is clear: the idea is to be optimistic about

both the rewards and the amounts of resource consumption. We argue that this approach cannot yield log-

arithmic regret bounds. First, because γ has to be of order 1/
√
T . Second, because, even if we were given

an optimal solution to (3), (ξx
∗

k )k=1,··· ,K , before starting the game, consistently choosing which arm to pull

at random according to this distribution at every round would incur regret Ω(
√
T ), as we next show.

LEMMA 3. For all the cases treated in this paper, pulling arm k with probability ξx
∗

k at any round t
yields a regret of order Ω(

√
T ) unless pulling any arm in {k ∈ {1, · · · ,K} | ξx∗k > 0} incurs the same

deterministic amount of resource consumption for all resources in Cx∗ and for all rounds t∈N.

Proof. We use the shorthand notation K∗ = {k ∈ {1, · · · ,K} | ξx∗k > 0}. Observe that, for any resource

i∈ {1, · · · ,C − 1}, we have:

T · objx∗ −E[
τ∗
∑

t=1

rat,t] = (T −E[τ∗]) · objx∗

≥E[(
T
∑

t=τ∗

cat,t(i)+
τ∗−1
∑

t=1

cat,t(i)−B(i))+] · objx∗ +O(1)

=E[(
T
∑

t=1

{cat,t(i)− b(i)})+] · objx∗ +O(1),

where the inequality is derived using cat,t(i) ≤ 1 for all rounds t and
∑τ∗−1

t=1 cat,t(i) ≤ B(i). Since, for

i∈ Cx∗ , (cat,t(i))t∈N is an i.i.d. bounded stochastic process with mean b(i), we have:

E[(
T
∑

t=1

{cat,t(i)− b(i)})+] = Ω(
√
T ), (6)

provided that cat,t(i) has positive variance, which is true if there exists at least one arm k ∈ K∗ such

that ck,t(i) has positive variance or if there exist two arms k, l ∈ K∗ such that ck,t(i) and cl,t(i) are not

almost surely equal to the same deterministic value. Strictly speaking, this is not enough to conclude that

RB(1),··· ,B(C−1),T = Ω(
√
T ) as T · objx∗ is only an upper bound on the maximum total expected payoff.
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However, in Sections 4, 5, 6, and 7, we show that there exists an algorithm that satisfies T · objx∗ −
E[
∑τ∗

t=1 rat,t] = O(ln(T )) for all the cases considered in this paper. This result, together with (6) and

Lemma 2, implies that the regret incurred when pulling arm k with probability ξx
∗

k at any round is Ω(
√
T ).

The fundamental shortcoming of this approach is that it systematically leads us to plan to consume the same

average amount of resource i per round b(i), for any resource i= 1, · · · ,C − 1, irrespective of whether we

have significantly over- or under-consumed in the past. Based on this observation, a natural idea is to solve

the linear program:

sup
(ξk)k=1,··· ,K

K
∑

k=1

(r̄k,t + ǫk,t) · ξk

subject to

K
∑

k=1

(c̄k,t(i)− ǫk,t) · ξk ≤ (1− γ) · bt(i), i= 1, · · · ,C − 1

K
∑

k=1

ξk ≤ 1

ξk ≥ 0, k= 1, · · · ,K,

(7)

instead of (5), where bt(i) denotes the ratio of the remaining amount of resource i at time t to the remaining

time horizon, i.e. T − t+ 1. Bounding the regret incurred by this adaptive algorithm is, however, difficult

from a theoretical standpoint. To address this issue, we propose the following family of algorithms, whose

behaviors are similar to the adaptive algorithm but lend themselves to an easier analysis.

Algorithm: UCB-Simplex

Take λ≥ 1 and (ηi)i=1,··· ,C ≥ 0 (these quantities will need to be carefully chosen). The algorithm is

preceded by an initialization phase which consists in pulling each arm a given number of times, to be

specified. For each subsequent time period t, proceed as follows.

Step-Simplex: Find an optimal basis xt to the linear program:

sup
(ξk)k=1,··· ,K

K
∑

k=1

(r̄k,t +λ · ǫk,t) · ξk

subject to

K
∑

k=1

(c̄k,t(i)− ηi · ǫk,t) · ξk ≤ b(i), i=1, · · · ,C

ξk ≥ 0, k= 1, · · · ,K

(8)

Adapting the notations, xt is described by two subsets Kxt ⊂{1, · · · ,K} and Cxt ⊂{1, · · · ,C} such that

|Kxt |= |Cxt |, the matrix Āxt,t = (c̄k,t(i)− ηi · ǫk,t)(i,k)∈Cxt×Kxt
, and the corresponding basic feasible

solution (ξxtk,t)k=1,··· ,K determined by ξxtk,t =0 for k 6∈ Kxt and Āxt,tξ
xt
Kx,t

= bKxt
.

Step-Load-Balance: Identify the arms involved in the optimal basis, i.e. Kxt . There are at most min(K,C)
such arms. Use a load balancing algorithm Axt , to be specified, to determine which of these arms to pull.

For all the cases considered in this paper, (8) is always bounded and Step-Simplex is well defined. The

Simplex algorithm is an obvious choice to carry out Step-Simplex, especially when ηi = 0 for any resource

i ∈ {1, · · · ,C}, because, in this case, we only have to update one column of the constraint matrix per

round which makes warm-starting properties attractive. However, note that this can also be done in time

polynomial in K and C, see Grötschel et al. [16]. If we compare (8) with (5), the idea remains to be overly

optimistic but, as we will see, more about the rewards than the amounts of resource consumption through the

exploration factor λ which will typically be larger than ηi, thus transferring most of the burden of exploration

from the constraints to the objective function. The details of Step-Load-Balance are purposefully left out
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and will be specified for each of the cases treated in this paper. When there is a time horizon T , the general

idea is to determine, at any time period t and for each resource i = 1, · · · ,C, whether we have over- or

under-consumed in the past and to perturb the probability distribution (ξxtk,t)k=1,··· ,K accordingly to get back

on track.

The algorithm we propose is intrinsically tied to the existence of basic feasible optimal solutions to (3)

and (8). We denote by B (resp. Bt) the subset of bases of (3) (resp. (8)) that are feasible for (3) (resp.

(8)). Step-Simplex can be interpreted as an extension of the index-based decision rule of UCB1. Indeed,

Step-Simplex assigns an index Ix,t to each basis x ∈ Bt and outputs xt ∈ argmaxx∈Bt
Ix,t, where Ix,t =

objx,t+Ex,t with a clear separation (at least when ηi =0 for any resource i) between the exploitation term,

objx,t =
∑K

k=1 ξ
x
k,t · r̄k,t, and the exploration term, Ex,t = λ ·∑K

k=1 ξ
x
k,t · ǫk,t. Observe that, for x ∈ Bt that

is also feasible for (3), (ξxk,t)k=1,··· ,K and objx,t are plug-in estimates of (ξxk )k=1,··· ,K and objx when ηi =0
for any resource i. Also note that when λ = 1 and ηi = 0 for any resource i and when time is the only

limited resource, UCB-Simplex is identical to UCB1 as Step-Load-Balance is unambiguous in this special

case, each basis involving a single arm. For any x ∈ B, we define ∆x = objx∗ − objx ≥ 0 as the optimality

gap. A feasible basis x is said to be suboptimal if ∆x > 0. At any time t, nx,t denotes the number of times

basis x has been selected at Step-Simplex up to time t while nx
k,t denotes the number of times arm k has

been pulled up to time t when selecting x at Step-Simplex. For all the cases treated in this paper, we will

show that, under a nondegeneracy assumption, Step-Simplex guarantees that a suboptimal basis cannot be

selected more than O(ln(B)) times on average, a result reminiscent of the regret analysis of UCB1 carried

out in Auer et al. [4]. However, in stark contrast with the situation of a single limited resource, this is merely

a prerequisite to establish a O(ln(B)) bound on regret. Indeed, a low regret algorithm must also balance

the load between the arms as closely as possible to optimality. Hence, the choice of the load balancing

algorithms Ax is crucial to obtain logarithmic regret bounds.

4. A single limited resource. In this section, we tackle the case of a single resource whose consump-

tion is limited by a global budget B, i.e. C = 1 and b(1) = 1. To simplify the notations, we omit the indices

identifying the resources as there is only one, i.e. we write µc
k, ck,t, c̄k,t, and η as opposed to µc

k(1), ck,t(1),
c̄k,t(1), and η1. We also use the shorthand ǫ=mink=1,··· ,K µc

k. Recall that, under Assumption 2, ǫ is positive

and a priori unknown to the decision maker. In order to derive logarithmic bounds, we will also need to

assume that the decision maker knows an upper bound on the optimal value of (3).

ASSUMPTION 3. The decision maker knows κ≥ max
k=1,··· ,K

µr
k

µc
k

ahead of round 1.

Assumption 3 is natural in repeated second-price auctions, as detailed in the last paragraph of this section.

Moreover, note that if ǫ happens to be known ahead of round 1 we can take κ= 1/ǫ.

Specification of the algorithm. We implement UCB-Simplex with λ=1+κ and η= 0. The initializa-

tion step consists in pulling each arm until the amount of resource consumed as a result of pulling that arm

is non-zero. The purpose of this step is to have c̄k,t > 0 for all periods to come and for all arms. Step-Load-

Balance is unambiguous here as basic feasible solutions involve a single arm. Hence, we identify a basis x
such that Kx = {k} and Cx = {1} with the corresponding arm and write x= k to simplify the notations. In

particular, k∗ ∈ {1, · · · ,K} identifies an optimal arm in the sense defined in Section 3. For any arm k, the

exploration and exploitation terms defined in Section 3 specialize to:

objk,t =
r̄k,t
c̄k,t

and Ek,t = (1+κ) · ǫk,t
c̄k,t

,

while objk = µr
k/µ

c
k, so that:

k∗ ∈ argmax
k=1,··· ,K

µr
k

µc
k

, at ∈ argmax
k=1,··· ,K

r̄k,t +(1+κ) · ǫk,t
c̄k,t

, and ∆k =
µr
k∗

µc
k∗

− µr
k

µc
k

.



Flajolet and Jaillet: Logarithmic Regret Bounds for BwK

12

We point out that, for the particular setting considered in this section, UCB-Simplex is almost identical to

the fractional KUBE algorithm proposed in Tran-Thanh et al. [24] to tackle the case of a single resource

whose consumption is deterministic. It only differs by the presence of the scaling factor 1 + κ to favor

exploration over exploitation, which becomes unnecessary when the amounts of resource consumed are

deterministic, see Section A of the Appendix.

Regret analysis. We omit the initialization step in the theoretical analysis because the amount of

resource consumed is O(1) and the reward obtained is non-negative and not taken into account in the deci-

sion maker’s total payoff. Moreover, the initialization step ends in finite time almost surely as a result of

Assumption 2. First observe that (4) specializes to:

RB ≤B · µ
r
k∗

µc
k∗

−E[
τ∗
∑

t=1

rat,t] +O(1). (9)

To bound the right-hand side, we start by estimating the expected time horizon.

LEMMA 4. For any non-anticipating algorithm, we have: E[τ∗]≤ B+1
ǫ

.

Sketch of proof. By definition of τ∗, we have
∑τ∗−1

t=1 cat,t ≤B. Taking expectations on both sides yields

B ≥E[
∑τ∗

t=1µ
c
at
]− 1≥ E[τ∗] · ǫ− 1 by Assumption 2. Rearranging this last inequality yields the claim.

The next result is crucial. Used in combination with Lemma 4, it shows that any suboptimal arm is pulled

at most O(ln(B)) times in expectations, a well-known result for UCB1, see Auer et al. [4]. The proof

is along the same lines as for UCB1, namely we assume that arm k has already been pulled more than

Θ(ln(τ∗)/(∆k)
2) times and conclude that arm k cannot be pulled more than a few more times, with the

additional difficulty of having to deal with the random stopping time and the fact that the amount of resource

consumed at each step is stochastic.

LEMMA 5. For any suboptimal arm k, we have:

E[nk,τ∗ ]≤ 26(
λ

µc
k

)2 · E[ln(τ
∗)]

(∆k)2
+

4π2

3ǫ2
.

Sketch of proof. We use the shorthand notation βk = 25(λ/µc
k)

2 ·(1/∆k)
2. First observe that if we want

to bound E[nk,τ∗ ], we may assume, without loss of generality, that arm k has been pulled at least βk · ln(t)
times at any time t up to an additive term of 2βk ·E[ln(τ∗)] in the final inequality. We then just have to bound

by a constant the probability that k is selected at any time t given that nk,t ≥ βk · ln(t). If k is selected at

time t, it must be that k is optimal for (8), which, in particular, implies that objk,t +Ek,t ≥ objk∗,t +Ek∗,t.

This can only happen if either: (i) objk,t ≥ objk +Ek,t, i.e. the objective value of k is overly optimistic, (ii)

objk∗,t ≤ objk∗ −Ek∗,t, i.e. the objective value of k∗ is overly pessimistic, or (iii) objk∗ < objk +2Ek,t, i.e.

the optimality gap of arm k is small compared to its exploration factor. The probability of events (i) and (ii)

can be bounded by ∼ 1/t2 in the same fashion, irrespective of how many times these arms have been pulled

in the past. For example for event (i), this is because if r̄k,t/c̄k,t =objk,t ≥ objk+Ek,t = µr
k/µ

c
k+Ek,t, then

either (a) r̄k,t ≥ µr
k + ǫk,t or (b) c̄k,t ≤ µc

k − ǫk,t and both of these events have probability at most ∼ 1/t2 by

Lemma 1. Indeed, if (a) and (b) do not hold, we have:

r̄k,t
c̄k,t

− µr
k

µc
k

=
(r̄k,t −µr

k)µ
c
k +(µc

k − c̄k,t)µ
r
k

c̄k,t ·µc
k

<
ǫk,t
c̄k,t

+
ǫk,t
c̄k,t

· µ
r
k

µc
k

≤ (1+κ) · ǫk,t
c̄k,t

=Ek,t.

As for event (iii), observe that if objk∗ < objk +2Ek,t and nk,t ≥ βk · ln(t) then we have c̄k,t ≤ µc
k/2, which

happens with probability at most ∼ 1/t2 by Lemma 1 given that arm k has already been pulled at least

∼ ln(t)/(µk
c)

2 times.
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Building on the last two results, we derive a distribution-dependent regret bound which improves upon the

one derived in Xia et al. [30]: the decision maker is only assumed to know κ, as opposed to a lower bound

on ǫ, ahead of round 1. This is more natural in bidding applications as detailed in the last paragraph of this

section. This bound generalizes the one obtained by Auer et al. [4] when time is the only scarce resource.

THEOREM 1. We have:

RB ≤ 26λ2 · (
∑

k∈{1,··· ,K} |∆k>0

1

µc
k ·∆k

) · ln(B+1

ǫ
)+O(1).

Sketch of proof. We build upon (9):

RB ≤B · µ
r
k∗

µc
k∗

−E[
τ∗
∑

t=1

rat,t] +O(1)

=B · µ
r
k∗

µc
k∗

−
K
∑

k=1

µr
k ·E[nk,τ∗ ] +O(1)

=
µr
k∗

µc
k∗

· (B−
∑

k |∆k=0

µc
k ·E[nk,τ∗ ])−

∑

k |∆k>0

µr
k ·E[nk,τ∗ ] +O(1).

By definition of τ∗, the resource is exhausted at time τ∗, i.e. B ≤∑τ∗

t=1 cat,t. Taking expectations on both

sides yields B ≤∑K

k=1 µ
c
k ·E[nk,τ∗ ]. Plugging this last inequality back into the regret bound, we get:

RB ≤
∑

k |∆k>0

µc
k ·∆k ·E[nk,τ∗ ] +O(1).

Using the upper bound of Lemma 4, the concavity of the logarithmic function, and Lemma 5, we derive:

RB ≤ 26λ2 · (
∑

k |∆k>0

1

µc
k ·∆k

) · ln(B+1

ǫ
)+

4π2

3ǫ2
· (

∑

k |∆k>0

µc
k ·∆k)+O(1)

which yields the claim since ∆k ≤ µr
k∗/µ

c
k∗ ≤ κ and µc

k ≤ 1 for any arm k.

Observe that the set of optimal arms, namely argmaxk=1,··· ,K µr
k/µ

c
k, does not depend on B and that ∆k

is a constant independent of B for any suboptimal arm. We conclude that RB = O(K · ln(B)/∆) with

∆ = mink∈{1,··· ,K} |∆k>0∆k. Interestingly, the algorithm we propose does not rely on B to achieve this

regret bound, much like what happens for UCB1 with the time horizon, see Auer et al. [4]. This result is

optimal up to constant factors as the standard MAB problem is a special case of the framework considered

in this section, see Lai and Robbins [19] for a proof of a lower bound in this context. It is possible to improve

the constant factors when the consumption of the resource is deterministic as we can take λ = 1 in this

scenario and the resulting regret bound is scale-free, see Section A of the Appendix. Building on Theorem

1, we can also derive a near-optimal distribution-free regret bound in the same fashion as for UCB1.

THEOREM 2. We have:

RB ≤ 8λ ·
√

K · B+1

ǫ
· ln(B+1

ǫ
)+O(1).

Proof To get the distribution-free bound, we start from the penultimate inequality derived in the proof

sketch of Theorem 1 and apply Lemma 5 only if ∆k is big enough, noting that:

K
∑

k=1

E[nk,τ∗ ] =E[τ∗]≤ (B+1)/ǫ.
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Specifically, we have:

RB ≤ sup
(n1,··· ,nK)≥0
∑K

k=1 nk≤B+1
ǫ

{
∑

k |∆k>0

min(µc
k ·∆k ·nk,2

6λ2 · ln(
B+1
ǫ

)

µc
k ·∆k

+
4π2

3ǫ2
·µc

k ·∆k) }+O(1)

≤ sup
(n1,··· ,nK)≥0
∑K

k=1 nk≤B+1
ǫ

{
∑

k |∆k>0

min(µc
k ·∆k ·nk,2

6λ2 · ln(
B+1
ǫ

)

µc
k ·∆k

) }+K · 4π
2κ

3ǫ2
+O(1)

≤ sup
(n1,··· ,nK)≥0
∑K

k=1 nk≤B+1
ǫ

{
∑

k |∆k>0

√

26λ2 ·nk · ln(
B+1

ǫ
) }+O(1)

≤ 8λ ·
√

K · B+1

ǫ
· ln(B+1

ǫ
)+O(1),

where the second inequality is obtained with ∆k ≤ µr
k∗/µ

c
k∗ ≤ κ and µc

k ≤ 1, the third inequality is derived

by maximizing on (µc
k ·∆k)≥ 0 for all arms k, and the last inequality is obtained with the Cauchy−Schwarz

inequality.

We conclude that RB = O(
√

K ·B · ln(B)), where the hidden constant factors are independent of the

underlying distributions (νk)k=1,··· ,K .

Applications. Assumption 3 is natural for bidding in repeated second-price auctions when the auction-

eer sets a reserve price R (this is common practice in sponsored search auctions). Indeed, then we have:

E[ck,t] =E[mt ·1bk≥mt
]

≥R ·E[1bk≥mt
]

≥R ·E[vt ·1bk≥mt
] =R ·E[rk,t],

for any arm k ∈ {1, · · · ,K} and Assumption 3 is satisfied with κ=1/R.

5. Arbitrarily many limited resources whose consumptions are deterministic. In this section, we

study the case of multiple limited resources when the amounts of resources consumed as a result of pulling

an arm are deterministic and globally constrained by prescribed budgets (B(i))i=1,··· ,C , where C is the

number of resources. Note that time need not be a constraint. Because the amounts of resources consumed

are deterministic, we can substitute the notation µc
k(i) with ck(i) for any arm k ∈ {1, · · · ,K} and any

resource i ∈ {1, · · · ,C}. We point out that the stopping time need not be deterministic as the decision to

select an arm at any round is based on the past realizations of the rewards. We define ρ≤min(C,K) as the

rank of the matrix (ck(i))1≤k≤K,1≤i≤C .

Specification of the algorithm. We implement UCB-Simplex with an initialization step which consists

in pulling each arm ρ times. The motivation behind this step is mainly technical and is simply meant to

have:

nk,t ≥ ρ+
∑

x∈B | k∈Kx

nx
k,t ∀t∈N,∀k ∈ {1, · · · ,K}. (10)

Compared to Section 4, we choose to take λ= 1 and ηi = 0 for any i ∈ {1, · · · ,C}. As a result and since

the amounts of resource consumption are deterministic, the exploration (resp. exploitation) terms defined in

Section 3 specialize to objx,t =
∑K

k=1 ξ
x
k · r̄k,t (resp. Ex,t =

∑K

k=1 ξ
x
k · ǫk,t). Compared to the case of a single

resource, we are required to specify the load balancing algorithms involved in Step-Load-Balance of UCB-

Simplex as a feasible basis selected at Step-Simplex may involve several arms. Although Step-Simplex will

also need to be specified in Sections 6 and 7, designing good load balancing algorithms is arguably easier

here as the optimal load balance is known for each basis from the start. Nonetheless, one challenge remains:



Flajolet and Jaillet: Logarithmic Regret Bounds for BwK

15

we can never identify the (possibly many) optimal bases of (3) with absolute certainty. As a result, any

basis selected at Step-Simplex should be treated as potentially optimal when balancing the load between the

arms involved in this basis, but this inevitably causes some interference issues as an arm may be involved

in several bases, and worst, possibly several optimal bases. Therefore, one point that will appear to be of

particular importance in the analysis is the use of load balancing algorithms that are decoupled from one

another, in the sense that they do not rely on what happened when selecting other bases. More specifically,

we use the following class of load balancing algorithms.

Algorithm: Load balancing algorithm Ax for a feasible basis x∈B
If basis x is selected at time t, pull any arm k ∈Kx such that nx

k,t ≤ nx,t · ξxk∑K
l=1 ξx

l

.

The load balancing algorithms Ax thus defined are decoupled because, for each basis, the number of times

an arm has been pulled when selecting any other basis is not taken into account. The following lemma

shows that Ax is always well defined and guarantees that the ratios (nx
k,t/n

x
l,t)k,l∈Kx remain close to the

optimal ones (ξxk/ξ
x
l )k,l∈Kx at all times.

LEMMA 6. For any basis x∈B, Ax is well defined and moreover, at any time t and for any arm k ∈Kx,

we have:

nx,t ·
ξxk

∑K

l=1 ξ
x
l

− ρ≤ nx
k,t ≤ nx,t ·

ξxk
∑K

l=1 ξ
x
l

+1,

while nx
k,t = 0 for any arm k /∈Kx.

Proof. We need to show that there always exists an arm k ∈ Kx such that nx
k,t ≤ nx,t · ξxk/

∑K

l=1 ξ
x
l .

Suppose there is none, we have:

nx,t =
∑

k∈Kx

nx
k,t >

∑

k∈Kx

nx,t ·
ξxk

∑K

l=1 ξ
x
l

= nx,t,

a contradiction. Moreover, we have, at any time t and for any arm k ∈ Kx, nx
k,t ≤ nx,t · ξxk/

∑K

l=1 ξ
x
l + 1.

Indeed, suppose otherwise and define t∗ ≤ t as the last time arm k was pulled, we have:

nx
k,t∗ = nx

k,t − 1>nx,t ·
ξxk

∑K

l=1 ξ
x
l

≥ nx,t∗ ·
ξxk

∑K

l=1 ξ
x
l

,

which shows, by definition, that arm k could not have been pulled at time t∗. We also derive as a byproduct

that, at any time t and for any arm k ∈Kx, nx,t · ξxk/
∑K

l=1 ξ
x
l − ρ≤ nx

k,t since nx,t =
∑

k∈Kx
nx
k,t and since

a basis involves at most ρ arms.

Observe that the load balancing algorithms Ax run in time O(1) but may require a memory storage capacity

exponential in C and polynomial in K , although always bounded by O(B) (because we do not need to keep

track of nx
k,t if x has never been selected). In practice, only a few bases will be selected at Step-Simplex,

so that a hash table is an appropriate data structure to store the sequences (nx
k,t)k∈Kx . In Section A of the

Appendix, we introduce another class of load balancing algorithms that is both time and memory efficient

while still guaranteeing logarithmic regret bounds (under an additional assumption) but no distribution-free

regret bounds.

Regret Analysis. We use the shorthand notation:

ǫ= min
k=1,··· ,K
i=1,··· ,C

with ck(i)>0

ck(i).
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Note that ǫ <∞ under Assumption 2. We discard the initialization step in the theoretical study because the

amounts of resources consumed are bounded by a constant and the total reward obtained is non-negative

and not taken into account in the decision maker’s total payoff. We again start by estimating the expected

time horizon.

LEMMA 7. For any non-anticipating algorithm, we have: E[τ∗]≤
∑C

i=1 b(i)·B
ǫ

+1.

Proof. By definition of τ∗, we have
∑τ∗−1

t=1 cat,t(i)≤B(i) for any resource i ∈ {1, · · · ,C}. Summing

up these inequalities and using Assumption 2 and the fact that (ck,t(i))t=1,··· ,T are deterministic, we get

(τ∗ − 1) · ǫ≤∑C

i=1B(i). Taking expectations on both sides and using Assumption 1 yields the result.

We follow by bounding the number of times any suboptimal basis can be selected at Step-Simplex in the

same spirit as in Section 4.

LEMMA 8. For any suboptimal basis x∈B, we have:

E[nx,τ∗]≤ 16ρ · (
K
∑

k=1

ξxk )
2 · E[ln(τ

∗)]

(∆x)2
+ ρ · π

2

3
.

Sketch of proof. We use the shorthand notation βx =8ρ · (∑K

k=1 ξ
x
k/∆x)

2. The proof is along the same

lines as for Lemma 5. First note that we may assume, without loss of generality, that x has been selected at

least βx · ln(t) times at any time t up to an additive term of 2βx ·E[ln(τ∗)] in the final inequality. We then just

have to bound by a constant the probability that x is selected at any time t given that nx,t ≥ βx · ln(t). If x is

selected at time t, x is an optimal basis to (8). Since the amounts of resources consumed are deterministic,

x∗ is feasible to (8) at time t, which implies that objx,t +Ex,t ≥ objx∗,t +Ex∗,t. This can only happen if

either: (i) objx,t ≥ objx +Ex,t, (ii) objx∗,t ≤ objx∗ −Ex∗,t, or (iii) objx∗ < objx + 2Ex,t. First note that

(iii) is impossible because, assuming this is the case, we would have:

∆x

2
<

∑

k∈Kx

ξxk ·
√

2 ln(t)

nk,t

≤
∑

k∈Kx

ξxk ·
√

2 ln(t)

ρ+nx
k,t

≤
√

∑

k∈Kx

ξxk ·
∑

k∈Kx

√

ξxk ·
√

2 ln(t)

nx,t

≤√
ρ ·

∑

k∈Kx

ξxk ·
√

2

βx

=
∆x

2
,

where we use (10), Lemma 6 for each k ∈ Kx, the Cauchy−Schwarz inequality, and the fact that a basis

involves at most ρ arms. Along the same lines as for Lemma 5, the probability of events (i) and (ii) can be

bounded by ∼ ρ/t2 in the same fashion, irrespective of how many times x and x∗ have been selected in the

past. For example for event (i), this is because if objx,t ≥ objx +Ex,t, then there must exist k ∈ Kx such

that r̄k,t ≥ µr
k + ǫk,t, but any of these events have individual probability at most ∼ 1/t2 by Lemma 1. Indeed

otherwise, if r̄k,t <µr
k + ǫk,t for all k ∈Kx, we would have:

objx,t − objx =
∑

k∈Kx

(r̄k,t −µr
k) · ξxk

<
∑

k∈Kx

ǫk,t · ξxk =Ex,t,

a contradiction
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Lemma 8 used in combination with Lemma 7 shows that a suboptimal basis is selected at most O(ln(B))
times. To establish the regret bound, what remains to be done is to lower bound the expected total payoff

derived when selecting any of the optimal bases. This is more involved than in the case of a single limited

resource because the load balancing step comes into play at this stage.

THEOREM 3. We have:

RB(1),··· ,B(C) ≤ 16
ρ ·∑C

i=1 b(i)

ǫ
· (

∑

x∈B |∆x>0

1

∆x

) · ln(
∑C

i=1 b(i) ·B
ǫ

+1)+O(1).

Sketch of proof. The proof proceeds along the same lines as for Theorem 1. We build upon (4):

RB(1),··· ,B(C) ≤B ·
K
∑

k=1

µr
k · ξx

∗

k −E[
τ∗
∑

t=1

rat,t] +O(1)

=B ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B

K
∑

k=1

µr
k ·E[nx

k,τ∗ ] +O(1).

Using the properties of the load balancing algorithm established in Lemma 6, we derive:

RB(1),··· ,B(C) ≤B ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B
{ E[nx,τ∗]
∑K

k=1 ξ
x
k

· (
K
∑

k=1

µr
k · ξxk )}+O(1)

= (
K
∑

k=1

µr
k · ξx

∗

k ) · (B−
∑

x∈B |∆x=0

E[nx,τ∗]
∑K

k=1 ξ
x
k

)

−
∑

x∈B |∆x>0

{(
K
∑

k=1

µr
k · ξxk ) ·

E[nx,τ∗]
∑K

k=1 ξ
x
k

}+O(1).

Now observe that, by definition, at least one resource is exhausted at time τ∗. Hence, there exists i ∈
{1, · · · ,C} such that:

B(i)≤
∑

x∈B

∑

k∈Kx

ck(i) ·nx
k,τ∗

≤O(1)+
∑

x∈B

nx,τ∗

∑K

k=1 ξ
x
k

·
∑

k∈Kx

ck(i) · ξxk

≤O(1)+ b(i) ·
∑

x∈B

nx,τ∗

∑K

k=1 ξ
x
k

,

where we use Lemma 6 again and the fact that any basis x ∈ B satisfies all the constraints of (3). We

conclude that:
∑

x∈B |∆x=0

nx,τ∗

∑K

k=1 ξ
x
k

≥B−
∑

x∈B |∆x>0

nx,τ∗

∑K

k=1 ξ
x
k

+O(1).

Taking expectations on both sides and plugging the result back into the regret bound yields:

RB(1),··· ,B(C) ≤
∑

x∈B |∆x>0

∆x
∑K

k=1 ξ
x
k

·E[nx,τ∗ ] +O(1).

Using Lemma 7, Lemma 8, and the concavity of the logarithmic function, we obtain:

RB(1),··· ,B(C) ≤ 16ρ · (
∑

x∈B |∆x>0

∑K

k=1 ξ
x
k

∆x

) · ln(
∑C

i=1 b(i) ·B
ǫ

+1)

+
π2

3
ρ · (

∑

x∈B |∆x>0

∆x
∑K

k=1 ξ
x
k

)+O(1)

which yields the claim since ∆x ≤
∑K

k=1 µ
r
k ·ξx

∗

k ≤∑C

i=1 b(i)/ǫ,
∑K

k=1 ξ
x
k ≥ b, and

∑K

k=1 ξ
x
k ≤

∑C

i=1 b(i)/ǫ.
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We point out that, if time is a limited resource with a time horizon T , we can also derive the (possibly better)

regret bound:

RB(1),··· ,B(C) ≤ 16ρ · (
∑

x∈B |∆x>0

1

∆x

) · ln(T )+O(1).

Since the number of feasible bases to (3) is at most
(

K+ρ
K

)

≤ 2Kρ, we get the distribution-dependent regret

bound O(ρ ·Kρ · ln(B)/∆) where ∆ = minx∈B |∆x>0∆x. In Section A of the Appendix, we introduce

an alternative class of load balancing algorithms which yields a better dependence on K and C with a

regret bound of order O(ρ3 ·K · ln(B)/∆2) provided that there is a unique optimal basis to (3). Along the

sames lines as in Section 4, the distribution-dependent bound of Theorem 3 almost immediately implies a

distribution-free one.

THEOREM 4. We have:

RB(1),··· ,B(C) ≤ 4

√

ρ · |B| · (
∑C

i=1 b(i) ·B
ǫ

+1) · ln(
∑C

i=1 b(i) ·B
ǫ

+1)+O(1).

Sketch of proof. The proof is along the same lines as for the case of a single limited resource, we start

from the penultimate inequality derived in the proof sketch of Theorem 3 and apply Lemma 8 only if ∆x is

big enough, taking into account the fact that
∑

x∈BE[nx,τ∗]≤E[τ∗]≤∑C

i=1 b(i) ·B/ǫ+1.

We conclude that RB(1),··· ,B(C) = O(
√

ρ ·Kρ ·B · ln(B)), where the hidden constant factors are indepen-

dent of the underlying distributions (νk)k=1,··· ,K . If time is a limited resource, we can also derive the (pos-

sibly better) regret bound:

RB(1),··· ,B(C) ≤ 4
√

ρ · |B| ·T · ln(T )+O(1).

In any case, we stress that the dependence on K and C is not optimal since Badanidiyuru et al. [8] and

Agrawal and Devanur [1] obtain a Õ(
√
K ·B) bound on regret, where the Õ notation hides factors logarith-

mic in B. Observe that the regret bounds derived in this section do not vanish with b. This can be remedied

by strengthening Assumption 2, additionally assuming that ck,t(i) > 0 for any arm k ∈ {1, · · · ,K} and

resource i ∈ {1, · · · ,C}. In this situation, we can refine the analysis and substitute
∑C

i=1 b(i) with b in the

regret bounds of Propositions 3 and 4 which become scale-free.

Applications. BwK problems where the amounts of resources consumed as a result of pulling an arm

are deterministic find applications in network revenue management of perishable goods, shelf optimization

of perishable goods, and wireless sensor networks, as detailed in Section 2.

6. A time horizon and another limited resource. In this section, we investigate the case of two lim-

ited resources, one of which is assumed to be time, with a time horizon T , while the consumption of the

other is stochastic and constrained by a global budget B. To simplify the notations, we omit the indices

identifying the resources since the second limited resource is time and we write µc
k, ck,t, c̄k,t, B, and T as

opposed to µc
k(1), ck,t(1), c̄k,t(1), B(1), and B(2). Moreover, we refer to resource i= 1 as “the” resource.

Observe that, in the particular setting considered in this section, τ∗ = min(τ(B), T + 1) with τ(B) =
min{t ∈ N | ∑t

τ=1 caτ ,τ > B}. Note that the budget constraint is not limiting if B ≥ T , in which case the

problem reduces to the standard MAB problem. Hence, without loss of generality under Assumption 1, we

assume that the budget scales linearly with time, i.e. B = b ·T for a fixed constant b ∈ (0,1), and we study

the asymptotic regime T →∞. Motivated by technical considerations, we make two additional assumptions

for the particular setting considered in this section that are perfectly reasonable in many applications, such

as in repeated second-price auctions, dynamic procurement, and dynamic pricing, as detailed in the last

paragraph of this section.

ASSUMPTION 4. There exists σ > 0 such that µr
k ≤ σ ·µc

k for any arm k ∈ {1, · · · ,K}.
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ASSUMPTION 5. The decision maker knows κ> 0 such that:

|µr
k −µr

l | ≤ κ · |µc
k −µc

l | ∀(k, l)∈ {1, · · · ,K}2,

ahead of round 1.

Note that σ, as opposed to κ, is not assumed to be known to the decision maker. Assumption 4 is relatively

weak and is always satisfied in practical applications. In particular, note that if µc
k > 0 for all arms k ∈

{1, · · · ,K}, we can take σ=1/mink=1,··· ,K µc
k.

Specification of the algorithm. We implement UCB-Simplex with λ = 1 + 2κ, η1 = 1, η2 = 0, and

an initialization step which consists in pulling each arm once. Because the amount of resource consumed

at each round is a random variable, a feasible basis for (8) may not be feasible for (3) and conversely. In

particular, x∗ may not be feasible for (8), thus effectively preventing it from being selected at Step-Simplex,

and an infeasible basis for (3) may be selected instead. This is in contrast to the situation studied in Section

5 and this motivates the choice η1 > 0 to guarantee that any feasible solution to (3) will be feasible to (8)

with high probability at any round t.
Just like in Section 5, we need to specify Step-Load-Balance because a basis selected at Step-Simplex

may involve up to two arms. To simplify the presentation, we introduce a dummy arm k = 0 with reward

0 and resource consumption 0 (pulling this arm corresponds to skipping the round) and K dummy arms

k = K + 1, · · · ,2K with reward identical to arm K − k but resource consumption 1 so that any basis

involving a single arm can be mapped to an “artificial” one involving two arms. Note, however, that we do

not introduce new variables ξk in (8) for these arms as they are only used for mathematical convenience

in Step-Load-Balance once a basis has been selected at Step-Simplex. Specifically, if a basis xt involving

a single arm determined by Kxt = {kt} and Cxt = {1} (resp. Cxt = {2}) is selected at Step-Simplex, we

map it to the basis x′
t determined by Kx′t

= {0, kt} (resp. {kt,K + kt}) and Cx′t
= {1,2}. We then use a

load balancing algorithm specific to this basis, denoted by Axt , to determine which of the two arms in Kx′t
to pull. Similarly as in Section 5, using load balancing algorithms that are decoupled from one another is

crucial because the decision maker can never identify the optimal bases with absolute certainty. This implies

that each basis should be treated as potentially optimal when balancing the load between the arms, but this

inevitably causes interference issues as an arm may be involved in several bases. Compared to Section 5, we

face an additional challenge when designing the load balancing algorithms: the optimal load balances are

initially unknown to the decision maker. It turns out that we can still approximately achieve the unknown

optimal load balances by enforcing that, at any round t, the total amount of resource consumed remains

close to the pacing target b · t with high probability, as precisely described below.

Algorithm: Load balancing algorithm Ax for any basis x

For any time period t, define bx,t as the total amount of resource consumed when selecting x in the past

t− 1 rounds. Suppose that x is selected at time t. Without loss of generality, write Kx = {k, l} with

c̄k,t − ǫk,t ≥ c̄l,t − ǫl,t. Pull arm k if bx,t ≤ nx,t · b and pull arm l otherwise.

Observe that a basis x with Kx = {k, l} is feasible for (3) if either µc
k > b > µc

l or µc
l > b > µc

k. Assuming

we are in the first situation, the exploration and exploitation terms defined in Section 3 specialize to:

objx,t = ξxl,t · r̄l,t + ξxk,t · r̄k,t and Ex,t = λ · (ξxl,t · ǫl,t + ξxk,t · ǫk,t)

with:

ξxl,t =
(c̄k,t − ǫk,t)− b

(c̄k,t − ǫk,t)− (c̄l,t− ǫl,t)
and ξxk,t =

b− (c̄l,t− ǫl,t)

(c̄k,t − ǫk,t)− (c̄l,t− ǫl,t)
,

provided that c̄k,t − ǫk,t > b> c̄l,t − ǫl,t. Moreover, their offline counterparts are given by:

objx = ξxl ·µr
l + ξxk ·µr

k, ξ
x
l =

µc
k − b

µc
k −µc

l

, and ξxk =
b−µc

l

µc
k −µc

l

.
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Regret Analysis. We start by pointing out that, in degenerate scenarios, using the linear relaxation (3)

as an upper bound on EROPT(B,T ) already dooms us to Ω(
√
T ) regret bounds. Precisely, if there exists a

unique optimal basis x∗ to (3) that happens to be degenerate, i.e. Kx∗ = {k∗} (pre-mapping) with µc
k∗ = b,

then, in most cases, T · objx∗ ≥EROPT(B,T )+Ω(
√
T ) as shown below.

LEMMA 9. If there exists k∗ ∈ {1, · · · ,K} such that: (i) the i.i.d. process (ck∗,t)t∈N has positive vari-

ance, (ii) µc
k∗ = b, and (iii) (ξk)k=1,··· ,K determined by ξk∗ = 1 and ξk = 0 for k 6= k∗ is the unique optimal

solution to (3), then there exists a subsequence of (T ·objx∗−EROPT(B,T )√
T

)T∈N that does not converge to 0.

Sketch of proof. For any time horizon T ∈ N and any arm k ∈ {1, · · · ,K}, we denote by nopt
k,T the

expected number of times arm k is pulled by the optimal non-anticipating algorithm when the time horizon

is T and the budget is B = b ·T . We expect that consistently pulling arm k∗ is near-optimal. Unfortunately,

this is also nothing more than an i.i.d. strategy which implies, along the same lines as in Lemma 3, that

E[τ∗] = T −Ω(
√
T ) so that the total expected payoff is E[τ∗] ·µr

k∗ = T ·objx∗ −Ω(
√
T ). To formalize these

ideas, we study two cases: T − nopt
k∗,T =Ω(

√
T ) (Case A) and T − nopt

k∗,T = o(
√
T ) (Case B) and we show

that EROPT(B,T ) = T · objx∗ −Ω(
√
T ) in both cases. In Case A, this is because the optimal value of (3)

remains an upper bound on the maximum total expected payoff if we add the constraint ξk∗ ≤ nopt
k∗,T/T to

the linear program (3) by definition of nopt
k∗,T . Since the constraint ξk∗ ≤ 1 is binding for (3), the optimal

value of this new linear program can be shown to be smaller than objx∗ −Ω((T − nopt
k∗,T )/T ) (by strong

duality and strict complementary slackness). In Case B, up to an additive term of order o(
√
T ) in the final

bound, the optimal non-anticipating algorithm is equivalent to consistently pulling arm k∗, which is an i.i.d.

strategy so the study is very similar to that of Lemma 3.

Dealing with these degenerate scenarios thus calls for a completely different approach than the one taken on

in the BwK literature and we choose instead to rule them out in such a way that there can be no degenerate

optimal basis to (3).

ASSUMPTION 6. We have |µc
k − b|> 0 for any arm k ∈ {1, · · · ,K}.

We use the shorthand notation ǫ=mink=1,··· ,K |µc
k − b|. Assumption 6 is equivalent to assuming that any

basis for (3) is non-degenerate. This assumption can be relaxed to some extent at the price of more tech-

nicalities. However, in light of Lemma 9, the minimal assumption is that there is no degenerate optimal

basis to (3). As a final remark, we stress that Assumption 6 is only necessary to carry out the analysis but

Step-Simplex can be implemented in any case as ǫ is not assumed to be known to the decision maker.

We are now ready to establish regret bounds. Without loss of generality, we can assume that any pseudo-

basis for (3) involves two arms, one of which may be a dummy arm introduced in the specification of the

algorithm detailed above. As stressed at the beginning of this section, UCB-Simplex may sometimes select

an infeasible basis or even a pseudo-basis x with det(Ax) = 0 (i.e. such that µc
k = µc

l assuming Kx = {k, l}).

Interestingly the load balancing algorithm plays a crucial role to guarantee that this does not happen very

often.

LEMMA 10. For any basis x /∈ B, we have:

E[nx,T ]≤
26

ǫ3
· ln(T )+ 10π2

3ǫ2
.

The same inequality holds if x is a pseudo-basis but not a basis for (3).

Proof. We use the shorthand notation βx = 25/ǫ3. Without loss of generality, we can assume that

Kx = {k, l} with µc
k, µ

c
l > b (the situation is symmetric if the reverse inequality holds). Along the same lines

as in Lemma 5, we only have to bound by a constant the probability that x is selected at any round t given

that x has already been selected at least βx · ln(t) times. If x is selected at round t and nx,t ≥ βx · ln(t),
then bx,t must be larger than nx,t · b by at least a margin of ∼ 1/ǫ2 · ln(t) with high probability given that

µc
k, µ

c
l > b. Moreover, at least one arm, say k, has been pulled at least ∼ 1/ǫ3 · ln(t) times and, as a result,
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c̄k,τ − ǫk,τ ≥ b with high probability for the last s∼ 1/ǫ2 · ln(t) rounds τ = τ1, · · · , τs where x was selected.

This implies that arm l must have been pulled at least ∼ 1/ǫ2 · ln(t) times already by definition of the load

balancing algorithm but then we have c̄l,t − ǫl,t ≥ b with high probability and x cannot be feasible for (8)

at time t with high probability.

What remains to be done is to: (i) show that suboptimal bases are selected at most O(ln(T )) times and (ii)

lower bound the expected total payoff derived when selecting any of the optimal bases. The major diffi-

culty lies in the fact that the amounts of resource consumed, the rewards obtained, and the stopping time

are correlated in a non-trivial way through the budget constraint and the decisions made in the past. This

makes it difficult to study the expected total payoff derived when selecting optimal bases independently

from the amounts of resource consumed and the rewards obtained when selecting suboptimal ones. How-

ever, a key point is that, by design, the pulling decision made at Step-Load-Balance is based solely on the

past history associated with the basis selected at Step-Simplex because the load balancing algorithms are

decoupled. For this reason, the analysis proceeds in two steps irrespective of the number of optimal bases.

In a first step, we show that, for any basis x for (3), the amount of resource consumed per round when

selecting x remains close to the pacing target b with high probability. This enables us to show that the ratios

(E[nx
k,T ]/E[n

x
l,T ])k,l∈Kx are close to the optimal ones (ξxk/ξ

x
l )k,l∈Kx , as precisely stated below.

LEMMA 11. For any basis x∈ B and time period t, we have:

P[|bx,t −nx,t · b| ≥ u+(
4

ǫ
)2 · ln(t)]≤ 4

ǫ2
· exp(−ǫ2 ·u)+ 8

ǫ2 · t2 ∀u≥ 1,

which, in particular, implies that:

E[nx
k,T ]≥ ξxk ·E[nx,T ]− 13/ǫ5 − 16/ǫ3 · ln(T )

E[nx
l,T ]≥ ξxl ·E[nx,T ]− 13/ǫ5 − 16/ǫ3 · ln(T ). (11)

Sketch of proof. Without loss of generality, we can assume that Kx = {k, l} with µc
k > b> µc

l . Observe

that, if the decision maker knew that µc
k > b > µc

l ahead of round 1, he would always pull the “correct”

arm in order not to deviate from the pacing target nx,t · b and |bx,t −nx,t · b| would remain small with high

probability given Assumption 6. However, because this information is not available ahead of round 1, the

decision maker is led to pull the incorrect arm when arm k and l are swapped, in the sense that c̄k,t− ǫk,t ≤
c̄l,t−ǫl,t. Fortunately, at any time t, there could have been at most 1/ǫ2 · ln(t) swaps with probability at least

∼ 1− 1/t2 given Assumption 6. To derive (11), we use: |E[bx,T −nx,T · b]| ≤
∫ T

0
P[|bx,T −nx,T · b| ≥ u]du

and E[bx,T ] = µk
c ·E[nx

k,T ] +µl
c ·E[nx

l,T ].

The next step is to show, just like in Section 5, that any suboptimal feasible basis is selected at most

O(ln(T )) times on average. Interestingly, the choice of the load balancing algorithm plays a minor role in

the proof. Any load balancing algorithm that pulls each arm involved in a basis at least a constant fraction

of the time this basis is selected does enforce this property.

LEMMA 12. For any suboptimal basis x∈ B, we have:

E[nx,T ]≤ 29
λ2

ǫ3
· ln(T )
(∆x)2

+
10π2

ǫ2
.

Sketch of proof. We use the shorthand notation βx = 28/ǫ3 · (λ/∆x)
2. Without loss of generality, we

can assume that Kx∗ = {k∗, l∗} with µc
k∗ > b>µc

l∗ and Kx = {k, l} with µc
k > b> µc

l . Along the same lines

as in Lemma 5, we only have to bound by a constant the probability that x is selected at any round t given

that x has already been selected at least βx · ln(t) times. If x is selected at time t, x is optimal for (8). Observe

that (ξx
∗

k )k=1,··· ,K is a feasible solution to (8) when c̄k∗,t− ǫk∗,t ≤ µc
k∗ and c̄l∗,t− ǫl∗,t ≤ µc

l∗ , which happens

with probability at least ∼ 1− 1/t2. As a result, objx,t+Ex,t ≥ objx∗ when additionally r̄k∗,t+ ǫk∗,t ≥ µr
k∗
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and r̄l∗,t+ ǫl∗,t ≥ µr
l∗ , which also happens with probability at least ∼ 1−1/t2. If objx,t+Ex,t ≥ objx∗ then

we have either (i) objx,t ≥ objx+Ex,t or (ii) objx∗ < objx+2Ex,t. Observe that (ii) can only happen with

probability at most ∼ 1/t2 given that nx,t ≥ βx · ln(t) because (ii) implies that either nl,t ≤ 8(λ/∆x)
2 · ln(t)

or nk,t ≤ 8(λ/∆x)
2 · ln(t) but the load balancing algorithm guarantees that each arm is pulled a fraction

of the time x is selected (using Lemma 11). As for (i), if objx,t ≥ objx +Ex,t, then, using Assumption 4,

either r̄k,t ≥ µr
k+ ǫk,t, c̄k,t /∈ [µc

k− ǫk,t, µ
c
k + ǫk,t], r̄l,t ≥ µr

l + ǫl,t, or c̄l,t /∈ [µc
l − ǫl,t, µ

c
l + ǫl,t] but all of these

events have individual probability at most ∼ 1/t2 by Lemma 1.

In a last step, we show, using Lemma 11, that, at the cost of an additive logarithmic term in the regret bound,

we may assume that the game lasts exactly T rounds. This enables us to combine Lemmas 10, 11, and 12

to establish a distribution-dependent regret bound.

THEOREM 5. We have:

RB,T ≤ 29
λ2

ǫ3
· (

∑

x∈B |∆x>0

1

∆x

) · ln(T )+O(
K2 ·σ
ǫ3

· ln(T )),

where the O notation hides universal constant factors.

Sketch of proof. We build upon (4):

RB,T ≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
τ∗
∑

t=1

rat,t] +O(1)

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +σ ·E[(
T
∑

t=1

cat,t −B)+] +O(1),

where we use Assumption 4 for the second inequality. Moreover:

E[(
T
∑

t=1

cat,t −B)+]≤
∑

x∈B
E[|bx,T −nx,T · b|] +

∑

x/∈B

E[nx,T ]

+
∑

x pseudo-basis for (3)
with det(Ax)=0

E[nx,T ] =O(
K2

ǫ3
ln(T )),

using Lemmas 10 and 11. Plugging this last inequality back into the regret bound yields:

RB,T ≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +O(
K2 ·σ
ǫ3

ln(T ))

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B

K
∑

k=1

µr
k ·E[nx

k,T ] +O(
K2 ·σ
ǫ3

ln(T ))

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B
(

K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

K2 ·σ
ǫ3

ln(T ))

=
K
∑

k=1

µr
k · ξx

∗

k · (T −
∑

x∈B |∆x=0

E[nx,T ])−
∑

x∈B |∆x>0

(
K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

K2 ·σ
ǫ3

ln(T ))

=
K
∑

k=1

µr
k · ξx

∗

k · (
∑

x∈B |∆x>0

E[nx,T ] +
∑

x/∈B

E[nx,T ] +
∑

x pseudo-basis for (3)
with det(Ax)=0

E[nx,T ])

−
∑

x∈B |∆x>0

(
K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

K2 ·σ
ǫ3

ln(T ))
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≤
∑

x∈B |∆x>0

∆x ·E[nx,T ] +O(
K2 ·σ
ǫ3

ln(T ))

≤ 29
λ2

ǫ3
· (

∑

x∈B |∆x>0

1

∆x

) · ln(T )+O(
K2 ·σ
ǫ3

ln(T )),

where we use Lemma 11 for the third inequality, Lemma 10 along with
∑K

k=1 µ
r
k · ξx

∗

k ≤∑K

k=1 ξ
x∗

k ≤ 1 for

the fourth inequality, and Lemma 12 for the last inequality.

Since there are at most 2K2 feasible bases, we get the regret bound O(K2 · (1/∆+ σ/ǫ3) · ln(T )), where

∆=minx∈B |∆x>0∆x. Along the sames lines as in Sections 4 and 5, pushing the analysis further almost

immediately yields a distribution-free regret bound.

THEOREM 6. We have:

RB,T ≤ 25
λ

ǫ3/2
·
√

|B| ·T · ln(T )+O(
K2 ·σ
ǫ3

ln(T )),

where the O notation hides universal constant factors.

Sketch of proof. The proof is along the same lines as for Theorems 2 and 4, we start from the penul-

timate inequality derived in the proof sketch of Theorem 5 and apply Lemma 12 only if ∆x is big enough,

taking into account the fact that
∑

x∈BE[nx,T ]≤ T .

We conclude that RB,T =O(
√

K2 ·T · ln(T )), where the hidden factors are independent of the underlying

distributions (νk)k=1,··· ,K . Just like in Section 5, we stress that the dependence on K is not optimal since

Badanidiyuru et al. [8] and Agrawal and Devanur [1] obtain a Õ(
√
K ·T ) bound on regret, where the Õ

notation hides factors logarithmic in T . Observe that the regret bounds derived in Theorems 5 and 6 do

not vanish with b, which is not the expected behavior. This is a shortcoming of the analysis that can easily

be remedied when mink=1,··· ,K µc
k > 0 provided that instead of pulling the dummy arm 0 we always pull

the other arm involved in the basis (i.e. we never skip rounds). Note that not skipping rounds can only

improve the regret bounds derived in Theorems 5 and 6: arm 0 was introduced only in order to harmonize

the notations for mathematical convenience.

THEOREM 7. Relax Assumption 6 and redefine ǫ=mink=1,··· ,K µc
k. Suppose that b≤ ǫ/2 and that we

never skip rounds, then we have:

RB,T ≤ 212
λ2

ǫ3
· (

∑

x∈B |∆x>0

1

∆x

) · ln(B+1

ǫ
)+O(

K2 ·κ
ǫ3

· ln(B+1

ǫ
))

and

RB,T ≤ 26
λ

ǫ3/2
·
√

K · B+1

ǫ
· ln(B+1

ǫ
)+O(

K2 ·κ
ǫ3

· ln(B+1

ǫ
)),

where the O notations hide universal constant factors.

Applications. Similarly, as in the case of a single resource, Assumptions 4 and 5 are natural when

bidding in repeated second-price auctions if the auctioneer sets a reserve price R (which is common practice

in sponsored search auctions). Indeed, we have:

|E[ck,t]−E[cl,t]|=E[mt ·1bk≥mt>bl ]
≥R ·E[1bk≥mt>bl ]
≥R ·E[vt ·1bk≥mt>bl ] =R · |E[rk,t]−E[rl,t]|,
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for any pair of arms (k, l) ∈ {1, · · · ,K} with bk ≥ bl. Hence, Assumption 4 (resp. 5) is satisfied with

σ= 1/R (resp. κ=1/R).

In dynamic procurement, Assumptions 4 and 5 are satisfied provided that the agents are not willing to

sell their goods for less than a known price P . Indeed, in this case, pulling any arm k associated with a price

pk ≤ P is always suboptimal and we have:

|E[ck,t]−E[cl,t]|= pk ·P[pk ≥ vt]− pl ·P[pl ≥ vt]
≥ pk ·P[pk ≥ vt > pl]
≥P ·P[pk ≥ vt > pl] =P · |E[rk,t]−E[rl,t]|,

for any pair of arms (k, l) ∈ {1, · · · ,K} with pk ≥ pl ≥ P . Hence, Assumption 4 (resp. 5) is satisfied with

σ= 1/P (resp. κ= 1/P ).

In dynamic pricing, Assumptions 4 and 5 are satisfied if the distribution of valuations has a positive

probability density function f(·). Indeed, in this case, we have:

|E[rk,t]−E[rl,t]|= |pl ·P[pl ≤ vt]− pk ·P[pk ≤ vt]|
= |pl ·P[pl ≤ vt <pk] + (pl − pk) ·P[pk ≤ vt]|
≤ max

r=1,··· ,K
pr ·P[pl ≤ vt <pk] + |pk − pl|

≤ ( max
r=1,··· ,K

pr +
1

inf f(·)) ·P[pl ≤ vt < pk]

= ( max
r=1,··· ,K

pr +
1

inf f(·)) · |E[rk,t]−E[rl,t]|,

for any pair of arms (k, l) ∈ {1, · · · ,K} with k ≥ l. Hence, Assumption 4 (resp. 5) is satisfied with σ =
maxk=1,··· ,K pk +1/ inf f(·) (resp. κ=maxk=1,··· ,K pk +1/ inf f(·)).

7. Arbitrarily many limited resources. In this section, we tackle the general case of arbitrarily many

limited resources. Additionally, we assume that one of them is time, with index i=C, but this assumption

is almost without loss of generality, as detailed at the end of this section. To simplify the presentation, we

consider the regime K ≥C, which is the most common in applications. This implies that |Kx|= |Cx| ≤C
for any pseudo-basis x. We also use the shorthand notation Āt = (c̄k,t(i))(i,k)∈{1,··· ,C}×{1,··· ,K} at any round

t. For similar reasons as in Section 6, we are led to make two additional assumptions which are discussed

in the last paragraph of this section.

ASSUMPTION 7. There exists σ > 0 such that rk,t ≤ σ · min
i=1,··· ,C

ck,t(i) for any arm k ∈ {1, · · · ,K} and

for any round t∈N.

Note that Assumption 7 is stronger than Assumption 4 given that the amounts of resources consumed at

each round have to dominate the rewards almost surely, as opposed to on average. Assumption 7 is not

necessarily satisfied in all applications but it simplifies the analysis and can be relaxed at the price of an

additive term of order O(ln2(T )) in the final regret bounds, see the last paragraph of this section.

ASSUMPTION 8. There exists ǫ > 0, known to the decision maker ahead of round 1, such that every

basis x for (3) is ǫ-non-degenerate for (3) and satisfy |det(Ax)| ≥ ǫ.

Without loss of generality, we assume that ǫ≤ 1. Observe that Assumption 8 generalizes Assumption 6 but

is more restrictive because ǫ is assumed to be known to the decision maker initially. Just like in Section

6, this assumption can be relaxed to a large extent. For instance, if ǫ is initially unknown, taking ǫ as a

vanishing function of T yields the same asymptotic regret bounds. However, note that Lemma 9 carries over

to this more general setting and, as a result, the minimal assumption we need to get logarithmic rates is that

any optimal basis for (3) is non-degenerate.
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Specification of the algorithm. We implement UCB-Simplex with λ = 1 + 2(C + 1)!2/ǫ, ηi = 0 for

any i ∈ {1, · · · ,C}, and an initialization step which consists in pulling each arm 28(C+2)!4/ǫ6 · ln(T )
times in order to get i.i.d. samples. Hence, Step-Simplex is run for the first time after round tini = K ·
28(C+2)!4/ǫ6 · ln(T ). Compared to Section 6, the initialization step plays as a substitute for the choice ηi >
0 which was meant to incentivize exploration. This significantly simplifies the analysis but the downside is

that ǫ has to be known initially. Similarly, as in Section 6, we introduce a dummy arm which corresponds to

skipping the round (i.e. pulling this arm yields a reward 0 and does not consume any resource) so that any

basis can be mapped to one for which the time constraint is always binding, i.e. without loss of generality

we assume that C ∈ Cx for any pseudo-basis x. Following the ideas developed in Section 6, we design

load balancing algorithms for any basis x that pull arms in order to guarantee that, at any round t, the total

amount of resource i consumed remains close to the target t · b(i) with high probability for any resource

i∈ Cx. This is more involved that in Section 6 since we need to enforce this property for multiple resources

but, as we show in this section, this can be done by perturbing the probability distribution solution to (8)

taking into account whether we have over- or under-consumed in the past for each binding resource i∈ Cxt .

Algorithm: Load balancing algorithm Ax for any basis x

For any time period t > tini and i∈ Cx −{C}, define bx,t(i) as the total amount of resource i consumed

when selecting basis x in the past t− 1 rounds. Suppose that basis x is selected at time t and define the

vector ext by exC,t = 0 and exi,t =−1 (resp. exi,t =1) if bx,t(i)≥ nx,t · b(i) (resp. bx,t(i)<nx,t · b(i)) for any

i∈ Cx −{C}. Since x is selected at round t, Āx,t is invertible and we can define, for any δ ≥ 0,

pxk,t(δ) = (Ā−1
x,t(bCx + δ · ext ))k for k ∈Kx and pxk,t(δ) = 0 otherwise, which together define the probability

distribution pxt (δ) = (pxk,t(δ))k∈{1,··· ,K}. Define

δ∗x,t = max
δ≥0

(Ātp
x
t (δ))i≤b(i),i/∈Cx
pxt (δ)≥0

δ

and pxt = pxt (δ
∗
x,t). Note that δ∗x,t is well defined as x must be feasible for (8) if it is selected at

Step-Simplex. Pull an arm at random according to the distribution pxt .

Observe that the load balancing algorithms generalize the ones designed in Section 6 (up to the change

ηi = 0). Indeed, when there is a single limited resource other than time, the probability distribution pxt is

a Dirac supported at the arm with smallest (resp. largest) empirical cost when bx,t ≥ nx,t · b (resp. bx,t <
nx,t ·b). Similarly, as in Section 5, the load balancing algorithms Ax may require a memory storage capacity

exponential in C and polynomial in K , but, in practice, we expect that only a few bases will be selected at

Step-Simplex, so that a hash table is an appropriate data structure to store the sequences (bx,t(i))i∈Cx . Note,

however, that the load balancing algorithms are computationally efficient because pxt can be computed in

O(C2) running time if Ā−1
x,t is available once we have computed an optimal basic feasible solution to (8),

which is the case if we use the revised simplex algorithm.

Regret analysis. The regret analysis follows the same recipe as in Section 6 but the proofs are more

technical and are thus deferred to Section F of the Appendix. First, we show that the initialization step

guarantees that infeasible bases or pseudo-basesx with det(Ax) = 0 cannot be selected more than O(ln(T ))
times on average at Step-Simplex.

LEMMA 13. For any basis x /∈ B, we have:

E[nx,T ]≤ 29
(C+3)!4

ǫ6
.

The same inequality holds if x is a pseudo-basis but not a basis for (3).
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The next step is to show that the load balancing algorithms guarantee that, for any basis x, the amount

of resource i ∈ Cx (resp. i /∈ Cx) consumed per round when selecting x remains close to (resp. below) the

pacing target b(i) with high probability. This enables us to show that the ratios (E[nx
k,T ]/E[n

x
l,T ])k,l∈Kx are

close to the optimal ones (ξxk/ξ
x
l )k,l∈Kx .

LEMMA 14. For any feasible basis x and time period t, we have:

P[|bx,t(i)−nx,t · b(i)| ≥ u]≤ 25
(C +1)!2

ǫ4
· exp(−u · ( ǫ2

4 · (C+1)!
)2)+ 29

(C+3)!4

ǫ6
· 1
T

∀u≥ 1, (12)

for any resource i∈ Cx while

P[bx,t(i)−nx,t · b(i)≥ 28
(C+3)!3

ǫ6
· ln(T )]≤ 210

(C +4)!4

ǫ6 ·T , (13)

for any resource i /∈ Cx. In particular, this implies that:

E[nx
k,T ]≥ ξxk ·E[nx,T ]− 210

(C+3)!4

ǫ9
, (14)

for any arm k ∈Kx.

Next, we show that a suboptimal basis cannot be selected more than O(ln(T )) times on average at Step-

Simplex. Just like in Section 6, the exact definition of the load balancing algorithms has little impact on the

result: we only need to know that, for any feasible basis x, each arm k ∈Kx is pulled at least a fraction of

the time x is selected with high probability.

LEMMA 15. For any suboptimal basis x∈ B, we have:

E[nx,T ]≤ 210
(C +3)!3 ·λ2

ǫ6
· ln(T )
(∆x)2

+211
(C+4)!4

ǫ6
.

We are now ready to derive both distribution-dependent and distribution-independent regret bounds.

THEOREM 8. We have:

RB(1),··· ,B(C−1),T ≤ 210
(C+3)!3 ·λ2

ǫ6
· (

∑

x∈B |∆x>0

1

∆x

) · ln(T )+O(
σ · |B| · (C +3)!4

ǫ6
· ln(T )),

where the O notation hides universal constant factors.

THEOREM 9. We have:

RB(1),··· ,B(C−1),T ≤ 25
(C+3)!2 ·λ

ǫ3
·
√

|B| ·T · ln(T )+O(
σ · |B| · (C +3)!4

ǫ6
· ln(T )),

where the O notation hides universal constant factors.

Since the number of feasible bases is at most 2KC , we get the distribution-dependent regret bound

RB(1),··· ,B(C−1),T = O(KC · (C + 3)!4/ǫ6 · (λ2/∆ + σ) · ln(T )) where ∆ = minx∈B |∆x>0∆x and the

distribution-independent bound RB(1),··· ,B(C−1),T = O((C + 3)!2 · λ/ǫ3 ·
√

KC ·T · ln(T )). We stress that

the dependence on K and C is not optimal since Agrawal and Devanur [1] obtain a Õ(
√
K ·T ) distribution-

independent bound on regret, where the Õ notation hides factors logarithmic in T . Just like in Section 6,

we can also derive regret bounds that vanish with b under the assumption that pulling any arm incurs some

positive amount of resource consumption in expectations for all resources, but this requires a minor tweak

of the algorithm.
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THEOREM 10. Suppose that:

ǫ≤ min
i=1,··· ,C−1
k=1,··· ,K

µc
k(i)

and that b≤ ǫ. If the decision maker artificially constrains himself or herself to a time horizon T̃ = b ·T/ǫ≤
T , then the regret bounds derived in Theorems 8 and 9 hold with T substituted with T̃ .

Similarly, if the decision maker is not constrained by a time horizon, artificially constraining himself or

herself to a time horizon T̃ =mini=1,··· ,C B(i)/ǫ yields the regret bounds derived in Theorems 8 and 9 with

T substituted with T̃ .

Applications. In dynamic pricing and online advertising applications, Assumption 7 is usually not satis-

fied as pulling an arm typically incurs the consumption of only a few resources. We can relax this assumption

but this comes at the price of an additive term of order O(ln2(T )) in the final regret bounds.

THEOREM 11. If Assumption 7 is not satisfied, the regret bounds derived in Theorems 8 and 9 hold

with σ= 0 up to an additive term of order O( (C+4)!4·|B|2
b·ǫ6 · ln2(T )).

As for Assumption 8, the existence of degenerate optimal bases to (3) is determined by a complex interplay

between the mean rewards and the mean amounts of resource consumption. However, we point out that

the set of parameters (µr
k)k=1,··· ,K and (µc

k(i))k=1,··· ,K,i=1,··· ,C that satisfy these conditions has Lebesgue

measure 0, hence such an event is unlikely to occur in practice. Additionally, while ǫ is typically not known

in applications, taking ǫ as a vanishing function of T yields the same asymptotic regret bounds.

8. Concluding remark. In this paper, we develop an algorithm with a O(KC · ln(B)/∆) distribution-

dependent bound on regret, where ∆ is a parameter that generalizes the optimality gap for the standard

MAB problem. It is however unclear whether the dependence on K is optimal. Extensions discussed in

Section A of the Appendix suggest that it may be possible to achieve a linear dependence on K but this

calls for the development of more efficient load balancing algorithms.

Appendix A: Extensions.

A.1. Improving the multiplicative factors in the regret bounds.

A.1.1. A single limited resource whose consumption is deterministic. If the amounts of resource

consumed are deterministic, we can substitute the notation µc
k for ck. Moreover, we can take λ = 1 and,

going through the analysis of Lemma 5, we can slightly refine the regret bound. Specifically, we have

E[nk,τ∗ ] ≤ 16
(ck)

2 · E[ln(τ∗)]

(∆k)
2 + π2

3
, for any arm k such that ∆k > 0. Moreover, τ∗ ≤ B/ǫ+ 1 in this setting

since:

B ≥
τ∗−1
∑

t=1

cat,t ≥ (τ∗ − 1) · ǫ,

by definition of τ∗. As a result, the regret bound derived in Theorem 1 turns into:

RB ≤ 16(
∑

k |∆k>0

1

ck ·∆k

) · ln(B
ǫ
+1)+O(1),

which is identical (up to universal constant factors) to the bound obtained by Tran-Thanh et al. [24]. Note

that this bound is scale-free.
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A.1.2. Arbitrarily many limited resources whose consumptions are deterministic. We propose

another load balancing algorithm that couples bases together. This is key to get a better dependence on K
because, otherwise, we have to study each basis independently from the other ones.

Algorithm: Load balancing algorithm Ax for a feasible basis x∈B.

If x is selected at time t, pull any arm at ∈ argmax
k∈Kx

ξxk
nk,t

.

Observe that this load balancing algorithm is computationally efficient with a O(K) runtime (once we have

computed an optimal basic feasible solution to (8)) and requires O(K) memory space. The shortcoming of

this approach is that, if there are multiple optimal bases to (3), the optimal load balance for each optimal

basis will not be preserved since we take into account the number of times we have pulled each arm when

selecting any basis (for which we strive to enforce different ratios). Hence, the following assumption will

be required for the analysis.

ASSUMPTION 9. There is a unique optimal basis to (3).

Regret Analysis. All the proofs are deferred to Section G. We start by bounding, for each arm k, the

number of times this arm can be pulled when selecting any of the suboptimal bases. This is in stark contrast

with the analysis carried out in Section 5 where we bound the number of times each suboptimal basis has

been selected.

LEMMA 16. For any arm k ∈ {1, · · · ,K}, we have:

E[
∑

x∈B | k∈Kx, x 6=x∗

nx
k,τ∗ ]≤ 16

ρ · (∑C

i=1 b(i))
2

ǫ2
· E[ln(τ

∗)]

(∆k)2
+K · π

2

3
,

where ∆k =minx∈B | k∈Kx, x 6=x∗ ∆x.

In contrast to Section 5, we can only guarantee that the ratios (nx
k,t/n

x
l,t)k,l∈Kx remain close to the optimal

ones (ξxk/ξ
x
l )k,l∈Kx at all times for the optimal basis x= x∗. This will not allow us to derive distribution-free

regret bounds for this particular class of load balancing algorithms.

LEMMA 17. At any time t and for any arm k ∈Kx∗ , we have:

nk,t ≥ nx∗,t ·
ξx

∗

k
∑K

l=1 ξ
x∗
l

− ρ · (
∑

x∈B,x 6=x∗

nx,t+1) (15)

and

nk,t ≤ nx∗,t ·
ξx

∗

k
∑K

l=1 ξ
x∗
l

+
∑

x∈B,x 6=x∗

nx,t+1. (16)

Bringing everything together, we are now ready to establish regret bounds.

THEOREM 12. We have:

RB(1),··· ,B(C) ≤ 32
ρ3 · (∑C

i=1 b(i))
3

ǫ3 · b · (
K
∑

k=1

1

(∆k)2
) · ln(

∑C

i=1 b(i) ·B
ǫ

+1)+O(1),

where the O notation hides universal constant factors.

We derive a distribution-dependent regret bound of order O(ρ3 ·K · ln(B)

∆2 ) where ∆=minx∈B |∆x>0 ∆x but

no non-trivial distribution-free regret bound.
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A.1.3. Arbitrarily many limited resources. A straightforward extension of the load balancing algo-

rithm developed in the case of deterministic resource consumption in Section A.1.2 guarantees that the total

number of times any suboptimal basis is pulled is of order O(K · ln(T )). However, in contrast to Section

A.1.2, this is not enough to get logarithmic regret bounds as ξxk,t fluctuates around the optimal load balance

ξxk,t with a magnitude of order at least ∼ 1/
√
t, and, as a result, the ratios (E[nx

k,T ]/E[n
x
l,T ])k,l∈Kx might be

very different from the optimal ones (ξxk/ξ
x
l )k,l∈Kx .

Algorithm: Load balancing algorithm Ax for a feasible basis x∈B.

If x is selected at time t, pull any arm at ∈ argmax
k∈Kx

ξxk,t
nk,t

.

LEMMA 18. For any arm k ∈ {1, · · · ,K}, we have:

E[
∑

x∈B | k∈Kx,∆x>0

nx
k,T ]≤ 16C ·λ2 · ln(T )

(∆k)2
+212

K · (C +3)!2

ǫ6
,

where ∆k =minx∈B | k∈Kx,∆x>0∆x.

A.2. Relaxing Assumption 1. The regret bounds obtained in Sections 5, 6, and 7 can be extended

when the ratios converge as opposed to being fixed, as precisely stated below, but this requires slightly more

work.

ASSUMPTION 10. For any resource i ∈ {1, · · · ,C}, the ratio B(i)/B(C) converges to a finite value

b(i)∈ (0,1]. Moreover, b= min
i=1,··· ,C

b(i) is a positive quantity.

To state the results, we need to redefine some notations and to work with the linear program:

sup
(ξk)k=1,··· ,K

K
∑

k=1

µr
k · ξk

subject to

K
∑

k=1

µc
k(i) · ξk ≤

B(i)

B(C)
, i= 1, · · · ,C

ξk ≥ 0, k= 1, · · · ,K.

(17)

We redefine B as the set of bases that are feasible to (17) and, for x ∈ B, ∆x is redefined as the optimality

gap of x with respect to (17). We also redefine O = {x ∈ B |∆x = 0} as the set of optimal bases to (17).

Moreover, we define B∞ (resp. O∞) as the set of feasible (resp. optimal) bases to (3) and, for x∈ B∞, ∆∞
x

is the optimality gap of x with respect to (3). Our algorithm remains the same provided that we substitute

b(i) with B(i)/B(C) for any resource i∈ {1, · · · ,C}. Specifically, Step-Simplex consists in solving:

sup
(ξk)k=1,··· ,K

K
∑

k=1

(r̄k,t +λ · ǫk,t) · ξk

subject to

K
∑

k=1

(c̄k,t(i)− ηi · ǫk,t) · ξk ≤
B(i)

B(C)
, i= 1, · · · ,C

ξk ≥ 0, k= 1, · · · ,K

(18)

and Step-Load-Balance is identical up to the substitution of b(i) with B(i)/B(C).
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Regret Analysis. As it turns out, the logarithmic regret bounds established in Theorems 3, 5, and 8 do

not always extend when Assumption 1 is relaxed even though these bounds appear to be very similar to the

one derived in Theorem 1 when there is a single limited resource. The fundamental difference is that the

set of optimal bases may not converge while it is always invariant in the case of a single limited resource.

Typically, the ratios (B(i)/B(C))i=1,···,C may oscillate around (b(i))i=1,··· ,C in such a way that there exist

two optimal bases for (3) while there is a unique optimal basis for this same optimization problem whenever

the right-hand side of the inequality constraints is slightly perturbed around this limit. This alternately

causes one of these two bases to be slightly suboptimal, a situation difficult to identify and to cope with

for the decision maker. Nevertheless, this difficulty does not arise in several situations of interest which

generalize Assumption 1, as precisely stated below. The proofs are deferred to Section G.

Arbitrarily many limited resources whose consumptions are deterministic.

THEOREM 13. Suppose that Assumption 10 holds. If there exists a unique optimal basis to (3) or if

B(i)/B(C)− b(i)=O(ln(B(C))/B(C)) for all resources i∈ {1, · · · ,C − 1} then, we have:

RB(1),··· ,B(C) =O(
ρ ·∑C

i=1 b(i)

ǫ · b · (
∑

x∈B∞ |∆∞
x >0

1

∆∞
x

) · ln(
∑C

i=1 b(i) ·B(C)

ǫ
+1)+ |O∞| · ln(B(C))

ǫ · b ),

where the O notation hides universal constant factors.

A time horizon and another limited resource.

THEOREM 14. Suppose that Assumptions 4, 5, and 6 hold and that the ratio B/T converges to b ∈
(0,1]. If there exists a unique optimal basis to (3) or if B/T − b=O(ln(T )/T ), then, we have:

RB,T =O(
λ2

ǫ3
· (

∑

x∈B∞ |∆∞
x >0

1

∆∞
x

) · ln(T )+ K2 ·σ
ǫ3

· ln(T )),

where the O notation hides universal constant factors.

Arbitrarily many limited resources with a time horizon.

THEOREM 15. Suppose that Assumptions 7, 8, and 10 hold. If there exists a unique optimal basis to (3)

or if B(i)/T − b(i) =O(ln(T )/T ) for all resources i∈ {1, · · · ,C − 1}, then, we have:

RB(1),··· ,B(C−1),T =O(
(C+3)!3 ·λ2

ǫ6
· (

∑

x∈B∞ |∆∞
x >0

1

∆∞
x

) · ln(T )+ σ · |B∞| · (C +3)!4

ǫ6
· ln(T )),

where the O notation hides universal constant factors.

Appendix B: Proofs for Section 3.

B.1. Proof of Lemma 2. The proof can be found in Badanidiyuru et al. [8]. For the sake of complete-

ness, we reproduce it here. The optimization problem (3) is a linear program whose dual reads:

inf
(ζi)i=1,··· ,C

C
∑

i=1

b(i) · ζi

subject to

C
∑

i=1

µc
k(i) · ζi ≥ µr

k, k= 1, · · · ,K

ζi ≥ 0, i= 1, · · · ,C.

(19)
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Observe that (3) is feasible therefore (3) and (19) have the same optimal value. Note that (3) is bounded

under Assumption 2 as ξk ∈ [0, b(i)/µc
k(i)] for any feasible point and any resource i ∈ {1, · · · ,C} such that

µc
k(i)> 0. Hence, (19) has an optimal basic feasible solution (ζ∗1 , · · · , ζ∗C). Consider any non-anticipating

algorithm. Let Zt be the sum of the total payoff accumulated in rounds 1 to t plus the “cost” of the remaining

resources, i.e. Zt =
∑t

τ=1 raτ ,τ +
∑C

i=1 ζ
∗
i · (B(i)−∑t

τ=1 caτ ,τ (i)). Observe that (Zt)t is a supermartingale

with respect to the filtration (Ft)t as E[Zt | Ft−1] = E[µr
at
−∑C

i=1 ζ
∗
i · µc

at
(i) | Ft−1] +Zt−1 ≤ Zt−1 since

(ζ∗1 , · · · , ζ∗C) is feasible for (19). Moreover, note that (Zt)t has bounded increments since |Zt − Zt−1| =
|rat,t −

∑C

i=1 ζ
∗
i · cat,t(i)| ≤ 1+

∑C

i=1 ζ
∗
i <∞. We also have E[τ∗]<∞ as:

E[τ∗] =
∞
∑

t=1

P[τ∗ ≥ t]

≤
∞
∑

t=1

P[
t−1
∑

τ=1

caτ ,τ(i)≤B(i), i= 1, · · · ,C]

≤ 1+
∞
∑

t=1

P[
t

∑

τ=1

C
∑

i=1

caτ ,τ(i)≤ t · ǫ− (t · ǫ−
C
∑

i=1

B(i))]

≤ (

∑C

i=1B(i)

ǫ
+2)+

∞
∑

t≥
∑C

i=1
B(i)

ǫ

exp(−2(t · ǫ−∑C

i=1B(i))2

t
)

<∞,

where the third inequality results from an application of Lemma 1 and

ǫ= min
k=1,··· ,K
i=1,··· ,C

with µc
k(i)>0

µc
k(i).

By Doob’s optional stopping theorem, E[Zτ∗ ]≤E[Z0] =
∑C

i=1 ζ
∗
i ·B(i). Observe that:

E[Zτ∗ ] =E[raτ∗ ,τ∗ −
C
∑

i=1

ζ∗i · caτ∗ ,τ∗(i)+Zτ∗−1]

≥E[−
C
∑

i=1

ζ∗i +
τ∗−1
∑

t=1

rat,t].

Using Assumption 2 and since (ζ∗i )i=1,··· ,C is a basic feasible solution, for every i ∈ {1, · · · ,C} such that

ζ∗i > 0 there must exist k ∈ {1, · · · ,K} such that ζ∗i ≤ µr
k/µ

c
k(i) with µc

k(i)> 0. We get:

E[Zτ∗ ]≥E[
τ∗−1
∑

t=1

rat,t]− max
k=1,··· ,K
i=1,··· ,C

with µc
k(i)>0

µr
k

µc
k(i)

and finally:

E[
τ∗−1
∑

t=1

rat,t]≤
C
∑

i=1

ζ∗i ·B(i)+ max
k=1,··· ,K
i=1,··· ,C

with µc
k(i)>0

µr
k

µc
k(i)

=B ·
C
∑

i=1

ζ∗i · b(i)+ max
k=1,··· ,K
i=1,··· ,C

with µc
k(i)>0

µr
k

µc
k(i)

.

By strong duality,
∑C

i=1 ζ
∗
i · b(i) is also the optimal value of (3).
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Appendix C: Proofs for Section 4.

C.1. Proof of Lemma 4. By definition of τ∗, we have
∑τ∗−1

t=1 cat,t ≤B. Taking expectations on both

sides yields:

B ≥E[
τ∗−1
∑

t=1

cat,t]

≥E[
τ∗
∑

t=1

cat,t]− 1

=

∞
∑

t=1

E[Iτ∗≥t · cat,t]− 1

=
∞
∑

t=1

E[Iτ∗≥t ·E[cat,t | Ft−1]]− 1

=
∞
∑

t=1

E[Iτ∗≥t ·µc
at
]− 1

≥
∞
∑

t=1

E[Iτ∗≥t · ǫ]− 1

=E[τ∗] · ǫ− 1,

where we use the fact that ck,t ≤ 1 for all arms k to derive the second inequality, the fact that τ∗ is a stopping

time for the second equality, the fact that at is deterministically determined by the past, i.e. at ∈ Ft−1, for

the third equality and Assumption 2 for the third inequality. We conclude that E[τ∗]≤ B+1
ǫ

.

C.2. Proof of Lemma 5. We break down the analysis in a series of facts. Consider any arm k such that

∆k > 0. We use the shorthand notation βk = 25( λ
µc
k
)2 · ( 1

∆k
)2.

Fact 1

E[nk,τ∗ ]≤ 2βk ·E[ln(τ∗)]+E[

τ∗
∑

t=1

Iat=k · Ink,t≥βk ln(t)]. (20)

Proof. Define the random variable Tk = βk · ln(τ∗). We have:

E[nk,τ∗ ] =E[nk,τ∗ · Ink,τ∗<Tk
] +E[nk,τ∗ · Ink,τ∗≥Tk

]

≤ βk ·E[ln(τ∗)]+E[nk,τ∗ · Ink,τ∗≥Tk
].

Define T ∗
k as the first time t such that nk,t ≥ Tk and T ∗

k =∞ if no such t exists. We have:

E[nk,τ∗ · Ink,τ∗≥Tk
] =E[

τ∗
∑

t=1

Iat=k · Ink,τ∗≥Tk
]

=E[

T∗
k−1
∑

t=1

Iat=k · Ink,τ∗≥Tk
] +E[

τ∗
∑

t=T∗
k

Iat=k · Ink,τ∗≥Tk
]

≤ E[nk,T∗
k
−1 · Ink,τ∗≥Tk

] +E[
τ∗
∑

t=T∗
k

Iat=k · Ink,t≥Tk
]

≤ βk ·E[ln(τ∗)]+E[
τ∗
∑

t=1

Iat=k · Ink,t≥βk ln(t)],
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since, by definition of T ∗
k , nk,T∗

k
−1 ≤ Tk if T ∗

k if finite, which is always true if nk,τ∗ ≥ Tk (the sequence

(nk,t)t is non-decreasing and τ∗ is finite almost surely as a byproduct of Lemma 4). Conversely, nk,t ≥ Tk ≥
βk ln(t) for t∈ {T ∗

k , · · · , τ∗}. Wrapping up, we obtain:

E[nk,τ∗ ]≤ 2βk ·E[ln(τ∗)]+E[
τ∗
∑

t=1

Iat=k · Ink,t≥βk ln(t)].

Fact 1 enables us to assume that arm k has been pulled at least βk ln(t) times out of the last t time periods.

The remainder of this proof is dedicated to show that the second term of the right-hand side of (20) can be

bounded by a constant. Let us first rewrite this term:

E[
τ∗
∑

t=1

Iat=k · Ink,t≥βk ln(t)]≤ E[
τ∗
∑

t=1

Iobjk,t+Ek,t≥objk∗,t+Ek∗,t
· Ink,t≥βk ln(t)]

≤ E[
τ∗
∑

t=1

Iobjk,t≥objk+Ek,t
] (21)

+E[
τ∗
∑

t=1

Iobjk∗,t≤objk∗−Ek∗,t
] (22)

+E[
τ∗
∑

t=1

Iobjk∗<objk+2Ek,t
· Ink,t≥βk ln(t)]. (23)

To derive this last inequality, simply observe that if objk,t < objk +Ek,t and objk∗,t > objk∗ −Ek∗,t while

objk,t + Ek,t ≥ objk∗,t + Ek∗,t, it must be that objk∗ < objk + 2Ek,t. Let us study (21), (22), and (23)

separately.

Fact 2

E[
τ∗
∑

t=1

Iobjk∗<objk+2Ek,t
· Ink,t≥βk ln(t)]≤

2π2

3ǫ2
.

Proof. Observe that when both nk,t ≥ βk ln(t) and objk∗ < objk +2Ek,t, we have:

∆k

2
<Ek,t

≤ λ

c̄k,t
·
√

2

βk

≤ µc
k

2c̄k,t
· ∆k

2
,

by definition of βk. This implies that c̄k,t ≤ µc
k/2. Thus:

E[
τ∗
∑

t=1

Iobjk∗<objk+2Ek,t
· Ink,t≥βk ln(t)]≤ E[

τ∗
∑

t=1

Ic̄k,t<µc
k
/2 · Ink,t≥βk ln(t)]

We upper bound this last term using the concentration inequalities of Lemma 1 observing that:

E[
∞
∑

t=1

Ic̄k,t<µc
k
/2 · Ink,t≥βk ln(t)] =

∞
∑

t=1

P[c̄k,t <
µc
k

2
; nk,t ≥ βk ln(t)]

≤
∞
∑

t=1

t
∑

s=βk ln(t)

P[c̄k,t <µc
k −

µc
k

2
; nk,t = s].
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Denote by t1, · · · , ts the first s random times at which arm k is pulled (these random variables are finite

almost surely). We have:

P[c̄k,t <µc
k −

µc
k

2
; nk,t = s]≤ P[

s
∑

l=1

ck,tl < s ·µc
k − s · µ

c
k

2
].

Observe that, for any l≤ s:

E[ck,tl | ck,t1, · · · , ck,tl−1
] =E[

∞
∑

τ=1

Itl=τ ·E[ck,τ | Fτ−1] | ck,t1 , · · · , ck,tl−1
]

=E[
∞
∑

τ=1

Itl=τ ·µc
k | ck,t1 , · · · , ck,tl−1

]

= µc
k,

since the algorithm is not randomized ({tl = τ} ∈Fτ−1) and using the tower property. Hence, we can apply

Lemma 1 to get:

∞
∑

t=1

P[c̄k,t <
µc
k

2
; nk,t ≥ βk ln(t)]≤

∞
∑

t=1

∞
∑

s=βk ln(t)

exp(−s · (µ
c
k)

2

2
)

≤
∞
∑

t=1

exp(− (µc
k)

2

2
·βk ln(t))

1− exp(− (µc
k
)2

2
)

≤ 1

1− exp(− (µc
k
)2

2
)

∞
∑

t=1

1

t2

≤ 2π2

3(µc
k)

2

≤ 2π2

3ǫ2
,

where we use the fact that βk ≥ 25( 1+κ
µc
k
)2 · (µ

c
k∗

µr
k∗
)2 ≥ 25(

1+ 1
κ

µc
k
)2 ≥ 4

(µc
k
)2

for the third inequality (using

Assumption 3), the fact that exp(−x)≤ 1− x
2

for x ∈ [0,1] for the fourth inequality, and Assumption 2 for

the last inequality.

Let us now elaborate on (21).

Fact 3

E[
τ∗
∑

t=1

Iobjk,t≥objk+Ek,t
]≤ π2

3
.

Proof. Note that if r̄k,t/c̄k,t = objk,t ≥ objk +Ek,t = µr
k/µ

c
k +Ek,t, then either r̄k,t ≥ µr

k + ǫk,t or c̄k,t ≤
µc
k − ǫk,t, otherwise we would have:

r̄k,t
c̄k,t

− µr
k

µc
k

=
(r̄k,t −µr

k)µ
c
k +(µc

k − c̄k,t)µ
r
k

c̄k,t ·µc
k

<
ǫk,t
c̄k,t

+
ǫk,t
c̄k,t

· µ
r
k

µc
k

≤ (1+κ) · ǫk,t
c̄k,t

=Ek,t,

a contradiction. Therefore:



Flajolet and Jaillet: Logarithmic Regret Bounds for BwK

35

E[

τ∗
∑

t=1

Iobjk,t≥objk+Ek,t
]≤

∞
∑

t=1

P[r̄k,t ≥ µr
k + ǫk,t] +P[c̄k,t ≤ µc

k − ǫk,t]

≤
∞
∑

t=1

t
∑

s=1

P[r̄k,t ≥ µr
k +

√

2 ln(t)

s
; nk,t = s]

+
∞
∑

t=1

t
∑

s=1

P[c̄k,t ≤ µc
k −

√

2 ln(t)

s
; nk,t = s]

=
∞
∑

t=1

t
∑

s=1

P[
s

∑

l=1

rk,tl ≥ s ·µr
k +

√

s · 2 ln(t) ; nk,t = s]

+
∞
∑

t=1

t
∑

s=1

P[
s

∑

l=1

ck,tl ≤ s ·µc
k −

√

s · 2 ln(t) ; nk,t = s]

≤
∞
∑

t=1

t
∑

s=1

2 exp(−4 ln(t))

=
π2

3
,

where the random variables (tl)l are defined similarly as in the proof of Fact 2 and the last inequality results

from an application of Lemma 1.

What remains to be done is to bound (22).

Fact 4

E[
τ∗
∑

t=1

Iobjk∗,t≤objk∗−Ek∗,t
]≤ π2

3
.

Proof. We proceed along the same lines as in the proof of Fact 3. As a matter of fact, the situation is

perfectly symmetric because, in the course of proving Fact 3, we do not rely on the fact that we have pulled

arm k more than βk ln(t) times at any time t. If r̄k∗,t/c̄k∗,t = objk∗,t ≤ objk∗ −Ek∗,t = µr
k∗/µ

c
k∗ −Ek∗,t,

then we have either r̄k∗,t ≤ µr
k∗ − ǫk∗,t or c̄k∗,t ≥ µc

k∗ + ǫk∗,t, otherwise we would have:

r̄k∗,t
c̄k∗,t

− µr
k∗

µc
k∗

=
(r̄k∗,t −µr

k∗)µ
c
k∗ +(µc

k∗ − c̄k∗,t)µ
r
k∗

c̄k∗,t ·µc
k∗

>− ǫk∗,t
c̄k∗,t

− ǫk∗,t
c̄k∗,t

· µ
r
k∗

µc
k∗

≥−(1+κ) · ǫk∗,t
c̄k∗,t

=−Ek∗,t,

a contradiction. Therefore:

E[
τ∗
∑

t=1

Iobjk∗,t≤objk∗−Ek∗,t
]≤E[

∞
∑

t=1

Ir̄k∗,t≤µr
k∗

−ǫk,t + Ic̄k∗,t≥µc
k∗

+ǫk,t]

≤
∞
∑

t=1

t
∑

s=1

P[r̄k∗,t ≤ µr
k∗ −

√

2 ln(t)

s
; nk∗,t = s]

+
∞
∑

t=1

t
∑

s=1

P[c̄k∗,t ≥ µc
k∗ +

√

2 ln(t)

s
; nk∗,t = s]
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≤
∞
∑

t=1

t
∑

s=1

2

t4

=
π2

3
,

where the third inequality is obtained using Lemma 1 in the same fashion as in Fact 3.

We conclude:

E[nk,τ∗ ]≤ 2βk ·E[ln(τ∗)]+
4π2

3ǫ2
.

C.3. Proof of Theorem 1. First observe that:

E[
τ∗
∑

t=1

rat,t] =
∞
∑

t=1

E[Iτ∗≥t ·E[rat,t | Ft−1]]

=
∞
∑

t=1

E[Iτ∗≥t ·µr
at
]

=
∞
∑

t=1

K
∑

k=1

µr
k ·E[Iτ∗≥t · Iat=k]

=
K
∑

k=1

µr
k ·E[

∞
∑

t=1

Iτ∗≥t · Iat=k]

=
K
∑

k=1

µr
k ·E[nk,τ∗ ],

since τ∗ is a stopping time. Plugging this equality into (9) yields:

RB ≤B · µ
r
k∗

µc
k∗

−
K
∑

k=1

µr
k ·E[nk,τ∗ ] +O(1)

=
µr
k∗

µc
k∗

· (B−
∑

k |∆k=0

µc
k ·E[nk,τ∗ ])−

∑

k |∆k>0

µr
k ·E[nk,τ∗ ] +O(1).

Along the same lines as for the rewards, we can show that E[
∑τ∗

t=1 cat,t] =
∑K

k=1 µ
c
k ·E[nk,τ∗ ]. By definition

of τ∗, we have B ≤∑τ∗

t=1 cat,t almost surely. Taking expectations on both sides yields:

B ≤
K
∑

k=1

µc
k ·E[nk,τ∗ ]

=
∑

k |∆k=0

µc
k ·E[nk,τ∗ ] +

∑

k |∆k>0

µc
k ·E[nk,τ∗ ].

Plugging this inequality back into the regret bound, we get:

RB ≤
∑

k |∆k>0

(
µr
k∗

µc
k∗

·µc
k −µr

k) ·E[nk,τ∗ ] +O(1)

=
∑

k |∆k>0

µc
k ·∆k ·E[nk,τ∗ ] +O(1). (24)
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Using the upper bound of Lemma 4, the concavity of the logarithmic function, and Lemma 5, we derive:

RB ≤ 26λ2 · (
∑

k |∆k>0

1

µc
k ·∆k

) · ln(B+1

ǫ
)+

4π2

3ǫ2
· (

∑

k |∆k>0

µc
k ·∆k)+O(1)

≤ 26λ2 · (
∑

k |∆k>0

1

µc
k ·∆k

) · ln(B+1

ǫ
)+K · 4π

2κ

3ǫ2
+O(1),

since ∆k ≤ µr
k∗/µ

c
k∗ ≤ κ and µc

k ≤ 1 for any arm k.

Appendix D: Proofs for Section 5.

D.1. Proof of Lemma 8. Consider any suboptimal basis x ∈ B. The proof is along the same lines as

for Lemma 5 and follows the exact same steps. We use the shorthand notation βx = 8ρ · (
∑K

k=1 ξxk
∆x

)2.

Fact 5

E[nx,τ∗]≤ 2βx ·E[ln(τ∗)]+E[
τ∗
∑

t=1

Ixt=x · Inx,t≥βx ln(t)]. (25)

We omit the proof as it is analogous to the proof of Fact 1. As in Lemma 5, we break down the second term

in three terms and bound each of them by a constant:

E[
τ∗
∑

t=1

Ixt=x · Inx,t≥βx ln(t)] =E[
τ∗
∑

t=1

Iobjx,t+Ex,t≥objx∗,t+Ex∗,t
· Inx,t≥βx ln(t)]

≤E[
τ∗
∑

t=1

Iobjx,t≥objx+Ex,t
] (26)

+E[
τ∗
∑

t=1

Iobjx∗,t≤objx∗−Ex∗,t
] (27)

+E[
τ∗
∑

t=1

Iobjx∗<objx+2Ex,t
· Inx,t≥βx ln(t)]. (28)

Fact 6

E[
τ∗
∑

t=1

Iobjx∗<objx+2Ex,t
· Inx,t≥βx ln(t)] = 0.

Proof. If objx∗ < objx +2Ex,t, we get:

∆x

2
<

∑

k∈Kx

ξxk ·
√

2 ln(t)

nk,t

≤
∑

k∈Kx

ξxk ·
√

2 ln(t)

ρ+nx
k,t

≤
√

∑

k∈Kx

ξxk ·
∑

k∈Kx

√

ξxk ·
√

2 ln(t)

nx,t

,
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where we use (10) and Lemma 6 for each k ∈ Kx such that ξxk 6= 0 (otherwise, if ξxk = 0, the inequality is

trivial). This implies:

nx,t < 8ρ · (
∑K

k=1 ξ
x
k

∆x

)2 · ln(t)
= βx · ln(t),

using the Cauchy−Schwarz inequality and the fact that a basis involves at most ρ arms.

Fact 7

E[
τ∗
∑

t=1

Iobjx,t≥objx+Ex,t
]≤ ρ · π

2

6
.

Proof. If objx,t ≥ objx +Ex,t, there must exist k ∈Kx such that r̄k,t ≥ µr
k + ǫk,t, otherwise:

objx,t − objx =
∑

k∈Kx

(r̄k,t −µr
k) · ξxk

<
∑

k∈Kx

ǫk,t · ξxk

=Ex,t,

where the inequality is strict because there must exist l ∈ Kx such that ξxl > 0 as a result of Assumption 2

(at least one resource constraint is binding for a feasible basis to (3) aside from the basis x̃ associated with

Kx̃ = ∅). We obtain:

E[
τ∗
∑

t=1

Iobjx,t≥objx+Ex,t
]≤

∑

k∈Kx

∞
∑

t=1

P[r̄k,t ≥ µr
k + ǫk,t]

≤ ρ · π
2

6
,

where the last inequality is derived along the same lines as in the proof of Fact 3.

Fact 8

E[
τ∗
∑

t=1

Iobjx∗,t≤objx∗−Ex∗,t
]≤ ρ · π

2

6
.

Proof. Similar to Fact 7.

D.2. Proof of Theorem 3. The proof proceeds along the same lines as for Theorem 1. We build upon

(4):

RB(1),··· ,B(C) ≤B ·
K
∑

k=1

µr
k · ξx

∗

k −E[
τ∗
∑

t=1

rat,t] +O(1)

=B ·
K
∑

k=1

µr
k · ξx

∗

k −
∞
∑

t=1

E[Iτ∗≥t ·
K
∑

k=1

∑

x∈B
rk,t · Ixt=x,at=k] +O(1)

=B ·
K
∑

k=1

µr
k · ξx

∗

k −
∞
∑

t=1

E[Iτ∗≥t ·
K
∑

k=1

∑

x∈B
Ixt=x,at=k ·E[rk,t | Ft−1]] +O(1)
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=B ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B

K
∑

k=1

µr
k ·E[

τ∗
∑

t=1

Ixt=x,at=k] +O(1)

=B ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B

K
∑

k=1

µr
k ·E[nx

k,τ∗ ] +O(1),

where we use the fact that xt and at are determined by the events of the first t− 1 rounds and that τ∗ is a

stopping time. Using the properties of the load balancing algorithm established in Lemma 6, we derive:

RB(1),··· ,B(C) ≤B ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B

∑

k∈Kx

{µr
k ·

ξxk
∑K

l=1 ξ
x
l

·E[nx,τ∗ ]− ρ}+O(1)

=B ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B
{ E[nx,τ∗]
∑K

k=1 ξ
x
k

· (
K
∑

k=1

µr
k · ξxk )− (ρ)2}+O(1)

= (
K
∑

k=1

µr
k · ξx

∗

k ) · (B−
∑

x∈B |∆x=0

E[nx,τ∗]
∑K

k=1 ξ
x
k

)

−
∑

x∈B |∆x>0

{(
K
∑

k=1

µr
k · ξxk ) ·

E[nx,τ∗]
∑K

k=1 ξ
x
k

}+O(1).

Now observe that, by definition, at least one resource is exhausted at time τ∗. Hence, there exists i ∈
{1, · · · ,C} such that the following holds almost surely:

B(i)≤
∑

x∈B

∑

k∈Kx

ck(i) ·nx
k,τ∗

≤
∑

x∈B

∑

k∈Kx

[ck(i) · (
ξxk

∑K

l=1 ξ
x
l

·nx,τ∗ +1)]

= |B| · ρ+
∑

x∈B

nx,τ∗

∑K

k=1 ξ
x
k

·
∑

k∈Kx

ck(i) · ξxk

≤ |B| · ρ+ b(i) ·
∑

x∈B

nx,τ∗

∑K

k=1 ξ
x
k

,

where we use Lemma 6 again and the fact that any basis x ∈ B satisfies all the constraints of (3). We

conclude that the inequality:

∑

x∈B |∆x=0

nx,τ∗

∑K

k=1 ξ
x
k

≥B−
∑

x∈B |∆x>0

nx,τ∗

∑K

k=1 ξ
x
k

− |B| · ρ
b

holds almost surely. Taking expectations on both sides and plugging the result back into the regret bound

yields:

RB(1),··· ,B(C) ≤
∑

x∈B |∆x>0

(
∑K

k=1 µ
r
k · ξx

∗

k −∑K

k=1 µ
r
k · ξxk )

∑K

k=1 ξ
x
k

·E[nx,τ∗] (29)

+(
K
∑

k=1

µr
k · ξx

∗

k ) · |B| · ρ
b

+O(1)

≤
∑

x∈B |∆x>0

∆x
∑K

k=1 ξ
x
k

·E[nx,τ∗] +O(1), (30)
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where we use the fact that:
K
∑

k=1

µr
k · ξx

∗

k ≤
K
∑

k=1

∑C

i=1 ck(i)

ǫ
· ξx∗k

=
1

ǫ
·

C
∑

i=1

K
∑

k=1

ck(i) · ξx
∗

k

≤
∑C

i=1 b(i)

ǫ
,

(31)

using Assumption 2 and the fact that x∗ is a feasible basis to (3). Using Lemma 7, Lemma 8, and the

concavity of the logarithmic function, we obtain:

RB(1),··· ,B(C) ≤ 16ρ · (
∑

x∈B |∆x>0

∑K

k=1 ξ
x
k

∆x

) · ln(
∑C

i=1 b(i) ·B
ǫ

+1)

+
π2

3
ρ · (

∑

x∈B |∆x>0

∆x
∑K

k=1 ξ
x
k

)+O(1)

≤ 16
ρ ·∑C

i=1 b(i)

ǫ
· (

∑

x∈B |∆x>0

1

∆x

) · ln(
∑C

i=1 b(i) ·B
ǫ

+1)+O(1).

To derive this last inequality, we use: (i) ∆x ≤∑K

k=1 µ
r
k · ξx

∗

k ≤∑C

i=1 b(i)/ǫ (see (31)), (ii) the fact that,

for any basis x ∈ B, at least one of the first C inequalities is binding in (3), which implies that there exists

i∈ {1, · · · ,C} such that:

K
∑

k=1

ξxk ≥
K
∑

k=1

ck(i) · ξxk
= b(i)
≥ b,

and (iii) the inequality:

K
∑

k=1

ξxk ≤
K
∑

k=1

∑C

i=1 ck(i)

ǫ
· ξxk

=
1

ǫ
·

C
∑

i=1

K
∑

k=1

ck(i) · ξxk

≤
∑C

i=1 b(i)

ǫ
,

for any basis x∈B.

As a side note, observe a possibly better regret bound is given by:

RB(1),··· ,B(C) ≤ 16ρ · (
∑

x∈B |∆x>0

1

∆x

) · ln(T )+O(1),

if time is a limited resource since, in this case, τ∗ ≤ T and the constraint
∑K

k=1 ξ
x
k ≤ 1 is part of (3).

D.3. Proof of Theorem 4. Along the same lines as for the case of a single limited resource, we start

from inequality (30) derived in the proof of Theorem 3 and apply Lemma 8 only if ∆x is big enough, taking

into account the fact that:
∑

x∈B
E[nx,τ∗]≤ E[τ∗]≤

∑C

i=1 b(i) ·B
ǫ

+1.
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Specifically, we have:

RB(1),··· ,B(C)

≤ sup
(nx)x∈B≥0

∑
x∈B nx≤

∑C
i=1 b(i)·B

ǫ +1

{
∑

x∈B |∆x>0

min(
∆x

∑K

k=1 ξ
x
k

·nx,

16ρ ·
∑K

k=1 ξ
x
k

∆x

· ln(
∑C

i=1 b(i) ·B
ǫ

+1)+
π2

3
ρ · ∆x

∑K

k=1 ξ
x
k

) }+O(1)

≤ sup
(nx)x∈B≥0

∑
x∈B nx≤

∑C
i=1 b(i)·B

ǫ +1

{
∑

x∈B |∆x>0

min(
∆x

∑K

k=1 ξ
x
k

·nx,

16ρ ·
∑K

k=1 ξ
x
k

∆x

· ln(
∑C

i=1 b(i) ·B
ǫ

+1)) }+ π2

3

|B| · ρ
ǫ

+O(1)

≤ sup
(nx)x∈B≥0

∑
x∈B nx≤

∑C
i=1 b(i)·B

ǫ +1

{
∑

x∈B |∆x>0

√

16ρ · ln(
∑C

i=1 b(i) ·B
ǫ

+1) ·nx }+O(1)

≤ 4

√

ρ · ln(
∑C

i=1 b(i) ·B
ǫ

+1) · sup
(nx)x∈B≥0

∑
x∈B nx≤

∑C
i=1 b(i)·B

ǫ +1

{
∑

x∈B |∆x>0

√
nx }+O(1)

≤ 4

√

ρ · |B| · (
∑C

i=1 b(i) ·B
ǫ

+1) · ln(
∑C

i=1 b(i) ·B
ǫ

+1)+O(1),

where we use ∆x ≤∑C

i=1 b(i)/ǫ and
∑K

k=1 ξ
x
k ≥ b for the second inequality (see the end of the proof of

Theorem 3), we maximize over ∆x/
∑K

k=1 ξ
x
k ≥ 0 for each x ∈ B to derive the third inequality, and we use

Cauchy-Schwartz for the last inequality.

Appendix E: Proofs for Section 6.

E.1. Proof of Lemma 9. For any T ∈N and any arm k ∈ {1, · · · ,K}, we denote by nopt
k,T the expected

number of times that arm k is pulled by the optimal non-anticipating algorithm (which is characterized by a

high-dimensional dynamic program) when the time horizon is T and the budget is B = b ·T . We prove the

claim in two steps. First, we show that if T −nopt
k∗,T =Ω(

√
T ) (Case A) or T −nopt

k∗,T = o(
√
T ) (Case B) then

EROPT(B,T ) = T · objx∗ −Ω(
√
T ). This is enough to establish the result because if T −nopt

k∗,T 6=Ω(
√
T )

then we can extract a subsequence of (T −nopt
k∗,T )/

√
T that converges to 0 and we can conclude with Case

B.

Case A: T −nopt
k∗,T =Ω(

√
T ). Consider the linear program:

sup
(ξk)k=1,··· ,K

K
∑

k=1

µr
k · ξk

subject to

K
∑

k=1

µc
k · ξk ≤ b

K
∑

k=1

ξk ≤ 1

ξk∗ ≤ Γ
ξk ≥ 0, k= 1, · · · ,K

(32)
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parametrized by Γ and its dual:

inf
(ζ1,ζ2,ζ3)

b · ζ1 + ζ2 +Γ · ζ3
subject to µc

k · ζ1 + ζ2 ≥ µr
k, k 6= k∗

µc
k∗ · ζ1 + ζ2 + ζ3 ≥ µr

k∗

ζ1, ζ2, ζ3 ≥ 0.

(33)

Since the vector (ξk)k=1,··· ,K determined by ξk∗ = 1 and ξk = 0 for k 6= k∗ is the only optimal solution

to (32) when Γ = 1 (by assumption), we can find a strictly complementary optimal solution to the dual

(33) ζ∗1 , ζ
∗
2 , ζ

∗
3 > 0. Moreover, by definition of nopt

k∗,T , we can show, along the same lines as in the proof of

Lemma 2, that EROPT(B,T ) is no larger than T times the optimal value of (32) when Γ= nopt
k∗,T/T (up to

a constant additive term of order O(1)). By weak duality, and since (ζ∗1 , ζ
∗
2 , ζ

∗
3 ) is feasible for (33) for any

Γ, this implies:

EROPT(B,T )≤ T · (b · ζ∗1 + ζ∗2 +
nopt
k∗,T

T
· ζ∗3 )+O(1)

≤ T · (b · ζ∗1 + ζ∗2 + ζ∗3 −
T −nopt

k∗,T

T
· ζ∗3 )+O(1)

≤ T · objx∗ −Ω(
√
T ),

where we use the fact that b · ζ∗1 + ζ∗2 + ζ∗3 is the optimal value of (32) when Γ = 1 by strong duality (both

(32) and (33) are feasible) and ζ∗3 > 0.

Case B: T −nopt
k∗,T = o(

√
T ). First observe that since the vector (ξk)k=1,··· ,K determined by ξk∗ = 1 and

ξk = 0 for k 6= k∗ is the only optimal solution to (3), it must be that µr
k∗ > 0 (since 0 is a feasible solution

to (3) with objective value 0). For any t ∈ N, denote by at the arm pulled by the optimal non-anticipating

algorithm at time t and define τ∗
T as the corresponding stopping time when the time horizon is T . We have:

EROPT(B,T ) =E[

τ∗T−1
∑

t=1

rat,t]

=
K
∑

k=1

µr
k ·nopt

k,T

≤
∑

k 6=k∗

nopt
k,T +µr

k∗ ·nopt
k∗,T

≤ (T −nopt
k∗,T )+µr

k∗ · (E[τ∗
T ]− 1)

= T ·µr
k∗ −µr

k∗ · (T −E[τ∗
T ] + 1)+ o(

√
T )

= T · objx∗ −µr
k∗ ·E[

T
∑

t=τ∗
T

1]+ o(
√
T )

≤ T · objx∗ −µr
k∗ ·E[(

T
∑

t=τ∗
T

ck∗,t +

τ∗T−1
∑

t=1

cat,t −B)+]

≤ T · objx∗ −µr
k∗ ·

(

E[(
T
∑

t=1

{ck∗,t − b})+]−
∑

k 6=k∗

nopt
k,T

)

+ o(
√
T )

= T · objx∗ −µr
k∗ ·E[(

T
∑

t=1

{ck∗,t − b})+] + o(
√
T ).

The first inequality is obtained using the fact that the rewards are bounded by 1. The second inequality

is obtained using the fact that
∑K

k=1 n
opt
k,T = E[τ∗

T ] − 1 ≤ T . The third inequality is obtained along the
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same lines as in the proof of Lemma 3, using
∑τ∗T−1

t=1 cat,t ≤ B by definition of τ∗
T . We use the inequality

(y + z)+ ≥ y+ − |z| (true for any (y, z) ∈ R
2) and the fact the amount of resource consumed at any step

is no larger than 1 for the fourth inequality. Since (ck∗,t − b)t∈N is an i.i.d. zero-mean bounded stochastic

process with positive variance, 1√
T
·E[(∑T

t=1{ck,t − b})+] converges to a positive value and we conclude:

EROPT(B,T )≤ T · objx∗ −Ω(
√
T ),

since µr
k∗ > 0.

E.2. Proof of Lemma 10. Consider x either an infeasible basis to (3) or a pseudo-basis for (3). Without

loss of generality, we can assume that x involves two arms (one of which may be a dummy arm introduced

in the specification of the algorithm given in Section 6) and that Kx = {k, l} with µc
k, µ

c
l > b (the situation

is symmetric if the reverse inequality holds). Defining βx =32/ǫ3, we have:

E[nx,T ]≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Inx,t≥βx ln(t)]

≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Inx,t≥βx ln(t) · Ibx,t≥nx,t·(b+ǫ/2)]

+
T
∑

t=1

t
∑

s=βx ln(T )

P[bx,t <s · (b+ ǫ)− s · ǫ/2, nx,t = s]

≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Inx,t≥βx ln(t) · Ibx,t≥nx,t·(b+ǫ/2)] +
T
∑

t=1

∞
∑

s=βx ln(T )

exp(−s
ǫ2

2
)

≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Inx,t≥βx ln(t) · Ibx,t≥nx,t·b+ǫβx/4·ln(t)] +
2π2

3ǫ2
.

The first inequality is derived along the same lines as in Fact 1. The third inequality is obtained by observing

that, as a result of Assumption 6, the average amount of resource consumed any time basis x is selected

at Step-Simplex is at least b+ ǫ no matter which of arm k or l is pulled. Finally, we use the same bounds

as in Fact 2 for the last two inequalities. Observe that if x is selected at time t, either c̄k,t − ǫk,t ≤ b or

c̄l,t − ǫl,t ≤ b, otherwise x would have been infeasible for (8). Moreover, if nx,t ≥ βx ln(T ), then we have

either nx
k,t ≥ βx/2 ln(T ) or nx

l,t ≥ βx/2 ln(T ) since there are only two arms in Kx. By symmetry, we study

the first situation and look at:

E[
T
∑

t=1

Ixt=x · Inx
k,t

≥βx/2·ln(t) · Ibx,t≥nx,t·b+ǫβx/4·ln(t)]

≤E[
T
∑

t=1

Ixt=x · Inx
k,t

≥βx/2·ln(t) · Ibx,t≥nx,t·b+ǫβx/4·ln(t) · Ic̄k,τq−ǫk,τq≥b, q=qt−ǫβx/4 ln(t),··· ,qt ]

+
T
∑

t=1

t
∑

τ=1

t
∑

s=βx/4·ln(t)

P[c̄k,τ < b+
ǫ

2
, nk,τ = s]

≤E[
T
∑

t=1

Ixt=x · Inx
k,t

≥βx/2·ln(t) · Ibx,t≥nx,t·b+ǫβx/4·ln(t) · Ic̄k,τq−ǫk,τq≥b, q=qt−ǫβx/4 ln(t),··· ,qt ]

+
T
∑

t=1

t
∑

τ=1

∞
∑

s=βx/4·ln(t)

exp(−s · ǫ
2

2
)
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≤E[
T
∑

t=1

Ixt=x · Inx
k,t

≥βx/2·ln(t) · Ibx,t≥nx,t·b+ǫβx/4·ln(t) · Ic̄k,τq−ǫk,τq≥b, q=qt−ǫβx/4 ln(t),··· ,qt ]

+
2π2

3ǫ2
,

where (τq)q∈N denote the random times at which basis x is selected and, for a time t at which basis x
is selected, qt denotes the index q ∈ N such that τq = t. The first inequality is a consequence of nx

k,τq
=

nx
k,t − (qt − q)≥ nx

k,t − ǫβx/4 ln(t)≥ βx/4 ln(t) for q = qt − ǫβx/4 ln(t), · · · , qt and nk,τq ≥ nx
k,τq

, which

implies ǫk,τq ≤ ǫ/2. We use the same bounds as in Fact 2 for the last two inequalities. Now observe that, for

any q ∈ {qt − ǫβx/4 ln(t), · · · , qt}, we have c̄l,τq − ǫl,τq ≤ b since c̄k,τq − ǫk,τq ≥ b and since x is feasible

basis to (8) at time τq (by definition). This implies that, for any q ∈ {qt − ǫβx/4 ln(t), · · · , qt}, arm l was

pulled at time τq by definition of the load balancing algorithm since the amount of resource consumed at any

round cannot be larger than 1 and bx,τq ≥ bx,t−(qt−q)≥ nx,t ·b+ǫβx/4 · ln(t)−(qt−q)≥ nx,t ·b≥ nx,τqb.
Hence, we get:

E[
T
∑

t=1

Ixt=x · Inx
k,t

≥βx/2·ln(t) · Ibx,t≥nx,t·b+ǫβx/4·ln(t)]

≤ E[
T
∑

t=1

Inx
l,t

≥ǫβx/4·ln(t) · Ic̄l,t−ǫl,t≤b] +
2π2

3ǫ2

≤
T
∑

t=1

P[c̄l,t ≤ b+
ǫ

2
, nx

l,t ≥ ǫβx/4 · ln(t)]+
2π2

3ǫ2

≤
T
∑

t=1

t
∑

s=ǫβx/4·ln(t)

P[c̄l,t ≤ b+
ǫ

2
, nl,t = s] +

2π2

3ǫ2

≤
T
∑

t=1

∞
∑

s=ǫβx/4·ln(t)

exp(−s · ǫ
2

2
)+

2π2

3ǫ2

≤ 4π2

3ǫ2
.

Bringing everything together, we derive:

E[nx,T ]≤
26

ǫ3
· ln(T )+ 10π2

3ǫ2
.

E.3. Proof of Lemma 11. Without loss of generality, we can assume that x involves two arms (one of

which may be a dummy arm introduced in the specification of the algorithm given in Section 6) and that

Kx = {k, l} with µc
k > b> µc

l . We say that a “swap” occurred at time τ if basis x was selected at time τ and

c̄k,τ − ǫk,τ ≤ b≤ c̄l,τ − ǫl,τ . We define nswap
x,t as the total number of swaps that have occurred before time t,

i.e. nswap
x,t =

∑t−1

τ=1 Ixτ=x · Ic̄k,τ−ǫk,τ≤b≤c̄l,τ−ǫl,τ . Consider u≥ 1 and define γx = (4/ǫ)2. First note that:

P[nswap
x,t ≥ γx ln(t)]≤

t
∑

q=γx ln(t)

P[c̄k,τq − ǫk,τq ≤ b≤ c̄l,τq − ǫl,τq ]

≤
t

∑

q=γx ln(t)

P[c̄k,τq ≤ b+
ǫ

2
, nk,τq ≥

γx
2
ln(t)]

+
t

∑

q=γx ln(t)

P[b− ǫ

2
≤ c̄l,τq , nl,τq ≥

γx
2
ln(t)]
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≤ 2
t

∑

q=1

∞
∑

s=γx/2·ln(t)

exp(−s · ǫ
2

2
)

≤ 8

ǫ2 · t2 ,

where (τq)q∈N are defined as the times at which basis x is selected. The first inequality is derived observing

that if nswap
x,t ≥ γx ln(t) then it must be that basis x was selected for the qth time, for some q ≥ γx ln(t), and

that we had c̄k,τq − ǫk,τq ≤ b≤ c̄l,τq − ǫl,τq . To obtain the second inequality, we observe that, at any time τ ,

at least one of arm k and l must have been pulled nx,τ/2 times and that ǫk,τ ≤ ǫ/2 when nk,τ ≥ γx/2 ln(t)
(a similar inequality holds for arm l). The last two inequalities are derived in the same fashion as in Lemma

10. This yields:

P[|bx,t −nx,t · b| ≥ u+ γx ln(t)]
≤ P[|bx,t −nx,t · b| ≥ u+ γx ln(t) ; n

swap
x,t ≤ γx ln(t)]+P[nswap

x,t ≥ γx ln(t)]

≤ P[|bx,t −nx,t · b| ≥ u+ γx ln(t) ; n
swap
x,t ≤ γx ln(t)]+

8

ǫ2 · t2 .

Note that, by definition of the load balancing algorithm, we are led to pull arm k (resp. arm l) at time τq if the

budget spent so far when selecting basis x, denoted by bx,τq , is below (resp. above) the “target” of nx,τq · b
assuming there is no “swap” at time τq (i.e. c̄k,τq − ǫk,τq ≥ c̄l,τq − ǫl,τq ). Hence, if bx,t−nx,t ·b≥ u+γx ln(t)
and nswap

x,t ≤ γx ln(t), we must have been pulling arm l for at least s ≥ ⌊u⌋ rounds t1 ≤ · · · ≤ ts ≤ t− 1
where basis x was selected since the last time, denoted by t0, where basis x was selected and the budget was

below the target, i.e. bx,t0 ≤ nx,t0 · b (because the amounts of resource consumed at each round are almost

surely bounded by 1). Moreover, we have:

t−1
∑

τ=t0+1

Ixτ=x·(ck,τ · Ic̄k,τ−ǫk,τ≥c̄l,τ−ǫl,τ + cl,τ · Ic̄k,τ−ǫk,τ<c̄l,τ−ǫl,τ )

= bx,t − bx,t0+1

≥ (nx,t−nx,t0) · b+u− 1+ γx ln(t)
≥ s · b+u− 1+ γx ln(t).

This implies:
s

∑

q=1

cl,tq ≥ s · b+u− 1

since
∑t−1

τ=t0+1 Ixτ=x · Ic̄k,τ−ǫk,τ<b · ck,τ ≤ nswap
x,t ≤ γx ln(t). Hence, if u≥ 1:

P[bx,t −nx,t · b≥ u+ γx ln(t) ; n
swap
x,t ≤ γx ln(t)]

≤
t

∑

s=⌊u⌋

P[

s
∑

q=1

cl,tq ≥ s · b+u− 1]

=
t

∑

s=⌊u⌋

P[
s

∑

q=1

cl,tq ≥ s ·µc
l + s · (b−µc

l )]

≤
t

∑

s=⌊u⌋

P[
s

∑

q=1

cl,tq ≥ s ·µc
l + s · ǫ]

≤
t

∑

s=⌊u⌋

exp(−2ǫ2 · s)

≤ exp(−2ǫ2 · ⌊u⌋)
1− exp(−2ǫ2)

≤ 2

ǫ2
· exp(−ǫ2 ·u),
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where we use Lemma 1 for the third inequality and the fact that exp(−2v)≤ 1− v/2 for v ∈ [0,1] for the

last inequality. With a similar argument, we conclude:

P[|bx,t −nx,t| · b≥ u+ γx ln(t) ; n
swap
x,t ≤ γx ln(t)]≤

4

ǫ2
· exp(−ǫ2 ·u).

This last result enables us to show that:

|E[bx,T ]−E[nx,T ] · b|
≤E[|bx,T −nx,T · b|]

=

∫ T

0

P[|bx,T −nx,T · b| ≥ u]du

≤
∫ T

0

P[|bx,T −nx,T · b| ≥ u ; nswap
x,T ≤ γx ln(T )]du+T ·P[nswap

x,T ≥ γx ln(T )]

≤
∫ T

0

P[|bx,T −nx,T · b| ≥ u+1+ γx ln(T ) ; n
swap
x,T ≤ γx ln(T )]du+1+ γx ln(T )+

8

ǫ2

≤ 4

ǫ2
·
∫ T

0

exp(−ǫ2 ·u)du+1+ γx ln(T )+
8

ǫ2

=
13

ǫ4
+(

4

ǫ
)2 ln(T ).

We get:

E[nx
k,T ] ·µc

k +E[nx
l,T ] ·µc

l =E[bx,T ]≥E[nx,T ] · b−
13

ǫ4
− (

4

ǫ
)2 ln(T ),

which, in combination with E[nx
k,T ] +E[nx

l,T ] =E[nx,T ], shows that:

E[nx
k,T ]≥ (

b−µc
l

µc
k −µc

l

) ·E[nx,T ]−
13

ǫ4 · (µc
k −µc

l )
− 42

ǫ2 · (µc
k −µc

l )
ln(T )

≥ ξxk ·E[nx,T ]−
13

ǫ5
− 16

ǫ3
ln(T ).

Symmetrically, we get:

E[nx
l,T ]≥ ξxl ·E[nx,T ]−

13

ǫ5
− 16

ǫ3
ln(T ).

E.4. Proof of Lemma 12. Consider any suboptimal basis x ∈ B. We use the shorthand notation βx =
28

ǫ3
·( λ

∆x
)2. Without loss of generality, we can assume that both x and x∗ involve two arms (one of which may

be a dummy arm introduced in the specification of the algorithm given in Section 6) and that Kx∗ = {k∗, l∗}
with µc

k∗ > b > µc
l∗ and Kx = {k, l} with µc

k > b > µc
l . The proof is along the same lines as for Lemmas 5

and 8. We break down the analysis in a series of facts where we emphasize the main differences. We start

off with an inequality analogous to Fact 1.

E[nx,T ]≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Inx,t≥βx ln(t)]

≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Inx,t≥βx ln(t) · Ic̄k∗,t−ǫk∗,t≤µc
k∗

· Ic̄l∗,t−ǫl∗,t≤µc
l∗
]

+
T
∑

t=1

P[c̄l∗,t >µc
l∗ + ǫl∗,t] +P[c̄k∗,t >µc

k∗ + ǫk∗,t]

≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Inx,t≥βx ln(t) · Ic̄k∗,t−ǫk∗,t≤µc
k∗

· Ic̄l∗,t−ǫl∗,t≤µc
l∗
] +

π2

3
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≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Iobjx,t+Ex,t≥
∑

k∈{k∗,l∗}(r̄k,t+λǫk,t)·ξx
∗

k
· Inx,t≥βx ln(t)] +

π2

3

≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Iobjx,t+Ex,t≥objx∗
· Inx,t≥βx ln(t)]

+
T
∑

t=1

P[r̄l∗,t <µr
l∗ − ǫl∗,t] +P[r̄k∗ ,t <µr

k∗ − ǫk∗,t] +
π2

3

≤ 2βx · ln(T )+E[
T
∑

t=1

Ixt=x · Iobjx,t+Ex,t≥objx∗
· Inx,t≥βx ln(t)] +

2π2

3
.

The first inequality is derived in the same fashion as in Fact 1 substituting k with x. The third and last

inequalities are obtained using Lemma 1 in the same fashion as in Fact 3. The fourth inequality is obtained

by observing that (i) if xt = x then xt is optimal for (8) and (ii) (ξ∗k)k=1,··· ,K is feasible for (8) if c̄l∗,t−ǫl∗,t ≤
µc
l∗ and c̄k∗,t − ǫk∗,t ≤ µc

k∗ . The fifth inequality results from λ ≥ 1 and objx∗ =
∑

k∈{k∗,l∗} µ
r
k · ξx

∗

k . The

second term in the last upper bound can be broken down in two terms similarly as in Lemmas 5 and 8:

E[
T
∑

t=1

Ixt=x · Iobjx,t+Ex,t≥objx∗
· Inx,t≥βx ln(t)]

≤E[
T
∑

t=1

Ixt∈Bt
· Iobjx,t≥objx+Ex,t

· Inx,t≥βx ln(t)] (34)

+E[
T
∑

t=1

Ixt∈Bt
· Iobjx∗≤objx+2Ex,t

· Inx,t≥βx ln(t)]. (35)

We carefully study each term separately.

Fact 9

E[

T
∑

t=1

Ix∈Bt
· Iobjx∗≤objx+2Ex,t

· Inx,t≥βx ln(t)]≤
6π2

ǫ2
.

Proof. Using the shorthand notations αx =8( λ
∆x

)2 and γx = ( 4
ǫ
)2, we have:

E[
T
∑

t=1

Ix∈Bt
· Iobjx∗≤objx+2Ex,t

· Inx,t≥βx ln(t)]

≤E[
T
∑

t=1

I∆x≤2λ·max(ǫk,t,ǫl,t) · Inx,t≥βx ln(t)]

=E[
T
∑

t=1

Imin(nk,t,nl,t)≤αx ln(t) · Inx,t≥βx ln(t)]

≤
T
∑

t=1

P[nl,t ≤ αx ln(t) ; nx,t ≥ βx ln(t)]+
T
∑

t=1

P[nk,t ≤ αx ln(t) ; nx,t ≥ βx ln(t)].

The first inequality is derived using Ex,t = λ · (ξxk,t · ǫk,t + ξxl,t · ǫl,t) and ξxk,t + ξxl,t ≤ 1 (this is imposed as

a constraint in (8)). Observe now that αx/βx is a constant factor independent of ∆x. Thus, we just have

to show that if x has been selected at least βx ln(t) times, then both k and l have been pulled at least a
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constant fraction of the time with high probability. This is the only time the load balancing algorithm comes

into play in the proof of Lemma 12. We study the first term and we conclude the study by symmetry. We have:

P[nl,t ≤αx ln(t) ; nx,t ≥ βx ln(t)]

≤ P[nl,t ≤ αx ln(t) ; nx,t ≥ βx ln(t) ;
t

∑

τ=1

Ixτ=x · Iaτ=k · ck,τ ≥ (b+ ǫ/2) ·nx
k,t]

+
t

∑

s=4/ǫ2 ln(t)

P[
t

∑

τ=1

Ixτ=x · Iaτ=k · ck,τ ≤ (b+ ǫ/2) · s ; nx
k,t = s]

≤ P[nl,t ≤ αx ln(t) ; nx,t ≥ βx ln(t) ; bx,t −nx,t · b≥ ǫ/2 ·nx
k,t −nx

l,t]

+
t

∑

s=4/ǫ2 ln(t)

exp(−s · ǫ
2

2
)

≤ P[bx,t −nx,t · b≥ 2γx ln(t)]+ (
2

ǫ · t)
2

≤ 16

ǫ2 · t2 .

The first inequality is obtained observing that if nl,t ≤ αx ln(t) and nx,t ≥ βx ln(t), we have:

nx
k,t = nx,t−nx

l,t ≥ (
28

ǫ3
− 8) · ( λ

∆x

)2 · ln(t)≥ 4

ǫ2
· ln(t)

because λ ≥ 1 and ∆x ≤ objx∗ =
∑K

k=1 µ
r
k · ξx

∗

k ≤ ∑K

k=1 ξ
x∗

k ≤ 1 since x∗ is a feasible basis to (3). To

derive the second inequality, we use Lemma 1 for the second term and remark that:

bx,t −nx,t · b≥ (

t
∑

τ=1

Ixτ=x · Iaτ=k · ck,τ −nx
k,t · b)−nx

l,t

since b≤ 1. The third inequality is derived using:

ǫ/2 ·nx
k,t −nx

l,t ≥ ǫ/2 ·nx,t − 2 ·nx
l,t ≥ (

27

ǫ2
− 16) · ln(t)≥ 2γx ln(t)

and the last inequality is obtained with Lemma 11.

Fact 10

E[
T
∑

t=1

Ixt∈Bt
· Iobjx,t≥objx+Ex,t

· Inx,t≥βx ln(t)]≤
3π2

ǫ2
.

Proof. First observe that:

E[
T
∑

t=1

Ixt∈Bt
· Iobjx,t≥objx+Ex,t

· Inx,t≥βx ln(t)]

≤E[
T
∑

t=1

Ixt∈Bt
· Iobjx,t≥objx+Ex,t

· Ink,t≥βx/2·ln(t)]

+E[
T
∑

t=1

Ixt∈Bt
· Iobjx,t≥objx+Ex,t

· Inl,t≥βx/2·ln(t)]

≤E[
T
∑

t=1

Ixt∈Bt
· Iobjx,t≥objx+Ex,t

· Ic̄k,t−ǫk,t>b]
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+E[
T
∑

t=1

Ixt∈Bt
· Iobjx,t≥objx+Ex,t

· Ic̄l,t−ǫl,t<b]

+
T
∑

t=1

t
∑

s=βx/2·ln(t)

P[c̄k,t − ǫk,t ≤ b,nk,t = s] +P[c̄l,t − ǫl,t ≥ b,nl,t = s]

≤ 2 ·E[
T
∑

t=1

Iobjx,t≥objx+Ex,t
· Ic̄k,t−ǫk,t≥b≥c̄l,t−ǫl,t · Ic̄k,t−ǫk,t>c̄l,t−ǫl,t ]

+
T
∑

t=1

t
∑

s=βx/2·ln(t)

P[c̄k,t ≤ b+ ǫ/2, nk,t = s] +P[c̄l,t ≥ b+ ǫ/2, nl,t = s]

≤ 2 ·E[
T
∑

t=1

Iobjx,t≥objx+Ex,t
· Ic̄k,t−ǫk,t≥b≥c̄l,t−ǫl,t · Ic̄k,t−ǫk,t>c̄l,t−ǫl,t ]

+ 2 ·
T
∑

t=1

t
∑

s=βx/2·ln(t)

exp(−s
ǫ2

2
)

≤ 2 ·E[
T
∑

t=1

Iobjx,t≥objx+Ex,t
· Ic̄k,t−ǫk,t≥b≥c̄l,t−ǫl,t · Ic̄k,t−ǫk,t>c̄l,t−ǫl,t ] +

4π2

3ǫ2
.

The third inequality is obtained by observing that ǫk,t, ǫl,t ≤ ǫ
2

for nk,t, nl,t ≥ βx
2
ln(t) (because λ≥ 1 and

∆x ≤ objx∗ =
∑K

k=1 µ
r
k ·ξx

∗

k ≤∑K

k=1 ξ
x∗

k ≤ 1) and that, if xt ∈Bt and (for example) c̄l,t−ǫl,t < b, it must be

that c̄k,t− ǫk,t ≥ b. The last two inequalities are obtained in the same fashion as in Lemma 10 observing that

βx/2≥ 4/ǫ2. At this point, the key observation is that if objx,t ≥ objx+Ex,t, c̄k,t− ǫk,t ≥ b≥ c̄l,t− ǫl,t, and

c̄k,t − ǫk,t > c̄l,t − ǫl,t, at least one of the following six events occurs: {r̄k,t ≥ µr
k + ǫk,t}, {r̄l,t ≥ µr

l + ǫl,t},

{c̄k,t ≤ µc
k − ǫk,t}, {c̄k,t ≥ µc

k + ǫk,t}, {c̄l,t ≤ µc
l − ǫl,t} or {c̄l,t ≥ µc

l + ǫl,t}. Otherwise, using the shorthand

notations c̃k = c̄k,t − ǫk,t and c̃l = c̄l,t− ǫl,t, we have:

objx,t − objx

= [
c̃k − b

c̃k − c̃l
· r̄l,t +

b− c̃l
c̃k − c̃l

· r̄k,t]− [
µc
k − b

µc
k −µc

l

·µr
l +

b−µc
l

µc
k −µc

l

·µr
k]

< [
c̃k − b

c̃k − c̃l
· (µr

l + ǫl,t)+
b− c̃l
c̃k − c̃l

· (µr
k + ǫk,t)]− [

µc
k − b

µc
k −µc

l

·µr
l +

b−µc
l

µc
k −µc

l

·µr
k]

=
1

λ
·Ex,t +(µr

k −µr
l ) · [

b− c̃l
c̃k − c̃l

− b−µc
l

µc
k −µc

l

]

=
1

λ
·Ex,t +

(µr
k −µr

l )

(c̃k − c̃l) · (µc
k −µc

l )
· [(µc

k − b)(µc
l − c̃l)+ (b−µc

l )(µ
c
k − c̃k)]

≤ 1

λ
·Ex,t +

κ

c̃k − c̃l
· |(µc

k − b)(µc
l − c̃l)+ (b−µc

l )(µ
c
k − c̃k)|

≤ 1

λ
·Ex,t +2

κ

c̃k − c̃l
· [(c̃k − b) · ǫl,t +(b− c̃l) · ǫk,t]

=
1

λ
·Ex,t +

2κ

λ
·Ex,t

=Ex,t,

a contradiction. The first inequality is strict because either c̃k > b or c̃l < b. The second inequality is derived

using Assumption 5. The third inequality is derived from the observation that the expression (µc
k − b)(µc

l −
c̃l) + (b− µc

l )(µ
c
k − c̃k) is a linear function of (µc

k, µ
c
l ) (since the cross term µc

k · µc
l cancels out) so that

|(µc
k − b)(µc

l − c̃l) + (b− µc
l )(µ

c
k − c̃k)| is convex in (µc

k, µ
c
l ) and the maximum of this expression over the

polyhedron [c̄k,t − ǫk,t, c̄k,t + ǫk,t]× [c̄l,t − ǫl,t, c̄l,t + ǫl,t] is attained at an extreme point. We obtain:

E[
T
∑

t=1

Ix∈Bt
Iobjx,t≥objx+Ex,t

· Inx,t≥βx ln(t)]
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≤
∞
∑

t=1

P[r̄k,t ≥ µr
k + ǫk,t] +P[r̄l,t ≥ µr

l + ǫl,t]

+
∞
∑

t=1

P[c̄l,t ≥ µc
l + ǫl,t] +P[c̄k,t ≥ µc

k + ǫk,t]

+
∞
∑

t=1

P[c̄k,t ≤ µc
k − ǫk,t] +P[c̄l,t ≤ µc

l − ǫl,t] +
4π2

3ǫ2

≤ π2 +
4π2

3ǫ2

≤ 3π2

ǫ2
,

using the same argument as in Fact 3.

E.5. Proof of Theorem 5. We build upon (4):

RB,T ≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
τ∗
∑

t=1

rat,t] +O(1)

= T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +E[
T
∑

t=τ∗+1

rat,t] +O(1)

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[

T
∑

t=1

rat,t] +σ ·E[
T
∑

t=τ∗+1

cat,t] +O(1)

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +σ ·E[(
T
∑

t=1

cat,t −B)+] +O(1).

The second inequality is a consequence of Assumption 4:

E[
T
∑

t=τ∗+1

cat,t] =E[
T
∑

t=1

cat,t]−E[
τ∗
∑

t=1

cat,t]

=E[
T
∑

t=1

E[cat,t | Ft−1]]−E[
∞
∑

t=1

Iτ∗≥t ·E[cat,t | Ft−1]]

=E[
T
∑

t=1

µc
at
]−E[

∞
∑

t=1

Iτ∗≥t ·µc
at
]

=E[
T
∑

t=τ∗+1

µc
at
]

≥ 1

σ
·E[

T
∑

t=τ∗+1

µr
at
] =

1

σ
·E[

T
∑

t=τ∗+1

rat,t],

since τ∗ is a stopping time. To derive the third inequality, observe that if τ∗ = T +1, we have:

T
∑

t=τ∗+1

cat,t = 0≤ (
T
∑

t=1

cat,t −B)+,

while if τ∗ <T +1 we have run out of resources before round T , i.e.
∑τ∗

t=1 cat,t ≥B, which implies:

T
∑

t=τ∗+1

cat,t ≤
T
∑

t=τ∗+1

cat,t +
τ∗
∑

t=1

cat,t −B
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≤ (
T
∑

t=1

cat,t −B)+.

Now observe that:

E[(
T
∑

t=1

cat,t −B)+] =E[(
∑

x pseudo-basis for (3)

{bx,T −nx,T · b})+]

≤
∑

x∈B
E[|bx,T −nx,T · b|] +

∑

x/∈B

E[nx,T ] +
∑

x pseudo-basis for (3)
with det(Ax)=0

E[nx,T ]

=O(
K2

ǫ3
ln(T )),

where we use the fact that ck,t ≤ 1 at any time t and for all arms k for the first inequality and Lemma 10

along with the proof of Lemma 11 for the last equality. Plugging this last inequality back into the regret

bound yields:

RB,T ≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +O(
K2 ·σ
ǫ3

ln(T ))

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B

K
∑

k=1

µr
k ·E[nx

k,T ] +O(
K2 ·σ
ǫ3

ln(T ))

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B
(

K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

K2 ·σ
ǫ3

ln(T ))

=
K
∑

k=1

µr
k · ξx

∗

k · (T −
∑

x∈B |∆x=0

E[nx,T ])−
∑

x∈B |∆x>0

(
K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

K2 ·σ
ǫ3

ln(T ))

=
K
∑

k=1

µr
k · ξx

∗

k · (
∑

x∈B |∆x>0

E[nx,T ] +
∑

x/∈B

E[nx,T ] +
∑

x pseudo-basis for (3)
with det(Ax)=0

E[nx,T ])

−
∑

x∈B |∆x>0

(
K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

K2 ·σ
ǫ3

ln(T ))

≤
∑

x∈B |∆x>0

∆x ·E[nx,T ] +O(
K2 ·σ
ǫ3

ln(T )) (36)

≤ 29
λ2

ǫ3
· (

∑

x∈B |∆x>0

1

∆x

) · ln(T )+O(
K2 ·σ
ǫ3

ln(T )),

where we use Lemma 11 for the third inequality, Lemma 10 along with
∑K

k=1 µ
r
k · ξx

∗

k ≤∑K

k=1 ξ
x∗

k ≤ 1 for

the fourth inequality, and Lemma 12 for the last inequality.

E.6. Proof of Theorem 6. Along the same lines as for the case of a single limited resource, we start

from inequality (36) derived in the proof of Theorem 5 and apply Lemma 12 only if ∆x is big enough,

taking into account the fact that:
∑

x∈B
E[nx,T ]≤ T.

Specifically, we have:

RB,T ≤ sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B |∆x>0

min(∆x ·nx,2
9λ

2

ǫ3
· ln(T )

∆x

+
10π2

3ǫ2
·∆x) }+O(

K2 ·σ
ǫ3

ln(T ))
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≤ sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B |∆x>0

min(∆x ·nx,2
9λ

2

ǫ3
· ln(T )

∆x

) }+O(
K2 ·σ
ǫ3

ln(T ))

≤ sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B

√

29
λ2

ǫ3
· ln(T ) ·nx }+O(

K2 ·σ
ǫ3

ln(T ))

≤ 25
λ

ǫ3/2
·
√

ln(T ) · sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B

√
nx }+O(

K2 ·σ
ǫ3

ln(T ))

≤ 25
λ

ǫ3/2
·
√

|B| ·T · ln(T )+O(
K2 ·σ
ǫ3

ln(T )),

where we use the fact that ∆x ≤
∑K

k=1 µ
r
k · ξx

∗

k ≤ ∑K

k=1 ξ
x∗

k ≤ 1 for the second inequality, we maximize

over each ∆x ≥ 0 to derive the third inequality, and we use Cauchy-Schwartz for the last inequality.

E.7. Proof of Theorem 7. When b≤ ǫ/2, the analysis almost falls back to the case of a single limited

resource. Indeed, we have τ∗ = τ(B) with high probability given that:

P[τ(B)>T + t] = P[
T+t
∑

τ=1

caτ ,τ ≤B]

≤ P[
1

T + t
·
T+t
∑

t=1

cat,t ≤ ǫ− (ǫ− b)]

≤ exp(−(T + t) · ǫ
2

2
),

for any t ∈ N using Lemma 1. Now observe that, since b ≤ ǫ/2, the feasible bases for (3) are exactly the

bases x such that Kx = {k} and Cx = {1} for some k ∈ {1, · · · ,K}, which we denote by (xk)k=1,··· ,K .

This shows that EROPT(B,T ) =B ·maxk=1,··· ,K µr
k/µ

c
k. Moreover note that Assumption 6 is automatically

satisfied when b≤ ǫ/2. Hence, with a minor modification of the proof of Lemma 10, we get:

E[nx,τ(B)]≤
212

ǫ3
·E[ln(τ(B))]+

40π2

3ǫ2
,

for any pseudo-basis x involving two arms or any basis x such that Kx = {k} and Cx = {2} for some arm

k ∈ {1, · · · ,K}. Similarly, a minor modification of Lemma 12 yields:

E[nxk,τ(B)]≤ 212
λ2

ǫ3
· E[ln(τ(B))]

∆2
xk

+
40π2

ǫ2
,

for any k ∈ {1, · · · ,K}. What is left is to refine the analysis of Theorem 5 as follows:

RB,T ≤B · max
k=1,··· ,K

µr
k

µc
k

−E[
τ∗
∑

t=1

rat,t] +O(1)

≤B · max
k=1,··· ,K

µr
k

µc
k

−E[

τ(B)
∑

t=1

rat,t] +T ·P[τ(B)>T ] +E[(τ(B)−T )+] +O(1)

≤B · max
k=1,··· ,K

µr
k

µc
k

−
K
∑

k=1

µr
k ·E[nxk

k,τ(B)] +O(1)

≤ max
k=1,··· ,K

µr
k

µc
k

· (B−
∑

k |∆xk
=0

µc
k ·E[nxk

k,τ(B)])−
∑

k |∆xk
>0

µr
k ·E[nxk

k,τ(B)] +O(1).
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By definition of τ(B), we have B ≤∑τ(B)

t=1 cat,t. Taking expectations on both sides yields:

B ≤
K
∑

k=1

µc
k ·E[nk,τ(B)]

=
∑

k |∆xk
=0

µc
k ·E[nxk

k,τ(B)] +
∑

k |∆xk
>0

µc
k ·E[nxk

k,τ(B)] +
∑

x/∈B

E[nx,τ(B)].

Plugging this inequality back into the regret bound, we get:

RB,T =
∑

k |∆xk
>0

µc
k ·∆xk ·E[n

xk
k,τ(B)] + max

k=1,··· ,K

µr
k

µc
k

·
∑

x/∈B

E[nx,τ(B)] +O(1)

≤
∑

k |∆xk
>0

µc
k ·∆xk ·E[n

xk
k,τ(B)] +

212K2 ·κ
ǫ3

·E[ln(τ(B))]+O(1)

≤ 212
λ2

ǫ3
· (

∑

k |∆xk
>0

1

∆xk

) · ln(B+1

ǫ
)+

212K2 ·κ
ǫ3

· ln(B+1

ǫ
)+O(1),

where we use Assumption 5 for the second inequality and Lemma 4 for the third inequality. A distribution-

independent regret bound of order O(
√

K · B+1
ǫ

· ln(B+1
ǫ

)+ K2·κ
ǫ3

· ln(B+1
ǫ

)) can be derived from the penul-

timate inequality along the same lines as in Theorem 6.

Appendix F: Proofs for Section 7.

F.1. Preliminary work for the proofs of Section 7.

Concentration inequality. We will use the following inequality repeatedly. For a given round τ ≥ tini
and a basis x:

P[∃(k, i)∈Kx ×{1, · · · ,C}, |c̄k,τ (i)−µc
k(i)|>

ǫ3

16 · (C+2)!2
]

≤
T
∑

s=tini /K

∑

k∈Kx
i∈{1,··· ,C}

P[|c̄k,τ (i)−µc
k(i)|>

ǫ3

16 · (C+2)!2
, nk,τ = s]

≤ 2 ·C2 ·
∞
∑

s=tini /K

exp(−s · ǫ6

27 · (C+2)!4
)

≤ 29
(C+3)!4

ǫ6 ·T2
,

(37)

using Lemma 1, the inequality exp(−x)≤ 1−x/2 for x∈ [0,1], and the fact that we pull each arm tini /K ≥
28 (C+2)!4

ǫ6
· ln(T ) times during the initialization phase.

Useful matrix inequalities. For any basis x, assume that {|c̄k,t(i)− µc
k(i)| ≤ ǫ3

16·(C+2)!2
}, for any arm

k ∈Kx and resource i∈ Cx. We have:

|det(Āx,t)− det(Ax)|= |
∑

σ∈S(Kx,Cx)

[
∏

k∈Kx

c̄k,t(σ(k))−
∏

k∈Kx

µc
k(σ(k))]|

= |
∑

σ∈S(Kx,Cx)

∑

l∈Kx

∏

k<l

c̄k,t(σ(k)) · [c̄l,t(σ(l))−µc
l (σ(l))] ·

∏

k>l

µc
k(σ(k))|

≤
∑

σ∈S(Kx,Cx)

∑

l∈Kx

|c̄l,t(σ(l))−µc
l (σ(l))|

≤ ǫ3

16 · (C+2)!

≤ ǫ

2
,
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since the amounts of resources consumed at any round are no larger than 1. This yields:

|det(Āx,t)| ≥ |det(Ax)| − |det(Āx,t)− det(Ax)| ≥
ǫ

2
, (38)

using Assumption 8. Now consider any vector c such that ‖c‖∞ ≤ 1, we have:

|cTĀ−1
x,tbKx − cTA−1

x bKx |
=

1

|det(Ax)| · |det(Āx,t)|
| · |det(Ax) · cT adj(Āx,t)bKx − det(Āx,t) · cT adj(Ax)bKx |

≤ 1

|det(Āx,t)|
| · |cT(adj(Āx,t)− adj(Ax))bKx|

+
1

|det(Ax)| · |det(Āx,t)|
| · |det(Āx,t)− det(Ax)| · |cT adj(Ax)bKx |

≤ ǫ2

8
+

ǫ

8 · (C+2)!
· ‖c‖2 · ‖adj(Ax)bKx‖2

≤ ǫ

4
.

The second inequality is obtained using Assumption 8 and (38) by proceeding along the same lines as above

to bound the difference between two determinants for each component of adj(Āx,t)− adj(Ax). The last

inequality is obtained using ‖c‖2 ≤
√
C and the fact that each component of Ax is smaller than 1. If we take

c= ek for k ∈Kx, this yields:

|ξxk,t − ξxk | ≤
ǫ

4
. (39)

If we take c= (µc
k(i))k∈Kx , for any i∈ {1, · · · ,C}, we get:

|
∑

k∈Kx

µc
k(i) · ξxk,t −

∑

k∈Kx

µc
k(i) · ξxk | ≤

ǫ

4
(40)

and
|
∑

k∈Kx

c̄k,t(i) · ξxk,t −
∑

k∈Kx

µc
k(i) · ξxk |= |c̄TĀ−1

x,tbKx − cTA−1
x bKx |

≤ |(c̄− c)TĀ−1
x,tbKx |+ |cTĀ−1

x,tbKx − cTA−1
x bKx |

≤ ‖c̄− c‖2 ·
1

|det(Āx,t)|
·
∥

∥adj(Āx,t)bKx

∥

∥

2
+

ǫ

4

≤
√
C · ǫ3

16 · (C+2)!2
·2
ǫ
·C! +

ǫ

4

≤ ǫ

2
,

(41)

where c̄= (c̄k,t(i))k∈Kx .

F.2. Proof of Lemma 13. First, consider a basis x /∈ B. Since x is ǫ-non-degenerate by Assumption

8, there must exist k ∈ Kx such that ξxk ≤ −ǫ or i ∈ {1, · · · ,C} such that
∑K

k=1 µ
c
k(i) · ξxk ≥ b(i) + ǫ. Let

us assume that we are in the first situation (the proof is symmetric in the other scenario). Using (39) in the

preliminary work of Section F.1, we have:

ξxk,t = ξxk +(ξxk,t − ξxk )≤− ǫ

2
, (42)

if {|c̄k,t(i)−µc
k(i)| ≤ ǫ3

16·(C+2)!2
} for all arms k ∈Kx and resources i∈ {1, · · · ,C}. Hence:

E[nx,T ] =E[
T
∑

t=tini

Ixt=x]



Flajolet and Jaillet: Logarithmic Regret Bounds for BwK

55

≤
T
∑

t=tini

P[ξxk,t ≥ 0]

≤
T
∑

t=tini

∑

k∈Kx
i∈{1,··· ,C}

P[|c̄k,t(i)−µc
k(i)|>

ǫ3

16 · (C+2)!2
]

≤ 29
(C+3)!4

ǫ6
,

where the third inequality is derived with (37).

Second, consider a pseudo-basis x for (3) that is not a basis. Since det(Ax) = 0, either every component

of Ax is 0, in which case det(Āx,t) = 0 at every round t and x can never be selected, or there exists a

basis x̃ for (3) with Kx̃ ⊂ Kx and Cx̃ ⊂ Cx along with coefficients (αkl)k∈Kx−Kx̃,l∈Kx̃
such that µc

k(i) =
∑

l∈Kx̃
αkl · µc

l (i) for any resource i ∈ Cx. Assuming we are in the second scenario and since x̃ is ǫ-non-

degenerate by Assumption 8, we have
∑K

k=1 µ
c
k(j) · ξx̃k ≤ b(j)− ǫ for any j /∈ Cx̃. Take i∈ Cx−Cx̃. Suppose

that x is feasible for (8) at round t and assume by contradiction that {|c̄k,t(j)−µc
k(j)| ≤ ǫ3

16·(C+2)!2
} for all

arms k ∈Kx and resources j ∈ {1, · · · ,C}. Using the notations ξ̃xk,t = ξxk,t +
∑

l∈Kx−Kx̃
αkl · ξxl,t, we have,

for any resource j ∈ Cx̃:

b(j) =
∑

l∈Kx

c̄l,t(j) · ξxl,t

= α(j)+
∑

l∈Kx

µc
l (j) · ξxl,t

= α(j)+
∑

l∈Kx̃

µc
l (j) · ξ̃xl,t,

where |α(j)| ≤ ǫ3

16·(C+2)!2
since ξk ∈ [0,1] ∀k ∈ {1, · · · ,K} for any feasible solution to (8). We get

Ax̃ξ̃
x
Kx̃,t

= bCx̃ −αCx̃ while Ax̃ξ
x̃
Kx̃

= bCx̃ . We derive:

|
K
∑

k=1

c̄k,t(i) · ξxk,t −
K
∑

k=1

µc
k(i) · ξx̃k |

≤ |
K
∑

k=1

µc
k(i) · ξxk,t −

K
∑

k=1

µc
k(i) · ξx̃k |+

ǫ3

16 · (C+2)!2

≤ |
∑

k∈Kx̃

µc
k(i) · (ξ̃xk,t − ξx̃k )|+

ǫ

4

=
ǫ

4
+ |µc

Kx̃
(i)TA−1

x̃ αCx̃ |

≤ ǫ

4
+
√
C · 1

|det(Ax̃)|
· ‖adj(Ax̃)αCx̃‖2

≤ ǫ

4
+

(C +1)!

ǫ
· ǫ3

16 · (C+2)!2

≤ ǫ

2
.

Thus we obtain:

K
∑

k=1

c̄k,t(i) · ξxk,t ≤
K
∑

k=1

µc
k(i) · ξx̃k +

ǫ

2
≤ b(i)− ǫ

2
< b(i),
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a contradiction since this inequality must be binding by definition if x is selected at round t. We finally

conclude:

E[nx,T ] =E[
T
∑

t=tini

Ixt=x]

≤
T
∑

t=tini

∑

k∈Kx
j∈{1,··· ,C}

P[|c̄k,t(j)−µc
k(j)|>

ǫ3

16 · (C+2)!2
]

≤ 29
(C+3)!4

ǫ6
.

F.3. Proof of Lemma 14.

Proof of (12). Consider a resource i ∈ Cx and u≥ 1. We study P[bx,t(i)−nx,t · b(i)≥ u] but the same

technique can be used to bound P[bx,t(i) − nx,t · b(i) ≤ −u]. If bx,t(i) − nx,t · b(i) ≥ u, it must be that

exi,τ =−1 for at least s≥ ⌊u⌋ rounds τ = t1 ≤ · · · ≤ ts ≤ t− 1 where x was selected at Step-Simplex since

the last time, denoted by t0 < t1, where x was selected at Step-Simplex and the budget was below the target,

i.e. bx,t0(i) ≤ nx,t0 · b(i) (because the amounts of resources consumed at each round are bounded by 1).

Moreover, we have:

s
∑

q=1

catq ,tq(i) =
t−1
∑

τ=t0+1

Ixτ=x · caτ ,τ(i)

= bx,t(i)− bx,t0+1(i)
≥ (nx,t−nx,t0) · b(i)+u− 1
≥ s · b(i)+u− 1.

Hence:

P[bx,t(i)−nx,t · b(i)≥ u]

≤
t

∑

s=⌊u⌋

P[
s

∑

q=1

catq ,tq(i)≥ s · b(i)+u− 1 ; exi,tq =−1 ∀q ∈ {1, · · · , s}]

≤
t

∑

s=⌊u⌋

P[
s

∑

q=1

catq ,tq(i)≥ s · b(i) ;
K
∑

k=1

µc
k(i) · pxk,tq ≤ b(i)− ǫ2

4 · (C+1)!
∀q ∈ {1, · · · , s}]

+
T
∑

τ=tini

∑

k∈Kx
j∈{1,··· ,C}

P[|c̄k,τ (j)−µc
k(j)|>

ǫ3

16 · (C+2)!2
]

≤
∞
∑

s=⌊u⌋

exp(−2s · ( ǫ2

4 · (C+1)!
)2)+ 29

(C+3)!4

ǫ6
· 1
T

≤ 16
(C+1)!2

ǫ4
· exp(−u · ( ǫ2

4 · (C+1)!
)2)+ 29

(C+3)!4

ǫ6
· 1
T
.

The last inequality is obtained using exp(−x)≤ 1−x/2 for x∈ [0,1]. The third inequality is derived using

Lemma 1 for the first term and (37) for the second term. The second inequality is obtained by observing

that if x was selected at time τ and |c̄k,τ (j) − µc
k(j)| ≤ ǫ3

16·(C+2)!2
for any arm k ∈ Kx and resource j ∈

{1, · · · ,C}, then we must have δ∗x,τ ≥ ǫ2

4·(C+1)!
. Indeed, using (38) and (39), we have, for δ ≤ ǫ2

4·(C+1)!
and

any arm k ∈Kx:

cTĀ−1
x,τ(bCx + δ · exτ) = ξxk,τ + δ · cTĀ−1

x,τe
x
τ
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≥ ξxk − |ξxk − ξxk,τ | − δ · |cTĀ−1
x,τe

x
τ |

≥ ǫ

2
− δ ·

∥

∥Ā−1
x,τe

x
τ

∥

∥

2

≥ ǫ

2
− δ · 1

|det(Āx,τ)|
·
∥

∥adj(Āx,τ)e
x
τ

∥

∥

2

≥ ǫ

2
− 2δ

ǫ
·
√
C ·C!

≥ 0,

where c= ek and since x is ǫ-non-degenerate by Assumption 8. Similarly, using (38) and (41), we have, for

δ ≤ ǫ2

4·(C+1)!
and any resource j /∈ Cx:

cTĀ−1
x,τ(bCx + δ · exτ ) =

∑

k∈Kx

c̄k,τ(j) · ξxk,τ + δ · cTĀ−1
x,τe

x
τ

≤
∑

k∈Kx

µc
k(j) · ξxk,τ + |

∑

k∈Kx

c̄k,τ (j) · ξxk,τ −
∑

k∈Kx

µc
k(j) · ξxk,τ |+ δ · |cTĀ−1

x,τe
x
τ |

≤ b(j)− ǫ

2
+ δ ·

√
C ·

∥

∥Ā−1
x,τe

x
τ

∥

∥

2

≤ b(j)− ǫ

2
+

2δ

ǫ
· (C+1)!

≤ b(j),

where c= (c̄k,τ(j))k∈Kx and since x is ǫ-non-degenerate by Assumption 8.

Proof of (14). First observe that, using (12), we have:

max
i∈Cx

|E[bx,T (i)]−E[nx,T ] · b(i)|
≤E[max

i∈Cx
|bx,T (i)−nx,T · b(i)|]

=

∫ T

0

P[max
i∈Cx

|bx,T (i)−nx,T · b(i)| ≥ u]du

=
∑

i∈Cx

∫ T

0

P[|bx,T (i)−nx,T · b(i)| ≥ u]du

≤ 32C · (C +1)!2

ǫ4
·
∫ T

0

exp(−u · ( ǫ2

4 · (C+1)!
)2)du+C+C · 29 (C+3)!4

ǫ6

= 29C · (C+1)!4

ǫ8
+C +C · 29 (C+3)!4

ǫ6

≤ 210C · (C+3)!4

ǫ8
.

Now observe that, for any resource i ∈ Cx, we have E[bx,T (i)] =
∑

k∈Kx
µc
k(i) ·E[nx

k,T ]. Hence, defining the

vector p= (
E[nx

k,T ]

E[nx,T ]
)k∈Kx , we get:

E[nx,T ] · ‖p− ξx‖2 =E[nx,T ] ·
∥

∥A−1
x Ax(p− ξx)

∥

∥

2

≤
∣

∣

∣

∣

∣

∣A−1
x

∣

∣

∣

∣

∣

∣

2
· ‖E[nx,T ] ·Ax(p− ξx)‖2

=
1

|det(Ax)|
· |||adj(Ax)|||2 · ‖(E[bx,T (i)])i∈Cx − (E[nx,T ] · b(i))i∈Cx‖2

≤ 1

ǫ
· (C +1)! ·

√
C · 210C · (C+3)!4

ǫ8

≤ 210
(C +3)!5

ǫ9
,
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using Assumption 8. Finally we obtain:

E[nx,T ] · ξxk −E[nx
k,T ]≤ E[nx,T ] · ‖p− ξx‖2

≤ 210
(C+3)!5

ǫ9
,

for any arm k ∈Kx.

Proof of (13). Consider a resource i /∈ Cx and assume that bx,t(i)− nx,t · b(i)≥ 28 (C+3)!3

ǫ6
· ln(T ). By

contradiction, suppose that:

• |bx,t(j)−nx,t · b(j)| ≤ 16 (C+1)!2

ǫ4
· ln(T ) for all resources j ∈ Cx,

• |µc
k(j)− c̃k(j)| ≤ ǫ2

8·(C+2)!
for all resources j ∈ {1, · · · ,C} and for all arms k ∈ Kx such that nx

k,t ≥
26 (C+2)!2

ǫ4
· ln(T ), where c̃k(j) denotes the empirical average amount of resource j consumed when selecting

basis x and pulling arm k, i.e. c̃k(j) =
1

nx
k,t

·∑t−1

τ=tini
Ixτ=x · Iaτ=k · ck,τ (j).

Observe that if bx,t(i)−nx,t · b(i)≥ 28 (C+3)!3

ǫ6
· ln(T ), it must be that x has been selected at least 28 (C+3)!3

ǫ6
·

ln(T ) times at Step-Simplex since tini, i.e. nx,t ≥ 28 (C+3)!3

ǫ6
· ln(T ). We can partition Kx into two sets K1

x

and K2
x such that nx

k,t ≥ 26 (C+2)!2

ǫ4
· ln(T ) for all k ∈K1

x and nx
k,t < 26 (C+2)!2

ǫ4
· ln(T ) for all k ∈K2

x. We get,

for any j ∈ Cx:

16
(C+1)!2

ǫ4
· ln(T )≥ |bx,t(j)−nx,t · b(j)|

≥ nx,t · |
∑

k∈K1x

c̃k(j) · pk − b(j)| −
∑

k∈K2
x

nx
k,t

≥ nx,t · |
∑

k∈K1x

c̃k(j) · pk − b(j)| − 26C · (C +2)!2

ǫ4
· ln(T ),

where pk =
nx
k,t

nx,t
for k ∈Kx

1 and pk =0 otherwise. Hence:

|
∑

k∈Kx

µc
k(j) · pk − b(j)| ≤max

k∈K1x
|µc

k(j)− c̃k(j)|+ |
∑

k∈K1x

c̃k(j) · pk − b(j)|

≤ ǫ2

8 · (C +2)!
+

(16 (C+1)!2

ǫ4
+26C · (C+2)!2

ǫ4
) · ln(T )

nx,t

≤ ǫ2

4 · (C +2)!
,

where we use the fact that
∑K

k=1 pk ≤ 1 and pk ≥ 0 for any arm k for the first inequality and nx,t ≥
28 (C+3)!3

ǫ6
· ln(T ) for the last one. We get:

‖p− ξx‖2 =
∥

∥A−1
x Ax(p− ξx)

∥

∥

2

≤
∣

∣

∣

∣

∣

∣A−1
x

∣

∣

∣

∣

∣

∣

2
· ‖Ax(p− ξx)‖2

≤ 1

|det(Ax)|
· |||adj(Ax)|||2 ·

√
C · ǫ2

4 · (C+2)!

≤ 1

ǫ
· (C +1)! ·

√
C · ǫ2

4 · (C +2)!

≤ ǫ

4 ·
√
C
,

using Assumption 8. Hence:

28
(C +3)!3

ǫ6
· ln(T )≤ bx,t(i)−nx,t · b(i)
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≤ nx,t · (
∑

k∈K1x

c̃k(i) · pk − b(i))+
∑

k∈K2
x

nx
k,t

≤ nx,t · (
∑

k∈K1x

c̃k(i) · pk − b(i))+ 26C · (C+2)!2

ǫ4
· ln(T ).

Using the shorthand notation c= (µc
k(i))k∈Kx , this implies:

0≤
∑

k∈K1x

c̃k(i) · pk − b(i)

≤
∑

k∈K1x

µc
k(i) · pk +

ǫ2

8 · (C +2)!
− (

∑

k∈Kx

µc
k(i) · ξxk + ǫ)

≤ cT(p− ξx)− ǫ

2
≤
√
C · ‖p− ξx‖2 −

ǫ

2
< 0,

a contradiction. Note that we use the fact that
∑K

k=1 pk ≤ 1 and pk ≥ 0 for any arm k and Assumption 8 for

the second inequality. We conclude that:

P[bx,t(i)−nx,t · b(i)≥ 28
(C +3)!3

ǫ6
· ln(T )]

≤
∑

j∈Cx

P[|bx,t(j)−nx,t · b(j)| ≥ 16
(C+1)!2

ǫ4
· ln(T )]

+
∑

k∈Kx
j∈{1,··· ,C}

P[|µc
k(j)− c̃k(j)| ≥

ǫ2

8 · (C +2)!
; nx

k,t ≥ 26
(C +2)!2

ǫ4
· ln(T )]

≤ 25C · (C+1)!2

ǫ4 ·T +C ·T · 29 (C+3)!4

ǫ6 ·T2

+
∑

k∈Kx
j∈{1,··· ,C}

∑

s=26·(C+2)!2/ǫ4·ln(T )

P[|µc
k(j)− c̃k(j)| ≥

ǫ2

8 · (C +2)!
; nx

k,t = s]

≤ 2C ·T · 29 (C+3)!4

ǫ6 ·T2
+28C2 · (C +2)!2

ǫ4 ·T 2

≤ 210
(C +4)!4

ǫ6 ·T ,

where we use (12) for the second inequality and Lemma 1 for the third inequality.

F.4. Proof of Lemma 15. Consider any suboptimal basis x ∈ B. The proof is along the same lines

as for Lemmas 5, 8, and 12. We break down the analysis in a series of facts where we emphasize the

main differences. We start off with an inequality similar to Fact 1. We use the shorthand notation βx =

210 (C+3)!3

ǫ6
· ( λ

∆x
)2.

Fact 11

E[nx,T ]≤2βx · ln(T )+ 29
(C+3)!4

ǫ6

+E[
T
∑

t=tini

Ixt=x · Inx,t≥βx ln(t) · Ix∗∈Bt
]. (43)
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Proof. Similarly as in Fact 1, we have:

E[nx,T ]≤2βx · ln(T )+E[
T
∑

t=tini

Ixt=x · Inx,t≥βx ln(t)].

This yields:

E[nx,T ]≤ 2βx · ln(T )+E[
T
∑

t=tini

Ixt=x · Inx,t≥βx ln(t) · Ix∗∈Bt
] +E[

T
∑

t=tini

Ix∗ /∈Bt
].

Using (39), (41), and Assumption 8, we have:

ξx
∗

k,t = ξx
∗

k − (ξx
∗

k − ξx
∗

k,t)≥
ǫ

2
≥ 0,

for any k ∈Kx∗ and
∑

k∈Kx∗

c̄k,t(i) · ξx
∗

k,t =
∑

k∈Kx∗

µc
k(i) · ξx

∗

k +(
∑

k∈Kx∗

c̄k,t(i) · ξx
∗

k,t −
∑

k∈Kx∗

µc
k(i) · ξx

∗

k )

≤ b(i)− ǫ+
ǫ

2
≤ b(i)− ǫ

2
≤ b(i),

for any resource i /∈ Cx∗ if {|c̄l,t(j)−µc
l (j)| ≤ ǫ3

16·(C+2)!2
} for any arm l ∈Kx∗ and resource j ∈ {1, · · · ,C}.

Hence:

E[nx,T ]≤ 2βx · ln(T )+E[
T
∑

t=tini

Ixt=x · Inx,t≥βx ln(t) · Ix∗∈Bt
]

+
T
∑

t=tini

∑

l∈Kx∗

j∈{1,··· ,C}

P[|c̄l,t(j)−µc
l (j)|>

ǫ3

16 · (C+2)!2
]

≤ 2βx · ln(T )+E[
T
∑

t=tini

Ixt=x · Inx,t≥βx ln(t) · Ix∗∈Bt
] + 29

(C+3)!4

ǫ6
,

where we bound the third term appearing in the right-hand side using (37).

The remainder of this proof is dedicated to show that the last term in (43) can be bounded by a constant.

This term can be broken down in three terms similarly as in Lemmas 5 and 8.

E[
T
∑

t=tini

Ixt=x · Inx,t≥βx ln(t) · Ix∗∈Bt
]

≤E[
T
∑

t=tini

Iobjx,t+Ex,t≥objx∗,t+Ex∗,t
· Inx,t≥βx ln(t) · Ix∈Bt,x∗∈Bt

]

≤E[
T
∑

t=tini

Iobjx,t≥objx+Ex,t
· Ix∈Bt

] (44)

+E[
T
∑

t=tini

Iobjx∗,t≤objx∗−Ex∗,t
· Ix∗∈Bt

] (45)

+E[
T
∑

t=tini

Iobjx∗<objx+2Ex,t
· Ix∈Bt

· Inx,t≥βx ln(t)]. (46)
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Fact 12

E[
T
∑

t=tini

Iobjx∗<objx+2Ex,t
· Ix∈Bt

· Inx,t≥βx ln(t)]≤ 211
(C +4)!4

ǫ6
.

Proof. Using the shorthand notation αx = 8( λ
∆x

)2, we have:

E[
T
∑

t=tini

Iobjx∗<objx+2Ex,t
· Ix∈Bt

· Inx,t≥βx ln(t)]

≤ E[

T
∑

t=tini

I∆x<2λ·maxk∈Kx ǫk,t · Inx,t≥βx ln(t)]

≤ E[
T
∑

t=tini

Imink∈Kx nk,t≤αx ln(t) · Inx,t≥βx·ln(t)]

≤
T
∑

t=tini

∑

k∈Kx

P[nk,t ≤ αx ln(t) ; nx,t ≥ βx ln(t)],

since
∑K

l=1 ξ
x
l,t ≤ 1 and ξxl,t ≥ 0 for any arm l when x is feasible for (8) at time t. Consider k ∈ Kx and

assume that nk,t ≤ αx · ln(t) and nx,t ≥ βx · ln(t). Suppose, by contradiction, that |bx,t(i)− nx,t · b(i)| ≤
32 (C+1)!2

ǫ4
· ln(t) for any resource i ∈ Cx and that |µc

l (i)− c̃l(i)| ≤ ǫ2

8·(C+2)!
for any resource i ∈ {1, · · · ,C}

for all arms l ∈Kx such that nx
l,t ≥ 27 (C+2)!2

ǫ4
· ln(t), where c̃l(i) is the empirical average amount of resource

i consumed when selecting basis x and pulling arm l, i.e. c̃l(i) =
1

nx
l,t

·∑t−1

τ=tini
Ixτ=x · Iaτ=l · cl,τ(i). We

can partition Kx −{k} into two sets K1

x and K2
x such that nx

l,t ≥ 27 (C+2)!2

ǫ4
· ln(t) for all l ∈K1

x and nx
l,t <

27 (C+2)!2

ǫ4
· ln(t) for all l ∈K2

x. Similarly as in the proof of Lemma 14, we have, for any resource i∈ Cx:

32
(C+1)!2

ǫ4
· ln(t)≥ |bx,t(i)−nx,t · b(i)|

≥ nx,t · |
∑

l∈K1x

c̃l(i) · pl − b(i)| −nk,t −
∑

l∈K2
x

nx
l,t

≥ nx,t · |
∑

l∈K1x

c̃l(i) · pl − b(i)| −αx · ln(t)−C · 2
7 · (C +2)!2

ǫ4
· ln(t),

where pl =
nx
l,t

nx,t
for l ∈Kx

1 and pl = 0 otherwise. Hence:

|
∑

l∈Kx

µc
l (i) · pl − b(i)| ≤max

l∈K1x
|µc

l (i)− c̃l(i)|+ |
∑

l∈K1x

c̃l(i) · pl − b(i)|

≤ ǫ2

8 · (C +2)!
+

(αx +C · 27·(C+2)!2

ǫ4
) · ln(t)

nx,t

≤ ǫ2

4 · (C +2)!
.

To derive the first inequality, we use the fact that
∑K

l=1 pl ≤ 1 and pl ≥ 0 for any arm l. For the last

inequality, we use nx,t ≥ 210 (C+3)!3

ǫ6
· ( λ

∆x
)2 · ln(t) along with λ ≥ 1 and ∆x ≤ objx∗ =

∑K

k=1 µ
r
k · ξx

∗

k ≤
∑K

k=1 ξ
x∗

k ≤ 1 because of the time constraint imposed in (3). We get:

ξxk ≤‖p− ξx‖2
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=
∥

∥A−1
x Ax(p− ξx)

∥

∥

2

≤
∣

∣

∣

∣

∣

∣A−1
x

∣

∣

∣

∣

∣

∣

2
· ‖Ax(p− ξx)‖2

≤ 1

|det(Ax)|
· |||adj(Ax)|||2 ·

√
C · ǫ2

4 · (C+2)!

≤ 1

ǫ
· (C +1)! ·

√
C · ǫ2

4 · (C +2)!

≤ ǫ

2
,

a contradiction since x is ǫ-non-degenerate by Assumption 8. We conclude that:

E[
T
∑

t=tini

Iobjx∗<objx+2Ex,t
· Ix∈Bt

· Inx,t≥βx·ln(t)]

≤C ·
T
∑

t=tini

∑

i∈Cx

P[|bx,t(i)−nx,t · b(i)| ≥ 32
(C+1)!2

ǫ4
· ln(t)]

+C ·
T
∑

t=tini

∑

l∈Kx
i∈Cx

P[|µc
l (i)− c̃l(i)| ≥

ǫ2

8 · (C +2)!
; nx

l,t ≥ 27
(C+2)!2

ǫ4
· ln(t)]

≤ 32C2 · (C+1)!2

ǫ4
· π

2

6
+C · 29 (C+3)!4

ǫ6

+
∑

l∈Kx
j∈Cx

∑

s=27·(C+2)!2/ǫ4·ln(T )

P[|µc
l (j)− c̃l(j)| ≥

ǫ2

8 · (C+2)!
; nx

l,T = s]

≤ 4C · 29 (C+3)!4

ǫ6
+27C2 · (C+2)!2

ǫ4
· π

2

6

≤ 211
(C+4)!4

ǫ6
,

where we use (12) for the second inequality and Lemma 1 for the third inequality.

Fact 13

E[
T
∑

t=tini

Iobjx,t≥objx+Ex,t
· Ix∈Bt

]≤ 210
(C+3)!2

ǫ6
.

Proof. First observe that:

E[
T
∑

t=tini

Iobjx,t≥objx+Ex,t
· Ix∈Bt

]≤ E[
T
∑

t=tini

Iobjx,t≥objx+Ex,t
· Ix∈Bt

· I|det(Āx,t)|≥ǫ/2]

+E[
T
∑

t=tini

I|det(Āx,t)|<ǫ/2]

≤ E[
T
∑

t=tini

Iobjx,t≥objx+Ex,t
· Ix∈Bt

· I|det(Āx,t)|≥ǫ/2]

+
T
∑

t=tini

∑

k∈Kx
i∈Cx

P[|c̄k,t(i)−µc
k(i)|>

ǫ3

16 · (C+2)!2
]

≤ E[
T
∑

t=tini

Iobjx,t≥objx+Ex,t
· Ix∈Bt

· I|det(Āx,t)|≥ǫ/2]

+ 29
(C+3)!4

ǫ6
,
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where we use the preliminary work of Section F.1 and in particular (38). The key observation now is that if

objx,t ≥ objx +Ex,t, x ∈Bt, and |det(Āx,t)| ≥ ǫ/2, at least one of the following events {r̄k,t ≥ µr
k + ǫk,t},

for k ∈Kx, or {|c̄k,t(i)−µc
k(i)| ≥ ǫk,t}, for k ∈Kx and i∈ {1, · · · ,C}, occurs. Otherwise we have:

objx,t − objx = (Ā−1
x,tbCx)

Tr̄Kx,t − (A−1
x bCx)

Tµr
Kx

< (Ā−1
x,tbCx)

T(µr
Kx

+ ǫKx,t)− (A−1
x bCx)

Tµr
Kx

=
1

λ
·Ex,t +((Ā−1

x,t −A−1
x )bCx)

Tµr
Kx

,

where the first inequality is a consequence of the fact that x is feasible for (8), i.e. Ā−1
x,tbCx ≥ 0 with at least

one non-zero coordinate since c̄k,t(i)≥ ǫ for all arms k and resource i by Assumption 8. Writing µc
k(i) =

c̄k,t(i)+ui,k · ǫk,t, with ui,k ∈ [−1,1] for all (i, k)∈ Cx×Kx, and defining the matrix U = (ui,k)(i,k)∈Cx×Kx ,

we get:

objx,t − objx

<
Ex,t

λ
+ |(Ā−1

x,t − (Āx,t +U diag(ǫKx,t))
−1)bCx)

Tµr
Kx

|

=
Ex,t

λ
+ |(Ā−1

x,tU(I +diag(ǫKx,t)Ā
−1
x,tU)−1 diag(ǫKx,t)Ā

−1
x,tbCx)

Tµr
Kx

|

≤ Ex,t

λ
+

1

ǫ
· |det(Āx,t +U diag(ǫKx,t))| · |(Ā−1

x,tU(I +diag(ǫKx,t)Ā
−1
x,tU)−1 diag(ǫKx,t)Ā

−1
x,tbCx)

Tµr
Kx

|

=
Ex,t

λ
+

1

ǫ
· |(adj(Āx,t)U adj(I +diag(ǫKx,t)Ā

−1
x,tU) diag(ǫKx,t)Ā

−1
x,tbCx)

Tµr
Kx

|

≤ Ex,t

λ
+

1

ǫ
·
∣

∣

∣

∣

∣

∣adj(Āx,t)U adj(I +diag(ǫKx,t)Ā
−1
x,tU)

∣

∣

∣

∣

∣

∣

2
·
∥

∥diag(ǫKx,t)Ā
−1
x,tbCx

∥

∥

2
·
∥

∥µr
Kx

∥

∥

2

≤ Ex,t

λ
+

1

ǫ
·
∣

∣

∣

∣

∣

∣adj(Āx,t)U
∣

∣

∣

∣

∣

∣

2
·
∣

∣

∣

∣

∣

∣adj(I +diag(ǫKx,t)Ā
−1
x,tU)

∣

∣

∣

∣

∣

∣

2
· Ex,t

λ
·
√
C

≤ Ex,t

λ
+

1

ǫ
· (C +1)! ·

∣

∣

∣

∣

∣

∣adj(I +diag(ǫKx,t)Ā
−1
x,tU)

∣

∣

∣

∣

∣

∣

2
· Ex,t

λ

≤ Ex,t

λ
+

2

ǫ
· (C +1)!2 · Ex,t

λ
=Ex,t.

We use the Woodbury matrix identity to derive the first equality and the matrix determinant lemma

for the second equality. The second inequality is derived from Assumption 8 since ǫ ≤ det(Ax) =
det(Āx,t + U diag(ǫKx,t)) by definition of U . The fourth inequality is derived from the observation that

diag(ǫKx,t)Ā
−1
x,tbCx is the vector (ǫk,t · ξxk,t)k∈Kx . The fifth inequality is obtained by observing that the com-

ponents of Āx,t and U are all smaller than 1 in absolute value. The sixth inequality is obtained by observing

that the elements of Ā−1
x,t are smaller than 2

ǫ
· (C − 1)! since det(Āx,t)≥ ǫ

2
and that ǫk,t ≤ ǫ

2·C!
for all arms

k as a result of the initialization phase. We get:

E[
T
∑

t=tini

Iobjx,t≥objx+Ex,t
· Ix∈Bt

]≤
T
∑

t=tini

∑

k∈Kx
i∈Cx

P[|ck,t(i)−µc
k(i)| ≥ ǫk,t]

+
T
∑

t=tini

∑

k∈Kx

P[rk,t ≥ µr
k + ǫk,t]

+ 29
(C+3)!4

ǫ6

≤ 2 · 29 (C+3)!4

ǫ6
.



Flajolet and Jaillet: Logarithmic Regret Bounds for BwK

64

Fact 14

E[
T
∑

t=tini

Iobjx∗,t≤objx∗−Ex,t
· Ix∗∈Bt

]≤ 210
(C+3)!2

ǫ6
.

We omit the proof since it is almost identical to the proof of Fact 13.

F.5. Proof of Theorem 8. Along the same lines as for Theorem 5, we build upon (4):

RB(1),··· ,B(C−1),T ≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
τ∗
∑

t=1

rat,t] +O(1)

= T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +E[
T
∑

t=τ∗+1

rat,t] +O(1)

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +σ ·E[ min
i=1,··· ,C

T
∑

t=τ∗+1

cat,t(i)]+O(1)

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=1

rat,t] +σ ·
C
∑

i=1

E[(
T
∑

t=1

cat,t(i)−B(i))+] +O(1).

The second inequality is a direct consequence of Assumption 7. To derive the last inequality, observe that

if τ∗ = T +1, we have:

T
∑

t=τ∗+1

cat,t(j) = 0≤
C
∑

i=1

E[(
T
∑

t=1

cat,t(i)−B(i))+],

for any j ∈ {1, · · · ,C} while if τ∗ < T + 1 we have run out of resources before the end of the game, i.e.

there exists j ∈ {1, · · · ,C} such that
∑τ∗

t=1 cat,t(j)≥B(j), which implies that:

min
i=1,··· ,C

T
∑

t=τ∗+1

cat,t(i)≤
T
∑

t=τ∗+1

cat,t(j)

≤
T
∑

t=τ∗+1

cat,t(j)+
τ∗
∑

t=1

cat,t(j)−B(j)

= (
T
∑

t=1

cat,t(j)−B(j))+

≤
C
∑

i=1

(

T
∑

t=1

cat,t(i)−B(i))+.

Now observe that, for any resource i∈ {1, · · · ,C}:

E[(
T
∑

t=1

cat,t(i)−B)+]≤E[(
T
∑

t=tini

cat,t(i)− b(i))+] +K · 28 (C+2)!4

ǫ6
· ln(T )

=E[(
∑

x basis for (3)

{bx,T (i)−nx,T · b(i)})+] +O(K · (C+2)!4

ǫ6
· ln(T ))

≤
∑

x∈B
E[(bx,T (i)−nx,T · b(i))+] +

∑

x/∈B

E[nx,T ]

+
∑

x pseudo-basis for (3)
with det(Ax)=0

E[nx,T ] +O(K · (C+2)!4

ǫ6
· ln(T ))
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≤
∑

x∈B

∫ T

0

P[bx,T (i)−nx,T · b(i)≥ u]du+O(K · (C +3)!4

ǫ6
· ln(T ))

≤
∑

x∈B
T ·P[bx,T (i)−nx,T · b(i)≥ 28

(C +3)!4

ǫ6
· ln(T )]

+ 28|B| · (C+3)!4

ǫ6
· ln(T )+O(K · (C +3)!4

ǫ6
· ln(T ))

=O(
|B| · (C+3)!4

ǫ6
· ln(T )),

where we use the fact that the amounts of resources consumed at any time period are no larger than 1 for

the first and second inequalities, Lemma 13 for the third inequality and inequalities (12) and (13) from

Lemma 14 along with the fact that there are at least K feasible basis for (3) (corresponding to single-armed

strategies) for the last equality. Plugging this back into the regret bound yields:

RB(1),··· ,B(C−1),T ≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −E[
T
∑

t=tini

rat,t] +O(
σ · |B| · (C +3)!4

ǫ6
· ln(T ))

= T ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B

K
∑

k=1

µr
k ·E[nx

k,T ] +O(
σ · |B| · (C +3)!4

ǫ6
· ln(T ))

≤ T ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

x∈B
(

K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

σ · |B| · (C +3)!4

ǫ6
· ln(T ))

=
K
∑

k=1

µr
k · ξx

∗

k · (T −
∑

x∈B |∆x=0

E[nx,T ]) (47)

−
∑

x∈B |∆x>0

(
K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

σ · |B| · (C +3)!4

ǫ6
· ln(T ))

=
K
∑

k=1

µr
k · ξx

∗

k · (tini+
∑

x∈B |∆x>0

E[nx,T ] +
∑

x/∈B

E[nx,T ] +
∑

x pseudo-basis for (3)
with det(Ax)=0

E[nx,T ])

−
∑

x∈B |∆x>0

(
K
∑

k=1

µr
k · ξxk ) ·E[nx,T ] +O(

σ · |B| · (C +3)!4

ǫ6
· ln(T ))

≤
∑

x∈B |∆x>0

∆x ·E[nx,T ] +O(
σ · |B| · (C +3)!4

ǫ6
· ln(T )) (48)

≤ 210
(C+3)!3 ·λ2

ǫ6
· (

∑

x∈B |∆x>0

1

∆x

) · ln(T )+O(
σ · |B| · (C +3)!4

ǫ6
· ln(T )),

where we use (14) from Lemma 14 for the second inequality, Lemma 13 for the third inequality. To derive

the last inequality, we use Lemma 15 and the fact that ∆x ≤ objx∗ =
∑K

k=1 µ
r
k · ξx

∗

k ≤∑K

k=1 ξ
x∗

k ≤ 1.

F.6. Proof of Theorem 9. Along the same lines as for the proof of Theorem 6, we start from inequality

(48) derived in the proof of Theorem 8 and apply Lemma 15 only if ∆x is big enough, taking into account

the fact that:
∑

x∈B
E[nx,T ]≤ T.

Specifically, we have:

RB(1),··· ,B(C−1),T
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= sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B |∆x>0

min(∆x ·nx,2
10 (C +3)!3 ·λ2

ǫ6
· ln(T )

∆x

+211
(C+4)!2

ǫ6
·∆x) })

+O(
σ · |B| · (C +3)!4

ǫ6
· ln(T ))

= sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B |∆x>0

min(∆x ·nx,2
10 (C +3)!3 ·λ2

ǫ6
· ln(T )

∆x

) }+O(
σ · |B| · (C +3)!4

ǫ6
· ln(T ))

≤ sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B

√

210
(C +3)!3 ·λ2

ǫ6
· ln(T ) ·nx }+O(

σ · |B| · (C +3)!4

ǫ6
· ln(T ))

≤ 25
(C+3)!2 ·λ

ǫ3
·
√

ln(T ) · sup
(nx)x∈B≥0∑
x∈B nx≤T

{
∑

x∈B

√
nx }+O(

σ · |B| · (C +3)!4

ǫ6
· ln(T ))

≤ 25
(C+3)!2 ·λ

ǫ3
·
√

σ · |B| ·T · ln(T )+O(
σ · |B| · (C +3)!4

ǫ6
· ln(T )),

where we use the fact that ∆x ≤ 1 (see the proof of Theorem 8) for the second equality, we maximize over

each ∆x ≥ 0 to derive the first inequality, and we use Cauchy-Schwartz for the last inequality.

F.7. Proof of Theorem 10. Define b̃(i) =B(i)/T̃ for any i ∈ {1, · · · ,C}. If the decision maker stops

pulling arms at round T̃ at the latest, all the results derived in Section 7 hold as long as we substitute T with

T̃ and we get:

T̃ · õpt−E[

min(τ∗,T̃ )
∑

t=1

rat,t]≤X,

where X denotes the right-hand side of the regret bound derived in either Theorem 8 or Theorem 9 and

õpt denotes the optimal value of (3) when b(i) is substituted with b̃(i) for any i ∈ {1, · · · ,C}. The key

observation is that T̃ · õpt= T · opt, where opt denotes the optimal value of (3), because the time constraint

is redundant in (3) even when b(i) is substituted with b̃(i) for any i ∈ {1, · · · ,C}. This is enough to show

the claim as we get:

X ≥ T · opt−E[
τ∗
∑

t=1

rat,t]

≥RB(1),··· ,B(C−1),T ,

where we use Lemma 2 for the last inequality.

F.8. Proof of Theorem 11. The only difference with the proofs of Theorems 8 and 9 lies in how we

bound E[
∑T

t=τ∗+1 rat,t]. We have:

E[
T
∑

t=τ∗+1

rat,t]≤ E[(T − τ∗)+]

=
T
∑

t=0

P[τ∗ ≤ T − t]

≤
C
∑

i=1

T
∑

t=0

P[
T−t
∑

τ=1

caτ ,τ(i)≥B(i)]
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=
C
∑

i=1

T
∑

t=0

P[
T−t
∑

τ=1

(caτ ,τ(i)− b(i))≥ t · b(i)]

=
C
∑

i=1

T
∑

t=0

P[tini+
∑

x/∈B

nx,T +
∑

x pseudo-basis for (3)
with det(Ax)=0

nx,T +
∑

x∈B
(bx,T−t(i)−nx,T−t · b(i))≥ t · b(i)]

=
C
∑

i=1

T
∑

t=0

P[tini+
∑

x/∈B

nx,T +
∑

x pseudo-basis for (3)
with det(Ax)=0

nx,T ≥ t · b(i)
2

]

+
C
∑

i=1

T
∑

t=0

∑

x∈B
P[bx,T−t(i)−nx,T−t · b(i)≥ t · b(i)

2 · |B| ]

≤ 2
C
∑

i=1

T
∑

t=1

tini+
∑

x/∈BE[nx,T ] +
∑

x pseudo-basis for (3)
with det(Ax)=0

E[nx,T ]

t · b(i)

+ 2|B| ·
C
∑

i=1

T
∑

t=1

∑

x∈B

E[|bx,T−t(i)−nx,T−t · b(i)|]
t · b(i) +O(1)

=O(
(C+4)!4 · |B|2

b · ǫ6 · ln2(T )),

where we use Lemma 13 and we bound E[|bx,T−t(i)−nx,T−t · b(i)|] in the same fashion as in the proof of

Theorem 8 using Lemma 14.

Appendix G: Proofs for Section A.

G.1. Proof of Lemma 16. The proof follows the same steps as for Lemma 8. We use the shorthand

notations βk = 8
ρ·(

∑C
i=1 b(i))2

ǫ2
· ( 1

∆k
)2 and n 6=x∗

k,t =
∑

x∈B | k∈Kx,x 6=x∗ n
x
k,t. Along the same lines as in Fact 1,

we have:

E[nk,τ∗ ]≤ 2βk ·E[ln(τ∗)]+E[
τ∗
∑

t=1

Ixt 6=x∗ · Iat=k · In6=x∗

k,t
≥βk ln(t)

],

and we can focus on bounding the second term, which can be broken down as follows:

E[
τ∗
∑

t=1

Ixt 6=x∗ · Iat=k · In6=x∗

k,t
≥βk ln(t)

]

=E[
τ∗
∑

t=1

Iobjxt,t+Ext,t≥objx∗,t+Ex∗,t
· Ixt 6=x∗ · Iat=k · In6=x∗

k,t
≥βk ln(t)

]

≤E[
τ∗
∑

t=1

Iobjxt,t≥objxt+Ext,t
]

+E[
τ∗
∑

t=1

Iobjx∗,t≤objx∗−Ex∗,t
]

+E[
τ∗
∑

t=1

Iobjx∗<objxt+2Ext,t
· Ixt 6=x∗ · Iat=k · In6=x∗

k,t
≥βk ln(t)

].

We study each term separately, just like in Lemma 8.

Fact 15

E[
τ∗
∑

t=1

Iobjxt,t≥objxt+Ext,t
]≤K · π

2

6
.
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Proof. If objxt,t ≥ objxt +Ext,t, there must exist l ∈Kxt such that r̄l,t ≥ µr
l + ǫl,t, otherwise:

objxt,t − objxt =
∑

l∈Kxt

(r̄l,t −µr
l ) · ξxtl

<
∑

l∈Kxt

ǫl,t · ξxtl

=Ext,t,

where the inequality is strict because there must exist l ∈ Kxt such that ξxtl > 0 (at least one resource

constraint is binding for a feasible basis to (3) aside from the basis x̃ associated with Kx̃ = ∅). We obtain:

E[
τ∗
∑

t=1

Iobjxt,t≥objxt+Ext,t
]≤E[

τ∗
∑

t=1

K
∑

l=1

Ir̄l,t≥µr
l
+ǫl,t ]

≤
K
∑

l=1

∞
∑

t=1

P[r̄l,t ≥ µr
l + ǫl,t]

≤K · π
2

6
,

where the last inequality is derived along the same lines as in the proof of Fact 3.

Similarly, we can show that:

E[
τ∗
∑

t=1

Iobjx∗,t≤objx∗−Ex∗,t
]≤K · π

2

6
.

We move on to study the last term.

Fact 16

E[
τ∗
∑

t=1

Iobjx∗<objxt+2Ext,t
· Ixt 6=x∗ · Iat=k · In6=x∗

k,t
≥βk ln(t)

] = 0.

Proof. If objx∗ < objxt +2Ext,t, xt 6= x∗, and at = k, we have:

∆k

2
≤ ∆xt

2

<
∑

l∈Kxt

ξxtl ·
√

2 ln(t)

nl,t

≤
∑

l∈Kxt

√

2ξxtl · ξxtk ln(t)

nk,t

,

where we use the fact that, by definition of the load balancing algorithm and since at = k, ξxtk 6= 0 (otherwise

arm k would not have been selected) and:

nl,t ≥
ξxtl
ξxtk

nk,t, (49)

for all arms l ∈Kxt . We get:

nk,t <
8

(∆k)2
· ξxtk · (

∑

l∈Kxt

√

ξxtl )2 · ln(t)

≤ 8

(∆k)2
· ξxtk · ρ ·

∑

l∈Kxt

ξxtl · ln(t)

≤ 8

(∆k)2
· ρ · (

∑

l∈Kxt

ξxtl )2 · ln(t),
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using the Cauchy−Schwarz inequality and the fact that a basis involves at most ρ arms. Now observe that:

∑

l∈Kxt

ξxtl ≤
∑

l∈Kxt

∑C

i=1 cl(i)

ǫ
· ξxtl

≤
∑C

i=1 b(i)

ǫ

as xt is a feasible basis to (8) and using Assumption 2. We obtain:

n 6=x∗

k,t ≤ nk,t

< 8 · ρ · (
∑C

i=1 b(i))
2

ǫ2 · (∆k)2
· ln(t)

= βk · ln(t).

G.2. Proof of Lemma 17. We first show (16) by induction on t. The base case is straightforward.

Suppose that the inequality holds at time t− 1. There are three cases:

• arm k is not pulled at time t− 1, in which case the left-hand side of the inequality remains unchanged

while the right-hand side can only increase, hence the inequality still holds at time t,
• arm k is pulled at time t − 1 after selecting xt−1 6= x∗, in which case both sides of the inequality

increase by one and the inequality still holds at time t,
• arm k is pulled at time t− 1 after selecting xt−1 = x∗. First observe that there must exist l ∈Kx∗ such

that nl,t−1 ≤ (t− 1) · ξx
∗

l∑K
r=1 ξx

∗
r

. Suppose otherwise, we have:

t− 1 =
K
∑

l=1

nl,t

≥
∑

l∈Kx∗

nl,t

>
∑

l∈Kx∗

(t− 1) · ξx
∗

l
∑K

r=1 ξ
x∗
r

= t− 1,

a contradiction. Suppose now by contradiction that inequality (16) no longer holds at time t, we have:

nk,t−1 = nk,t − 1

>nx∗,t ·
ξx

∗

k
∑K

l=1 ξ
x∗
l

+
∑

x∈B,x 6=x∗

nx,t

≥ (nx∗,t +
∑

x∈B,x 6=x∗

nx,t) ·
ξx

∗

k
∑K

l=1 ξ
x∗
l

= (t− 1) · ξx
∗

k
∑K

l=1 ξ
x∗
l

,

which implies, using the preliminary remark above, that
ξx

∗

k
nk,t−1

< max
l∈Kx∗

ξx
∗

l
nl,t−1

, a contradiction given the

definition of the load balancing algorithm.
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We conclude that inequality (16) holds for all times t and arms k ∈Kx∗ . We also derive inequality (15) as a

byproduct, since, at any time t and for any arm k ∈Kx∗ :

nk,t ≥ nx∗,t −
∑

l∈Kx∗ ,l 6=k

nl,t

≥ nx∗,t · (1−
∑

l∈Kx∗ ,l 6=k ξ
x∗

l
∑K

l=1 ξ
x∗
l

)− ρ · (
∑

x∈B,x 6=x∗

nx,t +1)

= nx∗,t ·
ξx

∗

k
∑K

l=1 ξ
x∗
l

− ρ · (
∑

x∈B,x 6=x∗

nx,t+1),

as a basis involves at most ρ arms.

G.3. Proof of Theorem 12. The proof proceeds along the same lines as for Theorem 3. We build upon

(4):

RB(1),··· ,B(C) ≤B ·
K
∑

k=1

µr
k · ξx

∗

k −
K
∑

k=1

µr
k ·E[nk,τ∗ ] +O(1)

≤B ·
K
∑

k=1

µr
k · ξx

∗

k −
∑

k∈Kx∗

µr
k ·E[nk,τ∗ ] +O(1)

≤ (B− E[nx∗,τ∗]
∑K

k=1 ξ
x∗
k

) ·
K
∑

k=1

µr
k · ξx

∗

k + ρ2 ·
∑

x∈B,x 6=x∗

E[nx,τ∗] +O(1),

where we use (15) to derive the third inequality. Now observe that, by definition, at least one resource is

exhausted at time τ∗. Hence, there exists i∈ {1, · · · ,C} such that the following holds almost surely:

B(i)≤
K
∑

k=1

ck(i) ·nk,τ∗

≤
∑

k/∈Kx∗

nk,τ∗ +
∑

k∈Kx∗

ck(i) ·nk,τ∗

≤
∑

x∈B,x 6=x∗

nx,τ∗ +
∑

k∈Kx∗

ck(i) ·nk,τ∗

≤ ρ · (
∑

x∈B,x 6=x∗

nx,τ∗ +2)+nx∗,τ∗ ·
∑

k∈Kx∗

ck(i) ·
ξx

∗

k
∑K

l=1 ξ
x∗
l

≤ ρ · (
∑

x∈B,x 6=x∗

nx,τ∗ +2)+ b(i) · nx∗,τ∗

∑K

k=1 ξ
x∗
k

,

where we use (16) and the fact that x∗ is a feasible basis to (3). Rearranging yields:

nx∗,τ∗

∑K

k=1 ξ
x∗
k

≥B− ρ

b
· (

∑

x∈B,x 6=x∗

nx,τ∗ +2),

almost surely. Plugging this last inequality back into the regret bound, we get:

RB(1),··· ,B(C) ≤ ρ ·
∑

x∈B,x 6=x∗

E[nx,t] · (
∑K

k=1 µ
r
k · ξx

∗

k

b
+ ρ)+O(1)

≤ ρ ·
∑

x∈B,x 6=x∗

E[nx,t] · (
∑K

k=1

∑C

i=1 ck(i) · ξx
∗

k

ǫ · b + ρ)+O(1)
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≤ (
ρ ·∑C

i=1 b(i)

ǫ · b +(ρ)2) ·
∑

x∈B,x 6=x∗

E[nx,t] +O(1)

= (
ρ ·∑C

i=1 b(i)

ǫ · b +(ρ)2) ·
K
∑

k=1

E[
∑

x∈B | k∈Kx,x 6=x∗

nx
k,τ∗ ] +O(1)

≤ 32
ρ3 · (∑C

i=1 b(i))
3

ǫ3 · b · (
K
∑

k=1

1

(∆k)2
) ·E[ln(τ∗)]+O(1)

≤ 32
ρ3 · (∑C

i=1 b(i))
3

ǫ3 · b · (
K
∑

k=1

1

(∆k)2
) · ln(

∑C

i=1 b(i) ·B
ǫ

+1)+O(1),

where we use the fact that x∗ is a feasible basis to (3) for the third inequality, Lemma 16 for the fourth

inequality, the concavity of the logarithmic function along with Lemma 7 for the last inequality.

G.4. Proof of Lemma 18. We use the shorthand notations βk = 8C · ( λ
∆k

)2 and, for any round t,

n/∈O
k,t =

∑

x∈B | k∈Kx, x/∈O nx
k,t. Similarly as in Fact 11, we have:

E[n/∈O
k,T ]≤ 2βk · ln(T )+ 29

(C+3)!4

ǫ6

+E[
T
∑

t=tini

Ixt /∈O · Iat=k · In/∈O
k,t

≥βk ln(t)
· Ix∗∈Bt

],

and what remains to be done is to bound the second term, which we can break down as follows:

E[
T
∑

t=tini

Ixt /∈O · Iat=k · In/∈O
k,t

≥βk ln(t)
· Ix∗∈Bt

]

≤ E[
T
∑

t=tini

Iobjxt,t+Ext,t≥objx∗,t+Ex∗,t
· Ixt /∈O · Iat=k · In/∈O

k,t
≥βk ln(t)

· Ix∗∈Bt
]

≤ E[
T
∑

t=tini

Iobjxt,t≥objxt+Ext,t
· Ixt∈Bt

]

+E[
T
∑

t=tini

Iobjx∗,t≤objx∗−Ex∗,t
· Ix∗∈Bt

]

+E[
T
∑

t=tini

Iobjx∗<objxt+2Ext,t
· Ixt /∈O · Iat=k · In/∈O

k,t
≥βk ln(t)

].

The study of the second term is the same as in the proof of Lemma 15. We can also bound the first term in

the same fashion as in the proof of Lemma 15 since there is no reference to the load balancing algorithm in

the proof of Fact 13. The major difference with the proof of Lemma 15 lies in the study of the last term.

Fact 17

E[
T
∑

t=tini

Iobjxt,t≥objxt+Ext,t
· Ix∈Bt

]≤ 210
K · (C +3)!2

ǫ6
.

Proof. The only difference with the proof of Fact 13 is that the number of arms that belong to Kx for x
ranging in {x̃ ∈ B | k ∈ Kx̃, x̃ /∈ O} can be as big as K , as opposed to C when we are considering one

basis at a time. This increases the bound by a multiplicative factor K .
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Fact 18

E[
T
∑

t=tini

Iobjx∗<objxt+2Ext,t
· Ixt /∈O · Iat=k · In/∈O

k,t
≥βk ln(t)

] = 0.

Proof. Assume that objx∗ < objxt +2Ext,t, xt /∈O, and at = k. We have:

∆k

2
≤ ∆xt

2

<λ ·
∑

l∈Kxt

ξxtl,t ·
√

2 ln(t)

nl,t

≤ λ ·
∑

l∈Kxt

√

2ξxtl,t · ξxtk,t ln(t)
nk,t

,

where we use the fact that, by definition of the load balancing algorithm and since at = k, ξxtk,t 6=0 (otherwise

arm k would not have been selected) and:

nl,t ≥
ξxtl,t
ξxtk,t

·nk,t, (50)

for any arm l ∈Kxt . We get:

n/∈O
k,t ≤ nk,t

< 8(
λ

∆k

)2 · ξxtk,t · (
∑

l∈Kxt

√

ξxtl,t)
2 · ln(t)

≤ 8(
λ

∆k

)2 · ξxtk,t ·C ·
∑

l∈Kxt

ξxtl,t · ln(t)

≤ 8(
λ

∆k

)2 ·C · (
∑

l∈Kxt

ξxtl,t)
2 · ln(t)

≤ 8C · ( λ

∆k

)2 · ln(t),

using the Cauchy−Schwarz inequality, the fact that a basis involves at most C arms, and the fact that

xt is feasible for (8) whose linear constraints include
∑K

l=1 ξl ≤ 1 and ξl ≥ 0,∀l ∈ {1, · · · ,K}. We get

n/∈O
k,t <βk ln(t) by defintion of βk.

G.5. Proof of Theorem 13. Substituting b(i) with B(i)/B(C) for every resource i ∈ {1, · · · ,C}, the

regret bound obtained in Theorem 3 turns into:

RB(1),··· ,B(C) ≤ 16
ρ

ǫ
·
∑C

i=1B(i)

B(C)
· (

∑

x∈B |∆x>0

1

∆x

) · ln(
∑C

i=1B(i)

ǫ
+1)+O(1). (51)

Observe that B∁ and O∁ are defined by strict inequalities that are linear in the vector

(B(1)/B(C), · · · ,B(C − 1)/B(C)). Hence, for B(C) large enough, B∁
∞ ⊂ B∁ and O∁

∞ ⊂ O∁ and thus

B ⊂B∞ and O⊂O∞. We now move on to prove each claim separately.

First claim. Suppose that there exists a unique optimal basis to (3), which we denote by x∗. Then, we must

have O = {x∗} =O∞ for B(C) large enough. Indeed, using the set inclusion relations shown above, we

have O⊂O∞ = {x∗} and O can never be empty as there exists at least one optimal basis to (3) (this linear

program is feasible and bounded). We get O∁∩B ⊂O∁
∞ ∩B∞ for B(C) large enough. Note moreover that,
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for any x ∈ B, ∆x converges to ∆∞
x (because both the objective value of a feasible basis and the optimal

value of a linear program are Lipschitz in the right-hand side of the inequality constraint), which implies

that ∆x >
∆∞

x
2

> 0 when x∈B ∩O∁ for B(C) large enough. We conclude with (51) that:

RB(1),··· ,B(C) ≤ 32
ρ

ǫ
·
∑C

i=1B(i)

B(C)
· (

∑

x∈B∞ |∆∞
x >0

1

∆x

) · ln(
∑C

i=1B(i)

ǫ
+1)+O(1),

for B(C) large enough. This yields the result since B(i)/B(C)→ b(i)> 0 for any resource i= 1, · · · ,C−
1.

Second claim. Suppose that
B(i)

B(C)
− b(i) =O( ln(B(C))

B(C)
) for any resource i ∈ {1, · · · ,C − 1}. Starting from

(30) derived in the proof of Theorem 3 and applying Lemma 8 only if ∆x is big enough, we have:

RB(1),··· ,B(C)

≤
∑

x∈B |∆x>0

min(
∆x

∑K

k=1 ξ
x
k

·E[nx,τ∗],16ρ ·
∑K

k=1 ξ
x
k

∆x

· ln(
∑C

i=1B(i)

ǫ
+1)+

π2

3
ρ · ∆x

∑K

k=1 ξ
x
k

)+O(1)

≤
∑

x∈B |∆x>0

min(∆x ·
B(C)

mini=1,··· ,C B(i)
·
∑C

i=1B(i)

ǫ
,16

ρ ·∑C

i=1B(i)/B(C)

ǫ
· 1

∆x

· ln(
∑C

i=1B(i)

ǫ
+1))

+O(1)

≤ 16
ρ ·∑C

i=1B(i)/B(C)

ǫ
· (

∑

x∈B∩O∁∩O∁
∞

1

∆x

) · ln(
∑C

i=1B(i)

ǫ
+1)

+ (
∑

x∈B∩O∁∩O∞

∆x) ·
B(C)

mini=1,··· ,C B(i)
·
∑C

i=1B(i)

ǫ
+O(1), ‘

where we use:
K
∑

k=1

ξxk ∈ [ min
i=1,··· ,C

B(i)/B(C),

∑C

i=1B(i)/B(C)

ǫ
]

and

∆x ≤
∑C

i=1B(i)/B(C)

ǫ
,

as shown in the proof of Theorem 3 (substituting b with mini=1,··· ,C B(i)/B(C)). For x∈B∩O∁∩O∁
∞, we

have x∈B∞ and ∆x >
∆∞

x
2

> 0 for B(C) large enough, as shown for the first claim. For x∈B∩O∁∩O∞,

we have ∆x = O(ln(B(C))/B(C)) as both the objective value of a feasible basis and the optimal value

of a linear program are Lipschitz in the right-hand side of the inequality constraints. We conclude that, for

B(C) large enough:

RB(1),··· ,B(C)

≤ 32
ρ ·∑C

i=1B(i)/B(C)

ǫ
· (

∑

x∈B∞∩O∁
∞

1

∆∞
x

) · ln(
∑C

i=1B(i)

ǫ
+1)

+
1

ǫ
· B(C)

mini=1,··· ,C B(i)
·

∑

x∈B∩O∁∩O∞

O(ln(B(C)))+O(1).

This yields the result since |B ∩ O∁ ∩ O∞| ≤ |O∞| and B(i)/B(C) → b(i) > 0 for any resource i =
1, · · · ,C − 1.
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G.6. Proof of Theorem 14. The proof is along the same lines as for Theorem 13. Specifically, in a first

step, we observe that all the proofs of Section 6 remain valid (up to universal constant factors) for T large

enough as long as we substitute b with B/T . Indeed, for T large enough, we have B
T
≤ 2 and |µc

k − B
T
|> ǫ

2

for all arms k ∈ {1, · · · ,K} under Assumption 6. In a second step, just like in the proof of Theorem 13,

we show that we can substitute
∑

x∈B |∆x>0
1

∆x
with

∑

x∈B∞ |∆∞
x >0

1
∆∞

x
in the regret bound up to universal

constant factors.

G.7. Proof of Theorem 15. The proof is along the same lines as for Theorem 13. Specifically, in a

first step, we observe that all the proofs of Section 7 remain valid (up to universal constant factors) for T
large enough as long as we substitute b with mini=1,··· ,C−1B(i)/T . Indeed, for T large enough, we have

mini=1,··· ,C−1B(i)/T ≤ 2 and, under Assumption 8, any basis to (17) has determinannt larger than ǫ/2 in

absolute value and is ǫ/2−non-degenerate by continuity of linear functions. In a second step, just like in the

proof of Theorem 13, we show that we can substitute
∑

x∈B |∆x>0
1

∆x
with

∑

x∈B∞ |∆∞
x >0

1
∆∞

x
in the regret

bound up to universal constant factors.
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