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Motivation

Transformers are the one of the most 
successful architectures for language 
modeling and related tasks. However the 
these models have a quadraic inference 
time complexity in their sequence lengths, 
which severely limits content length. 
Variaous linear time architectures have 
been proposed such as RetNets, RWKV, 
S4, etc. However these models are not 
su�ciently expressive enough to enjoy 
the performance that transformers do.

Here we examine hybrid 
retention-attention networks to decrease 
the constant factor in inference time. We 
suitably replace attention heads with 
retention heads and show that perplexity 
can be maintained with a decrease in 
model size and evaluation time.

Architecture

We use three types of layers as 
fundamental building blocks for our 
architectures. The first two are simply 
attention and retention layers. The third is 
a hybrid retformer layer. The architecture 
of all three are given in Figure 1

We combine these three types of layers in 
di�erent ways to form three types of 
RetFormer architectures. These are given 
in Figure 2.
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Figure 1: (a) Hybrid retformer layer (b) Multi-headed attention layer; (c) Multi-scale retention layer
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Table 3: Training perplexities of various 
architectures

Architecture Type AR ratio # of GigaMACs Train perpl.
Vanilla Transformer 1:0 10.305 4.251
Vanilla RetNet 0:1 6.709 23.984
Type-A Retfomer 1:11 7.009 13.426
Type-A Retfomer 2:10 7.308 34.811
Type-A Retfomer 3:9 7.608 6.942
Type-A Retfomer 4:8 7.908 5.162
Type-A Retfomer 5:7 8.207 5.885
Type-A Retfomer 6:6 8.507 4.845
Type-A Retfomer 7:5 8.806 4.364
Type-A Retfomer 8:4 9.10 4.291
Type-A Retfomer 9:3 9.406 3.955
Type-A Retfomer 10:2 9.705 3.209
Type-A Retfomer 11:1 10.005 4.762
Type-B Retfomer 1:11 7.004 12.725
Type-B Retfomer 2:10 7.304 9.483
Type-B Retfomer 3:9 7.604 7.508
Type-B Retfomer 4:8 7.904 11.826
Type-B Retfomer 5:7 8.204 10.549
Type-B Retfomer 6:6 8.504 8.345
Type-B Retfomer 7:5 8.804 4.81
Type-B Retfomer 8:4 9.104 4.74
Type-B Retfomer 9:3 9.405 5.31
Type-B Retfomer 10:2 9.705 5.226
Type-B Retfomer 11:1 10.005 4.807
Type-C Retfomer 1:7 8.563 40.775
Type-C Retfomer 2:6 8.732 13002.334
Type-C Retfomer 3:5 9.012 119.673
Type-C Retfomer 4:4 9.406 206.809
Type-C Retfomer 5:3 9.911 72.801
Type-C Retfomer 6:2 10.529 52.354
Type-C Retfomer 7:1 11.260 56.122
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Figure 2: Type A, B, and C RetFormers

For each RetFormer architecture, we define an 
AR ratio as the ratio of the number of attention 
heads to the number of retention heads.

The larger the AR ratio, the more 
computational time the network takes. Thus 
our central goal was to minimize AR ratio while 
maintaining good performance.

Experimental Results

We trained all three types of retformers on a 
downsampled subset of the WikiText-2 
dataset.

The AR-ratio, number of GigaMACS and train 
perplexity are given in table 3. We omit the 
validation perplexity as we use a 
downsampled subset and we were mainly 
interested in the expressive power of the 
network.

From these results, it is clear that for the same 
AR-ratio, Type A RetFormers perform better 
than type B RetFormers. Type C RetFormers 
performed the worst.

In fact, a Type A RetFormer with AR ratio 10:2 
performed better than a vanilla transformer.
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Future Work

This preliminary analysis shows that there is 
much potential in using hybrid retention and 
attention networks. We were limited by 
computational power, and thus this work 
mainly analyzes expressive power. It would be 
interesting to explore how such models 
generalize to unseen testing datasets. It could 
also be worth exploring how performance of 
these RetFormers scale with even larger 
language models.
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