
χ =
of attention heads

of retention heads
(1)

RetFormers: Hybrid Attention-Retention
Networks for Faster Inference

Ishank Agrawal and Alex Hu

Motivation

Transformers are the one of the most
successful architectures for language
modeling and related tasks. However the
these models have a quadraic inference
time complexity in their sequence lengths,
which severely limits content length.
Variaous linear time architectures have
been proposed such as RetNets, RWKV,
S4, etc. However these models are not
su�ciently expressive enough to enjoy
the performance that transformers do.

Here we examine hybrid
retention-attention networks to decrease
the constant factor in inference time. We
suitably replace attention heads with
retention heads and show that perplexity
can be maintained with a decrease in
model size and evaluation time.

Architecture

We use three types of layers as
fundamental building blocks for our
architectures. The first two are simply
attention and retention layers. The third is
a hybrid retformer layer. The architecture
of all three are given in Figure 1

We combine these three types of layers in
di�erent ways to form three types of
RetFormer architectures. These are given
in Figure 2.

Outputs

Retention Heads
Retention Heads

Retention Heads

Concat

ConcatGroup Norm

Swish

Retention Heads
Retention Heads

Attention Heads

Concat

Input Embeddings

Outputs

Add + Layer Norm

Feed-Forward
Neural Net

Add + Layer Norm

Retention Heads
Retention Heads

Retention Heads

Concat

Group Norm

Swish

Input Embeddings

Add + Layer Norm

Feed-Forward
Neural Net

Add + Layer Norm

Concat

Retention Heads
Retention Heads

Input Embeddings

Outputs

Add + Layer Norm

Feed-Forward
Neural Net

Add + Layer Norm

Attention Heads

Concat

Figure 1: (a) Hybrid retformer layer (b) Multi-headed attention layer; (c) Multi-scale retention layer

 (a) (b) (c)

Table 3: Training perplexities of various
architectures

Architecture Type AR ratio # of GigaMACs Train perpl.
Vanilla Transformer 1:0 10.305 4.251
Vanilla RetNet 0:1 6.709 23.984
Type-A Retfomer 1:11 7.009 13.426
Type-A Retfomer 2:10 7.308 34.811
Type-A Retfomer 3:9 7.608 6.942
Type-A Retfomer 4:8 7.908 5.162
Type-A Retfomer 5:7 8.207 5.885
Type-A Retfomer 6:6 8.507 4.845
Type-A Retfomer 7:5 8.806 4.364
Type-A Retfomer 8:4 9.10 4.291
Type-A Retfomer 9:3 9.406 3.955
Type-A Retfomer 10:2 9.705 3.209
Type-A Retfomer 11:1 10.005 4.762
Type-B Retfomer 1:11 7.004 12.725
Type-B Retfomer 2:10 7.304 9.483
Type-B Retfomer 3:9 7.604 7.508
Type-B Retfomer 4:8 7.904 11.826
Type-B Retfomer 5:7 8.204 10.549
Type-B Retfomer 6:6 8.504 8.345
Type-B Retfomer 7:5 8.804 4.81
Type-B Retfomer 8:4 9.104 4.74
Type-B Retfomer 9:3 9.405 5.31
Type-B Retfomer 10:2 9.705 5.226
Type-B Retfomer 11:1 10.005 4.807
Type-C Retfomer 1:7 8.563 40.775
Type-C Retfomer 2:6 8.732 13002.334
Type-C Retfomer 3:5 9.012 119.673
Type-C Retfomer 4:4 9.406 206.809
Type-C Retfomer 5:3 9.911 72.801
Type-C Retfomer 6:2 10.529 52.354
Type-C Retfomer 7:1 11.260 56.122

... ...

A
ttention + FN

N
 Layer

A
ttention + FN

N
 Layer

Retention + FN
N

 Layer

Retention+ FN
N

 Layer

... ...

A
ttention + FN

N
 Layer

A
ttention + FN

N
 Layer

Retention + FN
N

 Layer

Retention+ FN
N

 Layer

...

H
ybrid Layer

H
ybrid Layer

(a) Type A

(b) Type B

(c) Type C

Figure 2: Type A, B, and C RetFormers

For each RetFormer architecture, we define an
AR ratio as the ratio of the number of attention
heads to the number of retention heads.

The larger the AR ratio, the more
computational time the network takes. Thus
our central goal was to minimize AR ratio while
maintaining good performance.

Experimental Results

We trained all three types of retformers on a
downsampled subset of the WikiText-2
dataset.

The AR-ratio, number of GigaMACS and train
perplexity are given in table 3. We omit the
validation perplexity as we use a
downsampled subset and we were mainly
interested in the expressive power of the
network.

From these results, it is clear that for the same
AR-ratio, Type A RetFormers perform better
than type B RetFormers. Type C RetFormers
performed the worst.

In fact, a Type A RetFormer with AR ratio 10:2
performed better than a vanilla transformer.

Acknowledgements

We are extremely grateful for Prof. Yoon
Kim’s guidance and help during this
project as well as the entire NLP sta�.

Future Work

This preliminary analysis shows that there is
much potential in using hybrid retention and
attention networks. We were limited by
computational power, and thus this work
mainly analyzes expressive power. It would be
interesting to explore how such models
generalize to unseen testing datasets. It could
also be worth exploring how performance of
these RetFormers scale with even larger
language models.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan
N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2023. Attention is all you need.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma, Yuqing Xia, Jilong Xue,
Jianyong Wang, and Furu Wei. 2023. Retentive network: A successor to
transformer for large language models.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu.
2023. Roformer: Enhanced transformer with rotary position embedding.

