
23. Accretion

and forth between the two objects a time or two, but before too long one
object or another will end its stellar life, as either a white dwarf, neutron
star, or black hole.

23.5 Accretion Disks

Once our binary contains a compact stellar remnant, if the binary sepa-
ration and mass ratio are right then one last phase of mass transfer can
occur. When overflow occurs in a system with a compact object (WD,
NS, or BH; call it m2), the material has a long way to fall. It is pushed
over the brink by the unbalanced pressure at L1, and falls down toward
m2 with a velocity v ≈ cs ∼ 10s km s−1 — much smaller than the or-
bital speeds of ∼ 100 km s−1. When m2 had a large radius this material
would easily hit its target, but in this later phase of evolution the target
is far smaller.

Now, the overflowing gas heads down, down toward m2 — but all the
while, the �v × �Ω Coriolis force is steadily acting on the material, causing
it to veer away from a direct path. The combined potential leads to the
matter entering into an orbit around m2, with the material’s trajectory
passing through its former position and smashing into the material that
was coming along behind it.

Shock heating sets in where the infalling stream impacts the growing
disk of matter, converting bulk kinetic energy into heat. Radiation can
try to cool the hot, shocked material but it can’t transport much angular
momentum: so the accreted material ends up in a circular accretion disk.

Further evolution of the disk is set by its ability to transport mass inward
through the disk while simultaneously moving angular momentum out-
ward – these parameters are set in turn by the viscosity of the disk. Each
concentric annulus of material in the disk wants to travel at a slightly
different Keplerian speed. Very close to m2 at the center of our accretion
disk, orbits are determined solely by m2 and so travel at the Keplerian
angular velocity

(595) ΩK(r) =
v
r
=

�
GM
r3 .

Meanwhile, the angular momentum per unit mass is

(596) �(r) = rv = r2ΩK =
√

GMr.

So as we go outward through successive annuli of the disk, Ω decreases
but � increases. These rings, rotating at different speeds, are coupled by
viscosity – this effectively acts like friction. So each interior ring tries to
speed up the rotation of its exterior neighbor, sending angular momen-
tum outward and pushing out that exterior neighbor. At the same time,
the ring interacts viscously with the next ring inward, trying to slow it
down and so causing it to fall inward. The net effect is that the disk
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23.6. Alpha-Disk model

will spread toward smaller and larger radii, transporting angular mo-
mentum outward. Energy is dissipated by the viscous interactions (plus
emitted radiation), so material falls steadily inward.

23.6 Alpha-Disk model

Our modest goal here is to find a steady-state model for an accretion
disk with fixed mass transfer rate Ṁ. When disk material spills into the
compact object’s potential well it has near-zero velocity but a long way
to fall. Thus the ultimate power source of an accretion disk comes from
the conversion of gravitational potential energy. Dropping in some small
amount of mass m will liberate

(597) ΔE =
GMm

R

and so the overall luminosity of the accretion disk should scale as

(598) Lacc ≈
GMṀ

R
.

The Stress Tensor

We will shortly introduce the so-called “α-disk” model that is often used
to provide a phenomenological description of accretion disk physics. As
background to this discussion, we first describe two useful foundational
concepts. The first is the viscous stress tensor Tij. (Some students have
already encountered a variant of this tensor, the stress-energy tensor,
in a general relativity class. For our discussion here, we only need the
3-D purely spatial stress tensor.) The quantity Tij represents a flux of
momentum:

(599) Tij = Flux of momentum pi in the j-th direction .

Imagine you have a box with sides parallel to the x, y, and z axes:
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Figure 55: Fiducial box for computing fluxes.
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23. Accretion

The net rate of change of (for example) px associated with flow through
the sides normal to the y axis is

(600)
dpx

dt

�����
ŷ

=
�

side 1

Txy dx dz −
�

side 2

Txy dx dz .

Similar equations describe the rates of change of components associated
with momentum flow through the sides normal to the other axes.

Viscosity

The second concept is the notion of viscosity. In a fluid, viscosity is the
quantity which transports momentum component i in some direction
that is not i — a non-normal stress. (Momentum component i transported
in direction i is probably much more familiar: it is pressure.) It is related
to the density of the fluid and the velocity gradient. In Cartesian coordi-
nates, the coefficient of dynamic viscosity ν is defined as

(601) Tij = ρν
∂vi

∂xj .

When we convert to cylindrical coordinates (which we’ll want to use to
model an accretion disk), one particularly important component is

(602) Tφr = ρνr
dΩ
dr

.

This tells us how axial motions in a disk are coupled to one another in
the radial direction.

In fluids we typically encounter in our daily lives, the value of ν is of
order the mean free path of the molecules in the fluid, λ, times their typ-
ical speed, ū. This intuition fails for accretion disks, which means that
their viscosity (or their effective viscosity) must arise from some different
physical mechanism. Determining this mechanism and thereby under-
standing the viscosity of astrophysical accretion disks is an important
problem in modern astrophysics research.

Overview

Turn now to accretion disks. In steady state, accretion disks are a stable
assembly of fluid in which various energy sources and various forces are
in balance. This is very similar to the root underlying physics of stars; as
such, it is not too surprising that the equations which govern the struc-
ture of accretion disks bear a more than passing resemblance to the equa-
tions of stellar structure. They are slightly more complicated, however,
because of the different symmetry of the two systems: Stars are spheri-
cally symmetric, whereas accretion disks are cylindrically symmetric. A
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stellar model tells us how key quantities (temperature, pressure, density)
vary with spherical radius r. An accretion disk model tells us how key
quantities (temperature, pressure, density) vary with cylindrical radius
r and with height z above or below the disk’s midplane, z = 0. (If there
is any ambiguity, we will sometimes write the radius rc to emphasize
the cylindrical symmetry.)

Beyond the difference in symmetry, the basic physics describing stars
and accretion disks are more-or-less identical. In particular we have

1. Force balance. In stars, we balance gravity with hydrodynamic
pressure. Thanks to spherical symmetry, we only need to do this in
the radial direction. In an accretion disk, we balance gravity, pres-
sure, centrifugal forces, and viscous coupling of adjacent fluid ele-
ments. The single force balance equation we found for stars splits
into 3 separate equations (one for each component) in an accretion
disk.

2. Mass conservation. The donor star pumps mass into the disk; it is
transported inward and eventually falls onto the object that is ac-
creting. In steady state, the mass in a fluid element does not change;
mass flows in and out, and the sum is constant.

3. Power generation. In a star, we generate power by nuclear fusion.
In an accretion disk, we generate power by fluid elements rubbing
against one another.

4. Radiation transport. That power is generated throughout the disk,
and has to flow out to the surface before it is radiated away. To
understand this process, we need to know about the opacity of the
material in the disk, and how the radiation gets out.

5. Equation of state. Just as in stars, we need to relate pressure to
density.

We now go through these, though not quite in this order. Our final disk
model wil display a well-ordered hierarchy of velocities:

(603) vz � vr � cs � vφ.

I.e., the accreting material rapidly swirls around the disk, at Keplerian
velocities typically faster than the soundspeed. Much slower than those
speeds will be a steady inward radial drift; even slower will be vertical
settling toward the disk midplane.

The Alpha-Disk Model

1. Radial force balance.
We assume here that the orbital speed is much larger than the
sound speed of the gas. If this is the case, then we can neglect gas
forces in favor of the centrifugal force: Considering a fluid element
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of mass Δm, and a central body of mass M onto which the accretion
flows, we have

(604)
GMΔm

r2 = ΔmΩ2r −→ Ω(r) = ΩK =

�
GM
r3

This has a built in consistency check: After we build our model, we
compare dP/dr with GMρ/r2. If the pressure gradient is not small
in this comparison, then we should not have neglected it, and we
need to revisit this.

2. Vertical force balance.

We cannot neglect pressure gradients for this force component —
they are the whole effect. We look at the z component of the usual
equation of hydrostatic balance:

∂P
∂z

= −gzρ

(605)

= −GM
r2

� z
r

�
ρ .

(606)

Integrate this up using the fact that pressure is zero outside the
disk, z ≥ H/2 (defining H as the disk’s height, and z = 0 as the
disk’s midplane):

(607)
H/2�

0

∂P
∂z

dz = PH/2 − Pm = −Pm .

Here Pm is pressure on the midplane. We pull various factors out
of the integral on the right-hand side, and find

(608) Pm � GM
r3

H/2�

0

z ρ dz ≈ GMρH2

r3 .

In the final approximate result, we neglected factors of order unity.
Errors due to this neglect should be comparable to any errors made
in neglecting how ρ varies with z.

In some applications, we need somewhat better approximations
than this. Note that the r which appears here is strictly speaking
the spherical radius, not the cylindrical one. One way to improve
the calculation would be to replace r with

�
r2

c + z2 in the equa-
tion for dP/dz. For the applications we will pursue in 8.901, we use
r � rc. This is known as the “thin disk” approximation. It is used
quite widely, but it is worth being aware of its limitations.

Another approximation we have made is that the disk has a well-
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defined upper edge at H/2, when in reality the vertical pressure
will tend to have an exponential decrease – in this case, H becomes
the disk’s vertical scale height.

3. Mass conservation.

Mass flows from large radius to small radius. Consider a cross sec-
tion of one annulus of the disk, as shown in Fig. ??. Think about
mass flowing into and out of the volume associated with this cross
section in a time Δt:

ΔM = Mass entering outer radius in Δt − Mass leaving inner radius in Δt

= {[Cross section at ro] [Mass flux at ro]− [Cross section at ri] [Mass flux at ri]}Δt

= {[2πro H(r0)] [ρ(ro)vr(ro)]− [2πri H(ri)] [ρ(ri)vr(ri)]}Δt

Now divide everything by the volume of this annulus, 2πrH(r)Δr,
and take the limit as Δr → 0, Δt → 0:

(609)
∂ρ

∂t
=

1
2πrH(r)

d
dr

(2πrHρvr) .

Strictly speaking Eq. 609 should be a partial derivative rather than
a total derivative on the right-hand side. In the thin disk model, we
neglect the dependence of quantities on z. As such, taking ∂/∂r →
d/dr is a fine approximation as long as the thin-disk conditions are
met. We’ll similarly use ∂ → d in the calculations that follow.

In steady state, ∂ρ/∂t = 0. Imagining that everything depends only
on r, we then have

(610) 2πrHρvr = constant .

We can tell by inspection that this constant is just the rate at which
mass enters one side of the volume and then leaves the other, so we
have

(611) 2πrHρvr = Ṁ

Note that the above calculation is equivalent to starting from the

Δ

H

r

Figure 56: Cross section of one annulus of thickness Δr, height H.
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mass continuity equation,

(612)
∂

∂r
(ρvrr) = 0.

This implies that ρvrr is constant, which one then integrates:

(613)
�

ρvrr dφ dz = 2πrHρvr = Ṁ.

4. Angular momentum.

How to handle the transport of angular momentum in the disk
is a little bit delicate. We begin by essentially repeating the mass
transport analysis, but looking at how angular momentum flows
radially through the disk:

ΔL = L entering outer radius − L leaving inner radius

= {[Cross section at ro] [L flux at ro]− [Cross section at ri] [L flux at ri]}Δt

=
�
[2πro H(r0)]

�
ρ(ro)vr(ro)Ω(ro)r2

o

�
− [2πri H(ri)]

�
ρ(ri)vr(ri)Ω(ri)r2

i

��
Δt

I’ve used the fact that the angular momentum of a mass element is
Δmr2Ω, so the radial flux associated with this angular momentum
is (ρvr)r2Ω. Divide by Δt, by the volume 2πrHΔr, and take the
limits. The result is

(614) τ =
1

2πrH
d
dr

�
2πrHρvrΩr2

�
.

We have defined τ ≡ dL/dVdt, the torque on the annulus per unit
volume. We massage this one step further, using the result from our
analysis of mass conservation to simplify:

(615) τ =
1

2πrH
d
dr

�
ṀΩr2

�

Now comes the tricky bit: What do we use for τ? Fundamentally,
we know that τ arises from viscosity coupling adjacent annuli of the
disk to one another: viscosity “wants” the disk to rotate as a solid
body, so it tries to slows down annuli on the inside and speed up
annuli on the outside. Our goal is to compute the torque associated
with the φ component of momentum that flows in the r direction,
as shown in Fig. 57.
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We compute the angular momentum ΔL delivered to this annulus:

ΔL = [ro(axial force at ro) + ri(axial force at ri)]Δt

=


ro




�

outer face

Tφr dA


− ri




�

inner face

Tφr dA




 Δt

=
�

Tφr(ro)
�
2πr2

o H(ro)
�
− Tφr(ri)

�
2πr2

i H(ri)
��

Δt(616)

Note on the first line that we add the two torques together: the
torque associated with momentum flux at both the outer and the
inner boundaries of the annulus contributes to the angular momen-
tum in this volume. The math which follows determines the signs
of these contributions; we find a relative minus sign because the
normal associated with the inner face of the annulus points in, and
that associated with the outer face points out.

Dividing and taking limits appropriately, we find

(617) τ =
1

rH
d
dr

�
Tφrr2H

�
.

So far, our analysis has effectively just moved our ignorance from
one place to another. This isn’t a bad thing, since we’ve now moved
our unknown into one quantity, the stress-tensor component Tφr.

To proceed, we need to figure out what to use for this quantity.
If we could estimate the viscosity ν, we would use Eq. (602) to
estimate Tφr. Estimating ν is rather tricky; however, we know that
the resulting stress Tφr must have the same dimensions as pressure.
A very quick-and-dirty approximation is to imagine that P and Tφr
are proportional to one another:

(618) Tφr = αP .

This approximation yields what is known as the Shakura-Sunyaev
α-disk model. The key idea here is that, since the pressure P is a
stress, it gives us a reasonable guess for typical values of all stresses
in the disk. The parameter α parameterizes our ignorance, and is

phihat

Inner radius r_i
Outer radius r_o

rhat

Figure 57: Top view of disk, looking down on our fiducial annulus.
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