
8 Stellar Classification, Spectra, and Some
Thermodynamics

Questions you should be able to answer after this lecture:

• How are stars classified?

• What is the difference between Thermal equilibrium and Thermody-
namic equilibrium?

• What are the different temperatures that must be equal in Thermody-
namic equilibrium?

• When is Local Thermodynamic Equilibrium valid for a region?

Classification is a key step toward understanding any new class of objects.
When modern astronomy began, classification of the stars was a key goal —
also an elusive one, until the physical processes became better understood.

8.1 Classification

One of the first successful frameworks used photometry (broadband, Δν/ν ≈
20%, measurements of stellar flux density) at different colors. Assuming again
that stellar spectra are approximately blackbodies, the Planck function shows
that we should see the hotter stars have bluer colors and be intrinsically
brighter. This led to the Hertzsprung-Russell diagram (HR diagram), which
plots absolute magnitude against color – we’ll see the HR diagram again when
we discuss stellar evolution.

It’s fair to say that spectroscopy is one of our key tools for learning about
astronomical objects, including stars. Fig. 12 shows a sequence of stars ar-
ranged from hot to cool: one can easily see the Wien peak shift with tempera-
ture, although none of the stars are perfect blackbodies. Other features come
and go, determined (as we will see) mainly by stellar temperature but also
surface gravity (or equivalently, surface pressure).

Through decades of refinement, spectra are now classified using Morgan-
Keenan spectral types. These include a letter to indicate the approximate

Table 1: Stellar spectral types.
SpT Teff Spectral features
O > 3 × 104 Ionized He or Si; no H (or only very weak)
B 104 − 3 × 104 H Balmer lines, neutral He lines
A 7500 − 104 Strong H lines
F 6000 − 7500 H Balmer, first metal lines appear (Ca)
G 5200 − 6000 Fading H lines, increasing metal lines
K 3700 − 5200 Strong Ca and other metals, hydride molecules appear
M 2400 − 3700 Molecular bands rapidly strengthen: hydrides, TiO, H2O
L 1400 − 2400 A melange of atomic and molecular bands; dust appears
T ∼ 400 − 1400 CH4 strengthens, dust clears
Y � 400 NH3 strengthens
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8. Stellar Classification, Spectra, and Some Thermodynamics

temperature, an arabic numeral to refine the temperature, and a roman nu-
meral to indicate the star’s luminosity. The order of letters seems disjointed
because stars were classified before the underlying physical causes were well-
understood. The temperature sequence is OBAFGKMLTY, where the last three
typically apply to brown dwarfs (intermediate in mass between planets and
stars) and the rest apply to stars. Table 8.1 briefly describes each of the alpha-
betic spectral types. Additional resolution is added to the system through the
use of numbers 0–9, so that F9–G0–G1 is a sequence of steadily decreasing

Table 2: Stellar luminosity classes.
Lum name examples

VI subdwarf Kapteyn’s Star (M1VI)
V dwarf Sun (G2V), Vega (A0V)
IV subgiant Procyon (F5IV)
III giant Arcturus (K1III)
II bright giant
I supergiant Rigel (B8Ia), Betelgeuse (M1Ia)
0 hypergiant η Carinae, Pistol Star

Figure 12: Optical-wavelength spectra of main-sequence stars across a range
of spectral types.
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Teff. Finally, the roman numerals described in Table 2 indicate the luminosity
class, which typically correlates with the stellar radius (and inversely with the
surface gravity).

8.2 Thermodynamic Equilibrium

Our goal is to quantitatively explain the trends observed in Fig. 12. To do that,
we need the tools provided to us by thermodynamics and statistical mechan-
ics. We claimed earlier that Sν = Bν(T), the source function is equal to the
blackbody function, for a source in thermodynamic equilibrium. So, what are
the conditions of thermodynamic equilibrium, and in what typical astronom-
ical sources are these conditions satisfied?

There are two main conditions for thermodynamic equilibrium.

1. Thermal equilibrium: There is no heat transfer in a source: classically, it
is at a constant, uniform temperature. However, as we will describe fur-
ther in Section 14, for a star we generally take this just to mean that the
temperature can vary spatially (but not in time), and that local energy
losses (say, due to energy transport) are exactly balanced by gains (say,
due to nuclear fusion).

2. Every temperature in the source is the same: the source is also in a
radiation, ionization, and excitation equilibrium.

So, how do we define all of these different temperatures a source or system
can have?

First, there is the kinetic temperature Tkin. This temperature describes the
random motion of particles in a system. For a system in thermodynamic equi-
librium, the distribution of speeds of particles (atoms or molecules) in this
system is given by the Maxwell-Boltzmann distribution:

(95) dNv = 4π n
�

m
2π kBTkin

�3/2
v2 exp

�
− mv2

2 kBTkin

�
dv

Here, dNv is the number of particles with mass m and number density n
between speeds v and v + dv.

Second, there is the excitation temperature Tex. This temperature describes
the distribution of internal energies in the particles in a system. This internal
energy can be the energy of different electronic states of an atom, or the en-
ergy of rotation or vibration in a molecule. For a system in thermodynamic
equilibrium, the fraction of atoms (or molecules) occupying a particular en-
ergy state is given by the Boltzmann distribution (not to be confused with
Eq. 95!):

(96)
N1

N2
=

g1

g2
exp

�
−E1 − E2

kB Tex

�

Here, N1 is the number of atoms or molecules in a state with an energy E1
above the ground state, and N2 is the number of atoms or molecules in a state
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with an energy E2 above the ground state. The statistical weight of each state
is given by g, which accounts for multiple configurations that might all have
the same energy (i.e., the statistical degeneracy).

Next is Trad, the radiation temperature in the system. This temperature is
defined by an equation we have seen before: the Planck distribution, or the
Blackbody law of Equation 49.

Finally, there is the ionization temperature Ti. This temperature describes
the degree to which electrons are bound to the particles in a system. The
fraction of the atoms in a gas which are ionized is given by the Saha equation,
derived below and given as Eq. 124.

8.3 Local Thermodynamic Equilibrium

How typical is it for astronomical sources (like stars or planets or gas clouds)
to be in thermodynamic equilibrium? In general, it is rare! Most sources are
going to have significant temperature variations (for example, from the inte-
rior to the exterior of a star or planet). However, the situation is not hopeless,
as in most sources, these changes are slow and smooth enough that over a
small region, the two conditions we described are sufficiently satisfied. Such
a situation is referred to as Local Thermodynamic Equilibrium or LTE.

When does LTE hold? First, for particles to have a Maxwell-Boltzmann dis-
tribution of velocities, and so to have a single kinetic temperature, the particles
must have a sufficient opportunity to ‘talk’ to each other through collisions.
Frequent collisions are also required for particles to have a uniform distri-
bution of their internal energy states. The frequency of collisions is inversely
proportional to the mean free path of the gas: the typical distance a particle
travels before undergoing a collision. In general, for a region to be in LTE,
the mean free path should be small compared to the distance over which
the temperature varies appreciably. As LTE further requires that the radiation
temperature is equal to the kinetic and excitation temperature, the matter and
radiation must also be in equilibrium. For this to happen, not only must the
mean free path for particles to undergo collisions with each other be small,
but the mean free path for photons to undergo collisions with matter must
be small as well. We have actually already introduced the mean free path for
photons: it is equal to α−1, where α was given in Equation 70 as the extinction
coefficient, with units of fractional depletion of intensity per distance trav-
eled. As intensity is depleted by being absorbed by matter, the inverse of the
extinction coefficient describes the typical distance a photon will travel before
interacting with matter.

Very qualitatively then, our two conditions for LTE are that the mean free
path for particle-particle and particle-photon interactions must be less than
the distance over which there is a significant temperature variation.

8.4 Stellar Lines and Atomic Populations

When we study stellar spectra, we examine how the strengths of various fea-
tures change. Fig. 12 suggests that this is a continuous process as a function
of Teff. For example, we never see lines of both He I (i.e., neutral He) and Ca II
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(i.e., singly-ionized Ca, i.e. Ca+) at the same time – these lines appear at com-
pletely different temperatures. What we want is a quantitative understanding
of spectra.

When do we expect substantial excitation of these various atoms? Let’s
consider the electronic lines of atomic hydrogen. The H atom’s energy levels
are given by:

(97) En = −13.6 eV
n2

which gives rise to the Rydberg formula (Eq. 89) for the locations of individual
lines.

To see conditions we need to excite these H atoms, we might make use
of the relative probability of 2 atomic states with different energies (given
by the Boltzmann distribution, Eq. 96). Statistical mechanics tells us that the
statistical weight of each level in a hydrogen atom is

(98) gn = 2n2

So for transitions between the ground state (−13.6 eV, n = 1) and the first
excited state (−3.4 eV, n = 2) the relative fraction is given by

(99)
n1

n2
=

g1

g2
exp [− (E1 − E2) /kBT]

When the levels are approximately equal, we then have

(100) 1 =
2
8

exp [10.2 eV/kBT]

The calculation above would thus imply that to get appreciable levels of
excited hydrogren, we would need T ≈ 90, 000 K — much hotter than the
observed temperatures of stars. In fact, H is totally ionized (not just mildly
excited) even at much lower temperatures. Meanwhile, even A and F stars
(with Teff ≤ 10, 000 K) show prominent n = 2 hydrogen lines. We got the
energetics right, but missed some other important thermodynamic quantities.

8.5 The Saha Equation

Let’s investigate our hydrogen atom in further detail. From statistical mechan-
ics, the distribution function of particles leads to the phase space density (see
Eqns. 47 and 48):

(101) f (�r,�p) =
g
h3

1
e[E−µ]/kBT±1

where µ is the chemical potential and g is still the degeneracy factor:
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g = 2s + 1(for fermions)
(102)

g = 2(for photons)
(103)

and where the ± operator is positive for Fermi-Dirac statistics and negative
for Bose-Einstein statistics.

Again, we’ll transform this six-dimensional density into a number density
by integrating over momentum (see Eq. 43):

(104) n = 4π

∞�

0

f (p)p2dp

But integrating Eq. 101 is going to be a bear of a job, so we’ll make two
additional approximations. First, we’ll assume for now that all particles are
non-relativistic – so their energy is given classically by

(105) E =
p2

2m
+ mc2

And we’ll also assume that we’re dealing with large energies, such that E −
µ >> kBT. In practice, this second point means we can neglect the ±1 in the
denominator of Eq. 101. Both these assumptions are reasonable for the gas in
most stars. We’ll come back later to some especially interesting astrophysical
cases, when these assumptions no longer hold.

We can now make the attempt to calculate n from Eq. 104.

n = 4π

∞�

0

f (p)p2dp

(106)

=
4πg
h3

∞�

0

p2dp exp
�

µ

kBT

�
exp

�
−mc2

kBT

�
exp

�
− p2

2mkBT

�
(107)

=
4πg
h3 exp

��
µ − mc2

�
/kBT

� ∞�

0

p2 exp
�
− p2

2mkBT

�
(108)

=
g
h3 (2πmkBT)3/2 exp

��
µ − mc2

�
/kBT

�(109)

So now we have a relation between the number density and other relevant
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quantities. We can rearrange this expression to get

(110) exp
�

µ − mc2

kBT

�
=

1
g

n
nQ

where nQ is the “quantum density”

(111) nQ ≡ (2πmkBT/h2)3/2

When n = nQ, then the spacing between particles n−1/3 is roughly equal to the
thermal de Broglie wavelength — the particles’ wave functions start to over-
lap, quantum effects ramp up, and degeneracy effects become increasingly
important.

Ideally we want to get rid of the pesky µ and set things in terms of other
quantities. Recall from thermodynamics that the chemical potential µ is just
the energy absorbed or released during reactions. At constant volume V and
entropy S, µ is determined by the change in internal energy U:

(112) µ ≡
�

∂U
∂n

� ����
V,S

The implication is that in equilibrium, all chemical potentials in a reaction
sum to zero. So given a notional reaction

A + B ←→ C + D

we must have both

(113) A + B = C + D

and also

(114) µA + µB = µC + µD

Just as energies flow to equalize temperature and reach thermal equilibrium,
numbers of different particle species flow to reach chemical equilibrium. For
the H system under consideration, the reaction to ionize our hydrogren is

e− + p ←→ H + γ

In chemical equilibrium, we will then have

(115) µe + µp = µH

since the chemical potential of a photon is zero. Why is this useful? Because
we can rearrange Eq. 110 to find an expression for µ, and then use this in what
follows (we’re getting close). We find

(116) µi = mic2 + kBT ln
�

ni
ginQi

�
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and of course mass-energy must also be conserved in the reaction:

(117) mHc2 = mpc2 + mec2 + �n

where �1 = −13.6 eV for full ionization. The statistical weights are a tad
tricker, but for our fermions we have gp = ge = 2 while for ionizing atomic H
we have gH = n2gpge = 4.

Requiring that the chemical potentials must balance, following Eq. 115 we
then have:

(118)

mpc2 + mec2 + kBT

�
ln

�
np

2nQp

�
+ ln

�
ne

2nQe

��
= mHc2 + kBT ln

�
nH

4nQH

�

Bringing in the results of Eq. 117, we then have

(119) ln

�
npne

4nQp nQe

�
=

−13.6 eV
kBT

+ ln
�

nH
4nQH

�

Rearranging terms, we then have

(120)
npne

nH

nQH

nQp nQe

= e−(13.6 eV/kBT)

We can simplify this one more step by recalling from Eq. 111 that nQP ≈ nQH .
This means that we have finally reached our goal:

(121)
npne

nH
= nQe e−(13.6 eV/kBT)

which is famous as the Saha equation for hydrogen ionization. This tells us
how the relative number densities of p, e−, and H atoms will depend on the
temperature of the system of particles.

It’s traditional to refactor Eq. 121 by defining yet two more terms, the
baryon number

(122) nB = nH + np

(which is conserved) and the ionization fraction

(123) y =
ne

nB

which goes from zero (all neutral H) to unity (full ionization). When we divide
both sides of Eq. 121 by nB, we find the classical form of the Saha equation,

(124)
y2

1 − y
=

nQe

nB
e−(13.6 eV/kBT)

In a stellar photosphere, decent estimates are that nB ∼ 1016 cm−3 and
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nQe ≈ 1021 cm−3 �T/104 K
�3/2. Eq. 124 is easily solved or plotted with nu-

merical tools — the result, shown in Fig. 13, is a steep function of temperature
that indicates ionization setting in at much lower temperatures than inferred
in Eq. 100 alone. Instead, we see essentially no ionization in the 5800 K Solar
photosphere, but we expect an ionization fraction of 5% at 9,000 K, rising to
50% at 12,000 K and 95% at 16,000 K. Although the Saha equation is a toy
model with only two level populations, it still does an excellent job in pre-
dicting that H lines should be absent (as they are) from the hottest O and B
stars.

In general, we also want to be able to properly treat the fact that there
are an infinite number of energy levels (not just two) between the ground
state and full ionization. This means that we need to account for the partition
function ¯Z(T),

(125) ¯Z(T) ≡ Σgse−Es/kBT

In principle one can calculate one’s own partition functions, but in practice one
often leaves that to the experts and borrows appropriately from the literature.
So then the number density becomes

(126) n =

�
2πmkBT

h2

�3/2
eµ/kBT ¯Z(T)

Using this new form to repeat the analysis above, equality of chemical
potentials will then yield

(127)
nBnC

nA
=

�
2πkBT

h2

�3/2 �mBmC
mA

3/2
�3/2 � Z̄BZ̄C

Z̄A

�

If the partition function is dominated by a single state (as in our simple two-

Figure 13: Ionization fraction y as a function of temperature T as inferred from
the two-level Saha equation (Eq. 124).
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level example), we recover the earlier form:

(128)
nBnC

nA
=

�
2πkBT

h2

�3/2 �mBmC
mA

3/2
�3/2 gBgC

gA
e(EA−EB−EC)/kBT

Note that for simple level-change reactions within atomic H, most factors
cancel and we recover the usual Boltzmann distribution:

(129)
nB
nA

=
gB
gA

e(EA−EB)/kBT

As a few final remarks, note that the above analysis only applies for excita-
tion caused by the thermal distribution of particles in our system. So this won’t
properly treat photoionization (i.e. ejection of an electron due to an incoming,
highly-energetic photon). Also, everything here also requires mostly-classical
conditions, i.e. n << nQ for all species involved. In Very dense plasmas, pres-
sure begins to affect electron orbital shapes and subsequently affects both
intermediate energy levels as well as ionization.
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