
6. Radiation

Energy

To begin to define the properties of radiation from astronomical objects, we
will start with the energy that we receive from an emitting source somewhere
in space. Consider a source of radiation in the vacuum of space (for familiarity,
you can think of the sun). At some point in space away from our source of
radiation we want to understand the amount of energy dE that is received
from this source. What is this energy proportional to?
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Figure 5: Description of the energy detected at a location in space for a period
of time dt over an area dA arriving at an angle θ from an object with intensity
I0, an angular size dΩ, through a frequency range dν (in this case, only the
green light).

As shown in Figure 5, our source of radiation has an intensity I0 (we will
get come back to this in a moment) over an apparent angular size (solid angle)
of dΩ. Though it may give off radiation over a wide range of frequencies, as
is often the case in astronomy we only concern ourselves with the energy
emitted in a specific frequency range ν+dν (think of using a filter to restrict
the colors of light you see, or even just looking at something with your eyeball,
which only detects radiation in the visible range). At the location of detection,
the radiation passes through some area dA in space (an area perhaps like
a spot on the surface of earth) at an angle θ away from the normal to that
surface. The last property of the radiation that we might want to consider is
that we are detecting it over a given window of time (and many astronomical
sources are time-variable). You might be wondering why the distance between
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6.1. Radiation from Space

our detector and the source is not being mentioned yet: we will get to this.
Considering these variables, the amount of energy that we detect will be

proportional to the apparent angular size of our object, the range of frequen-
cies over which we are sensitive, the time over which we collect the radiation,
and the area over which we do this collection. The constant of proportionality
is the specific intensity of our source: I0. Technically, as this is the intensity
just over a limited frequency range, we will write this as I0,ν.

In equation form, we can write all of this as:

(36) dEν = I0,ν cosθ dA dΩ dν dt

Here, the cos θ dA term accounts for the fact that the area that matters is
actually the area “seen” from the emitting source. If the radiation is coming
straight down toward our unit of area dA, it “sees” an area equal to that of
the full dA (cos θ = 1). However, if the radiation comes in at a different angle
θ, then it “sees” our area dA as being tilted: as a result, the apparent area is
smaller (cos θ < 1). You can test this for yourself by thinking of the area dA
as a sheet of paper, and observing how its apparent size changes as you tilt it
toward or away from you.

Intensity

Looking at Equation 36, we can figure out the units that the specific intensity
must have: energy per time per frequency per area per solid angle. In SI units,
this would be W Hz−1 m−2 sr−1. Specific intensity is also sometimes referred
to as surface brightness, as this quantity refers to the brightness over a fixed
angular size on the source (in O/IR astronomy, surface brightness is measured
in magnitudes per square arcsec). Technically, the specific intensity is a 7-
dimensional quantity: it depends on position (3 space coordinates), direction
(two more coordinates), frequency (or wavelength), and time. As we’ll see
below, we can equivalently parameterize the radiation with three coordinates
of position, three of momentum (for direction, and energy/frequency), and
time.

Flux

The flux density from a source is defined as the total energy of radiation
received from all directions at a point in space, per unit area, per unit time,
per frequency. Given this definition, we can modify equation ?? to give the
flux density at a frequency ν:

(37) Fν =
�

Ω

dEν

dA dt dν
=

�

Ω

IνcosθdΩ

The total flux at all frequencies (the bolometric flux) is then:

(38) F =
�

ν

Fν dν
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6. Radiation

As expected the SI units of flux are W m−2; e.g., the aforementioned Solar
Constant (the flux incident on the Earth from the Sun) is roughly 1400 W m−2.

The last, related property that one should consider (particularly for spa-
tially well-defined objects like stars) is the Luminosity. The luminosity of a
source is the total energy emitted per unit time. The SI unit of luminosity is
just Watts. Luminosity can be determined from the flux of an object by inte-
grating over its entire surface:

(39) L =
�

F dA

As with flux, there is also an equivalent luminosity density, Lν, defined anal-
ogously to Eq. 38.

Having defined these quantities, we now ask how the flux you detect from
a source varies as you increase the distance to the source. Looking at Figure
6, we take the example of our happy sun, and imagine two spherical shells
or bubbles around the sun: one at a distance R1, and one at a distance R2.
The amount of energy passing through each of these shells per unit time is
the same: in each case, it is equal to the luminosity of the sun, L�. However,
as R2 >R1, the surface area of the second shell is greater than the first shell.
Thus, the energy is spread thinner over this larger area, and the flux (which
by definition is the energy per unit area) must be smaller for the second shell.
Comparing the equations for surface area, we see that flux decreases propor-
tional to 1/d2.

R2

R1

Figure 6: A depiction of the flux detected from our sun as a function of dis-
tance from the sun. Imagining shells that fully enclose the sun, we know that
the energy passing through each shell per unit time must be the same (equal
to the total luminosity of the sun). As a result, the flux must be less in the
larger outer shell: reduced proportional to 1/d2

6.2 Conservation of Specific Intensity

We have showed that the flux obeys an inverse square law with distance from
a source. How does the specific intensity change with distance? The specific
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6.2. Conservation of Specific Intensity

intensity can be described as the flux divided by the angular size of the source,
or Iν ∝ Fν/ΔΩ. We have just shown that the flux decreases with distance,
proportional to 1/d2. What about the angular source size? It happens that the
source size also decreases with distance, proportional to 1/d2. As a result, the
specific intensity (just another name for surface brightness) is independent of
distance.

Let’s now consider in a bit more detail this idea that Iν is conserved in
empty space – this is a key property of radiative transfer. This means that in
the absence of any material (the least interesting case!) we have dIν/ds = 0,
where s measures the path length along the traveling ray. And we also know
from electrodynamics that a monochromatic plane wave in free space has a
single, constant frequency ν.

We mentioned above that Iν can be parameterized with three coordinates
of position, three of momentum (for direction, and energy/frequency), and
time. So Iν = Iν(�r,�p, t). For now we’ll neglect the dependence on t, assum-
ing a constant radiation field – so our radiation field fills a particular six-
dimensional phase space of�r and �p. This means that the particle distribution
N is proportional to the phase space density f :

(40) dN = f (�r,�p)d3rd3 p

By Liouville’s Theorem, given a system of particles interacting with con-
servative forces, the phase space density f (�r,�p) is conserved along the flow
of particles; Fig. 7 shows a toy example in 2D (since 6D monitors aren’t yet
mainstream).

Figure 7: Toy example of Liouville’s Theorem as applied to a 2D phase space
of (x, px). As the system evolves from t1 at left to t2 at right, the density in
phase space remains constant.

In our case, the particles relevant to Liouville are the photons in our ra-
diation field. Fig. 8 shows the relevant geometry. This converts Eq. 40 into

(41) dN = f (�r,�p)cdtdA cos θd3 p

As noted previously, �p encodes the radiation field’s direction and energy
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6. Radiation

Figure 8: Geometry of the incident radiation field on a small patch of area dA.

(equivalent to frequency, and to linear momentum p) of the radiation field. So
we can expand d3 p around the propagation axis, giving d3 p = p2dpdΩ. This
means we then have

(42) dN = f (�r,�p)cdtdA cos θp2dpdΩ

Finally recalling that dE = dN(hν) and p = hν/c, we have

(43) dE = (hν) f (�r,�p)cdtdA cos θ

�
hν

c

�2 � hdν

c

�
dΩ

We can combine this with Eq. 36 above, to show that specific intensity is di-
rectly proportional to the phase space density:

(44) Iν =
h4ν3

c2 f (�r,�p)

Therefore whenever phase space density is conserved, Iν/ν3 is conserved.
And since ν is constant in free space, Iν is conserved as well.

6.3 Blackbody Radiation

For radiation in thermal equilibrium, the usual statistical mechanics references
show that the Bose-Einstein distribution function, applicable for photons, is:

(45) n =
1

ehν/kBT − 1

The phase space density is then

(46) f (�r,�p) =
2
h3 n

where the factor of two comes from two photon polarizations and h3 is the
elementary phase space volume. Combining Eqs. 44, 45, and 46 we find that
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6.4. Radiation, Luminosity, and Temperature

in empty space

(47) Iν =
2hν3

c2
1

ehν/kBT − 1
≡ Bν(T)

Where we have now defined Bν(T), the Planck blackbody function. The
Planck function says that the specific intensity (i.e., the surface brightness)
of an object with perfect emissivity depends only on its temperature, T.

Finally, let’s define a few related quantities for good measure:

Jν = specific mean intensity(48)

=
1

4π

�
IνdΩ(49)

= Bν(T)(50)

uν = specific energy intensity(51)

=
� Iν

c
dΩ(52)

=
4π

c
Bν(T)(53)

Pν = specific radiation pressure(54)

=
� Iν

c
cos2 θdΩ(55)

=
4π

3c
Bν(T)(56)

The last quantity in each of the above is of course only valid in empty
space, when Iν = Bν. Note also that the correlation Pν = uν/3 is valid when-
ever Iν is isotropic, regardless of whether we have a blackbody radiation.

6.4 Radiation, Luminosity, and Temperature

The Planck function is of tremendous relevance in radiative calculations. It’s
worth plotting Bν(T) for a range of temperatures to see how the curve behaves.
One interesting result is that the location of maximal specific intensity turns
out to scale linearly with T. When we write the Planck function in terms of
wavelength λ, where λBλ = νBν, we find that the Wien Peak is approximately

(57) λmax ≈ 3000µm K

So radiation from a human body peaks at roughly 10µm, while that from a
6000 K, roughly Sun-like star peaks at 0.5µm = 500 nm — right in the response
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6. Radiation

range of the human eye.
Another important correlation is the link between an object’s luminosity

L and its temperature T. For any specific intensity Iν, the bolometric flux F
is given by Eqs. 37 and 38. When Iν = Bν(T), the Stefan-Boltzmann Law
directly follows:

(58) F = σSBT4

where σSB, the Stefan-Boltzmann constant, is

(59) σSB =
2π5k4

B
15c2h3

(or ∼ 6 times10−8 W s−1 m−2 K−4).
Assuming isotropic emission, the luminosity of a sphere with radius R and

temperature T is

(60) L = 4πR2F = 4πσSBR2T4

.
If we assume that the Sun is a blackbody with R� = 7 × 108 m and T =

6000 K, then we would calculate

L�,approx = 4 × 3 × (6 × 10−8)× (7 × 108)2 × (6 × 103)4(61)

= 72 × 10−8 × (50 × 1016)× (1000 × 1012)(62)

= 3600 × 1023(63)

which is surprisingly close to the IAU definition of L� = 3.828× 1026 W m−2.
Soon we will discuss the detailed structure of stars. Spectra show that they

are not perfect blackbodies, but they are often pretty close. This leads to the
common definition of an effective temperature linked to a star’s size and
luminosity by the Stefan-Boltzmann law. Rearranging Eq. 60, we find that

(64) Teff =

�
L

4πσSBR2

�1/4
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