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This internet appendix contains supplemental materials for the published article. It is organized

as follows. Section A uses a simple example to illustrate how comovements among risk prices,

default probabilities, and default losses raise the present value of expected default losses. Section

B illustrates the scaling property. Section C provides detailed proofs of several propositions and

formula for the risk premium of debt and equity in the model. Section D discusses the calibration

of the Markov chain and examines its performance. Section E investigates the state-dependent

default losses.

A. Simple Two-Period Example

In this section, I use a simple two-period example to illustrate how comovements among risk prices,

default probabilities, and default losses can raise the present value of expected default losses.

Suppose that at t = 1 the economy can either be in a good state (G) or bad state (B) with

equal probability (see Figure 1). The prices of one-period Arrow-Debreu securities that pay $1 in

one of the two states are QG and QB, respectively. Since marginal utility is high in the bad state,

agents will pay more for consumption in that state: QB > QG. A firm issues a one-period bond

with face value $1 at t = 0. The probabilities of default in the two states at t = 1 are pG and pB .

Given default, the default losses in the two states are LG and LB.
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Figure 1: Payoff Diagram of a Defaultable Zero Coupon Bond in a Two-period Example.

The price of the zero-coupon bond at t = 0 is:

B = QG [(1 − pG) · 1 + pG · (1 − LG)] +QB [(1 − pB) · 1 + pB · (1 − LB)]

= QG +QB − [QGpGLG +QBpBLB] .

This equation says that the price of a defaultable bond is equal to the price of a default-free bond

minus the present value of expected losses at default.

As a benchmark, we first assume that the default probabilities and default losses are constant

across the two states, equal to their unconditional means: p̄ = (pG + pB)/2 and L̄ = (LG +LB)/2.

Then, the bond price becomes

B = QG +QB −
[

QGp̄L̄+QBp̄L̄
]

.

Next, raise the default probability and default losses in the bad state, but lower their values in

the good state, so that the average default probabilities and default losses are unchanged. Such

a change shifts the losses to the state with a higher Arrow-Debreu price, which raises the present

value of expected default losses (the rise in QBpBLB will be more than the drop in QGpGLG).

Then, the bond price at t = 0 will be lower relative to the benchmark case. This (convexity) effect

is stronger the bigger the spread in Q, p, L between the two states.
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Figure 2: Illustration of the Scaling Property. The blue line is a cash flow sample path for the
firm. The black dotted line and the red dash line, respectively, are the restructuring and default
boundaries for the current state at each point in time. Shaded regions denote times when the
economy is in a bad state.

This simple example treats the Arrow-Debreu prices, default probabilities, and default losses as

exogenous. Empirically, the comovements among these variables are difficult to measure directly.

Theoretically, it is not clear whether such relations should hold at all, because firms could adjust

their capital structure over the business cycle to avoid defaulting in those bad states. In the

published paper, I study the dynamic capital structure decisions in a model with business cycle

risks, deriving Arrow-Debreu prices from consumption dynamics and preferences, connecting default

probabilities to the business cycle through firms’ endogenous decisions, and estimating default losses

from the data of recovery rates. I then show that the comovements among these quantities can

account for a large part of the puzzles of credit spreads and leverage ratios.

B. Illustration of the Scaling Property

Figure 2 plots a sample path of the firm’s cash flows to illustrate the scaling property. The firm

enjoys strong growth in early periods. Cash flow rises and hit the restructuring boundaries twice,

causing the firm to raise more debt. When the firm restructures, both the default and restructuring
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boundaries scale up proportionally. In several occasions, the economy moves into a bad state

(shaded area), causing both default and restructuring boundaries to jump. Later on, the firm’s

cash flow declines until hitting the default boundary, and the firm defaults.

C. Proofs

C.1 Proof of Proposition 1

To obtain the stochastic discount factor, we first solve for the value function of the representative

household. In equilibrium, the representative household consumes aggregate output Yt,

dYt

Yt
= θm (st) dt+ σm (st) dW

m
t . (1)

Thus, I directly define the value function of the representative agent as:

J (Yt, st) = Et

[
∫ ∞

0
f (Yt+s, Jt+s) ds

]

. (2)

The Hamilton-Jacoby-Bellman equation in state i is:

0 = f (Y, J (Y, i)) + Jc (Y, i) Y θm (i) +
1

2
Jcc (Y, i)Y 2σ2

m (i) +
∑

j 6=i

λij (J (Y, j) − J (Y, i)) . (3)

There are n such differential equations for the n states. Thus, by using a Markov chain to model

the expected growth rate and volatility, we replace a high-dimensional partial differential equation

(expected growth rate and conditional volatility of Yt will both be state variables) with a system

of ordinary differential equations.

I conjecture that the solution for J is:

J (Y, s) =
(h (s)Y )1−γ

1 − γ
, (4)

where h is a function of the state variable s. Substituting J into the differential equations above,

we get a system of nonlinear equations for h:

0 = ρ
1 − γ

1 − δ
h(i)δ−γ +

[

(1 − γ) θm (i) − 1

2
γ (1 − γ)σ2

m (i) − ρ
1 − γ

1 − δ

]

h (i)1−γ

+
∑

j 6=i

λij

(

h (j)1−γ − h (i)1−γ
)

, i = 1, · · · , n (5)
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where δ = 1/ψ, the inverse of the intertemporal elasticity of substitution. These equations can

be solved quickly using a nonlinear equation solver, even when the number of states is large (say

n = 100).

Duffie and Epstein (1992) and Duffie and Skiadas (1994) show that the stochastic discount

factor is equal to:

mt = e
∫ t

0
fv(cu,Ju)dufc (ct, Jt) . (6)

Plugging J and Y into (6) gives:

mt = exp

(
∫ t

0

ρ (1 − γ)

1 − δ

[(

δ − γ

1 − γ

)

h (su)δ−1 − 1

]

du

)

ρh (st)
δ−γ Y −γ

t . (7)

Applying Ito’s formula with jumps (see, e.g., Appendix F Duffie (2001)) to m, we get:

dmt

mt
= −r (st) dt − η (st) dBt +

∑

st 6=s
t−

(

eκ(st−
,st) − 1

)

dM
(st−

,st)
t , (8)

where

r (i) = −ρ (1 − γ)

1 − δ

[(

δ − γ

1 − γ

)

h (i)δ−1 − 1

]

+ γθm (i)

−1

2
γ (1 + γ) σ2

m (i) −
∑

j 6=i

λij

(

eκ(i,j) − 1
)

, (9a)

η (i) = γσm (i) , (9b)

κ (i, j) = (δ − γ) log

(

h (j)

h (i)

)

. (9c)

Consider two special cases. In the first case, δ = 1/ψ = γ. In this case, the normalized

aggregator reduces to the standard CRRA utility. As equation (9c) shows, the stochastic discount

factor does not jump in this case, so that large shocks are no longer priced. The risk free rate in

this case simplifies to:

r (i) = ρ+ γθm (i) − 1

2
γ (1 + γ)σ2

m (i) .

Moreover, the nonlinear equation (5) simplifies to a linear equation, and h (i) can be solved ana-

lytically.

Another special case is when ψ = 1. In this case, the aggregator takes the form

f (c, v) = ρ (1 − γ) v

[

log (c) − 1

1 − γ
log ((1 − γ) v)

]

. (10)
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The value function is still given by (4), but the system of nonlinear equations for h becomes:

0 = −ρ (1 − γ)h (i)1−γ log (h (s)) + (1 − γ)

(

θm (i) − 1

2
γσ2

m (i)

)

h (i)1−γ

+
∑

j 6=i

λij

(

h (j)1−γ − h (i)1−γ
)

, i = 1, · · · , n. (11)

Similarly, the risk free rate becomes:

r (i) = ρ+ ρ (1 − γ) log (h (i)) + γθm (i) − 1

2
γ (1 + γ) σ2

m (i) −
∑

j 6=i

λij

(

eκ(i,j) − 1
)

, (12)

and the relative jump size of the discount factor becomes:

κ (i, j) = (1 − γ) log

(

h (j)

h (i)

)

. (13)

C.2 The Risk-Neutral Measure

Let (Ω,F,P) be the probability space on which the Brownian motions and Poisson processes in the

model are defined. Let the corresponding information filtration be (Ft).

The nominal stochastic discount factor is:

nt =
mt

Pt
. (14)

Applying Ito’s formula to nt, we get the dynamics of the nominal stochastic discount factor nt,

dnt

nt
= −rn (st) dt − ηm (st) dW

m
t − ηP dWP

t +
∑

st 6=s
t−

(

eκ(st−
,st) − 1

)

dM
(s

t−
,st)

t , (15)

where the nominal risk-free rate is

rn (st) = r (st) + π − σP,1η (st) − σ2
P , (16)

and the risk prices for the two Brownian motions are

ηm (st) = η (st) + σP,1, (17)

ηP = σP,2. (18)
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We can define the risk-neutral measure Q associated with the nominal stochastic discount factor

nt (equation (15)) by specifying the density process ξt,

ξt = Et

[

dQ

dP

]

,

which evolves according to the following process:

dξt
ξt

= −ηm (st) dW
m
t − ηP dWP

t +
∑

st 6=s
t−

(

eκ(st−
,st) − 1

)

dM
(s

t−
,st)

t . (19)

Applying the Girsanov theorem, we get the new standard Brownian motions under Q, W̃m and

W̃P , which solve:

dW̃m
t = dWm

t + ηm (st) dt, (20)

dW̃P
t = dWP

t + ηP dt. (21)

The Girsanov theorem for point processes (see Elliott (1982)) gives the new jump intensity of

the Poisson process under Q:

λ̃jk = E
[

eκ(j,k)
]

λjk = eκ(j,k)λjk, j 6= k (22)

which adjusts the intensity of the Poisson processes under measure P by the expected jump size

of the density ξt. Finally, the diagonal elements of the generator has to be reset to make each row

sum up to zero,

λ̃jj = −
∑

k 6=j

λ̃jk. (23)

These two equations characterize the new generator matrix Λ̃ under Q.

C.3 Value of Unlevered Firm

The risk-neutral dynamics of the log nominal cash flow xt = ln(Xt) of the firm is:

dxt =

(

θ̃X (st) −
1

2
σX (st)

2

)

dt + σX (st) dW̃
f
t , (24)
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where θ̃X is the risk-neutral growth rate,

θ̃X (st) = θX (st) − σX,m (st−) ηm (st−) − σP,2η
P , (25)

σX (st) is the total volatility of cash flow,

σX (st) =
√

σ2
X,m (st) + σ2

P,2 + σ2
f , (26)

and W̃ f
t is a standard Brownian motion under Q, defined by

dW̃ f
t =

σX,m (st)

σX (st)
dW̃m

t +
σP,2

σX (st)
dW̃P

t +
σf

σX (st)
dW f

t . (27)

The total present value of the firm’s cash-flows before taxes is:

V (xt, st) = E
Q
t

[
∫ ∞

t

exp

(

−
∫ τ

t

rn (su) du

)

exp(xτ )dτ

]

. (28)

I compute the value of a cash flow stream by solving a system of ordinary differential equations.1 Let

V (x) = [V (x, 1) , ..., V (x, n)]′ be a vector of the firm’s asset value in n states. The Feynman-Kac

formula implies that V satisfies the following system of ODEs:

rnV =

(

θ̃X − 1

2
ΣX

)

Vx +
1

2
ΣXVxx + Λ̃V + ex · 1, (29)

where rn = diag
(

[rn (1) , · · · , rn (n)]′
)

, θ̃X = diag

(

[

θ̃X (1) , · · · , θ̃X (n)
]′

)

, 1+ is an n× 1 vector

of ones, and ΣX = diag
(

[

σ2
X(1), · · · , σ2

X(n)
]′

)

.

The boundary conditions are:

lim
x↓−∞

Vi(x) = 0 (30)

lim
x↑+∞

V(x)e−x <∞ (31)

The first condition specifies that the value of the firm goes to zero as cash flow goes to 0. The

second condition rules out bubbles.

1Veronesi (2000) provides an alternative proof, which exploits the right-continuity of the continuous-time Markov
chain and obtains the same pricing formula with a limit argument.
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Next, it is easy to verify that

V(x) = exv,

with

v =
(

rn − θ̃X − Λ̃
)−1

1. (32)

C.4 Proof of Proposition 2

Consider a corporate contingent claim J (xt, st), which pays dividend at rate F (xt, st) when the

firm is solvent, a default payment H (xτD
, sτD

) when default occurs at time τD, and a restructuring

payment K (xτU
, sτU

) when restructuring occurs at time τU . Let F(x), H(x), K(x), and J(x) be

n× 1 vectors with their ith elements equal to F (x, i), H(x, i), K(x, i), and J(x, i), respectively.

I also define an n × n diagonal matrix A. Its ith diagonal element Ai is the infinitesimal

generator for any C2 function φ(x) in state i, where x is the log nominal cash flow specified in (26):

Aiφ (x) =

(

θ̃X (i) − 1

2
σ2

X (i)

)

∂

∂x
φ (x) +

1

2
σ2

X (i)
∂2

∂x2
φ (x) . (33)

In the dynamic problem, we have the following default/restructuring boundaries,
(

X1
D, · · · ,Xn

D,X
u(1)
U , · · · ,Xu(n)

U

)

. When cash flow X is in the region Dk = [Xk
D,X

k+1
D ) for k =

1, · · · , n− 1, the firm will already be in default in the states s > k. Thus, the security will only be

“alive” in the first k states. Let the index set Ik = {1, ..., k} denote the states in which the firm

would not have defaulted yet (given X ∈ Dk), and its complement Ic
k = {k + 1, ..., n} denote the

states where the firm would have defaulted already. Similarly, when X ∈ Dn+k =
(

X
u(k)
U ,X

u(k+1)
U

]

for k = 1, · · · , n − 1, I use index set In+k = {u (k + 1) , · · · , u (n)} to denote states where the firm

has not yet restructured, with its compliment Ic
n+k = {u (1) , · · · , u (k)} denoting the states where

restructuring has occurred.

When X ∈ Dk (k ≤ n− 1), the claims that are not in default yet are J[Ik]. The Feynman-Kac

formula implies that J[Ik] satisfy the following system of ordinary differential equations:

A[Ik,Ik]J[Ik] + F[Ik] + Λ̃[Ik,Ik]J[Ik] + Λ̃[Ik,Ic
k]
H[Ic

k]
= rn

[Ik,Ik]J[Ik]. (34)

This equation states that, under the risk-neutral measure, the instantaneous expected return of a

claim in any state should be equal to the riskfree rate in the corresponding state. A sudden change

of the state can lead to abrupt changes in the value of the claim. It could also lead to immediate

default, in which case the default payment is realized. These explain the last two terms on the LHS

of the equation.
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In regions Dn, a sudden change of the state will not cause immediate default or restructuring.

Thus, the ODE becomes:

AJ + F + Λ̃J = rnJ. (35)

When X ∈ Dn+k (k ≤ n− 1), the firm has not restructured yet in those states in In+k, where

A[In+k,In+k]J[In+k] + F[In+k] + Λ̃[In+k,In+k]J[In+k] + Λ̃[In+k,Ic
n+k]

K[Ic
n+k]

= rn

[In+k,In+k]
J[In+k]. (36)

Notice that the restructuring payments K appear in the equation, which specify the value of the

claim when a change of state triggers restructuring.

The homogeneous equation from (34 and 35) can be written as:

A[Ik,Ik]J[Ik] +
(

Λ̃[Ik,Ik] − rn
[Ik,Ik]

)

J[Ik] = 0, (37)

which is a quadratic eigenvalue problem. Jobert and Rogers (2006) show its solution takes the

following form:

J (x)[Ik] =

2k
∑

j=1

wk,jgk,j exp (βk,jx) , (38)

Plugging this solution into the ODE gives

(

θ̃X − 1

2
ΣX

)

βg +
1

2
σ2

X (i) β2g +
(

Λ̃− rn
)

g = 0. (39)

Define h = βg, then
(

θ̃X − 1

2
ΣX

)

βg +
1

2
ΣXβh+

(

Λ̃− rn
)

g = 0, (40)

or

− 2ΣX
−1

(

θ̃X − 1

2
ΣX

)

βg − 2ΣX
−1

(

Λ̃− rn
)

g = βh. (41)

Thus, gk,j and βk,j are solutions to the following standard eigenvalue problem:





0 I

−
(

2Σ−1
X

(

Λ̃− rn
))

[Ik,Ik]
−

(

2Σ−1
X θ̃X − I

)

[Ik,Ik]





[

gk

hk

]

= βk

[

gk

hk

]

, (42)

where I is an n×n identity matrix, rn, θ̃X and ΣX are defined in (29). The coefficients wk,j will be

different for different securities. Barlow, Rogers, and Williams (1980) show that there are exactly

n eigenvalues with negative real parts, and n with positive real parts.
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Similarly, the homogeneous equation from (36) can be written as:

A[In+k,In+k]J[In+k] +
(

Λ̃[In+k,In+k] − rn
[In+k,In+k]

)

J[In+k] = 0. (43)

Its solution is

J (x)[In+k] =

2(n−k+1)
∑

j=1

wn+k,jgn+k,j exp (βn+k,jx) , (44)

where gn+k,j and βn+k,j are solutions to the following standard eigenvalue problem:





0 I

−
(

2Σ−1
X

(

Λ̃− rn
))

[In+k,In+k]
−

(

2Σ−1
X θ̃X − I

)

[In+k,In+k]





[

gn+k

hn+k

]

= βn+k

[

gn+k

hn+k

]

, (45)

I is an n×n identity matrix, rn, θ̃X and ΣX are defined in (29). Again, the coefficients wn+k,j will

be different for different securities.

The remaining tasks are to find the particular solutions for the inhomogeneous equations, and

solve for the coefficients wk,j through the boundary conditions, which depend on the specific type

of security under consideration.

C.4.1 Debt

Suppose the coupon that the firm chooses in state s when X = 1 is C(s). Let D (x, s; s0) be the

value of debt after debt is issued, where s0 shows the dependence of debt value on the state at time

0 through the coupon C(s0). The dividend rate, default payment, and restructuring payment are

specified as:

F (X, s; s0) = (1 − τi)C(s0) (46)

H (X, s; s0) = α(s)V (X, s) (47)

and

K (X, s; s0) = D (X0, s0; s0) . (48)

When X ∈ Dk (k = 1, · · · , n− 1), for any state i ∈ Ik, it follows from the ODE (34) that:

rn(i)D (x, i; s0) = AiD (x, i; s0) + λ̃i,1D (x, 1; s0) + · · · + λ̃i,kD (x, k; s0)

+λ̃i,k+1H (x, k + 1; s0) + · · · + λ̃i,nH (x, n; s0) + (1 − τi)C(s0). (49)
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Define vector D(X; s0) = [D (X, 1; s0) , · · · ,D (X,n; s0)]
′. We obtain the solution to the homoge-

neous equations from (38),

D (x; s0)[Ik] =

2k
∑

j=1

wD
k,j(s0)gk,j exp (βk,jx) , (50)

where gk,j and βk,j are characterized in the eigenvalue problem (42).

The inhomogeneous equation has the additional term that is linear in ex:

λ̃i,k+1D (x, k + 1; s0) + · · · + λ̃i,nD (x, n; s0) + (1 − τi)C(s0) =
n

∑

j=k+1

λ̃ijα(j)v (j) ex + (1 − τi)C(s0).

(51)

It is easy to verify that a particular solution is:

D (x; s0)[Ik] = ξD
k (Ik; s0)e

x + ζD
k (Ik; s0), (52)

where

ξD
k (Ik; s0) =

(

rn − Λ̃− θ̃X

)−1

[Ik,Ik]

(

Λ̃[Ik,Ic
k]

(α⊙ v)[Ic
k]

)

ζD
k (Ik; s0) = (1 − τi)C(s0)

(

rn − Λ̃
)−1

[Ik,Ik]
1k

(53)

The symbol ⊙ denotes element-by-element multiplication; α is an n× 1 vector of recovery rates; v

is given in (32); ξD
k (Ic

k; s0) and ζD
k (Ic

k; s0) are equal to zero.

In the regions Dn, the solution to the homogeneous equation is:

D (x; s0) =

2n
∑

j=1

wD
n,j(s0)gn,j exp (βn,jx) , (54)

and a particular solution in this region is:

D (x; s0) = ζD
n = (1 − τi)C(s0)b. (55)
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When X ∈ Dn+k (k = 1, · · · , n− 1), the solution to the homogeneous equation is

D (x; s0)[In+k] =

2(n−k)
∑

j=1

wD
n+k,j(s0)gn+k,j exp (βn+k,jx) . (56)

The ODE is

rn(i)D (x, i; s0) = AiD (x, i; s0) + λ̃i,u(1)K (x, u (1) ; s0) + · · · + λ̃i,u(k)K (x, u(k); s0)

+ λ̃i,u(k+1)D (x, u (k + 1) ; s0) + · · · + λ̃i,u(n)D (x, u (n) ; s0) + (1 − τi)C(s0).
(57)

Since K(x, s) only depends on the initial value of debt and not x, we can guess that a particular

solution is:

D (x; s0)[In+k] = ζD
n+k (In+k; s0) . (58)

Plug the particular solution into the ODE gives

rn(i)ζD
n+k (i; s0) = λ̃i,u(1)D (X0, s0; s0) + · · · + λ̃i,u(k)D (X0, s0; s0)

+ λ̃i,u(k)ζ
D
n+k (u (k) ; s0) + · · · + λ̃i,u(n)ζ

D
n+k (u (n) ; s0) + (1 − τi)C(s0). (59)

The solution can be written as

ζD
n+k(In+k; s0) =

(

rn − Λ̃
)−1

[In+k,In+k]

[

(1 − τi)C(s0)1n−k + Λ̃[In+k,Ic
n+k]

1kD(X0, s0; s0)
]

, (60)

where

D (X0, s0; s0) =

2n
∑

j=1

wD
n,jgn,j(s0)X

βn,j

0 + (1 − τi)C(s0)b(s0). (61)

The fix-point problem for D0 can be solved by plugging (61) into (60). Since equation (61) is linear

in the coefficients wD
n,j, so will ζD

n+k.

Next, I specify the boundary conditions that determine the coefficients wD
k,j. First, there are n

conditions specifying the value of debt at the n default boundaries:

D
(

Xi
D, i; s0

)

= α(i)V
(

Xi
D, i

)

, i = 1, · · · , n. (62)

Another n conditions specify the value of debt at the restructuring boundaries:

D
(

X
u(i)
U , u(i); s0

)

= D (X0, s0) , i = 1, · · · , n. (63)
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Because the payoff function F and terminal payoffs H,K are bounded and piecewise-continuous

in X, while the discount rate r is constant in each state, D (X, s) must be piecewise C2 with respect

to X (see Karatzas and Shreve (1991)), which implies that D is continuous and smooth at all the

boundaries for which neither default or restructure has occurred. Thus, for k = 1, · · · , n− 1,

lim
X↑Xk+1

D

D(X, i; s0) = lim
X↓Xk+1

D

D(X, i; s0)

lim
X↑Xk+1

D

DX(X, i; s0) = lim
X↓Xk+1

D

DX(X, i; s0) i ∈ Ik

(64)

and

lim
X↑X

u(k)
U

D (X,u (i) ; s0) = lim
X↓X

u(k)
U

D (X,u (i) ; s0)

lim
X↑X

u(k)
U

DX (X,u (i) ; s0) = lim
X↓X

u(k)
U

DX (X,u (i) ; s0) i ∈ In+k

(65)

There are 2n2 unknown coefficients in
{

wD(s0)
}

and 2n2 boundary conditions for each s0.

Importantly, the boundary conditions in (62−65) are all linear in the unknowns, which gives us a

system of 2n2 linear equations that can be easily solved in closed form.

C.4.2 Equity

Let E (x, s; s0) be the value of equity after debt is issued, where s0 again represents the dependence

of equity value on coupon chosen at time 0. The dividend rate, default payment, and restructuring

payment for equity are

F (X, s; s0) = (1 − τd) (1 − τc) (X − C(s0)) (66)

H (X, s; s0) = 0 (67)

and

K (X, s; s0) = (1 − q)D (X, s; s) −D (X0, s0; s0) + E (X, s; s) . (68)

For simplicity, I have left out the considerations for partial loss offset and equity issuance costs

when determining the dividend rate in (66) for the case when X < C(s0), i.e., earnings net of

interest are negative. Chen (2007) investigates these effects by assuming that when X < C(s0),

F (X, s; s0) =
1 − τc−

1 − e
(X − C(s0)), (69)
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where τc− < τc captures the effect of partially lost tax shield due to net operating losses, and e is

the proportional cost of equity issuance. Partial loss offset reduces the tax benefits of debt, leading

the firm to issue less debt.

When restructuring occurs in state s with cash flow X, applying the scaling property to the

restructuring payment, we get:

K (X, s; s0) = ((1 − q)D (X0, s; s) + E (X0, s; s))
X

X0
−D(X0, s0; s0) (70)

Since payoffs are linear in X in all regions, the solutions for E(X, s; s0) take a similar form as

debt D(X, s; s0):

E(X; s0)[Ik] =
∑

j

wE
k,j(s0)gk,jX

βk,j + ξE
k (Ik; s0)X + ζE

k (Ik; s0). (71)

The first term is the solution to the homogeneous equation, which is identical to debt (except for

the coefficients wE
k,j). Next, I focus on the particular solutions in each region Dk.

When X ∈ Dk (k = 1, · · · , n), for i ∈ Ik, the firm is not in default yet. The ODE is:

rn(i)E (x, i; s0) = AiE (x, i; s0)+ λ̃i,1E (x, 1; s0)+ · · ·+ λ̃i,kE (x, k; s0)+(1−τd)(1−τc) (ex −C(s0))

(72)

A particular solution is:

E (x; s0)[Ik] = ξE
k (Ik; s0)e

x + ζE
k (Ik; s0), (73)

where

ξE
k (Ik; s0) = (1 − τc)(1 − τd)

(

rn − θ̃X − Λ̃
)−1

[Ik,Ik]
1k

ζE
k (Ik; s0) = −(1 − τc)(1 − τd)C(s0)

(

rn − Λ̃
)−1

[Ik,Ik]
1k

(74)

When X ∈ Dn+k (k = 1, · · · , n− 1), for i ∈ In+k, the firm has not restructured yet. The ODE

is:

rn(i)E (x, i; s0) = AiE (x, i; s0) + λ̃i,u(1)K (x, u (1) ; s0) + · · · + λ̃i,u(k−1)K (x, u (k − 1) ; s0)

+ λ̃i,u(k)E (x, u (k) ; s0) + · · · + λ̃i,u(n)E (x, u (n) ; s0) + (1 − τd)(1 − τc) (ex − C(s0))

(75)
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The particular solution is:

E (x; s0)[In+k] = ξE
n+k (In+k; s0) e

x + ζE
n+k (In+k; s0) . (76)

Plug the particular solution and the expression of K in (70) into the ODE,

rn(i)
(

ξE
n+k (i; s0) e

x + ζE
n+k (i; s0)

)

= ξE
n+k (i; s0) θ̃ (i) ex +

k−1
∑

j=1

λ̃i,u(j)

(

(1 − q)D (X0, s; s) + E (X0, s; s)

X0
ex −D(X0, s0; s0)

)

+
n

∑

j=k

λ̃i,u(j)

(

ξE
n+k (u (j) ; s0) e

x + ζE
n+k (u (j) ; s0)

)

+ (1 − τd)(1 − τc) (ex − C(s0)) (77)

which gives

rn(i)ξE
n+k (i; s0) = θ̃ (i) ξE

n+k (i; s0) +
k−1
∑

j=1

λ̃i,u(j)
(1 − q)D (X0, s; s) + E (X0, s; s)

X0

+

n
∑

j=k

λ̃i,u(j)ξ
E
n+k (u (j) ; s0) + (1 − τd)(1 − τc)

rn(i)ζE
n+k (i; s0) = −

k−1
∑

j=1

λ̃i,u(j)D (X0, s0; s0) +
n

∑

j=k

λ̃i,u(j)ζ
E
n+k (u (j) ; s0) − (1 − τd)(1 − τc)C(s0)

(78)

so that

ξE
n+k (In+k; s0) =

(

rn − θ̃X − Λ̃
)−1

[In+k,In+k]
(79)

×
[

(1 − τd)(1 − τc)1n−k + Λ̃[In+k,Ic
n+k]

((1 − q)D (X0) + E (X0))[Ic
n+k]

X0

]

ζE
n+k (In+k; s0) =

(

rn − Λ̃
)−1

[Ik,Ik]

[

−Λ̃[In+k,Ic
n+k]

1kD(X0, s0; s0) − (1 − τd)(1 − τc)C(s0)1n−k

]

(80)

where the value of debt is computed earlier. The initial value of equity E(X0, s; s) is

E (X0, s; s) =
2n
∑

j=1

wE
n,j(s)gn,j(s)X

βn,j

0 + ξE
n (s; s)X0 + ζE

n (s; s). (81)
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This can be plugged back into (80). Notice that (81) introduces dependence of E(X; s0) on all the
{

wE(s)
}

, not just
{

wE(s0)
}

. It is possible to jointly solve for all
{

wE(s)
}

. Alternatively, we can

solve the fix-point problem through iteration (starting with some guess of E (X0)), which could be

more convenient when n is large.

The boundary conditions for E are similar to those for debt. First, there are the conditions

specifying the value of equity at the default and restructuring boundaries. For i = 1, · · · , n,

E
(

Xi
D, i; s0

)

= 0, (82)

and

E
(

X
u(i)
U , u (i) ; s0

)

=
X

u(i)
U

X0
((1 − q)D (X0, u(i);u(i)) + E (X0, u(i);u(i))) −D(X0, s0; s0). (83)

Moreover, we need to ensure that E is C0 and C1 at each default/restructuring boundary, which

leads to an identical set of value-matching and smooth-pasting conditions as in the case of debt.

For k = 1, · · · , n− 1,

lim
X↑Xk+1

D

E(X, i; s0) = lim
X↓Xk+1

D

E(X, i; s0)

lim
X↑Xk+1

D

EX(X, i; s0) = lim
X↓Xk+1

D

EX(X, i; s0) i ∈ Ik

(84)

and

lim
X↑X

u(k)
U

E (X,u (i) ; s0) = lim
X↓X

u(k)
U

E (X,u (i) ; s0)

lim
X↑X

u(k)
U

EX (X,u (i) ; s0) = lim
X↓X

u(k)
U

EX (X,u (i) ; s0) i ∈ In+k

(85)

These boundary conditions form a system of linear equations
{

wE
k,j

}

, which can be solved in closed

form.

C.5 Returns on Equity and Debt

To compare the pricing implications of the Markov chain model with that of Bansal and Yaron

(2004), I consider a real dividend stream, which is a levered up version of aggregate consumption
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(as in BY).
dDt

Dt
= θD (st) dt+ σD,m (st) dW

m
t , (86)

with

θD (s) = θm + φ
(

θm (st) − θm

)

, (87)

σD,m (s) = ϕdσm (st) . (88)

Thus, the dividend stream has the same expected growth rate as aggregate consumption. Denote

the (real) value of the stock as S, which will be a function of current dividend and state, S (Dt, st).

Its value can be derived using the same method that determines the present value of unlevered cash

flows, but we have to use the real stochastic discount factor mt instead of nt. Ignoring taxes,

S (D, s) = DvD (s) , (89)

where vD (s) is the pricie-dividend ratio in state s, which is given in a vector,

vD =
(

r− θ̃D − Λ̃
)−1

1, (90)

where Λ̃ is again the generator matrix under risk-neutral measure Q, r = diag ([r (1) , · · · , r (n)]),

θ̃D= diag
([

θ̃D (1) , · · · , θ̃D (n)
])

, with the risk-neutral growth rates defined as:

θ̃D (s) = θD (s) − σD,m (s) η (s) . (91)

Then, in state i,
dS

S
= o (dt) + σD,m (i) dWm

t +
∑

j 6=i

(

vD (j)

vD (i)
− 1

)

dN (i,j). (92)

The risk premium for S, µS, is determined by its covariance with the discount factor. Thus, in

state i,

µS (i) = − 1

dt
covt

(

dS

S
,
dm

m

)

= σD,m (i) η (i) −
∑

j 6=i

λij

(

vD (j)

vD (i)
− 1

)

(

eκ(i,j) − 1
)

. (93)

The first term for the risk premium comes from the risk exposure to small shocks. If the small

shocks tend to move the stock price and stochastic discount factor in opposite directions (e.g, price
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drops as marginal utility rises), then the stock is risky and demand a positive premium. The same

intuition applies to the second term of the risk premium, which comes from the exposure to large

shocks.

The total volatility of return consists of two parts, volatility due to Brownian motion and jumps:

σR (i) =

√

√

√

√σ2
D,m (i) +

∑

j 6=i

λij

(

vD (j)

vD (i)
− 1

)2

. (94)

Next, I calculate the risk premium for the equity and debt of levered firms. To simplify the

notation, I drop the reference to the initial state s0 when there is no confusion.

The value of equity is given by

E (X, s) =
∑

j

wE
k,jgk,j (s)Xβk,j + ξE

k (s)X + ζE
k (s) . (95)

Applying Ito’s lemma, we get

dEt

Et
= o · dt+

EX (X, s)

E (X, s)
dX +

∑

s′ 6=s

(

E (X, s′)

E (X, s)
− 1

)

dN
(s,s′)
t . (96)

It follows that the risk premium for equity is

µE (X, s) =
EX (X, s)

E (X, s)

(

σX,m (s) ηm (s) + σP,2η
P
)

−
∑

s′ 6=s

λss′

(

E (X, s′)

E (X, s)
− 1

)

(

eκ(s,s′) − 1
)

=

∑

j w
E
k,jgk,j (s) βk,jX

βk,j + ξE
k (s)X

∑

j w
E
k,jgk,j (s)Xβk,j + ξE

k (s)X + ζE
k (s)

(

σX,m (s) ηm (s) + σP,2η
P
)

−
∑

s′ 6=s

λss′

(

E (X, s′)

E (X, s)
− 1

)

(

eκ(s,s′) − 1
)

, (97)

where

ηm (s) = γσm (s) + σP,1 (98)

ηP = σP,2 (99)

σ2
E (X, s) =

(

EX (X, s)

E (X, s)

)2

X2σ2
X +

∑

s′ 6=s

λss′

(

E (X, s′)

E (X, s)
− 1

)2

. (100)
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Similarly, the conditional risk premium for the corporate bond is

µD (X, s) =

∑

j w
D
k,jgk,j (s)βk,jX

βk,j + ξD
k (s)X

∑

j w
D
k,jgk,j (s)Xβk,j + ξD

k (s)X + ζD
k (s)

(

σX,m (s) ηm (s) + σP,2η
P
)

−
∑

s′ 6=s

λss′

(

D (X, s′)

D (X, s)
− 1

)

(

eκ(s,s′) − 1
)

. (101)

D. Calibrating the Continuous-time Markov Chain

The Markov chain for the expected growth rate and volatility of aggregate consumption is calibrated

using a two-step procedure. Start with the discrete-time system of consumption and dividend

dynamics of Bansal and Yaron (2004) (BY):

gt+1 = µc + xt +
√
vtηt+1 (102a)

gd,t+1 = µd + φxt + σd

√
vtut+1 (102b)

xt+1 = κxxt + σx
√
vtet+1 (102c)

vt+1 = v̄ + κv (vt − v̄) + σvwt+1 (102d)

where g is log consumption growth, gd is log dividend growth, and η, u, e, w ∼ i.i.d.N(0, 1). I use

the parameters from BY, which are at the monthly frequency and are calibrated to the annual

consumption data from 1929 to 1998.

The restriction that shocks to consumption, ηt+1, and shocks to the conditional moments,

et+1, wt+1, are mutually independent makes it convenient to approximate the dynamics of (x, v)

with a Markov chain. I first obtain a discrete-time Markov chain over a chosen horizon ∆, e.g.,

quarterly, using the quadrature method of Tauchen and Hussey (1991). For numerical reasons, I

choose a relatively small number of states (n = 9) for the Markov chain, with three different values

for v, and three values for x for each v. Next, I convert the grid for (x, v) into a grid for (θm, σm) as

in equation (1). The calibrated values of (θm, σm) are reported in Table 1. Finally, I transform the

discrete-time transition matrix P = [pij] into the generator Λ = [λij] of a continuous-time Markov

chain using the method of Jarrow, Lando, and Turnbull (1997) (an approximation based on the

assumption that the probability of more than one change of state is close to zero within the period

∆).

Table 2 Panel A reports the parameters for the discrete time consumption model of BY. Panel

B compares the statistical properties of consumption growth rates in the data with those of the

simulated data from the BY model and the Markov chain model. With just 9 states, the Markov
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Table 1: The Calibrated Markov Chain

This table reports the pairs of values for the conditional volatility σm(st) and expected growth rate
of aggregate consumption θm(st) for the states st = 1, · · · , 9 of the calibrated Markov chain.

(σm(st), θm(st))

1. (0.021, 0.041) 2. (0.027, 0.048) 3. (0.032, 0.053)
4. (0.021, 0.018) 5. (0.027, 0.018) 6. (0.032, 0.019)
7. (0.021,−0.004) 8. (0.027,−0.011) 9. (0.032,−0.016)

chain approximation does a good in matching the mean, volatility, autocorrelation and variance

ratio of consumption growth in the BY model. The noticeable differences are that the Markov

chain appears to generate a distribution of volatility and variance ratios with lighter right tail,

which is likely due to the non-extreme grid points. Figure 5 in the published paper provides more

information about the stationary distribution of the Markov chain. Under my calibration, the

economy spends about 54% of the time in the “center” state with median expected growth rate

and volatility.

E. Investigating State-dependent Default Losses

In this section, I investigate the cyclical variations in default losses. Figure 3 provides further ev-

idence that corporate bond recovery rates covary with macroeconomic variables: GDP, industrial

production, consumption, and price-earnings ratio. I evaluate these relations formally with regres-

sions. Altman, Brady, Resti, and Sironi (2005) find that default rates explain a large fraction of the

variations in recovery rates, while macro variables appear to have little explanatory power. How-

ever, default rates are themselves strongly affected by macroeconomic conditions: Table 3 shows

that growth rates of industrial production, GDP, price-earnings ratio, and consumption all have

significant explanatory power. The signs of the coefficients are as expected: lower growth rates

in industrial production, GDP, price-earnings ratio and consumption are associated with higher

default rates. Moreover, squared consumption growth also enters into the regressions significantly.

It captures the nonlinear relationship between default rates and consumption growth: default rates

rise more rapidly when consumption growth becomes negative.

In Table 4, the univariate regression of recovery rates on default rates confirms the finding of

Altman et al. (2005). A regression with only macro variables (PE, g and g2) can explain 42% of
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Table 2: Markov Chain Approximation of the BY Model

The table compares the moments of consumption from the data, the model of Bansal
and Yaron (2004), and the Markov chain model in this paper. Parameters in Panel A
are from the discrete time model of BY (Table IV). In Panel B, the statistics of the
data are from BY (2004) (Table I), based on annual observations from 1929 to 1998.
The statistics for the two models are based on 5,000 simulations, each with 70 years of
data. The simulations are done at high frequency and then aggregated to get annual
growth rates. The symbols µ(g) and σ(g) are mean and standard deviation of growth
rates; AC(j) is the jth autocorrelation; V R(j) is the jth variance ratio.

Panel A: Paramters for the BY Model

µc µd φ σd κx σx κv v̄ σv

0.0015 0.0015 3 4.5 0.979 0.044 0.987 6.08 × 10−5 0.23 × 10−5

Panel B: Properties of Annualized Time-Averaged Growth Rates

Data BY Markov Chain
Variable Estimate SE 5% 50% 95% 5% 50% 95%

µ(g) 1.80 - 0.59 1.79 2.99 0.74 1.81 2.90
σ(g) 2.93 (0.69) 2.26 2.79 3.44 2.19 2.64 3.12
AC(1) 0.49 (0.14) 0.25 0.46 0.63 0.23 0.42 0.58
AC(2) 0.15 (0.22) -0.04 0.22 0.45 -0.05 0.18 0.39
AC(5) -0.08 (0.10) -0.17 0.06 0.30 -0.17 0.05 0.28
AC(10) 0.05 (0.09) -0.24 -0.03 0.20 -0.24 -0.02 0.19
VR(2) 1.61 (0.34) 1.25 1.46 1.63 1.23 1.42 1.58
VR(5) 2.01 (1.23) 1.36 2.13 2.91 1.33 2.01 2.69
VR(10) 1.57 (2.07) 1.20 2.47 4.21 1.15 2.33 3.85

the variation in recovery rates. This number increases to 50% when the riskfree rate is included. In

a two-stage regression (last column of the table), the residuals from the regression of default rates

on the other macro variables still have significant explanatory power for recovery rates, suggesting

that default rates do contain information about recovery rates not captured by the macro variables.
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Figure 3: Recovery Rates and Macroeconomic Variables, 1982-2005. All the series are normalized
to have mean 0 and standard deviation 1. The dotted line is the normalized recovery rate. GDP,
IP and consumption data are from NIPA. Consumption is the sum of nondurables and services
deflated with a chain-weighted price indice. Price-Earnings ratios are from Robert Shiller’s web
site. All macro variables are real annual growth rates.
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Table 3: Explaining Aggregate Default Rates

This table reports results from regressions of aggregate default rates on macro variables. ∆IP - real
industrial production growth, ∆GDP - real GDP growth, ∆PE - growth rate of Price/Earnings
ratio, g - real consumption growth, rf - real riskfree rate. Numbers in brackets are Newey-West
standard errors with lag 3. All variables are annualized, from 1982 to 2005. GDP, IP, consumption
and CPI series are from NIPA. PE ratios are from Robert Shiller’s web site. Riskfree rates are the
1-month T-bill rates. Default rates and recovery rates are from Moody’s.

Intercept 2.01 2.50 1.74 2.75 3.62 3.59 3.74
(0.38) (0.64) (0.27) (0.54) (0.40) (0.31) (0.33)

∆IP -0.14 -0.09 -0.10
(0.07) (0.06) (0.05)

∆GDP -0.28
(0.15)

∆PE -0.03
(0.01)

g -0.55 -1.82 -1.70 -1.77
(0.17) (0.38) (0.28) (0.31)

g2 0.33 0.34 0.37
(0.12) (0.09) (0.10)

rf -0.24
(0.23)

R2 0.28 0.29 0.15 0.32 0.50 0.60 0.61
Adj R2 0.25 0.26 0.11 0.29 0.45 0.54 0.53
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Table 4: Explaining Aggregate Recovery Rates

This table reports results from regressions of aggregate recovery rates on macro variables. ∆IP -
real industrial production growth, ∆GDP - real GDP growth, ∆PE - growth rate of Price/Earnings
ratio, g - real consumption growth, rf - real riskfree rate, DR - default rate. Numbers in brackets
are Newey-West standard errors with lag 3. All variables are annualized, from 1982 to 2005. GDP,
IP, consumption and CPI series are from NIPA. PE ratios are from Robert Shiller’s web site.
Riskfree rates are the 1-month T-bill rates. Default rates and recovery rates are from Moody’s.

Intercept 52.96 37.05 32.92 39.60 33.58 28.03 31.68 31.79
(2.69) (2.61) (4.09) (2.27) (3.47) (2.47) (2.90) (2.37)

DR -7.36 -6.95
(1.14) (1.83)

∆IP 1.43
(0.44)

∆GDP 2.55
(0.95)

∆PE 0.33 0.31 0.35 0.35
(0.07) (0.08) (0.09) (0.07)

g 3.63 12.86 11.04 10.99
(1.42) (3.36) (2.52) (2.83)

g2 -2.83 -2.29 -2.28
(0.85) (0.67) (0.74)

rf -5.39 -5.55
(3.54) (2.38)

R2 0.60 0.32 0.27 0.23 0.16 0.42 0.50 0.74
Adj R2 0.58 0.29 0.24 0.20 0.12 0.33 0.40 0.67
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in Séminaire de Probabilités XIV, Lecture Notes in Math. 784 . pp. 324–331, Springer-Verlag,

Berlin.

Chen, H., 2007, “Macroeconomic Conditions, Corporate Financing Decisions, and Credit Risk,”

Ph.D. thesis, The University of Chicago.

Duffie, D., 2001, Dynamic Asset Pricing Theory, Princeton University Press, Princeton, 3rd edn.

Duffie, D., and L. G. Epstein, 1992, “Stochastic Differential Utility,” Econometrica, 60, 353–394.

Duffie, D., and C. Skiadas, 1994, “Continuous-Time Security Pricing: A Utility Gradient Ap-

proach,” Journal of Mathematical Economics, 23, 107–132.

Jarrow, R. A., D. Lando, and S. M. Turnbull, 1997, “A Markov Model for the Term Structure of

Credit Risk Spreads,” Review of Financial Studies, 10, 481–523.

Karatzas, I., and S. E. Shreve, 1991, Brownian Motion and Stochastic Calculus, Springer-Verlag,

New York, 2nd edn.

Tauchen, G., and R. Hussey, 1991, “Quadrature Based Methods for Obtaining Approximate Solu-

tions to Nonlinear Asset Pricing Models.,” Econometrica, 59, 371–396.

Veronesi, P., 2000, “How Does Information Quality Affect Stock Returns?,” Journal of Finance,

55, 807–837.

26


	Simple Two-Period Example
	Illustration of the Scaling Property
	Proofs
	Proof of Proposition 1
	The Risk-Neutral Measure
	Value of Unlevered Firm
	Proof of Proposition 2
	Debt
	Equity

	Returns on Equity and Debt

	Calibrating the Continuous-time Markov Chain
	Investigating State-dependent Default Losses

