

The Twisted Dual Elliptic Curve Deterministic Random Bit Generator

Holden Mui, Linus Tang, Noah Walsh

6.5610 Final Presentation

May 2025

Deterministic Random Bit Generators

A DRBG:

- outputs bit sequence given input seed
- is deterministic (produces same output given same seed)
- is secure (indistinguishable from true randomness without seed)

Why are DRBGs important?

- used to generate keys, nonces, and padding
 - ▶ example: TLS session keys, RSA private keys, cryptographic salt
- faster than hardware entropy sources
- debugging

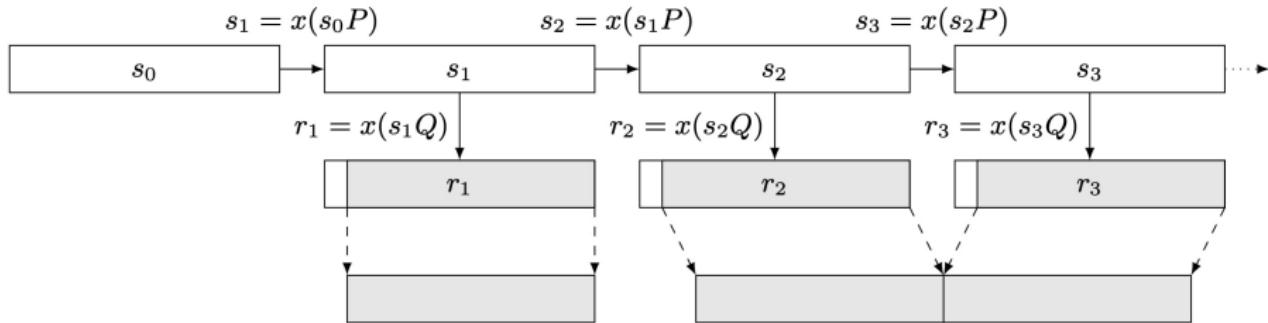
Dual Elliptic Curve DRBG

The Dual EC DRBG:

- standardized by NIST in 2006
- uses elliptic curve

$$y^2 \equiv x^3 - 3x + b \pmod{2^{256} - 2^{224} + 2^{192} + 2^{96} - 1}$$

with $b = 0x5ac...[58 \text{ digits}]...04b$.

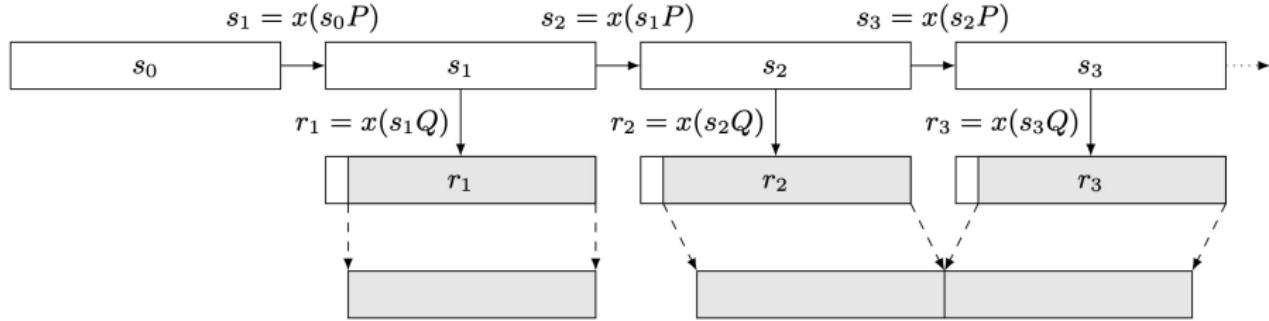

- uses two fixed elliptic curve points

$$P = (0x6b1...[58 \text{ digits}]...296, 0x4fe...[58 \text{ digits}]...1f5),$$

$$Q = (0xc97...[58 \text{ digits}]...192, 0xb28...[58 \text{ digits}]...046).$$

- takes input seed s_0 and integer k , and outputs $240k$ bits

Dual EC DRBG Algorithm



Input: seed $s_0 \in \mathbb{F}_p$ and $k \in \mathbb{Z}^+$

- set internal state s to s_0
- repeat k times:
 - ▶ replace s with sP 's x -coordinate
 - ▶ output last 240 bits of sQ 's x -coordinate

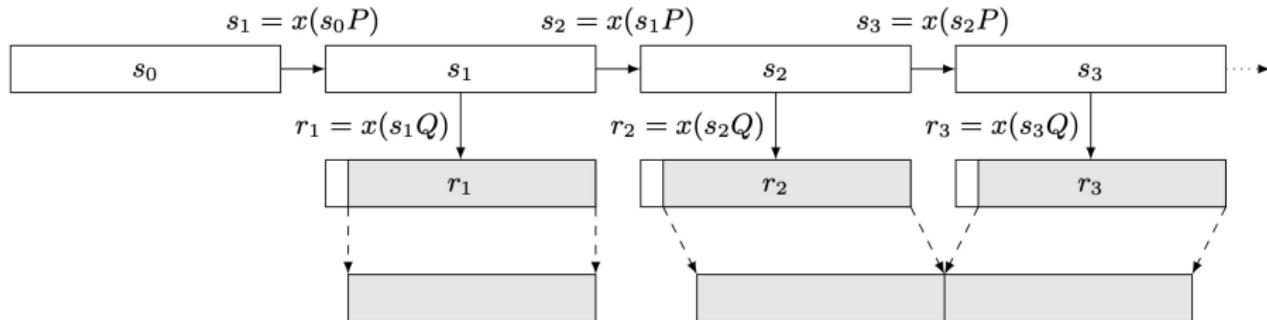
Is this secure? No!

Dual EC DRBG Backdoor

If adversary knows k for which $P = kQ$, then knowing sQ allows them to compute $ksQ = skQ = sP$. Since all but 16 bits of sQ 's x-coordinate are revealed, an adversary can brute force to find the next internal state.

The Elliptic Curve Discrete Logarithm Problem is (probably) hard, so only the party publishing P and Q could know k ...

Dual EC DRBG Timeline


- early 2000s: developed by NSA
- 2004: RSA Security uses Dual EC DRBG as its default PRNG
- 2006: standardized by NIST
- 2007: Shumow and Ferguson demonstrate possible backdoor
 - ▶ NIST: "we have no evidence that anyone has, or will ever have, the 'secret numbers' for the backdoor... For this reason, we are not withdrawing the algorithm at this time."
- 2013: Snowden leaks documents suggesting backdoors in standards, including \$10 million payment from NSA to RSA Security
- 2014: NIST removes Dual EC DRBG from list of standardized DRBGs

Dual EC DRBG undermined trust in government standards.

The Dual EC DRBG Distinguisher

Even worse: Dual EC DRBG is not a DRBG!

- Schoenmakers and Sidorenko, 2006: There is an algorithm (even without backdoor knowledge) that can distinguish Dual EC DRBG bits from truly random bits
- ≈ 2.5 hours with 54.9% success rate

Project Idea

Modify Dual EC DRBG to remove distinguisher but preserve backdoor!

We call our algorithm the *Twisted Dual EC DRBG*.

The Twisted Dual EC DRBG algorithm

Elliptic curve \mathcal{E} , quadratic twist \mathcal{E}' over $\mathbb{F}_{2^{384}-2^{128}-2^{96}+2^{32}-1}$, chosen so both have prime order

- $P, Q \in \mathcal{E}$
- $P', Q' \in \mathcal{E}'$

Input: seed $s_0 \in \mathbb{F}_p$ and $k \in \mathbb{Z}^+$

- set internal state $s \in \mathbb{F}_p$ to s_0
- repeat k times:
 - ▶ let (a, b) be the last two bits of s
 - ▶ replace s with x -coordinate of sP if $a = 0$, sP' if $a = 1$
 - ▶ output all 384 bits of x -coordinate of sQ if $b = 0$, sQ' if $b = 1$

Our Work

- Algorithm design
- Security analysis
- Runtime analysis
- Implementation

Thank you!

Questions?

