How To Build A Computer Out Of Polynomials

Holden Mui

The Future Of (Super) Computing

Oct 2025

VX

Holden Mui (0xPARC) Build A Computer Out Of Polynomials

Background

Traditional computers are insecure: if someone has physical access, then
they can read the data being processed.

Can we build a computer so that an observer with full system access still
learns nothing about the data being processed?

Idea:
@ Data will be encrypted
@ Secret key needed to decrypt ciphertexts
@ Computations happen on encrypted data

But how does one compute on encrypted data?

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 2/18

Computing on Encrypted Data

Is there a way to encrypt real numbers such that

@ one can “sum” an encryption of a and an encryption of b to get an
encryption of a + b, and

@ one can “multiply” an encryption of a and an encryption of b to get
an encryption of ab?

Answer: Yes... with polynomials in a polynomial ring!
@ Ciphertexts will be pairs of polynomials
@ Secret key will be a polynomial
With this technology, we can build our Super Computer because
@ AND gates are products: AND(by, by) = b1b
e NOT gates are additions and products: NOT(b) =1+ (—1)-b
@ All computation can be built with AND and NOT gates

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 3/18

Polynomial Rings

Ciphertexts: pairs of polynomials in Z[X]/(X5%%6 +1).

What is Z[X]/(X5%530 +1)?

@ Fancy notation for “set of polynomials with degree less than 65536"
o Addition happens normally

e For multiplication, replace all X%5%3%'s with —1's after multiplying.

Example
In the ring Z[X]/(X0%530 1 1),

(X30000 + 2X)(X40000 + 3) — X70000 + 2x40001 + 3x30000 +6X
— X65536 . X4464 + 2x40001 + 3x30000 +6X
— _X4464 + 2x40001 + 3x30000 +6X.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 4/18

Secret Key

The secret key is a random polynomial in Z[X]/(X®%53¢ 4 1) with small
coefficients.

Example

S(X) =3+2X — X+ +2X%%% € Z[X] /(X% 4 1). J

Only the owner of the Super Computer knows the secret key. The secret
key is not stored on the Super Computer.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 5/18

Encryption and Decryption

To encrypt real number m, generate random Ci(X) € Z[X]/(X5%3 + 1)
modulo 103% and compute

Co(X) = s(X)C1(X) + [1000000m] + error (mod 103%0).
The ciphertext is (C1(X), Co(X)).
To decrypt ciphertext (C1(X), Co(X)) using secret key s(X), compute

Co(X) — s(X)C1(X) ~ s(X)C1(X) + [1000000m] — s(X)C1(X)
~ [1000000m| (mod 103%).

Then divide by 1000000 to recover m.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 6/18

Security

Recall a ciphertext (C1(X), Co(X)) of m is generated via

C1(X) = random polynomial in Z[X]/(X%%%3¢ +1) (mod 103%)
Co(X) = s(X)C1(X) + | 1000000m] + error (mod 103%).

Can one deduce m from the ciphertext without knowing the secret key? I

No, since the Ring Learning With Errors assumption says the distribution
of (C1(X), Go(X)) is indistinguishable from random.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 7/18

Adding Ciphertexts

Suppose (C1(X), Co(X)) is a ciphertext for m and (D;1(X), D2(X)) is a
ciphertext for n. How does one get a ciphertext for m + n?

Answer: (Ci(X) + D1(X), Co(X) + D2(X)) is a ciphertext for m + n!
Proof.
Decrypting (C1(X) + Di(X), Go(X) + Da(X)) gives

(G(X) + Da(X)) — s(X)(C(X) + Di(X))
= (Co(X) = s(X)Cu(X)) + (Da(X) — s(X)D1(X))
~ [1000000m] + | 1000000~ |
~ 1000000(m + n).

Dividing by 1000000 gives m + n. L]

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 8/18

Multiplying Ciphertexts

To multiply ciphertexts, the Super Computer owner must first generate a
relinearization key from the secret key.

This is done by randomly generating ¢1(X) € Z[X]/(X®%53¢ + 1) modulo
10%%% and computing

lo(X) = s(X)1(X) + 10%%5(X)? + error (mod 10°°°)

The relinearization key is (¢1(X), £2(X)). It is generated once and stored
on the Super Computer.

Can one deduce the secret key from the relinearization key? I

No, by the Ring Learning With Errors assumption. So it is safe to store
the relinearization key on the Super Computer.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 9/18

Multiplying Ciphertexts

Suppose (Ci, () is a ciphertext for m and (Ds, Ds) is a ciphertext for n.
Using relinearization key (¢1,¢2), how does one get a ciphertext for mn?

. C1 Do+ Co D1+ C1 D144 /1070 Gy Dy+Cy D14,/10%0 204
Answer: ([1000060 , 1060000 modulo 107%!

Proof.
Decrypting gives

1000000 1000000
~ G Dy+Ci Dy (5€1+1025052)/10250 —sC1Dy—sC D1 —sCy D1f1/10250
~ 1000000
CoDy—sCiDy—sC D1+ Gy D152
1000000

= 10050_00((:1 — sG)(D1 — sD2) ~ 1000000mn.

LC2D2+C1D152/10250J _ s LC1D2+C2D1+C1D141/10250J

Dividing by 10° gives mn. Ol

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 10/18

Multiplying Ciphertexts

We built addition and multiplication, so did we finish building our Super

Computer? Not quite...
o Multiplying ciphertexts with modulus 103%° gives ciphertexts with
modulus 10%%%.
@ More generally, multiplying ciphertexts with modulus 10¢ gives
ciphertext with modulus 10476 .

@ ...so at most 50 consecutive multiplications allowed.

Can we fix this so that our computer can compute any arithmetic circuit,
regardless of multiplicative depth?

Answer: yes!

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 11/18

Bootstrapping

Bootstrapping turns ciphertexts modulo 1012 into ciphertexts with larger
modulus. If (C1, G2) is a ciphertext modulo 10'? encrypting m, then

Co(X) — s(X)C1(X) ~ [1000000m]| (mod 10'2).
Reinterpreting (Cy, Co) modulo 103% gives
Co(X) — s(X)C1(X) =~ [1000000m| 4 10*2¢(X) (mod 103%°)

for some polynomial t(X). It has small coefficients because the secret key
has small coefficients. Two steps:

@ Step 1: turn ciphertext for polynomial p(X) into ciphertext for its
constant term

@ Step 2: turn ciphertext for [1000000m| + 102ty for unknown (but
small) ty into ciphertext for |1000000m |

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 12/18

Bootstrapping (Step 1)

Goal: turn ciphertext for p(X) € Z[X]/(X%%53¢ 4 1) into ciphertext for its

constant term.
Observation

Suffices to get ciphertexts of p(X’) for any j.

Proof.
Let p(X) = po + p1X + p2X? 4+ - - - + pes535.X%523%. Then
P(X) + P(X3) + P(X®) 4 - + P(X131071)
= 655360 + p1(X + X3 + X® 4. 4 X131071) 4

Fopo(X? 4+ XO 4 X0 .y x262142y |
= 65536p0.

So summing ciphertexts for p(X), p(X3), p(X®), ..., P(X'31071) and
multiplying by ciphertext for ﬁ gives ciphertext for pg.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025

13/18

Bootstrapping (Step 1)

How to turn ciphertext for p(X) into ciphertext for p(X/) for any j?

Answer: use rotation key (ri(X), r2(X)), generated by randomly choosing
r1(X) modulo 105%° and computing

r(X) = s(X)ri(X) — 10%%(X’) + error (mod 10°%9).

Then (L’lléif) Ci(X9) |, (X)) + Uféifg Cl(XJ)J> is a ciphertext for p(X7),

given (C1(X), Go(X)) is a ciphertext for p(X).
Proof.
That ciphertexts decrypts to

. s r 250 r .
r G(XI) 4 SXIKIZLO) ¢, (i) — 5(x) 2) ¢ (XF)

= G(XI) — s(XI) Gy (XI) = p(XI). O

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 14 /18

Bootstrapping (Step 2)

Goal: turn ciphertext for [1000000m| + 102ty for unknown (but small) to
into ciphertext for [1000000m|.

Evaluate the “modulo 10" function on the ciphertext. \

Issue: we can only add ciphertexts and multiply ciphertexts.

Fix: approximate the scaled sine function with period 10'? using its Taylor
series. Then evaluate the Taylor series on the ciphertext.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 15/18

Recap

We have built the Super Computer! Our Super Computer can:
@ add ciphertexts

e multiply ciphertexts (which turns ciphertexts with modulus 10° into a
ciphertext with modulus 10°79)

@ bootstrap ciphertexts, which turns ciphertexts with small modulus
into ciphertexts with large modulus

This gives us cryptographically enhanced computing.

Is this computer performant? I

As defined in this talk, no. But optimizations give a state-of-the-art
complex number multiplication time of 2.6 milliseconds (per 16384
multiplications), and a bootstrapping time of 15 milliseconds.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 16 /18

Extensions

@ SIMD operations: ciphertexts can encrypt 32768 complex numbers
@ Public-key encryption: anyone can encrypt

@ Multiparty decryption: ciphertexts can only be decrypted if enough
people agree

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 17 /18

Thank you!

Questions?

Holden Mui (0xPARC) Build A Computer Out Of Polynomials

