
How To Build A Computer Out Of Polynomials

Holden Mui

The Future Of (Super) Computing

Oct 2025

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 1 / 18



Background

Traditional computers are insecure: if someone has physical access, then
they can read the data being processed.

Question

Can we build a computer so that an observer with full system access still
learns nothing about the data being processed?

Idea:

Data will be encrypted

Secret key needed to decrypt ciphertexts

Computations happen on encrypted data

But how does one compute on encrypted data?

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 2 / 18



Computing on Encrypted Data

Question

Is there a way to encrypt real numbers such that

one can “sum” an encryption of a and an encryption of b to get an
encryption of a+ b, and

one can “multiply” an encryption of a and an encryption of b to get
an encryption of ab?

Answer: Yes... with polynomials in a polynomial ring!

Ciphertexts will be pairs of polynomials

Secret key will be a polynomial

With this technology, we can build our Super Computer because

AND gates are products: AND(b1, b2) = b1b2

NOT gates are additions and products: NOT (b) = 1 + (−1) · b
All computation can be built with AND and NOT gates

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 3 / 18



Polynomial Rings

Ciphertexts: pairs of polynomials in Z[X ]/(X 65536 + 1).

Question

What is Z[X ]/(X 65536 + 1)?

Fancy notation for “set of polynomials with degree less than 65536”

Addition happens normally

For multiplication, replace all X 65536’s with −1’s after multiplying.

Example

In the ring Z[X ]/(X 65536 + 1),

(X 30000 + 2X )(X 40000 + 3) = X 70000 + 2X 40001 + 3X 30000 + 6X

= X 65536 · X 4464 + 2X 40001 + 3X 30000 + 6X

= −X 4464 + 2X 40001 + 3X 30000 + 6X .

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 4 / 18



Secret Key

The secret key is a random polynomial in Z[X ]/(X 65536 + 1) with small
coefficients.

Example

s(X ) = 3 + 2X − X 2 + · · ·+ 2X 65535 ∈ Z[X ]/(X 65536 + 1).

Only the owner of the Super Computer knows the secret key. The secret
key is not stored on the Super Computer.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 5 / 18



Encryption and Decryption

To encrypt real number m, generate random C1(X ) ∈ Z[X ]/(X 65536 + 1)
modulo 10300 and compute

C2(X ) = s(X )C1(X ) + ⌊1000000m⌋+ error (mod 10300).

The ciphertext is (C1(X ),C2(X )).

To decrypt ciphertext (C1(X ),C2(X )) using secret key s(X ), compute

C2(X )− s(X )C1(X ) ≈ s(X )C1(X ) + ⌊1000000m⌋ − s(X )C1(X )

≈ ⌊1000000m⌋ (mod 10300).

Then divide by 1000000 to recover m.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 6 / 18



Security

Recall a ciphertext (C1(X ),C2(X )) of m is generated via

C1(X ) = random polynomial in Z[X ]/(X 65536 + 1) (mod 10300)

C2(X ) = s(X )C1(X ) + ⌊1000000m⌋+ error (mod 10300).

Question

Can one deduce m from the ciphertext without knowing the secret key?

No, since the Ring Learning With Errors assumption says the distribution
of (C1(X ),C2(X )) is indistinguishable from random.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 7 / 18



Adding Ciphertexts

Question

Suppose (C1(X ),C2(X )) is a ciphertext for m and (D1(X ),D2(X )) is a
ciphertext for n. How does one get a ciphertext for m + n?

Answer: (C1(X ) + D1(X ),C2(X ) + D2(X )) is a ciphertext for m + n!

Proof.

Decrypting (C1(X ) + D1(X ),C2(X ) + D2(X )) gives

(C2(X ) + D2(X ))− s(X )(C1(X ) + D1(X ))

= (C2(X )− s(X )C1(X )) + (D2(X )− s(X )D1(X ))

≈ ⌊1000000m⌋+ ⌊1000000n⌋
≈ 1000000(m + n).

Dividing by 1000000 gives m + n.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 8 / 18



Multiplying Ciphertexts

To multiply ciphertexts, the Super Computer owner must first generate a
relinearization key from the secret key.

This is done by randomly generating ℓ1(X ) ∈ Z[X ]/(X 65536 + 1) modulo
10550 and computing

ℓ2(X ) = s(X )ℓ1(X ) + 10250s(X )2 + error (mod 10550)

The relinearization key is (ℓ1(X ), ℓ2(X )). It is generated once and stored
on the Super Computer.

Question

Can one deduce the secret key from the relinearization key?

No, by the Ring Learning With Errors assumption. So it is safe to store
the relinearization key on the Super Computer.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 9 / 18



Multiplying Ciphertexts

Question

Suppose (C1,C2) is a ciphertext for m and (D1,D2) is a ciphertext for n.
Using relinearization key (ℓ1, ℓ2), how does one get a ciphertext for mn?

Answer:
(⌊

C1D2+C2D1+C1D1ℓ1/10250

1000000

⌋
,
⌊
C2D2+C1D1ℓ2/10250

1000000

⌋)
modulo 10294!

Proof.

Decrypting gives⌊
C2D2+C1D1ℓ2/10250

1000000

⌋
− s

⌊
C1D2+C2D1+C1D1ℓ1/10250

1000000

⌋
≈ C2D2+C1D1(sℓ1+10250s2)/10250−sC1D2−sC2D1−sC1D1ℓ1/10250

1000000

= C2D2−sC1D2−sC2D1+C1D1s2

1000000

= 1
1000000(C1 − sC2)(D1 − sD2) ≈ 1000000mn.

Dividing by 106 gives mn.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 10 / 18



Multiplying Ciphertexts

We built addition and multiplication, so did we finish building our Super
Computer? Not quite...

Multiplying ciphertexts with modulus 10300 gives ciphertexts with
modulus 10294.

More generally, multiplying ciphertexts with modulus 10ℓ gives
ciphertext with modulus 10ℓ−6...

...so at most 50 consecutive multiplications allowed.

Question

Can we fix this so that our computer can compute any arithmetic circuit,
regardless of multiplicative depth?

Answer: yes!

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 11 / 18



Bootstrapping

Bootstrapping turns ciphertexts modulo 1012 into ciphertexts with larger
modulus. If (C1,C2) is a ciphertext modulo 1012 encrypting m, then

C2(X )− s(X )C1(X ) ≈ ⌊1000000m⌋ (mod 1012).

Reinterpreting (C1,C2) modulo 10300 gives

C2(X )− s(X )C1(X ) ≈ ⌊1000000m⌋+ 1012t(X ) (mod 10300)

for some polynomial t(X ). It has small coefficients because the secret key
has small coefficients. Two steps:

Step 1: turn ciphertext for polynomial p(X ) into ciphertext for its
constant term

Step 2: turn ciphertext for ⌊1000000m⌋+ 1012t0 for unknown (but
small) t0 into ciphertext for ⌊1000000m⌋

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 12 / 18



Bootstrapping (Step 1)
Goal: turn ciphertext for p(X ) ∈ Z[X ]/(X 65536 + 1) into ciphertext for its
constant term.

Observation

Suffices to get ciphertexts of p(X j) for any j .

Proof.

Let p(X ) = p0 + p1X + p2X
2 + · · ·+ p65535X

65535. Then

P(X ) + P(X 3) + P(X 5) + · · ·+ P(X 131071)

= 65536p0 + p1(X + X 3 + X 5 + · · ·+ X 131071)+

+ p2(X
2 + X 6 + X 10 + · · ·+ X 262142) + . . .

= 65536p0.

So summing ciphertexts for p(X ), p(X 3), p(X 5), . . . ,P(X 131071) and
multiplying by ciphertext for 1

65536 gives ciphertext for p0.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 13 / 18



Bootstrapping (Step 1)

Question

How to turn ciphertext for p(X ) into ciphertext for p(X j) for any j?

Answer: use rotation key (r1(X ), r2(X )), generated by randomly choosing
r1(X ) modulo 10550 and computing

r2(X ) ≈ s(X )r1(X )− 10250s(X j) + error (mod 10550).

Then
(
⌊ r1(X )
10250

C1(X
j)⌋,C2(X

j) + ⌊ r2(X )
10250

C1(X
j)⌋

)
is a ciphertext for p(X j),

given (C1(X ),C2(X )) is a ciphertext for p(X ).

Proof.

That ciphertexts decrypts to

≈ C2(X
j) + s(X )r1(X )−10250s(X j )

10250
C1(X

j)− s(X ) r1(X )
10250

C1(X
j)

= C2(X
j)− s(X j)C1(X

j) = p(X j).

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 14 / 18



Bootstrapping (Step 2)

Goal: turn ciphertext for ⌊1000000m⌋+ 1012t0 for unknown (but small) t0
into ciphertext for ⌊1000000m⌋.

Idea

Evaluate the “modulo 1012” function on the ciphertext.

Issue: we can only add ciphertexts and multiply ciphertexts.

Fix: approximate the scaled sine function with period 1012 using its Taylor
series. Then evaluate the Taylor series on the ciphertext.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 15 / 18



Recap

We have built the Super Computer! Our Super Computer can:

add ciphertexts

multiply ciphertexts (which turns ciphertexts with modulus 10ℓ into a
ciphertext with modulus 10ℓ−6)

bootstrap ciphertexts, which turns ciphertexts with small modulus
into ciphertexts with large modulus

This gives us cryptographically enhanced computing.

Question

Is this computer performant?

As defined in this talk, no. But optimizations give a state-of-the-art
complex number multiplication time of 2.6 milliseconds (per 16384
multiplications), and a bootstrapping time of 15 milliseconds.

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 16 / 18



Extensions

SIMD operations: ciphertexts can encrypt 32768 complex numbers

Public-key encryption: anyone can encrypt

Multiparty decryption: ciphertexts can only be decrypted if enough
people agree

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 17 / 18



Thank you!

Questions?

Holden Mui (0xPARC) Build A Computer Out Of Polynomials Oct 2025 18 / 18


