Gluing Polygons

Holden Mui

G2 Seminar

31 July 2024

Squares

Imagine a stretchy rubber square.

• Glue opposite sides. What happens?

• Glue adjacent sides. What happens?

Hexagons

Imagine a stretchy rubber hexagon.

Octagons

Imagine a stretchy rubber octagon.

Counting gluings

Three ways to glue a square:

Two spheres, one torus.

Counting gluings

Fifteen ways to glue a hexagon:

Five spheres, ten tori.

Counting gluings

In general, $(2n-1) \cdot (2n-3) \cdot \ldots \cdot 5 \cdot 3 \cdot 1 = (2n-1)!!$ ways to glue a 2*n*-gon.

Proof.

- 2n-1 ways to pair first edge
- 2n 3 ways to pair next unpaired edge
- . . .
- 3 ways to pair fourth-to-last unpaired edge
- 1 way to pair second-to-last unpaired edge

The Question

Randomly choose a 2n-gon gluing.

- Sphere probability?
- Torus probability?

In general:

Question

What is the probability that a random 2n-gon gluing produces a surface with g holes?

Determining genus

Definition

The genus of a surface is its hole count.

How to determine genus from gluing?

Answer: Euler's formula!

Euler's formula

Theorem

A connected graph (loops and double edges allowed) on a sphere with v vertices, e edges, and f faces satisfies v - e + f = 2.

	ы	0.0	- N /	
U.	u	en	10	

Euler's formula

Theorem

A graph on a genus g surface with v vertices, e edges, and f (simply connected) faces satisfies v - e + f = 2 - 2g.

Show v - e + f is invariant, then calculate it for a specific graph.

Counting vertices

Lemma

A 2n-gon gluing with v vertices has genus
$$\frac{1}{2}(n+1-v)$$
.

Proof.

A gluing of a 2n-gon produces a graph with n edges and 1 face. Thus

$$v - e + f = v - n + 1 = 2 - 2g \implies g = \frac{1}{2}(n + 1 - v).$$

Data

Question

What is the probability that a random 2n-gon gluing produces a surface with g holes?

	g = 0	g = 1	<i>g</i> = 2	g = 3
square $(2n = 4)$	2/3	1/3		
hexagon $(2n = 6)$	1/3	2/3		
octagon $(2n = 8)$	2/15	2/3	1/5	
decagon $(2n = 10)$	2/45	4/9	23/45	
dodecagon $(2n = 12)$	4/315	2/9	28/45	1/7

Observations

	g = 0	g = 1	g = 2	g = 3
2 <i>n</i> = 4	2/3	1/3		
2 <i>n</i> = 6	1/3	2/3		
2 <i>n</i> = 8	2/15	2/3	1/5	
2 <i>n</i> = 10	2/45	4/9	23/45	
2n = 12	4/315	2/9	28/45	1/7

ī.

- Maximum genus?
- Sphere probability?
- Maximum genus probability?
- Recurrence or closed form?

Maximum genus

The maximum genus obtainable from a 2*n*-gon gluing is $\lfloor \frac{1}{2}n \rfloor$.

Proof.

• Upper bound: since $v \ge 1$,

$$g = \frac{1}{2}(n+1-v) \le \frac{1}{2}(n+1-1) = \frac{1}{2}n.$$

 Lower bound: gluing opposite edges gives v = 1 for even n and v = 2 for odd n.

Sphere probability

Sphere-producing gluings are counted by *Catalan numbers*¹ $C_n = \frac{1}{n+1} {\binom{2n}{n}}$. To prove this:

Lemma

A gluing produces a sphere if and only if its chord diagram has no crossings.

¹The Catalan numbers begin 1, 2, 5, 14, 42... and count ways to arrange *n* sets of parentheses. For example, $C_3 = 5$ because of ()(()(, ()(()), (())(), (()()), and ((())).

Sphere probability

Lemma

Non-crossing chord diagrams biject to arrangements of n sets of parentheses.

Thus the sphere probability for a 2*n*-gon gluing is $C_n/(2n-1)!!$.

Maximum genus probability

Recall maximum genus is $\lfloor \frac{1}{2}n \rfloor$.

	g = 0	g = 1	<i>g</i> = 2	g = 3
2 <i>n</i> = 4	2/3	1/3		
2 <i>n</i> = 6	1/3	2/3		
2 <i>n</i> = 8	2/15	2/3	1/5	
2 <i>n</i> = 10	2/45	4/9	23/45	
2 <i>n</i> = 12	4/315	2/9	28/45	1/7

Observation

For even n, the probability of producing a genus $\frac{1}{2}n$ surface from a 2n-gon gluing is $\frac{1}{n+1}$.

Recurrence

	g = 0	g = 1	g = 2	<i>g</i> = 3
2 <i>n</i> = 4	2/3	1/3		
2 <i>n</i> = 6	1/3	2/3		
2 <i>n</i> = 8	2/15	2/3	1/5	
2 <i>n</i> = 10	2/45	4/9	23/45	
2n = 12	4/315	2/9	28/45	1/7

Observation

Let HZ(n, g) denote the probability that a random 2n-gon gluing produces a genus g surface. Then

$$HZ(n,g) = \frac{2}{n+1} HZ(n-1,g) + \frac{n-1}{n+1} HZ(n-2,g-1).$$

For example, n = 6 and g = 2 gives $\frac{28}{45} = \frac{2}{7} \cdot \frac{23}{45} + \frac{5}{7} \cdot \frac{2}{3}$.

Recurrence

Let HZ(n, g) denote the probability that a random 2n-gon gluing produces a genus g surface.

Theorem (J. Harer and D. Zagier, 1986)

$$HZ(n,g) = \frac{2}{n+1} HZ(n-1,g) + \frac{n-1}{n+1} HZ(n-2,g-1).$$

Three known proofs:

- analytic
- algebraic
- combinatorial

Corollary

For even
$$n$$
, $HZ(n, \frac{1}{2}n) = \frac{1}{n+1}$.

No direct bijective proof for this result is known.

Analytic proof

A complex matrix is *unitary* if its inverse is its conjugate transpose.

Lemma

Choose a $k \times k$ unitary matrix uniformly at random. Then

$$\mathbb{E}\left[\operatorname{tr} X^{2n}\right] = (2n-1)!! \sum_{g=0}^{\lfloor \frac{1}{2}n \rfloor} \mathsf{HZ}(n,g) k^{n+1-2g}$$

For example, n = 4 gives $\mathbb{E}\left[\operatorname{tr} X^{8}\right] = 14k^{5} + 70k^{3} + 21k$.

Proof.

Entries of X are complex normal Gaussians, so expand tr X^{2n} in terms of its entries and apply Isserlis' theorem.

It suffices to understand the eigenvalue distribution $\sigma_k(\lambda)$ of X because

$$\mathbb{E}\left[\operatorname{tr} X^{2n}\right] = \mathbb{E}\left[\lambda_1^{2n} + \cdots + \lambda_k^{2n}\right] = k\mathbb{E}\left[\lambda^{2n}\right] = k\int_{-\infty}^{\infty} \lambda^{2n} \sigma_k(\lambda) \mathrm{d}\lambda.$$

Analytic proof

The joint probability distribution for the eigenvalues of a random $k \times k$ unitary matrix is

$$P_k(\lambda_1,\ldots,\lambda_k) = \frac{1}{(2\pi)^{k/2}} \exp\left(-\frac{1}{2}\sum_{i=1}^k \lambda_i^2\right) \prod_{1 \le a < b \le k} (\lambda_a - \lambda_b)^2.$$

Integrating gives the single eigenvalue distribution $\sigma_k(\lambda)$ as

$$\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} P_k(\lambda, \lambda_2, \dots, \lambda_k) \mathrm{d}\lambda_2 \dots \mathrm{d}\lambda_k = \frac{1}{k\sqrt{2\pi}} e^{-\frac{1}{2}\lambda^2} \sum_{i=0}^{k-1} H_i(\lambda)^2,$$

where H_i is the *i*th Hermite polynomial. Finally, Hermite polynomial identities give a differential equation satisfied by

$$u(t) \coloneqq \int_{-\infty}^{\infty} e^{t\lambda} \sigma_k(\lambda) \mathrm{d}\lambda = \sum_{n=0}^{\infty} \frac{t^n}{n!} \int_{-\infty}^{\infty} \lambda^n \sigma_k(\lambda) \mathrm{d}\lambda,$$

which gives a recurrence on coefficients in u(t)'s Taylor expansion.

Algebraic proof

Lemma

Label a 2n-gon's edges from 1 to 2n, let $\tau : \{1, \ldots, 2n\} \rightarrow \{1, \ldots, 2n\}$ be $\tau(x) := x + 1$, and let $\sigma : \{1, \ldots, 2n\} \rightarrow \{1, \ldots, 2n\}$ represent a 2n-gon gluing with v vertices. Then v is the cycle count in $\tau \circ \sigma$.

 $\sigma = (1,7)(2,9)(3,6)(4,12)(5,8)(10,11)$ $\tau \circ \sigma = (1,8,6,4)(2,10,12,5,9,3,7)(11)$

Algebraic proof

Work in $\mathbb{C}[S_{2n}]^{S_{2n}}$. The probability of a random 2n-gon gluing having v vertices equals the sum of the coefficients on v-cycle permutations in

$$X \coloneqq \frac{1}{(2n-1)!} \left(\sum_{\tau \in S_{2n} \ 2n \text{-cycle}} \tau \right) \circ \frac{1}{(2n-1)!!} \left(\sum_{\sigma \in S_{2n} \ \text{gluing}} \sigma \right).$$

Irreducible representations of S_{2n} give an orthonormal basis of $\mathbb{C}[S_{2n}]^{S_{2n}}$; most coordinates of X in this basis vanish due to Schur's lemma and the Murnaghan–Nakayama rule. Computing remaining coefficients via the Specht module for hook partitions gives

$$\mathsf{HZ}(n,g) = 2\sum_{k=0}^{n-1} (-1)^k \binom{n-1}{k} [x^{n+1-2g}] \binom{x+2n-2k-1}{2n},$$

which satisfies the recurrence.

Combinatorial proof

Let T(n, q) count ways to glue a 2*n*-gon and color vertices with exactly q colors. Then

$$\sum_{q=1}^{k} \binom{k}{q} T(n,q) = (2n-1)!! \sum_{g=0}^{\lfloor \frac{1}{2}n \rfloor} \mathsf{HZ}(n,g) k^{n+1-2g}$$

is the number of ways to glue a 2n-gon and color its vertices using at most k colors.

Gluing Polygons	31 July 2024
-----------------	--------------

25 / 28

Combinatorial proof

Colorings with exactly q colors biject to bi-Eulerian tours on q-vertex graphs. Such tours decompose into trees, rooted rotation systems, and pairings via BEST theorem.

Since Catalan numbers count rooted plane trees,

$$T_n(q) = C_{q-1}q! \binom{2n}{2q-2} (2n-2q+1)!!,$$

giving a closed form for HZ(n, g). This expression satisfies the recurrence.

Recap

 $1-4+1=2-2\cdot 2$

Randomly glue a 2*n*-gon

- Polygon gluing and genus (topology)
- Euler's formula v e + f = 2 2g (polyhedral combinatorics)
- Catalan numbers (enumerative combinatorics)
- Analytic recurrence proof (linear algebra, random matrix theory)
- Algebraic recurrence proof (group theory, representation theory)
- Combinatorial recurrence proof (graph theory)

Thank you!

Questions?

