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Squares

Imagine a stretchy rubber square.

Glue opposite sides. What happens?

=⇒

Glue adjacent sides. What happens?

=⇒
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Hexagons

Imagine a stretchy rubber hexagon.

⇓ ⇓ ⇓
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Octagons

Imagine a stretchy rubber octagon.

=⇒
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Counting gluings

Three ways to glue a square:

⇓ ⇓ ⇓

Two spheres, one torus.
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Counting gluings

Fifteen ways to glue a hexagon:

Five spheres, ten tori.
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Counting gluings
In general, (2n − 1) · (2n − 3) · . . . · 5 · 3 · 1 = (2n − 1)!! ways to glue a
2n-gon.

Proof.

2n − 1 ways to pair first edge

2n − 3 ways to pair next unpaired edge

. . .

3 ways to pair fourth-to-last unpaired edge

1 way to pair second-to-last unpaired edge
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The Question
Randomly choose a 2n-gon gluing.

Sphere probability?

Torus probability?

In general:

Question

What is the probability that a random 2n-gon gluing produces a surface
with g holes?

zero holes

one hole
two holes
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Determining genus

Definition

The genus of a surface is its hole count.

How to determine genus from gluing?

=⇒ · · ·

Answer: Euler’s formula!
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Euler’s formula

Theorem

A connected graph (loops and double edges allowed) on a sphere with v
vertices, e edges, and f faces satisfies v − e + f = 2.

v − e + f = 6− 12 + 8 = 2 v − e + f = 4− 3 + 1 = 2

Proof.

Induct on edge count via edge contraction.
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Euler’s formula

Theorem

A graph on a genus g surface with v vertices, e edges, and f (simply
connected) faces satisfies v − e + f = 2− 2g .

v − e + f = 2− 4 + 2 = 0 = 2− 2g v − e + f = 1− 4 + 1 = −2 = 2− 2g

Proof.

Show v − e + f is invariant, then calculate it for a specific graph.
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Counting vertices

Lemma

A 2n-gon gluing with v vertices has genus 1
2(n + 1− v).

Proof.

A gluing of a 2n-gon produces a graph with n edges and 1 face.Thus

v − e + f = v − n + 1 = 2− 2g =⇒ g = 1
2(n + 1− v).

=⇒

A C
A

A

C

A
CA

C

A

A

B

=⇒ g = 1
2(6 + 1− 3) = 2

Holden Mui Gluing Polygons 31 July 2024 12 / 28



Data

Question

What is the probability that a random 2n-gon gluing produces a surface
with g holes?

g = 0 g = 1 g = 2 g = 3

square (2n = 4) 2/3 1/3

hexagon (2n = 6) 1/3 2/3

octagon (2n = 8) 2/15 2/3 1/5

decagon (2n = 10) 2/45 4/9 23/45

dodecagon (2n = 12) 4/315 2/9 28/45 1/7
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Observations

g = 0 g = 1 g = 2 g = 3

2n = 4 2/3 1/3

2n = 6 1/3 2/3

2n = 8 2/15 2/3 1/5

2n = 10 2/45 4/9 23/45

2n = 12 4/315 2/9 28/45 1/7

Maximum genus?

Sphere probability?

Maximum genus probability?

Recurrence or closed form?

Holden Mui Gluing Polygons 31 July 2024 14 / 28



Maximum genus
The maximum genus obtainable from a 2n-gon gluing is ⌊12n⌋.

Proof.

Upper bound: since v ≥ 1,

g = 1
2(n + 1− v) ≤ 1

2(n + 1− 1) = 1
2n.

Lower bound: gluing opposite edges gives v = 1 for even n and v = 2
for odd n.

A A
A

A

A

A
AA

A

A

A

A
A B

A

B

A

BA

B

A

B
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Sphere probability

Sphere-producing gluings are counted by Catalan numbers1 Cn = 1
n+1

(2n
n

)
.

To prove this:

Lemma

A gluing produces a sphere if and only if its chord diagram has no
crossings.

⇐⇒

1The Catalan numbers begin 1, 2, 5, 14, 42... and count ways to arrange n sets of
parentheses. For example, C3 = 5 because of ()()(), ()(()), (())(), (()()), and ((())).
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Sphere probability

Lemma

Non-crossing chord diagrams biject to arrangements of n sets of
parentheses.

⇐⇒ (())((()))()

Thus the sphere probability for a 2n-gon gluing is Cn/(2n − 1)!!.
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Maximum genus probability

Recall maximum genus is ⌊12n⌋.

g = 0 g = 1 g = 2 g = 3

2n = 4 2/3 1/3

2n = 6 1/3 2/3

2n = 8 2/15 2/3 1/5

2n = 10 2/45 4/9 23/45

2n = 12 4/315 2/9 28/45 1/7

Observation

For even n, the probability of producing a genus 1
2n surface from a 2n-gon

gluing is 1
n+1 .
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Recurrence

g = 0 g = 1 g = 2 g = 3

2n = 4 2/3 1/3

2n = 6 1/3 2/3

2n = 8 2/15 2/3 1/5

2n = 10 2/45 4/9 23/45

2n = 12 4/315 2/9 28/45 1/7

Observation

Let HZ(n, g) denote the probability that a random 2n-gon gluing produces
a genus g surface. Then

HZ(n, g) = 2
n+1 HZ(n − 1, g) + n−1

n+1 HZ(n − 2, g − 1).

For example, n = 6 and g = 2 gives 28
45 = 2

7 · 23
45 + 5

7 · 2
3 .
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Recurrence

Let HZ(n, g) denote the probability that a random 2n-gon gluing produces
a genus g surface.

Theorem (J. Harer and D. Zagier, 1986)

HZ(n, g) = 2
n+1 HZ(n − 1, g) + n−1

n+1 HZ(n − 2, g − 1).

Three known proofs:

analytic

algebraic

combinatorial

Corollary

For even n, HZ(n, 12n) =
1

n+1 .

No direct bijective proof for this result is known.
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Analytic proof
A complex matrix is unitary if its inverse is its conjugate transpose.

Lemma

Choose a k × k unitary matrix uniformly at random. Then

E
[
trX 2n

]
= (2n − 1)!!

⌊ 1
2
n⌋∑

g=0

HZ(n, g)kn+1−2g .

For example, n = 4 gives E
[
trX 8

]
= 14k5 + 70k3 + 21k .

Proof.

Entries of X are complex normal Gaussians, so expand trX 2n in terms of
its entries and apply Isserlis’ theorem.

It suffices to understand the eigenvalue distribution σk(λ) of X because

E
[
trX 2n

]
= E

[
λ2n
1 + · · ·+ λ2n

k

]
= kE

[
λ2n
]
= k

∫ ∞

−∞
λ2nσk(λ)dλ.
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Analytic proof
The joint probability distribution for the eigenvalues of a random k × k
unitary matrix is

Pk(λ1, . . . , λk) =
1

(2π)k/2
exp

(
−1

2

k∑
i=1

λ2
i

) ∏
1≤a<b≤k

(λa − λb)
2.

Integrating gives the single eigenvalue distribution σk(λ) as∫ ∞

−∞
· · ·
∫ ∞

−∞
Pk(λ, λ2, . . . , λk)dλ2 . . . dλk =

1

k
√
2π

e−
1
2
λ2

k−1∑
i=0

Hi (λ)
2,

where Hi is the i th Hermite polynomial. Finally, Hermite polynomial
identities give a differential equation satisfied by

u(t) :=

∫ ∞

−∞
etλσk(λ)dλ =

∞∑
n=0

tn

n!

∫ ∞

−∞
λnσk(λ)dλ,

which gives a recurrence on coefficients in u(t)’s Taylor expansion.
Holden Mui Gluing Polygons 31 July 2024 22 / 28



Algebraic proof

Lemma

Label a 2n-gon’s edges from 1 to 2n, let τ : {1, . . . , 2n} → {1, . . . , 2n} be
τ(x) := x + 1, and let σ : {1, . . . , 2n} → {1, . . . , 2n} represent a 2n-gon
gluing with v vertices. Then v is the cycle count in τ ◦ σ.

1

2

3

4

5
6

7

8

9

10

11
12

=⇒

A C
A

A

C

A
CA

C

A

A

B
1

2

3

4

5

6
7

8

9

10

11

12

σ = (1, 7)(2, 9)(3, 6)(4, 12)(5, 8)(10, 11)

τ ◦ σ = (1, 8, 6, 4)(2, 10, 12, 5, 9, 3, 7)(11)
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Algebraic proof

Work in C[S2n]S2n . The probability of a random 2n-gon gluing having v
vertices equals the sum of the coefficients on v -cycle permutations in

X :=
1

(2n − 1)!

 ∑
τ ∈ S2n 2n-cycle

τ

 ◦ 1

(2n − 1)!!

 ∑
σ ∈ S2n gluing

σ

 .

Irreducible representations of S2n give an orthonormal basis of C[S2n]S2n ;
most coordinates of X in this basis vanish due to Schur’s lemma and the
Murnaghan–Nakayama rule. Computing remaining coefficients via the
Specht module for hook partitions gives

HZ(n, g) = 2
n−1∑
k=0

(−1)k
(
n − 1

k

)
[xn+1−2g ]

(
x + 2n − 2k − 1

2n

)
,

which satisfies the recurrence.
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Combinatorial proof

Let T (n, q) count ways to glue a 2n-gon and color vertices with exactly q
colors. Then

k∑
q=1

(
k

q

)
T (n, q) = (2n − 1)!!

⌊ 1
2
n⌋∑

g=0

HZ(n, g)kn+1−2g .

is the number of ways to glue a 2n-gon and color its vertices using at most
k colors.

=⇒ =⇒

Holden Mui Gluing Polygons 31 July 2024 25 / 28



Combinatorial proof

Colorings with exactly q colors biject to bi-Eulerian tours on q-vertex
graphs. Such tours decompose into trees, rooted rotation systems, and
pairings via BEST theorem.

=⇒
1 8 27

3

12

6

9

11 4

5

10

=⇒

Since Catalan numbers count rooted plane trees,

Tn(q) = Cq−1q!

(
2n

2q − 2

)
(2n − 2q + 1)!!,

giving a closed form for HZ(n, g). This expression satisfies the recurrence.
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Recap

Randomly glue a 2n-gon
1− 4 + 1 = 2− 2 · 2

(())((()))()

Polygon gluing and genus (topology)

Euler’s formula v − e + f = 2− 2g (polyhedral combinatorics)

Catalan numbers (enumerative combinatorics)

Analytic recurrence proof (linear algebra, random matrix theory)

Algebraic recurrence proof (group theory, representation theory)

Combinatorial recurrence proof (graph theory)
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Thank you!

Questions?

=⇒
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