Binary Multiples of Three Holden Mui

§ Problem Statement

Let n be a positive integer. Prove that among the first n multiples of three, there are
more numbers with an even number of 1s in binary than numbers with an odd number
of 1s in binary.
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§ Solutions

Solution A

Given a set of positive integers .S, define

even(S) = #{s € S| s has an even number of 1s in binary}
odd(S) = #{s € S| s has an odd number of 1s in binary}.

The problem will follow from the following lemma.
Lemma 1. For every positive integer n,
e cven({3,6,...,3n}) > o0dd({3,6,...,3n})
e cven({1,4,...,3n —2}) <odd({1,4,...,3n —2})
e cven({2,5,...,3n —1}) <odd({2,5,...,3n — 1})
Proof. Induct on n. The base cases n € {1,2} are easy to check.

e For S ={3,6,...,3n}, let Sepen, and S,qq denote the set of even numbers and odd
numbers in S, respectively. Then

even(S) = even(Seyen) + even(Syqq)

= even(Seyen/2) + 0dd((Sedqq — 1)/2)
0dd(Seven/2) + even((Soaq — 1)/2)
odd(Seven) + 0dd(Soaq)
= odd(S)

A

since the elements of Seyen/2 are 0 modulo 3 and the elements of (S,qq — 1)/2 are
1 modulo 3.

e For S ={1,4,...,3n — 2}, let Scyen, and S,qq denote the set of even numbers and
odd numbers in S, respectively. Then

even(S) = even(Seyen) + even(Syqq)
= even(Seyen/2) + 0dd((Seqq — 1)/2)
> 0dd(Seven/2) + even((Soaqs — 1)/2)
— 0dd(Suven) + 0dd(Spuq)
= odd(95)

since the elements of Seyen/2 are 2 modulo 3 and the elements of (S,qq — 1)/2 are
0 modulo 3.

e For S ={2,5,...,3n — 1}, there are two cases.



Binary Multiples of Three Holden Mui

— Case 1: 22--1 < 3p — 1 < 22k Define

Ssmall = {5 S | s < 22k_1}
Shig = {s € 5|2 > 221},

Then

even(S) = even(Ssman) + even(Shig)
= 0dd(Ssmair) + 0dd(Spig — 2271
> odd(Seman) + even(Syig — 2%*1)
= odd(Ssman) + odd(Spig)
= odd(9)

since even({a,b}) = odd({a,b}) = 1 when a and b are positive integers sum-
ming to 22*~1 and the elements of Shig — 226=1 are 0 mod 3.

— Case 2: 22k < 3p — 1 < 22k+1,

Ssmat = {s €85 |s< 92+l _ (3n—1)}
Shig ={s €5 |2>2"1 —(3n—1)}.

Then

even(S) = even(Seman) + even(Spig)
> odd(Ssmair) + even(Shig)
= odd(Ssman) + 0odd(Shig)
= odd(S)

since the elements of S, are 2 modulo 3 and even({a,b}) = odd({a,b}) =1
when a and b are positive integers summing to 221,

This completes the triple induction. O
Solution B
First, let’s establish the problem statement when n = Lz;l. Given a positive integer k,

let s(k) denote the number of 1s in its binary representation.

Lemma 2. Let d be a positive integer. Then

> (-1 =230

0<i<44
i=0 mod 3
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Proof. Given a positive integer k, let Seven(k) and soqq(k) denote the number of 1s in
even positions and odd positions of k’s binary representation, respectively. Observe that

3 | k < 3 ‘ Seven(k) — Sodd(k)

and
S(k‘) even <= 2 | Seven(k) - SOdd(k)’

Additionally, observe that the 4% terms in the expansion of P(z) = ((1+ z)(1 + %))d
correspond to binary expansions with 2d digits, and the degree of the term corresponding
to k in binary is Seven(k) — Sodd(k). Combining these two facts yields

Yo = 3 @P@ - Y [P)

0<i<4d t=0 mod 6 t=3 mod 6
i=0 mod 3
=2 Y [@P@) - Y [P(),
t=0 mod 6 t=0 mod 3

where [z!]P(z) denotes the x! coefficient of P(z).
To evaluate this, let ¢ = ¢27/6. By a roots of unity filter, the first sum equals

P(1) + P(¢) + P(¢*) + P(¢*) + P(¢H) + P(¢°) _ 47+37+1+0+1+37
6 3

2.

and the second term equals

P(1)+P(3)+P(¢Y  44+1+1
3 - 3

Subtracting these quantities gives % - 3%, as desired. O
More generally, we have the following result:
Lemma 3. Let ¢ and d be positive integers and let £ = Seyen(c) — Soqa(c). Then

2.3 if¢=0 (mod 6)

T (- 1-34=1 if£=41 (mod 6)
' —1-3%1 jf¢ =42 (mod 6)
c49<i<(c+1)-44
=0 mod 3 —2.3%71 fr=3 (mod 6).

Proof. This is effectively the same as the proof of Lemma 2, with P(z) replaced with

Q) = ' (1+2)(1+1))%.

This gives
Y. U=+
c42<i<(c+1)-44
=0 mod 3
implying the cases described above. O
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There are many ways to finish from here; one possible way is to write 3n + 1 in the
form

4% g2 ggds 4

where dy > do > d3 > --- > 0 and no four consecutive d;’s are equal. The goal is to
apply Lemma 3 to the intervals

[0,49), [4% 4% 4 4%2) [4% 4 42 g 4 g2 4 ogds)

and show the result is greater than 1.
To do this, let D = d; be the maximum exponent. The sum over intervals with length
4P is at least
2- 3D71 dq 7é do
3.30-1 dlzdg#dg
4.3b-1 dlzdgzdg#chl

by applying Lemma 3 for £ € {0,1,2}. The sum over intervals I with length 4P~ is at
least

(=1-3772) 4+ 0+0

by applying Lemma 3 to £ € {4,5,...,15} and observing that:
e the third case in Lemma 3 only occurs when ¢ € {1012,10102} = {5,10}, and

e the fourth case cannot occur since the smallest ¢ satisfying the fourth case is
¢ =101015 = 21.

Lastly, the sum over intervals I with length 4°~¢ for d > 2 is at least

Summing over all exponents gives

n
Z(_1)8(31)223D—1_13D—2_6(3D—3+3D—4++31+30)_3%
=0

>2-3-81+5+5H+)) 3P =230,

where the 3 - % accounts for the failure of Lemma 3 when d = 0. When D > 2, this gives

D (1)) > 2.3072 1 > 0.
=1

When D < 1, this amounts to checking n < % - 42 < 6, which is easy since s(3), s(6),
5(9), s(12), ands(15) are all even.
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Solution C

For r € {0, 1,2}, define
ST(a7 b) - Z (_1)S(i)7

i€la,b)
i=r mod 3

where s(i) denotes the number of 1s in 4’s binary representation. The problem is equiv-
alent to proving Sy(0,3n + 1) > 1 for all n > 1.

Lemma 4. For any every integer d, S,(0,29) is given by:

d Sp(0,2%)  81(0,2%)  S5(0,2%)
d—1 d—1
d odd 32 -3 2 0

d—2 d—2 d—2
deven | 2-3 2 -3 2 —-32

Proof. Induction; the base cases d € {1,2} are easy to check. For the inductive step,
observe that

S0(0,2%) = 85(0,2471) + Sp(2971,29) = S5(0,2971) — Spa1(0,2¢71)
$1(0,2%) = 51(0,2771) + S1(2471,2%) = §1(0,2771) — S 4 9a-1(0,2471)
S5(0,2%) = S5(0,2%71) + S5(2971,2%) = $5(0,2%71) — Sy 9a-1(0,2771).
Using
gi-1 _ {1 mod 3 d odd
2mod 3 d even
and applying the inductive hypothesis gives the desired result. O

This proves the problem for powers of 2. To prove the problem for general n, split
[0,3n 4 1) into blocks

[0,3n 4+ 1) = [0,2%) L [2%, 29 4 2%2) |y [291 4 22 od1 4 9d2 4 9dsy

whose lengths are decreasing powers of 2. By Lemma 4,

d1

-1
3 dy odd

So(0,20) > ", P
2-372 dj even

So(2%, 24 4 2%) = —5 4 (0,2%) > 0

and
So(2% 4o 251 20 g 2% = ()18 e, (0,27)
—2- 3di2_2 d; even
> a1
—1-372 d; odd.
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for all i. Let D = dy; assume D > 4 since checking D € {1, 2,3} is easy. Summing over
all intervals gives

D—-2

D—4 D—4 D—6 D—6
Sp(0,3n+1)>2-372 _|_()_<2.3T+3T+2.3T+3T+...) =372 >1

when D is even, and

when D is odd.
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§ Variants

Variant A. Find all positive integers k such that for every positive integer n, among
the first n multiples of k there are more numbers with an even numbers of 1s in binary
than numbers with an odd number of 1s in binary.

Variant B. Given a set of positive integers S, define

even(S) = #{s € S| s has an even number of 1s in binary}
odd(S) = #{s € S| s has an odd number of 1s in binary}.

Show that 4d(13.6 5
lim odd({3,6,...,3n})

=1.
n—oo even({3,6,...,3n})
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