§ Problem Statement

Let n be a positive integer. Prove that among the first n multiples of three, there are more numbers with an even number of 1s in binary than numbers with an odd number of 1s in binary.

§ Solutions

Solution A

Given a set of positive integers S, define

 $even(S) = \#\{s \in S \mid s \text{ has an even number of 1s in binary}\}$ $odd(S) = \#\{s \in S \mid s \text{ has an odd number of 1s in binary}\}.$

The problem will follow from the following lemma.

Lemma 1. For every positive integer n,

- $even(\{3, 6, \dots, 3n\}) > odd(\{3, 6, \dots, 3n\})$
- $\operatorname{even}(\{1, 4, \dots, 3n-2\}) < \operatorname{odd}(\{1, 4, \dots, 3n-2\})$
- $\operatorname{even}(\{2, 5, \dots, 3n-1\}) \leq \operatorname{odd}(\{2, 5, \dots, 3n-1\})$

Proof. Induct on n. The base cases $n \in \{1, 2\}$ are easy to check.

• For $S = \{3, 6, ..., 3n\}$, let S_{even} and S_{odd} denote the set of even numbers and odd numbers in S, respectively. Then

$$even(S) = even(S_{even}) + even(S_{odd})$$

= $even(S_{even}/2) + odd((S_{odd} - 1)/2)$
< $odd(S_{even}/2) + even((S_{odd} - 1)/2)$
= $odd(S_{even}) + odd(S_{odd})$
= $odd(S)$

since the elements of $S_{even}/2$ are 0 modulo 3 and the elements of $(S_{odd} - 1)/2$ are 1 modulo 3.

• For $S = \{1, 4, ..., 3n - 2\}$, let S_{even} and S_{odd} denote the set of even numbers and odd numbers in S, respectively. Then

$$even(S) = even(S_{even}) + even(S_{odd})$$

= $even(S_{even}/2) + odd((S_{odd} - 1)/2)$
> $odd(S_{even}/2) + even((S_{odd} - 1)/2)$
= $odd(S_{even}) + odd(S_{odd})$
= $odd(S)$

since the elements of $S_{even}/2$ are 2 modulo 3 and the elements of $(S_{odd} - 1)/2$ are 0 modulo 3.

• For $S = \{2, 5, ..., 3n - 1\}$, there are two cases.

– Case 1: $2^{2k-1} \leq 3n - 1 < 2^{2k}$. Define

$$S_{small} = \{ s \in S \mid s < 2^{2k-1} \}$$
$$S_{big} = \{ s \in S \mid 2 \ge 2^{2k-1} \}.$$

Then

$$even(S) = even(S_{small}) + even(S_{big})$$
$$= odd(S_{small}) + odd(S_{big} - 2^{2k-1})$$
$$\geq odd(S_{small}) + even(S_{big} - 2^{2k-1})$$
$$= odd(S_{small}) + odd(S_{big})$$
$$= odd(S)$$

since even $(\{a, b\}) = \text{odd}(\{a, b\}) = 1$ when a and b are positive integers summing to 2^{2k-1} , and the elements of $S_{big} - 2^{2k-1}$ are 0 mod 3.

- Case 2: $2^{2k} < 3n - 1 < 2^{2k+1}$.

$$S_{small} = \{ s \in S \mid s < 2^{2k+1} - (3n-1) \}$$
$$S_{big} = \{ s \in S \mid 2 \ge 2^{2k+1} - (3n-1) \}.$$

Then

$$even(S) = even(S_{small}) + even(S_{big})$$
$$\geq odd(S_{small}) + even(S_{big})$$
$$= odd(S_{small}) + odd(S_{big})$$
$$= odd(S)$$

since the elements of S_{small} are 2 modulo 3 and even $(\{a, b\}) = \text{odd}(\{a, b\}) = 1$ when a and b are positive integers summing to 2^{2k+1} .

This completes the triple induction.

Solution B

First, let's establish the problem statement when $n = \frac{4^d - 1}{3}$. Given a positive integer k, let s(k) denote the number of 1s in its binary representation.

Lemma 2. Let d be a positive integer. Then

$$\sum_{\substack{0 \le i < 4^d \\ i \equiv 0 \mod 3}} (-1)^{s(i)} = 2 \cdot 3^{d-1}.$$

Proof. Given a positive integer k, let $s_{\text{even}}(k)$ and $s_{\text{odd}}(k)$ denote the number of 1s in even positions and odd positions of k's binary representation, respectively. Observe that

$$3 \mid k \iff 3 \mid s_{\text{even}}(k) - s_{\text{odd}}(k)$$

and

$$s(k)$$
 even $\iff 2 \mid s_{\text{even}}(k) - s_{\text{odd}}(k)$

Additionally, observe that the 4^d terms in the expansion of $P(x) = \left((1+x)(1+\frac{1}{x})\right)^d$ correspond to binary expansions with 2d digits, and the degree of the term corresponding to k in binary is $s_{\text{even}}(k) - s_{\text{odd}}(k)$. Combining these two facts yields

$$\sum_{\substack{0 \le i < 4^d \\ i \equiv 0 \mod 3}} (-1)^{s(i)} = \sum_{t \equiv 0 \mod 6} [x^t] P(x) - \sum_{t \equiv 3 \mod 6} [x^t] P(x)$$
$$= 2 \sum_{t \equiv 0 \mod 6} [x^t] P(x) - \sum_{t \equiv 0 \mod 3} [x^t] P(x),$$

where $[x^t]P(x)$ denotes the x^t coefficient of P(x).

To evaluate this, let $\zeta = e^{2i\pi/6}$. By a roots of unity filter, the first sum equals

$$2 \cdot \frac{P(1) + P(\zeta) + P(\zeta^2) + P(\zeta^3) + P(\zeta^4) + P(\zeta^5)}{6} = \frac{4^d + 3^d + 1 + 0 + 1 + 3^d}{3}$$

and the second term equals

$$\frac{P(1) + P(\zeta^2) + P(\zeta^4)}{3} = \frac{4^d + 1 + 1}{3}.$$

Subtracting these quantities gives $\frac{2}{3} \cdot 3^d$, as desired.

More generally, we have the following result:

Lemma 3. Let c and d be positive integers and let $\ell = s_{even}(c) - s_{odd}(c)$. Then

$$\sum_{\substack{c\cdot 4^d \le i < (c+1)\cdot 4^d \\ i \equiv 0 \mod 3}} (-1)^{s(i)} = \begin{cases} 2 \cdot 3^{d-1} & \text{if } \ell \equiv 0 \pmod{6} \\ 1 \cdot 3^{d-1} & \text{if } \ell \equiv \pm 1 \pmod{6} \\ -1 \cdot 3^{d-1} & \text{if } \ell \equiv \pm 2 \pmod{6} \\ -2 \cdot 3^{d-1} & \text{if } \ell \equiv 3 \pmod{6}. \end{cases}$$

Proof. This is effectively the same as the proof of Lemma 2, with P(x) replaced with

$$Q(x) = x^{\ell} \left((1+x)(1+\frac{1}{x}) \right)^{d}.$$

This gives

$$\sum_{\substack{4^d \le i < (c+1) \cdot 4^d \\ i \equiv 0 \mod 3}} (-1)^{s(i)} = (\zeta^{\ell} + \zeta^{-\ell}) \cdot 3^{d-1},$$

implying the cases described above.

 $c \cdot$

There are many ways to finish from here; one possible way is to write 3n + 1 in the form

$$4^{d_1} + 4^{d_2} + 4^{d_3} + \dots$$

where $d_1 \ge d_2 \ge d_3 \ge \cdots \ge 0$ and no four consecutive d_i 's are equal. The goal is to apply Lemma 3 to the intervals

$$[0, 4^{d_1}), [4^{d_1}, 4^{d_1} + 4^{d_2}), [4^{d_1} + 4^{d_2}, 4^{d_1} + 4^{d_2} + 4^{d_3}), \dots$$

and show the result is greater than 1.

To do this, let $D = d_1$ be the maximum exponent. The sum over intervals with length 4^D is at least

$$\begin{cases} 2 \cdot 3^{D-1} & d_1 \neq d_2 \\ 3 \cdot 3^{D-1} & d_1 = d_2 \neq d_3 \\ 4 \cdot 3^{D-1} & d_1 = d_2 = d_3 \neq d_4 \end{cases}$$

by applying Lemma 3 for $\ell \in \{0, 1, 2\}$. The sum over intervals I with length 4^{D-1} is at least

$$(-1 \cdot 3^{D-2}) + 0 + 0$$

by applying Lemma 3 to $\ell \in \{4, 5, \dots, 15\}$ and observing that:

- the third case in Lemma 3 only occurs when $\ell \in \{101_2, 1010_2\} = \{5, 10\}$, and
- the fourth case cannot occur since the smallest ℓ satisfying the fourth case is $\ell = 10101_2 = 21$.

Lastly, the sum over intervals I with length 4^{D-d} for $d \ge 2$ is at least

$$(-2 \cdot 3^{D-d-1}) + (-2 \cdot 3^{D-d-1}) + (-2 \cdot 3^{D-d-1}) = -6 \cdot 3^{D-d-1}.$$

Summing over all exponents gives

$$\sum_{i=0}^{n} (-1)^{s(3i)} \ge 2 \cdot 3^{D-1} - 1 \cdot 3^{D-2} - 6 \cdot (3^{D-3} + 3^{D-4} + \dots + 3^1 + 3^0) - 3 \cdot \frac{1}{3}$$
$$> (2 - \frac{1}{3} - \frac{6}{9}(1 + \frac{1}{3} + \frac{1}{3^2} + \dots)) \cdot 3^{D-1} = 2 \cdot 3^{D-2} - 1,$$

where the $3 \cdot \frac{1}{3}$ accounts for the failure of Lemma 3 when d = 0. When $D \ge 2$, this gives

$$\sum_{i=1}^{n} (-1)^{s(3i)} > 2 \cdot 3^{D-2} - 1 > 0.$$

When $D \leq 1$, this amounts to checking $n \leq \frac{1}{3} \cdot 4^2 < 6$, which is easy since s(3), s(6), s(9), s(12), and s(15) are all even.

Solution C

For $r \in \{0, 1, 2\}$, define

$$S_r(a,b) = \sum_{\substack{i \in [a,b)\\i \equiv r \mod 3}} (-1)^{s(i)},$$

where s(i) denotes the number of 1s in *i*'s binary representation. The problem is equivalent to proving $S_0(0, 3n + 1) > 1$ for all $n \ge 1$.

Lemma 4. For any every integer d, $S_r(0, 2^d)$ is given by:

 $\mathit{Proof.}$ Induction; the base cases $d \in \{1,2\}$ are easy to check. For the inductive step, observe that

$$\begin{split} S_0(0,2^d) &= S_0(0,2^{d-1}) + S_0(2^{d-1},2^d) = S_0(0,2^{d-1}) - S_{2^{d-1}}(0,2^{d-1}) \\ S_1(0,2^d) &= S_1(0,2^{d-1}) + S_1(2^{d-1},2^d) = S_1(0,2^{d-1}) - S_{1+2^{d-1}}(0,2^{d-1}) \\ S_2(0,2^d) &= S_2(0,2^{d-1}) + S_2(2^{d-1},2^d) = S_2(0,2^{d-1}) - S_{2+2^{d-1}}(0,2^{d-1}). \end{split}$$

Using

$$2^{d-1} \equiv \begin{cases} 1 \mod 3 & d \text{ odd} \\ 2 \mod 3 & d \text{ even} \end{cases}$$

and applying the inductive hypothesis gives the desired result.

This proves the problem for powers of 2. To prove the problem for general
$$n$$
, split $[0, 3n + 1)$ into blocks

$$[0, 3n + 1) = [0, 2^{d_1}) \sqcup [2^{d_1}, 2^{d_1} + 2^{d_2}) \sqcup [2^{d_1} + 2^{d_2}, 2^{d_1} + 2^{d_2} + 2^{d_3}), \dots$$

whose lengths are decreasing powers of 2. By Lemma 4,

$$S_0(0, 2^{d_1}) \ge \begin{cases} 3^{\frac{d_1-1}{2}} & d_1 \text{ odd} \\ 2 \cdot 3^{\frac{d_1-2}{2}} & d_1 \text{ even} \end{cases}$$
$$S_0(2^{d_1}, 2^{d_1} + 2^{d_2}) = -S_{2^{d_1}}(0, 2^{d_2}) \ge 0$$

and

$$S_0(2^{d_1} + \dots + 2^{d_{i-1}}, 2^{d_1} + \dots + 2^{d_i}) = (-1)^{i-1} S_{2^{d_1} + \dots + 2^{d_{i-1}}}(0, 2^{d_i})$$
$$\geq \begin{cases} -2 \cdot 3^{\frac{d_i-2}{2}} & d_i \text{ even} \\ -1 \cdot 3^{\frac{d_i-1}{2}} & d_i \text{ odd.} \end{cases}$$

for all *i*. Let $D = d_1$; assume $D \ge 4$ since checking $D \in \{1, 2, 3\}$ is easy. Summing over all intervals gives

$$S_0(0,3n+1) \ge 2 \cdot 3^{\frac{D-2}{2}} + 0 - \left(2 \cdot 3^{\frac{D-4}{2}} + 3^{\frac{D-4}{2}} + 2 \cdot 3^{\frac{D-6}{2}} + 3^{\frac{D-6}{2}} + \cdots\right) = 3^{\frac{D-2}{2}} > 1$$

when D is even, and

$$S_0(0,3n+1) \ge 3^{\frac{D-1}{2}} + 0 - \left(3^{\frac{D-3}{2}} + 2 \cdot 3^{\frac{D-5}{2}} + 3^{\frac{D-5}{2}} + 2 \cdot 3^{\frac{D-7}{2}} + \cdots\right) = \frac{1}{2} \cdot 3^{\frac{D-3}{2}} > 1$$

when D is odd.

§ Variants

Variant A. Find all positive integers k such that for every positive integer n, among the first n multiples of k there are more numbers with an even numbers of 1s in binary than numbers with an odd number of 1s in binary.

Variant B. Given a set of positive integers S, define

even $(S) = \#\{s \in S \mid s \text{ has an even number of 1s in binary}\}$ odd $(S) = \#\{s \in S \mid s \text{ has an odd number of 1s in binary}\}.$

Show that

$$\lim_{n \to \infty} \frac{\text{odd}(\{3, 6, \dots, 3n\})}{\text{even}(\{3, 6, \dots, 3n\})} = 1.$$

§ Metadata

This problem was selected as Problem 5 of the 2024 TSTST.

- Title: Binary Multiples of Three
- Author: Holden Mui
- Subject: number theory
- Description: parity of number of ones in multiples of three in binary
- Keywords: binary, multiples, parity
- Difficulty: IMO 2/5
- Collaborators: Ankit Bisain, Reagan Choi, Maxim Li, Derek Liu, Edward Xiong, Isaac Zhu, Isabella Zhu
- Date written: November 2023
- Submission history: 2024 TSTST
- Other credits: none