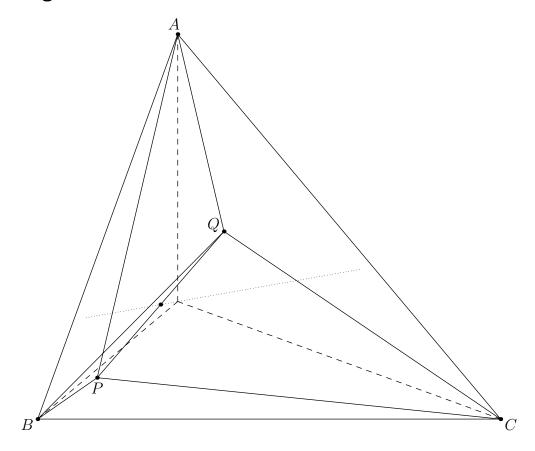
§ Problem Statement

Let distinct points P and Q lie inside scalene triangle ABC. Suppose that the angle bisectors of $\angle PAQ$, $\angle PBQ$, and $\angle PCQ$ are altitudes of triangle ABC. Prove that the midpoint of \overline{PQ} lies on the Euler line of triangle ABC.

§ Diagram



§ Solutions

Solution A

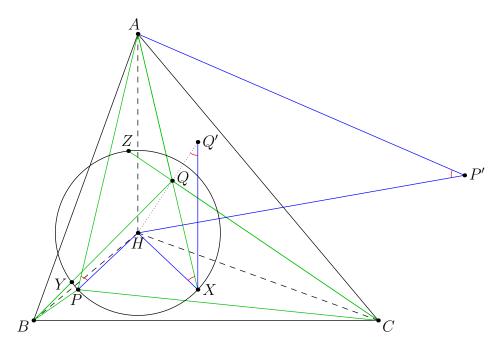
Let H be the orthocenter of ABC, and construct P' using the following claim.

Claim 1. There is a point P' for which

$$\angle APH + \angle AP'H = \angle BPH + \angle BP'H = \angle CPH + \angle CP'H = 0.$$

Proof. After inversion at H, this is equivalent to the fact that P's image has an isogonal conjugate in ABC's image.

Now, let X, Y, and Z be the reflections of P over \overline{AH} , \overline{BH} , and \overline{CH} respectively. Additionally, let Q' be the image of Q under inversion about (PXYZ).



Claim 2. $ABCP' \sim XYZQ'$.

Proof. Since

$$\angle YXZ = \angle YPZ = \angle (\overline{BH}, \overline{CH}) = \angle BAC$$

and cyclic variants, triangles ABC and XYZ are similar. Additionally,

$$\angle HQ'X = \angle HXQ = \angle HXA = -\angle HPA = \angle HP'A$$

and cyclic variants, so summing in pairs gives $\angle YQ'Z = \angle BP'C$ and cyclic variants; this implies the similarity.

Claim 3. Q' lies on the Euler line of triangle XYZ.

Proof. Let O be the circumcenter of ABC so that $ABCOP' \sim XYZHQ'$. Then $\angle HP'A = \angle HXQ' = \angle OP'A$, so P' lies on \overline{OH} . By the similarity, Q' must lie on the XYZ's Euler line.

To finish the problem, let G_1 be the centroid of ABC and G_2 be the centroid of XYZ. Then

$$[G_{1}HP] + [G_{1}HQ] = \frac{[AHP] + [BHP] + [CHP]}{3} + \frac{[AHQ] + [BHQ] + [CHQ]}{3}$$

$$= \frac{[AHQ] - [AHX] + [BHQ] - [BHY] + [CHQ] - [CHZ]}{3}$$

$$= \frac{[HQX] + [HQY] + [HQZ]}{3}$$

$$= [QG_{2}H]$$

$$= 0$$

where the last line follows from Claim 3. Therefore $\overline{G_1H}$ bisects \overline{PQ} , as desired.

Solution B

Let (ABC) be the unit circle in the complex plane, and let A=a, B=b, C=c such that |a|=|b|=|c|=1. Let P=p and Q=q, and O=0 and H=h=a+b+c be the circumcenter and orthocenter of ABC.

The condition that the altitude \overline{AH} bisects $\angle PAQ$ is equivalent to

$$\frac{(p-a)(q-a)}{(h-a)^2} = \frac{(p-a)(q-a)}{(b+c)^2} \in \mathbb{R}$$

$$\Rightarrow \frac{(p-a)(q-a)}{(b+c)^2} = \frac{\overline{(p-a)(q-a)}}{(b+c)^2} = \frac{(a\overline{p}-1)(a\overline{q}-1)b^2c^2}{(b+c)^2a^2}$$

$$\Rightarrow a^2(p-a)(q-a) = b^2c^2(a\overline{p}-1)(a\overline{q}-1)$$

$$\Rightarrow a^2pq - a^2b^2c^2\overline{pq} + (a^4 - b^2c^2) = a^3(p+q) - ab^2c^2(\overline{p}+\overline{q}).$$

Similarly, the conditions that \overline{BH} and \overline{CH} bisect $\angle PBQ$ and $\angle PCQ$ are equivalent to

$$b^{2}pq - a^{2}b^{2}c^{2}\overline{pq} + (b^{4} - c^{2}a^{2}) = b^{3}(p+q) - bc^{2}a^{2}(\overline{p} + \overline{q})$$
$$c^{2}pq - a^{2}b^{2}c^{2}\overline{pq} + (c^{4} - a^{2}b^{2}) = c^{3}(p+q) - ca^{2}b^{2}(\overline{p} + \overline{q}).$$

Now, sum (b^2-c^2) times the first equation, (c^2-a^2) times the second equation, and (a^2-b^2) times the third equation. On the left side, the coefficients of pq and \overline{pq} are 0. Additionally, the coefficient of 1 (the parenthesized terms on the left sides of each equation) sum to 0, since

$$\sum_{\text{cvc}} (a^4 - b^2 c^2)(b^2 - c^2) = \sum_{\text{cvc}} (a^4 b^2 - b^4 c^2 - a^4 c^2 + c^4 b^2).$$

Therefore,

$$(p+q)\sum_{\rm cvc}a^3(b^2-c^2)=(\overline{p}+\overline{q})abc\sum_{\rm cvc}(bc(b^2-c^2)).$$

Consider the cyclic sum on the left as a polynomial in a, b, and c. If a = b, then it simplifies as $a^3(a^2 - c^2) + a^3(c^2 - a^2) + c^3(a^2 - a^2) = 0$, so a - b divides this polynomial. Similarly, a - c and b - c divide it, so it can be written as f(a, b, c)(a - b)(b - c)(c - a) for some symmetric quadratic polynomial f, and thus it is some linear combination of $a^2 + b^2 + c^2$ and ab + bc + ca. When a = 0, the whole expression is $b^2c^2(b - c)$, and so f(0, b, c) = -bc, which implies that f(a, b, c) = -(ab + bc + ca).

Now, consider the cyclic sum on the right as a polynomial in a, b, and c. If a = b, then it simplifies as

$$ac(a^{2}-c^{2}) + ca(c^{2}-a^{2}) + a^{2}(a^{2}-a^{2}) = 0,$$

so a-b divides this polynomial. Similarly, a-c and b-c divide it, so it can be written as g(a,b,c)(a-b)(b-c)(c-a) where g is a symmetric linear polynomial; hence, it is a scalar multiple of a+b+c. When a=0, the whole expression is $bc(b^2-c^2)$, so g(0,b,c)=-b-c, which implies that g(a,b,c)=-(a+b+c). Finally,

$$(p+q)(ab+bc+ca) = (\overline{p}+\overline{q})abc(a+b+c) \iff (p+q)\overline{h} = (\overline{p}+\overline{q})h$$

since A, B, and C are distinct. This implies that $\frac{p+q}{h-0}$ is real, and so the midpoint of \overline{PQ} lies on line \overline{OH} .

Solution C

First, consider the following projective lemma.

Lemma 4. Let ℓ be a line, let φ be an involution on ℓ , and call a degree-two polynomial $f \in \mathbb{C}[x,y,z]$ involutive if $f(P) = 0 \iff f(\varphi(P)) = 0$ for every point $P \in \ell$. Then any linear combination of involutive functions is involutive.

Proof. It suffices to prove the result for two involutive polynomials f_1 and f_2 , since the result will follow via induction. Let $f = \alpha f_1 + \beta f_2$ for some $\alpha, \beta \in \mathbb{C}$.

By Bezout's theorem, the zero sets of f_1 and f_2 must intersect at four points, which must also lie in f's zero set. Hence Desaurges' involution theorem on f, f_1 , and f_2 implies that f must be involutive.

Now, define degree-two polynomials $f_1, f_2, f_3 \in \mathbb{C}[x, y, z]$ such that their zero sets are exactly the conics

$$\Gamma_1 = \overline{AR_1} \cap \overline{AS_1}$$

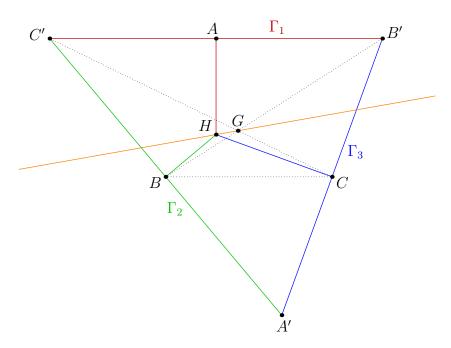
$$\Gamma_2 = \overline{AR_2} \cap \overline{AS_2}$$

$$\Gamma_3 = \overline{AR_3} \cap \overline{AS_3}.$$

Let f be a nontrivial linear combination of f_1 , f_2 , and f_3 whose zero set contains some two non-H points on ABC's Euler line; this is possible because there are two degrees of freedom. Since f(H) = 0, ABC's Euler line intersects the zero set of f at three distinct points. Thus, Bezout's theorem implies that f's zero set must contain the entire Euler line, so f's zero set is a union of two lines.

Claim 5. f's zero set is the union of ABC's Euler line and the line at infinity.

Proof. Let A' denote the reflection of A over the midpoint of \overline{BC} , let B' denote the reflection of B over the midpoint of \overline{CA} , and Let C' denote the reflection of A over the midpoint of \overline{AB} .

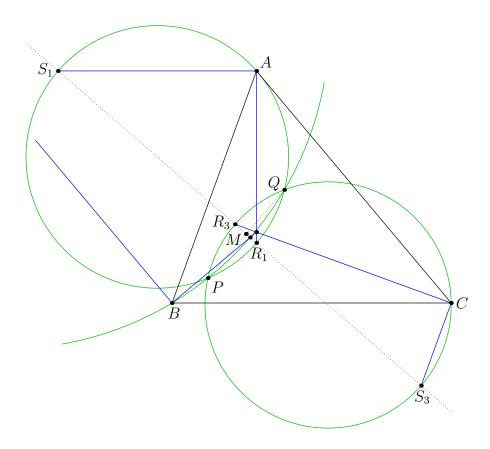


Applying the dual of Desargues' involution theorem to quadrilateral BCC'B' shows that $\{HB, HC'\}$, $\{HC, HB'\}$, $\{HG, HP_{\infty}\}$ are pairs of some involution (here $P_{\infty} = \overline{BC} \cap \ell_{\infty}$). Projecting onto $\overline{B'C'}$ shows that $\{C', \overline{BH} \cap B'C'\}$, $\{B', \overline{CH} \cap B'C'\}$, and $\{P_{\infty}, \overline{GH} \cap \overline{B'C'}\}$ are pairs of some involution φ . By applying Lemma 4 on f_1 , f_2 , and f_3 , it follows that $f(\overline{BC} \cap \ell_{\infty}) = 0$. By symmetry,

$$f(\overline{BC} \cap \ell_{\infty}) = f(\overline{CA} \cap \ell_{\infty}) = f(\overline{AB} \cap \ell_{\infty}) = 0.$$

By Bezout's theorem, ℓ_{∞} must lie in f's zero set, implying the claim.

Now, let \underline{M} be the midpoint of \overline{PQ} , and let ℓ be the perpendicular bisector of \overline{PQ} . Let ℓ meet \overline{AH} , \overline{BH} , and \overline{CH} at R_1 , R_2 , and R_3 . Let ℓ meet the line through A perpendicular to \overline{AH} , the line through B perpendicular to \overline{BH} , the line through C perpendicular to \overline{CH} at S_1 , S_2 , and S_3 .



Observe that $(APQR_1S_1)$ is cyclic with diameter $\overline{R_1S_1}$, $(BPQR_2S_2)$ is cyclic with diameter $\overline{R_2S_2}$, and $(CPQR_3S_3)$ is cyclic with diameter $\overline{R_3S_3}$. By power of a point,

$$MR_1\cdot MS_1=MR_2\cdot MS_2=MR_3\cdot MS_3=PM\cdot PQ=-(\tfrac{1}{2}PQ)^2,$$

so the involution $\varphi: \ell \to \ell$ given by negative inversion with radius $\frac{1}{2}PQ$ swaps the four pairs $\{R_1, S_1\}, \{R_2, S_2\}, \{R_3, S_3\}, \text{ and } \{M, P_\infty\}.$

Finally, applying Lemma 4 with the pairs $\{R_1, S_1\}$, $\{R_2, S_2\}$, and $\{R_3, S_3\}$, shows that the zero set of f must intersect ℓ at $\{M, P_\infty\}$. Therefore the Euler line of ABC must contain M, as desired.

§ Comments

Solution A characterizes the set of all points P for which such a point Q exists. Indeed, the set of all such points is the image of the Euler line under the map described in Claim 1.

§ Metadata

This problem was selected as Problem 6 of the 2023 TSTST.

• Title: Euler Line Bisection

• Author: Holden Mui

• Subject: geometry

• Description: midpoint of segment lies on Euler line in five-point problem

• Keywords: angle bisector, midpoint, complex numbers, Euler line

• Difficulty: TSTST 3/6

• Collaborators: Ankit Bisain, Kevin Cong, Ram Goel, Andrew Gu, Luke Robitaille, Carl Schildkraut, Andrew Wu

• Date written: July 2022

• Submission history: 2022 USEMO, 2023 TSTST

• Other credits: the author of Solution A is Ankit Bisain, the author of Solution B is Carl Schildkraut, and the author of Solution C is Juri Kaganskiy.