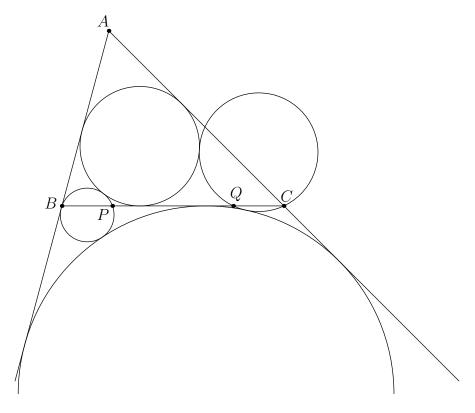
§ Problem Statement

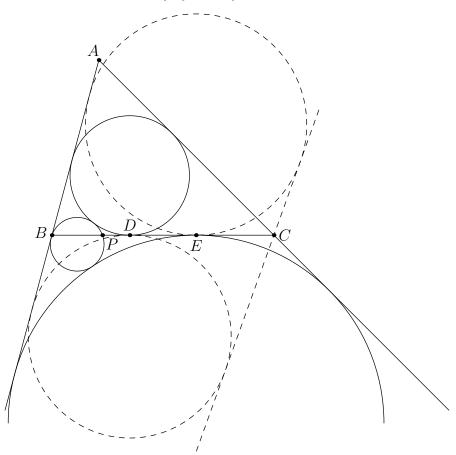
A circle through B and a circle through C are both externally tangent to the incircle and A-excircle of $\triangle ABC$. Prove \overline{BC} cuts the circles into congruent chords.

§ Diagram



§ Solution

Let \overline{BC} touch the incircle at D and the A-excircle at E. Since BD = CE, it suffices to show that $BP \cdot BC = BD \cdot BE$ by symmetry.



The inversion centered at B with radius $\sqrt{BD \cdot BE}$

- fixes lines \overline{AB} and \overline{BC} ,
- swaps D and E,
- sends the incircle to a circle Γ_1 tangent to \overline{AB} and tangent to \overline{BC} at E,
- sends the A-excircle to a circle Γ_2 tangent to \overline{AB} and tangent to \overline{BC} at D, and
- sends the circle through B tangent to the incircle and A-excircle to a common tangent ℓ of Γ_1 and Γ_2 .

Now, $C \in \ell$ since ℓ must intersect \overline{BC} at a point C' satisfying BD = C'E, so the inversion maps P to C, as desired.

§ Metadata

This problem was selected as Problem 3 of the 2023 HMIC.

- Title: Tangent to Incircle and Excircle
- Author: Holden Mui
- Subject: geometry
- Description: equal segments in configuration involving circles tangent to the incircle and A-excircle
- Keywords: incircle, excircle, tangent
- Difficulty: 20 MOHS
- Collaborators: Serena An, Ankit Bisain, Pitchayut Saengrungkongka, Carl Schildkraut
- Date written: November 2020
- Submission history: HMIC 2023