
Modular Inverses Are Modular Negatives Holden Mui

§ Problem Statement

Find all primes p ≥ 5 for which{
2−1, 3−1, . . . ,

(
p− 1

2

)−1
}

=

{
−2,−3, . . . ,−p− 1

2

}
(mod p).
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§ Solutions

The answer is p ∈ {5, 7, 13} , which can be checked to work.

Solution A

To show that no other p work, check p = {11, 17, 19} manually and assume p ≥ 21. Then{
−10,−p− 5

2

}
∈
{
−2,−3, . . . ,−p− 1

2

}
,

but their reciprocals differ by

1

10
− 2

p− 5
=

p− 1

2

and thus cannot both lie in
{
−2,−3, . . . ,−p−1

2

}
.

Solution B

To show that no other p work, check p = 11 manually, and assume p = 2kn+1 ≥ 17 for
some odd n.

• If n = 1, then p = 2k + 1. Since p+1
2 must be prime, both 2k−1 + 1 and 2k + 1

are consecutive Fermat primes. Since k− 1 and k must be powers of 2, this forces
k = 2, which gives p = 5.

• If n = 3, then p = 3 · 2k + 1. Since 2p+1
3 = 2k+1 + 1 must be prime, k = 2c − 1.

c ∈ {1, 2} gives p ∈ {7, 13}. If c ≥ 3, then

5 | 3 · 22c−1 + 1 = p,

contradiction.

• If n ≥ 5, then

2k+1 · p− n

2
≡ 1 (mod p)

shows that this case yields no solutions.

Solution C

No other p work; to see why, let q > 2 be the smallest prime not dividing p− 1.

Lemma 1. q2 < p
2 unless p ∈ S = {5, 7, 13, 19, 31, 37, 43, 61, 211}.

Proof. Casework on q.

• q = 3 gives p = 5.
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• q = 5 gives p ∈ {13, 19, 37, 43}.

• q = 7 gives p ∈ {31, 61}.

• q = 11 gives p = 211.

No larger q work because

132 <
2 · 3 · 5 · 7 · 11

2

and p2n+1 <
p1p2...pn

2 for n ≥ 5 by induction using pi+1 < 2pi, where pi are the primes in
increasing order.

Now, q′ | (q′ − 1)p + 1 for all primes q′ < q by minimality of q, but q | kp + 1 for some
0 < k < q − 1, since q ∤ p− 1. Therefore, q rad(k + 1) | kp+ 1, so

(q rad(k + 1)) · kp+ 1

q rad(k + 1)
≡ 1 (mod p).

If p /∈ S, the first factor can be bounded as

q rad(k + 1) < q2 <
p

2

and the second factor as
kp+ 1

q rad(k + 1)
<

(k + 1)p

(k + 1)2
=

p

2
.

Therefore, no p /∈ S satisfy the problem condition.
To finish the problem, it suffices to show no p ∈ S \ {5, 7, 13} work. Indeed,

4 · 5 ≡ 1 (mod 19)

4 · 8 ≡ 1 (mod 31)

5 · 15 ≡ 1 (mod 37)

4 · 14 ≡ 1 (mod 43)

8 · 23 ≡ 1 (mod 61)

4 · 53 ≡ 1 (mod 211),

as desired.
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§ Variants

Variant A. Find all primes p for which the the only solution to p | ab− 1 with 1 ≤ a ≤
b ≤ p

2 is a = b = 1.

Solution. The answer is p ∈ {2, 3, 5, 7, 13} . Aside from small p, this is equivalent to

the original problem.

Variant B. Find all primes p for which the the only solution to p | ab− 1 with 1 ≤ a ≤
b ≤ p

3 is a = b = 1.

Solution. I am not sure how to solve this variant; neither of the solutions above generalize
to handle this setting. In fact, I was unable to solve Variant A under the condition
1 ≤ a ≤ b ≤ (12 − ε)p for any ε > 0.

§ Comments

I came up with this problem while I was in Ghana teaching students about modular
arithmetic. To help the students visualize modular inverses, I drew a 12 × 12 grid and
marked all squares whose coordinates were inverses modulo 13; the 6× 6 square in the
corner seemed suspiciously empty.
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