§ Problem Statement

Find all pairs of primes (p,q) for which p-q and pq-q are both square.

§ Solutions

Solution A

If q = 2, then p - 2 and 2(p - 1) must both be square and cannot be 2 (mod 3). This forces p to be 0 (mod 3), so $(p,q) = \boxed{(3,2)}$ is a solution.

If q > 2, let $p - q = a^2$ and $pq - q = q(p - 1) = b^2$. Since $q \neq b$ but $q \mid b, b \ge 2q$ and $p - 1 \ge 4q$. Now,

$$(b+a)(b-a) = b^2 - a^2 = pq - p = p(q-1)$$

so $b + a \ge p$ since p must divide one of the factors. Finally,

$$\sqrt{q} + 1 = \frac{\sqrt{pq} + \sqrt{p}}{\sqrt{p}} \ge \frac{\sqrt{pq - q} + \sqrt{p - q}}{\sqrt{p}} = \frac{b + a}{\sqrt{p}} \ge \frac{p}{\sqrt{p}} = \sqrt{p} \ge \sqrt{4q + 1}$$

which is impossible.

Solution B

Let

$$p - q = a^2 \tag{1}$$

$$pq - q = q^2 b^2 \tag{2}$$

so that $a^2 + q = 1 + qb^2 = p$. Then

$$p^{2} = (a^{2} + q)(1 + qb^{2}) = (qb + a)^{2} + q(ab - 1)^{2}$$
(3)

$$= (qb-a)^2 + q(ab+1)^2.$$
(4)

By (1) and (2), $qb^2 = p - 1 = (p - a^2)b^2$ so solving for p gives

$$p = \frac{(ab-1)(ab+1)}{b^2 - 1}.$$

Case 1. $p \mid ab - 1$. By bounding (3), ab - 1 = 0, which forces a = b = 1. This yields the solution $(p,q) = \boxed{(3,2)}$.

Case 2. $p \mid ab + 1$. By bounding (4), q must equal 1, which is not prime.

§ Comments

I wrote this problem by considering numbers that can be written in the form $x^2 + qy^2$ (fixing q) in two different ways, so the second solution above was essentially constructed backwards. Since such numbers are always composite (by using, say, quadratic number fields) but $a^2 + q = 1 + qb^2$ are two such representations for p, this forces a = b = 1.

§ Metadata

This problem was selected as Problem 4 of the 2022 USAMO and Problem 5 of the 2022 USAJMO.

- Title: Pairs of Primes Form Squares
- Author: Holden Mui
- Subject: number theory
- Description: p and q are primes for which p q and pq q are both square
- Keywords: primes, squares
- Difficulty: USAMO 1/4 or USAJMO 2/5
- Collaborators: Ankit Bisain, Brandon Chen, Carl Schildkraut
- Date written: July 2021
- Submission history: 2021 USEMO, 2022 USAMO
- Other credits: the author of Solution A is Ankit Bisain.