
Convex Pentagon Holden Mui

§ Problem Statement

Convex pentagon ABCDE satisfies ABE ∼ BEC ∼ EDB. Prove BE, CD, and the
tangent to (ACD) at A concur.

§ Diagram
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§ Solutions

Solution A

Let P = BC ∩ CE, T = BE ∩ CD, A′ be the reflection of A over BE, and D′ be
the reflection of D over the perpendicular bisector of BE. Note that D′ ∈ BC and
BE ∥ A′P ∥ DD′.
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Since
∡D′CP = ∡EBD = ∡D′DP,

D′ ∈ (CDP ), so A′ ∈ (CDP ). Since

∡A′BT = ∡BEC = ∡A′PC = ∡A′DT,

A′ ∈ (BDT ). Since
∡DA′T = ∡DBT = ∡BCE = ∡A′CD,

A′T is tangent to (A′CD). Finally,

CT ·DT = A′T 2 = AT 2

so AT is tangent to (ACD).
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Solution B

Let T be the intersection of CD and the tangent to (ACD) at A. Since ∡ABD = ∡AEC
and

AB

BD
=

AB ·AE
BE2

=
AE

EC
,

△ABD ∼ △AEC. Then

[BCE]

[BDE]
=

(
AE

AB

)2

=

(
AC

AD

)2

=
TC

TA
· TA
TD

=
TC

TD
,

so T ∈ BE as desired.

Solution C

Observe that BC and DE are tangent to (ABE). After
√
be-inversion at A, the problem

becomes:

Let ABE be a triangle. Construct C ′ so that (AC ′E) is tangent to BE and
(AC ′B) is tangent to AE. Construct D′ so that (AD′E) is tangent to AB
and (AD′B) is tangent to BE. Let (AC ′D′) meet (ABE) again at T ′. Show
that AT ′ ∥ C ′D′.

The tangency conditions imply that C ′ and D′ are the Brocard points of △ABE, so are
equidistant from ABE’s circumcenter. Therefore AT ′ ∥ C ′D′, as desired.

Solution D

Let T = BE ∩ CD, and note that C and D are isogonal conjugates in △ABE. Let
∞B ∈ AE, ∞E ∈ AB, and ∞ ∈ CD be points at infinity. By Desargues’ involution
theorem on quadrangle BE∞B∞E and CD, there exists an involution swapping {T,∞},
{C,D}, and {AB ∩ CD,AE ∩ CD}. Projecting at A shows that the latter two pairs
identify this involution as isogonal conjugation in ∠BAE. Therefore AT and A∞ are
isogonal in ∠BAE, so AT is tangent to (ACD).
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§ Comments

I wrote this problem with the intention to make a geometry problem with as few named
points as possible. Originally all the triangles are similarly oriented, but I realized the
problem was also true if one of the triangles was oppositely oriented.
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