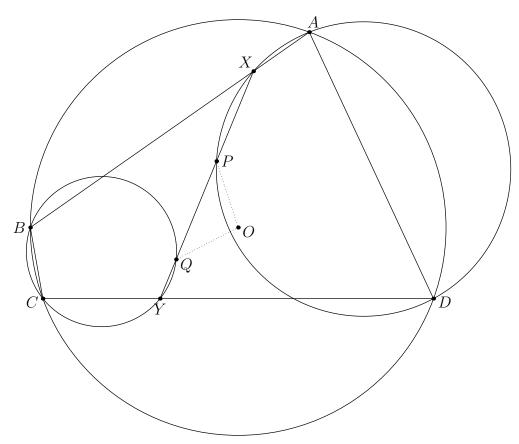
§ Problem Statement

Points X and Y lie on sides \overline{AB} and \overline{CD} of cyclic quadrilateral ABCD with center O. If (ADX) and (BCY) meet \overline{XY} again at P and Q, prove OP = OQ.

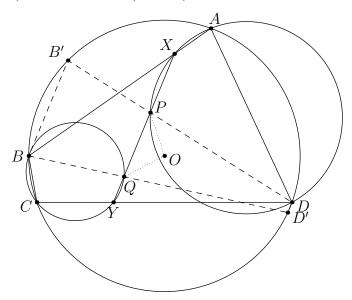
§ Diagram



§ Solutions

Solution A

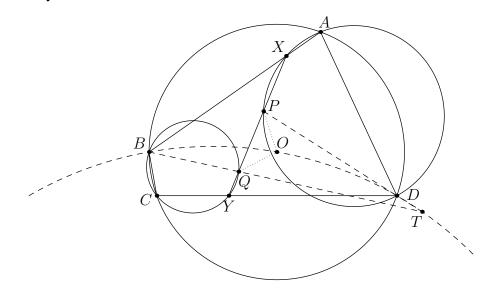
Let $\overline{BQ} \cap (ABCD) = D'$ and $\overline{DP} \cap (ABCD) = B'$.



Then $\overline{BB'} \parallel \overline{PX}$ and $\overline{DD'} \parallel \overline{QY}$ by Reim's theorem, so the result follows by symmetry on isosceles trapezoid BB'DD'.

Solution B

Let $T = \overline{BQ} \cap \overline{DP}$.



Note that PQT is isosceles because

- $\angle PQT = \angle YQB = \angle BCD$ and
- $\angle TPQ = \angle XPD = \angle BAD = \angle BCD$.

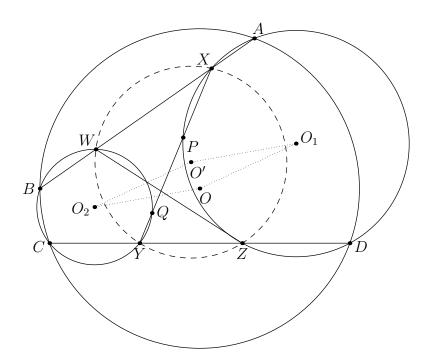
Then (BODT) is cyclic because

$$\angle BOD = 2 \angle BCD = \angle PQT + \angle TPQ = \angle BTD.$$

Since BO = OD, \overline{TO} is an angle bisector of $\angle BTD$. Since $\triangle PQT$ is isosceles, $\overline{TO} \perp \overline{PQ}$, so OP = OQ.

Solution C

Let (BCY) meet \overline{AB} again at W and let (ADX) meet \overline{CD} again at Z. Additionally, let O_1 be the center of (ADX) and O_2 be the center of (BCY).



Note that (WXYZ) is cyclic since

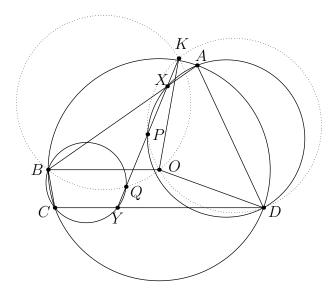
$$\angle XWY + \angle YZX = \angle YWB + \angle XZD = \angle YCB + \angle XAD = 0^{\circ},$$

so let O' be the center of (WXYZ). Since $\overline{AD} \parallel \overline{WY}$ and $\overline{BC} \parallel \overline{XZ}$ by Reim's theorem, $OO_1O'O_2$ is a parallelogram.

To finish the problem, note that projecting O_1 , O_2 , and O' onto \overline{XY} gives the midpoints of \overline{PX} , \overline{QY} , and \overline{XY} . Since $OO_1O'O_2$ is a parallelogram, projecting O onto \overline{XY} must give the midpoint of \overline{PQ} , so OP = OQ.

Solution D

Let the angle bisector of $\angle BOD$ meet \overline{XY} at K.



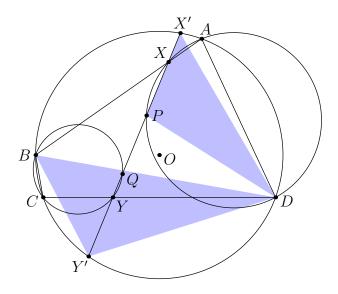
Then (BQOK) is cyclic because $\angle KOD = \angle BAD = \angle KPD$, and (DOPK) is cyclic similarly. By symmetry over KO, these circles have the same radius r, so

$$OP = 2r \sin \angle OKP = 2r \sin \angle OKQ = OQ$$

by the Law of Sines.

Solution E

Let \overline{XY} meet (ABCD) at X' and Y'.



Since $\angle Y'BD = \angle PX'D$ and $\angle BY'D = \angle BAD = \angle X'PD$, $BY'D \sim X'PD$, so

$$PX' = BY' \cdot \frac{DX'}{BD}.$$

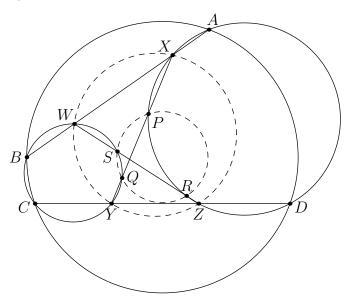
Similarly, BX'D = BQY', so

$$QY' = DX' \cdot \frac{BY'}{BD}.$$

Thus PX' = QY', which gives OP = OQ.

Solution F

Without loss of generality, assume $\overline{AD} \not\parallel \overline{BC}$, as this case holds by continuity. Let (BCY) meet \overline{AB} again at W, let (ADX) meet \overline{CD} again at Z, and let \overline{WZ} meet (ADX) and (BCY) again at R and S.



Note that (WXYZ) is cyclic since

$$\angle XWY + \angle YZX = \angle YWB + \angle XZD = \angle YCB + \angle XAD = 0^{\circ}$$

and (PQRS) is cyclic since

$$\angle PQS = \angle YQS = \angle YWS = \angle PXZ = \angle PRZ = \angle SRP.$$

Additionally, $\overline{AD} \parallel \overline{PR}$ since

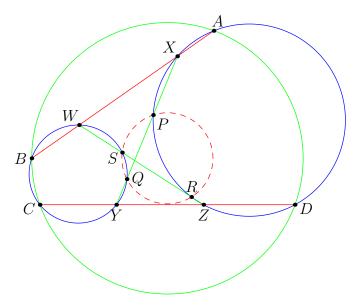
$$\angle DAX + \angle AXP + \angle XPR = \angle YWX + \angle WXY + \angle XYW = 0^{\circ},$$

and $\overline{BC} \parallel \overline{SQ}$ similarly.

Lastly, (ABCD) and (PQRS) are concentric; if not, using the radical axis theorem twice shows that their radical axis must be parallel to both \overline{AD} and \overline{BC} , contradiction.

Solution G

Let (BCY) meet \overline{AB} again at W, let (ADX) meet \overline{CD} again at Z, and let \overline{WZ} meet (ADX) and (BCY) again at R and S.



The quartics $(ADXZ) \cup (BCWY)$ and $\overline{XY} \cup \overline{WZ} \cup (ABCD)$ meet at the 16 points

$$A, B, C, D, W, X, Y, Z, P, Q, R, S, I, I, J, J,$$

where I and J are the circular points at infinity. Since $\overline{AB} \cup \overline{CD} \cup (PQR)$ contains the 13 points

$$A, B, C, D, P, Q, R, W, X, Y, Z, I, J,$$

it must contain S, I, and J as well, by quartic Cayley-Bacharach. Thus, (PQRS) is cyclic and intersects (ABCD) at I, I, and J, implying that the two circles are concentric, as desired.

§ Metadata

This problem was selected as Problem 1 of the 2021 TSTST.

- Title: Equidistant from Circumcenter
- Author: Holden Mui
- Subject: geometry
- Description: in cyclic quadrilateral, prove two points are equidistant from circumcenter
- Keywords: circumcircle, cyclic quadrilateral, equidistant
- Difficulty: TSTST 1/4/7
- Collaborators: Ankit Bisain, Carl Schildkraut, Colin Tang
- Date written: April 2021
- Submission history: 2021 TSTST
- Other credits: the author of Solution A is Ankit Bisain, and the contestants found Solutions B, C, D, and E.