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0 Introduction

In the middle of my senior year of high school, I started thinking about the suboptimal
way in which high school physics is generally taught. Sure, I score well on the tests
because I can regurgitate formulas and apply them, but I’ve always felt that by learning
physics in this fashion, I was somehow cheating myself out of a more “true,” meaningful
physics experience. As an avid lover of mathematical rigor and problem solving, this
bothered me. Given the current way our physics curriculum is taught, it is nearly
impossible for students, myself included, to be able to solve a problem that they’ve
never seen before.

One might object to this philosophy and ask, “why do we need to know how to solve
physics problems we haven’t seen before, if they won’t ever appear on a test? All the
test problems are just variations on problems from the homework.” Don’t get me wrong;
this is entirely correct! This philosophy definitely works in a school setting.

However, this philosophy fails miserably in practically every setting that is not a school
setting. Life is not school. One cannot complain “but the teacher never taught me this in
class!” when life throws an unanticipated problem; this is why acquiring strong problem-
solving skills and developing resiliency is so valuable. While an abstract physics problem
may seem only tangentially related to making an important decision in the workplace, the
inherent processes used to deal with each one are really just fundamentally isomorphic.

I think the correct answer to students asking the question “why will I need to know
this in life” when faced with learning, say, Newton’s second law, is not because they
will actually need it in the career, but rather because the problem solving skills and
resiliency a student develops from attempting to cope with such an abstract concept are
precisely the same skills one needs to know to cope with a “real-life” problem.

I am of the opinion that the development of problem solving skills in high school
physics could be taken further. In its current state, we are usually taught a set of
formulas, which will then be used to solve the problems on the test; in other words, we
only need to know the formulas and not the logical argument for their existence. While
solving such “formula-application” problems may be mildly interesting to some, there
are much more intriguing questions to consider that are never answered in class. Why
is defining torque as a cross product a useful construct to consider? Why are the orbits
of planets elliptical? (3blue1brown has a great video about this!)

A deeper understanding of the methodologies used to develop the tools that we use to
solve high school physics problems will enable one to understand how one could develop
one’s own arsenal of tools in any discipline as well.

With this philosophy in mind, I came to the conclusion that to really get a solid
understanding of the foundations of physics, I needed to start at the beginning – the
very beginning. I would start from the bare minimum number of assumptions about
the nature of reality – which turn out to just be Newton’s three laws (and a few other
assumptions) – and see how much of the physical world I could model just by using
theoretical arguments on the “axioms,” much in the same way one might deduce all of
Euclidean geometry from Euclid’s five postulates. I was adamant about doubting the
truth of all statements until I was able to prove it; one might call it the opposite of
indoctrination. For example, I would not accept on faith that the kinetic energy of an
object was 1

2mv
2; I had to prove it, from the definitions, whatever they might be.

In this way, many of my misconceptions about classical mechanics were corrected.

1



2 Physics Napkin, by Holden Mui

This long exercise also forced me to consider every small detail about physics that may
be overlooked in a general physics course. For example,

• Everyone who has taken physics knows that F = ma, where the force is applied
towards the object’s center. Is F = ma still true if one applies a force at an angle
that does not point towards or away from the center of an object?

• Is F = ma still true when the mass of an object is changing? A good example of
this is a rocket that is losing fuel.

• Newton’s first law states that an object in motion stays in motion and an object
at rest stays at rest unless a force is acted upon it. Newton’s second law states
that F = ma. Does Newton’s second law follow from Newton’s first law by setting
F = 0? If so, what would Newton come up with a “law” that can be derived from
another law?

• Which of the rotational motion formulae are derivable from Newton’s laws, and
which ones must be accepted as fact, without proof? More generally, which formu-
las on the AP Physics formula sheet are derivable through calculation, and which
ones are just laws extrapolated from observation?

• Suppose a bullet is shot upwards and gets lodged in a block of wood near its
edge, sending the block and the bullet inside it spinning. Before the collision, no
objects were spinning, but after the collision, both objects spin. Does this violate
conservation of angular momentum?

The answers to each of the above questions should be obvious to anyone with a solid
conceptual understanding of physics, but before I started on my quest, the answers to
each of these questions were not obvious at all. The slow process of questioning what
should be true and figuring out why things should be true is what led me to discover
this deeper understanding for myself.

I have documented my journey, definition by definition and proof by proof, that I’ve
taken to rigorously build physics from the ground up. The result is this exposition. It
represents the way I wish I was taught physics in high school.

§0.1 Acknowledgments

The style in the document is modeled after Evan Chen’s Napkin. I started writing this
exposition as part of Naperville North’s STEM Capstone program. Practice problems are
primarily sourced from the American Association of Physics Teachers’ annual F = ma
exam.
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1 Kinematics

Kinematics is the geometry of motion. All motion is assumed to take place in the
three-dimensional vector space V = R3 equipped with the Euclidean norm. All objects
in kinematics are modeled as point particles, which are idealized particles with no
volume, or rigid bodies, which are collections of point particles for which the particles
do not move relative to each other.

§1.1 Time

Prototypical example for this section: 1 January 1970 00:00:00 UTC.

Time is what a clock reads. It is a fundamental scalar quantity measured in seconds,
abbreviated “s”.

Remark 1.1.1 — A second is approximately 1
24·60·60 = 1

86400 of a solar day.

The positions, velocities, and accelerations of point particles in kinematics evolve over
time and are represented as functions of time.

§1.2 Position

Prototypical example for this section: what a GPS reads.

Every point in space can be represented as a position vector drawn from the origin of
the vector space to the point. The distance between two points represented by position
vectors x1 and x2 is

‖x2 − x1‖ .

Distance is a fundamental scalar quantity measured in meters, abbreviated “m”.

Remark 1.2.1 — A meter is approximately 1
107

of the distance between Earth’s
North Pole and its equator along a meridian.

The trajectory of a point particle can be modeled as a vector-valued function x(t) :
R → V , where t is a parameter representing time. It defines the curve traced by the
particle; that is, x(t) is the position of the point particle at time t. Trajectories are
assumed to be continuous functions.

Abuse of Notation 1.2.2. The parameter t in functions is often omitted. For example,
x will be understood to be the position x(t) of a particle as a function of time.

The displacement of a point particle with trajectory x between times t1 and t2 is
the vector

x(t2)− x(t1).

Displacement is measured in meters.

7
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§1.3 Velocity

Prototypical example for this section: what a speedometer and a compass collectively
read.

The average velocity of a point particle over a period of time is its displacement
divided by the duration of the time interval; that is, the average velocity between times
t1 and t2 is the vector

x(t2)− x(t1)

t2 − t1
.

The instantaneous velocity of a point particle at time t, abbreviated as just velocity,
is the limit of the average velocity of the point particle between times t and t′ as t′

approaches t. In other words, velocity is the derivative of position:

v(t) = lim
t′→t

x(t′)− x(t)

t′ − t =
dx

dt
.

It is a vector-valued function that describes the magnitude as well as the direction of
motion of the particle. Average velocity and velocity are both measured in meters per
second, abbreviated “m

s ”.

Proposition 1.3.1 (Integral of velocity is displacement)

Displacement is the integral of velocity; that is,

x(t2)− x(t1) =

∫ t2

t1

v(t)dt.

Proof. Since v = dx
dt , this follows from the Fundamental Theorem of Calculus.

§1.4 Speed

Prototypical example for this section: what a speedometer reads.

The speed of a point particle is a scalar quantity representing the magnitude of its
velocity. The function v : x → R≥0 representing the speed of a particle with velocity v
is

v(t) = ‖v(t)‖ .
Like average velocity and velocity, the units of speed are meters per second.

The distance traveled by a point particle with trajectory x(t) between times t1 and
t2 is the arc length of its trajectory, which is∫ t2

t1

‖v(t)‖ dt =

∫ t2

t1

v(t)dt.

Distance is measured in meters.
The average speed of a point particle over a period of time is its distance traveled

divided by the duration of the time interval; that is, the average speed between times t1
and t2 is ∫ t2

t1
v(t)dt

t2 − t1
.

Average speed is measured in meters per second.



1 Kinematics 9

Exercise 1.4.1 (distance equals rate times time). Explain why for a point particle moving
at a constant speed, distance is the product of speed and time.

§1.5 Acceleration

Prototypical example for this section: pressing the gas pedal, applying the brakes, or
turning the steering wheel while driving.

The average acceleration of a point particle over a period of time is its change
in velocity divided by the duration of the time interval; that is, the average velocity
between times t1 and t2 is the vector

v(t2)− v(t1)

t2 − t1
.

The instantaneous acceleration of a point particle at time t, abbreviated as just
acceleration, is the limit of the average acceleration of the point particle between
times t and t′ as t′ approaches t. Acceleration is the derivative of velocity and the
second derivative of position:

a(t) = lim
t′→t

v(t′)− v(t)

t′ − t =
dv

dt
=
d2x

dt2
.

It is a vector-valued function that accounts for both the rate of change of the magnitude
and direction of velocity. Average acceleration and acceleration are both measured in
meters per second per second, abbreviated “m

s2
”.

Proposition 1.5.1 (Integral of acceleration is change in velocity)

Change in velocity is the integral of acceleration; that is,

v(t2)− v(t1) =

∫ t2

t1

a(t)dt.

Proof. Since a = dv
dt , this follows from the Fundamental Theorem of Calculus.

The next three formulae are equations typically learned in an introductory physics
course.

Corollary 1.5.2 (Kinematic equations)

An object moving with constant acceleration a satisfies

v(t) = v(0) + at

x(t) = x(0) + v(0)t+
1

2
at2

v(t)2 = v(0)2 + 2a · (x(t)− x(0)).

Proof. The first equation follows from Proposition 1.5.1, since

v(t)− v(0) =

∫ t

0
a dt = at.
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The second equation follows from Proposition 1.3.1 and the first equation, since

x(t)− x(0) =

∫ t

0
v(0) + at dt = v(0)t+

1

2
at2.

The third equation follows from the first two equations, since

v(0)2 + 2a · (x(t)− x(0)) = v(0) · v(0) + 2a ·
(

v(0)t+
1

2
a(0)t2

)
= (v(0) + a(t)) · (v(0) + a(t))

= v(t)2.

Abuse of Notation 1.5.3. While principally vector quantities, position, velocity,
and acceleration are considered to be signed scalar quantities When dealing with one-
dimensional motion.

Exercise 1.5.4. An object starts at rest and its acceleration is constant. If it travels one
meter in one second, determine:

(a) the magnitude of its acceleration,

(b) the magnitude of its velocity after one second, and

(c) the magnitude of its displacement after two seconds.

§1.6 Tangential and centripetal acceleration

Prototypical example for this section: turning while driving.

The acceleration of a point particle can be written as the sum of a vector parallel
to its velocity and the sum of a vector perpendicular to its velocity; these components
are known as the particle’s tangential acceleration and centripetal acceleration,
respectively. Symbolically,

aT = projv(a)

and
aC = a− projv(a).

This distinction is useful because tangential acceleration changes a particle’s speed, while
centripetal acceleration changes a particle’s direction.

Proposition 1.6.1 (Tangential acceleration is change in speed)

The magnitude of a particle’s tangential acceleration is equal to its change in speed;
that is,

‖aT ‖ =
dv

dt
.

Proof. Let n̂(t) be a unit vector in the direction of the particle’s velocity, so that

v = vn̂.

Differentiating gives

a =
dv

dt
n̂ + v

dn̂

dt
.



1 Kinematics 11

Since n̂ has constant length,

0 =
d

dt
(n̂ · n̂) = 2n̂ · dn̂

dt
,

so dn̂
dt is perpendicular to n̂. Hence, the component of a parallel to n̂ is dv

dt n̂, which has

magnitude dv
dt .

§1.7 Circular motion

Prototypical example for this section: a horse on a merry-go-round.

A point particle is in circular motion if its trajectory is restricted to a fixed circle.
Its angular speed is defined to be the ratio of its speed to the radius of the circle; that
is,

ω = ±v
r
.

Angular speed can be thought of as a measure of rotation rate around the circle; it
measures how fast the trajectory of a point particle sweeps out angle relative to the center
of the circle. By convention, its sign is positive if the particle is moving counterclockwise
with respect to some fixed orientation, and negative otherwise. The units of angular
speed are rad

s = 1
s .

Much like displacement, the angular displacement of a point particle with angular
speed ω(t) between times t1 and t2 is the integral of its angular speed between times t1
and t2; that is,

θ =

∫ t2

t1

ω(t)dt.

It can be thought of the net angle through which the point particle rotates around the
center during the time interval, where the sign convention is taken so that counterclock-
wise is positive. Angular displacement is measured in radians, which are unitless.

The angular acceleration of a point particle with angular speed ω(t) is the derivative
of its angular speed; that is,

α =
dω

dt
.

Proposition 1.7.1 (Integral of angular acceleration is change in angular velocity)

Change in angular velocity is the integral of angular acceleration; that is,

ω(t2)− ω(t1) =

∫ t2

t1

α(t)dt.

Proof. Since α = dω
dt , this follows from the Fundamental Theorem of Calculus.

The kinematic equations also hold for the corresponding angular kinematic quantities.
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Corollary 1.7.2 (Angular kinematic equations)

Let θ(t) be a function whose derivative is ω(t). An object in circular motion moving
with constant angular acceleration α satisfies

ω(t) = ω(0) + αt

θ(t) = θ(0) + ω(0)t+
1

2
αt2

ω(t)2 = ω(0)2 + 2α(θ(t)− θ(0)).

Exercise 1.7.3. Prove this.

Remark 1.7.4 — The kinematic quantities associated with a particle in circular
motion can also be applied to an object rotating around a fixed axis because the
angular speed of every point on such a rotating object is the same.

The centripetal acceleration of a particle – that is, the component of acceleration that
causes it to change direction – is easily calculable when in circular motion due to the
following result.

Theorem 1.7.5 (Centripetal acceleration formula)

The centripetal acceleration of a point particle in circular motion has magnitude

‖aC‖ = rω2 =
v2

r
.

Proof. Without loss of generality, assume the particle’s trajectory is

x = r cos(θ)̂ı + r sin(θ)̂,

where θ(t) is a real-valued function whose derivative is ω(t); note that this makes

v = −rω sin(θ)̂ı + rω cos(θ)̂.

Since acceleration is the second derivative of position,

a =
dv

dt
=

d

dt
[rω(− sin(θ)̂ı + cos(θ)̂)]

= r
dω

dt
(− sin(θ)̂ı + cos(θ)− rω2(cos(θ)̂ı + sin(θ)̂)

= r
dω

dt

v

rω
− rω2(cos(θ)̂ı + sin(θ)̂).

Hence the centripetal component of acceleration is rω2(cos(θ)̂ı + sin(θ)̂), which has
magnitude

rω2 = r
(
±v
r

)2
=
v2

r
.

The most common type of circular motion is uniform circular motion. A point particle
is in uniform circular motion if its angular speed is constant.

The period of the particle in uniform circular motion is the time it takes for the
particle to complete one revolution.
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Corollary 1.7.6 (Period formula)

The period of a particle in uniform circular motion is

T =
2πr

v
=

2π

|ω| .

Proof. The length of the circumference of the circle is 2πr, and its speed is always v.
Since distance is the product of speed and time,

T =
2πr

v
=

2πr

rω
=

2π

|ω| .

Exercise 1.7.7. In a certain country, the short hand of a clock is exactly half as long as the
long hand, and rotates twice for each rotation of the long hand. The three points shown on
the clock hands in Figure 1.1 have accelerations of magnitude aA, aB , and aC . The point
B is at the midpoint of the long hand. Rank aA, aB , and aC from least to greatest.

A

B

C

Figure 1.1: A special clock.

§1.8 Orbital angular velocity

Prototypical example for this section: the Earth orbiting around the Sun.

The orbital angular velocity of a point particle is the cross product of its position
vector and its velocity vector divided by the square of its distance to the origin; that is,

ω =
x

‖x‖ ×
v

‖x‖ =
x× v

‖x‖2
.

It can be thought of as a generalization of angular speed, since the particle is not
restricted to circular motion. Indeed, the magnitude of the orbital angular velocity of a
particle in circular motion around the origin is

‖ω‖ =

∥∥∥∥x× v

‖x‖2
∥∥∥∥ =

rv

r2
= |ω| ,

confirming the generalization
The orbital angular velocity vector encodes both the direction and rate at which a

point particle sweeps out angle around the origin; it points perpendicular to both the
position and velocity vectors. Orbital angular velocity is measured in radians per
second, or 1

s .
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Proposition 1.8.1

The magnitude of angular velocity is the rate at which the point particle sweeps
out angle.

Proof. Let dt be an infinitesimally small time interval, and consider the area of the
triangle formed by the three vectors x(t), x(t+ dt), and v(t)dt.

x(t)

x(t+ dt)

v(t)dt

dθ

Figure 1.2: A particle moving over an infinitesimally small time interval.

The area of the triangle can be written in two ways, giving the equation

1

2
‖x(t)× v(t)dt‖ =

1

2
sin dθ ‖x(t)‖ ‖x(t+ dt)‖ ,

where dθ is the angle between x(t) and x(t+dt). Since both dt and dθ are infinitesimally
small, x(t+ dt) = x(t) and sin(dθ) = dθ up to first-order approximation. Solving for dθ

dt
then gives

dθ

dt
=
‖x(t)× v(t)‖
‖x(t)‖2

= ‖ω‖ .

§1.9 Spin angular velocity

Prototypical example for this section: the Earth rotating about its axis.

Since rotating rigid bodies cannot be modeled as point particles, the notion of orbital
angular velocity for a rigid body is ill-defined. Instead, a different type of angular
velocity, called spin angular velocity, is used; it measures the rate of change of the
orientation of a rigid body without considering its translational movement.

The definition of spin angular velocity is motivated by noting that the velocity of
every point particle in a two-dimensional object spinning in a fixed plane is proportional
to and perpendicular to its position relative to the center of rotation; this constant of
proportionality is the angular speed of the object. More generally, the velocity of every
point particle in a rigid body spinning around a fixed axis is equal to the cross product
of its relative position to some fixed point on the axis and some fixed vector. This vector
is known as the rigid body’s spin angular velocity. However, making this notion precise
for a rigid body undergoing general motion is difficult. The next several paragraphs
rigorously define and prove all of the properties of spin angular velocity that one would
expect to be true.
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Formally, the spin angular velocity of a rigid body with three non-collinear particles
x1, x2, x3 is the vector

ω = −(v2 − v1)× (v3 − v2)

(x2 − x1) · (v3 − v2)
= −(v1 − v2)× (v3 − v2)

(x1 − x2) · (v3 − v2)
.

The denominator is zero when the particles are collinear, which makes sense because
rotation is ambiguous in this case. In order for this definition to be rigorous, it needs to
be shown that spin angular velocity is symmetric and also is independent of the triple
of points chosen.

Proposition 1.9.1

The spin angular velocity expression is symmetric in its arguments, and the spin
angular velocity of any three non-collinear particles in a rigid body is independent
of the triple of points chosen.

Proof. First, it will be shown that the spin angular velocity expression is symmteric
in x1, x2, and x3. Indeed, the numerator of the spin angular velocity expression is
antisymmetric because it is a vector perpendicular to the plane of the triangle formed
by v2 − v1, v3 − v2, and v1 − v3 with a magnitude equal to the triangle’s area. The
denominator of the spin angular velocity expression is also antisymmetric because

(xi+1 − xi) · (vi+2 − vi+1) + (vi+1 − vi) · (xi+2 − xi+1) =
d

dt
(xi+1 − xi) · (xi+2 − xi+1)

= 0

and

(xi+1 − xi) · (vi+2 − vi+1)− (xi+2 − xi+1) · (vi − vi+2)

= (xi+1 − xi) · (vi+2 − vi+1) + (vi+2 − vi+1) · (xi − xi+2)

= −(vi+2 − vi) · (xi+2 − xi)

= − d

dt
(xi+2 − xi) · (xi+2 − xi)

= 0,

where indices cycle modulo 3. Therefore, spin angular velocity is symmetric upon any
permutation of x1, x2, and x3.

To show that spin angular velocity does not depend on the triple of points chosen, let
x1, x2, and x3 be three non-collinear points in a rigid body, and let xi be any arbitrary
point in the rigid body. It suffices to show that for any points x1, x2, x3, and xi for
which x2 and xi both aren’t collinear with x1 and x3,

−(v1 − v2)× (v3 − v2)

(x1 − x2) · (v3 − v2)
= −(vi − v2)× (v3 − v2)

(xi − x2) · (v3 − v2)
.

Indeed, the numerator of their difference is

[[(x2 − xi) · (v3 − v2)] (v2 − v1)− [(x2 − x4) · (v3 − v2)] (v2 − vi)]× (v3 − v2)

= [(v3 − v2)× [(v1 − v2)× (vi − v2)]]× (v3 − v2)

= 0,

so the spin angular velocities of {x1,x2,x3} and {xi,x2,x3} are equal. Repeating this
process sufficiently many times shows that every pair of triangles within the rigid body
has the same spin angular velocity.
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The following result verifies the desired property of spin angular velocity; that is,
relative velocity is the cross product of spin angular velocity and relative position.

Corollary 1.9.2 (Angular velocity as cross product)

In any rigid body with spin angular velocity ω,

(vj − vi) = ω × (xj − xi)

for all point particles xi and xj in the rigid body.

Proof. Let x be any point in the rigid body not on the line through xi and xj . Then

ω × (xj − xi) = −(vj − vi)× (v − vj)

(xj − xi) · (v − vj)
× (xj − xi)

=
[(xj − xi) · (v − vj)] (vj − vi)− [(xj − xi) · (vj − vi)] (v − vj)

(xj − xi) · (v − vi)

=
(xj − xi) · (v − vj)

(xj − xi) · (v − vj)
(vj − vi)

= vj − vi,

since (xj − xi) is perpendicular to vj − vi by differentiating (xj − xi) · (xj − xi), which
is constant.

The spin angular velocity of an object does not depend any fixed origin; it is an
intrinsic property of the object that does not change, even if the reference frame moves
arbitrarily in a linear fashion. This is because the expression for spin angular velocity
considers only relative positions and relative velocities between points in the rigid body.

The spin angular speed of a rigid body is a scalar quantity representing the mag-
nitude of its spin angular velocity; that is,

ω = ‖ω‖ .

It can be thought of as the instantaneous rate at which the orientation of an object
changes, and is measured in radians per second.

Abuse of Notation 1.9.3. When the context is clear, spin angular velocity is abbre-
viated as just angular velocity, and spin angular speed is abbreviated as angular speed.

The desired properties of spin angular velocity can be verified to hold when considering
fixed-axis rotation.

Proposition 1.9.4

If an object is rotating around a fixed axis `, then

• its spin angular velocity is parallel to `,

• its sign is determined by the right-hand rule, and

• its spin angular speed measures its angular speed around `, in radians per
second.
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x ∈ `

x1

x2

v1

v2

θ

Figure 1.3: Two particles in a rigid body rotating around `.

Proof. Let x be a fixed point on `, and let x1 and x2 be points in the plane through x
perpendicular to `. Additionally, let θ /∈ {0, π} be the angle between x1− x and x2− x.
By properties of the cross product,

ω = −(v1 − v)× (v2 − v)

(x1 − x) · (v2 − v)

points in a direction perpendicular to the plane containing x, x1, and x2 – that is,
parallel to ` – and its sign points towards the vantage point that would make the rigid
body appear to rotate counterclockwise, by the right-hand rule. Lastly, since the velocity
vectors are perpendicular to the corresponding position vectors,

ω = ‖ω‖ =
‖(v1 − v)× (v2 − v)‖

(x1 − x) · (v2 − v)
=
‖v1‖ ‖v2‖ sin(π − θ)
‖x1‖ ‖v2‖ cos

(
π
2 − θ

) =
‖v1‖
‖x1‖

,

which is exactly the angular speed around `, in radians per second.

Remark 1.9.5 — Even though the same symbol ω is used for both orbital angular
velocity and spin angular velocity, it is actually not so confusing, since orbital
angular velocity is only defined for a point particle, while spin angular velocity is
only defined for a rigid body. The same applies to angular acceleration, which is
discussed in the next section.

§1.10 Spin angular acceleration

Prototypical example for this section: a bicycle tire when speeding up.

The spin angular acceleration of a rigid body is the derivative of its spin angular
velocity with respect to time; that is,

α =
dω

dt
.

It can be thought of as the vector measure of the rate of change in both the axis around
which the rigid body is rotating around and the rotation rate.
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Proposition 1.10.1 (Integral of spin angular acceleration is change in spin angular
velocity)

Change in spin angular velocity is the integral of spin angular acceleration; that is,

ω(t2)− ω(t1) =

∫ t2

t1

α(t)dt.

Proof. Since α = dω
dt , this follows from the Fundamental Theorem of Calculus.

Abuse of Notation 1.10.2. When the context is clear, spin angular acceleration is
abbreviated as angular acceleration.

§1.11 Mass

Prototypical example for this section: any object.

The last fundamental kinematic quantity of a classical point particle is mass. Quali-
tatively, mass represents the amount of matter an object has; it is also a measure of its
resistance to acceleration when pushed. Mass a fundamental scalar quantity measured
in kilograms, abbreviated as “kg”. The mass of a point particle is assumed to stay
constant.

Remark 1.11.1 — A kilogram is approximately equal to the mass of 1
1000 of a cubic

meter of water.

Because the mass of point particles cannot change, the law of conservation of
mass holds in a system that does not allow for the transfer of matter in and out of
it.

Corollary 1.11.2 (Law of conservation of mass)

In a closed system, the total mass of all objects in the system is constant.

In other words, mass can neither be created nor destroyed.

§1.12 A few harder problems to think about

Problem 1A. The hard disk in a computer will spin up to speed within 10 rotations,
but when turned off will spin through 50 rotations before coming to a stop. Assuming the
hard disk has constant angular acceleration α1 while speeding up and constant angular
acceleration −α2 when slowing down, determine α1

α2
.

Problem 1B. NASA trains astronauts to experience weightlessness with an airplane
which flies in a parabolic arc with constant acceleration g toward the ground. The plane
can remain on this trajectory for at most 25 seconds, due to the larger change in altitude
required. If instead of simulating weightlessness, NASA wanted to fly a trajectory that
would simulate the gravitational acceleration of Mars, which is 3.7 m

s2
, for what length

of time can the place simulate Mars gravity?
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Problem 1C. A train starts from city A and stops in city B. The distance between the
cities is s. The train’s maximal acceleration while speeding up is a1 and its maximal
acceleration while slowing down is −a2. What is the shortest time in which the train
can travel between A and B?

Problem 1D. The velocity versus position plot of a particle moving in a straight line
is shown in Figure 1.4. Sketch the acceleration versus position plot.

v

x

Figure 1.4: Velocity versus position.

Problem 1E. A disk of radius r rolls uniformly without slipping around the inside of
a fixed hoop of radius R, as shown in Figure 1.5. The period the disc’s motion around
the hoop is T . Determine the instantaneous speed of the point on the disk opposite to
the point of contact.

R

r

Figure 1.5: A disk rolling around a hoop.

Problem 1F. A train travels at 100 m
s on an almost straight track. The track is slightly

sinusoidal, with a vertical amplitude of h over a 1000 meter distance, as shown in Figure
1.6. If the maximum tolerable vertical acceleration of the train is set at 0.1 m

s2
, what is

the maximum allowable size of h?

Problem 1G. A car is driving on a semicircular racetrack. Its velocity at several points
along the track is shown in Figure 1.7. Sketch the car’s acceleration at the same points.

Problem 1H. A wheel of radius r is rolling without slipping with angular speed ω. For
point A on the wheel at an angle θ with respect to the vertical, shown in Figure 1.8,
what is the magnitude of its velocity with respect to the ground?
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1000 m

h

Figure 1.6: A slightly sinusoidal track.

Figure 1.7: The velocity of a car driving on a semicircular racetrack.

A
θ

Figure 1.8: A rolling wheel.



2 Force

A force is any interaction that, when unopposed, will change the motion of an object;
it can be thought of as a push or a pull. In this chapter, all objects are modeled as point
particles. The net force on a point particle is the sum of all forces acting on the object;
that is,

F =
∑
i

Fi.

Force is a vector quantity measured in newtons, abbreviated “N”.

Remark 2.0.1 — A newton is defined to be the magnitude of the force needed to
accelerate a one-kilogram object at 1 m

s2
.

From this, it follows that the newton can be expressed in terms of other base units:

1 N = 1
kg ·m

s2
.

There are two broad categories of forces: contact forces, which occur between objects
in contact with each other, and non-contact forces, which take place at a distance.
With the exception of gravity, most visible interactions are due to contact forces. The
six forces typically encountered in a macroscopic system are gravity, the normal force,
friction, the tension force, the spring force, and drag.

§2.1 Gravity

Prototypical example for this section: a falling object.

Gravity is a non-contact force responsible for the tendency of objects to gravitate to-
wards each other. Newton’s law of universal gravitation quantifies the gravitational
force two objects exert on each other.

Law 2.1.1 (Newton’s law of universal gravitation)

There is a gravitational force between every pair of point particles whose magnitude
is directly proportional to the product of their masses and inversely proportional to
the square of the distance between them. The force that one object exerts on the
other object points in the direction of the ray from the second object to the first
object. The constant of proportionality is known as the gravitational constant,
which is approximately

G ≈ 6.674× 10−11
m3

kg · s2 .

Symbolically, Newton’s law of universal gravitation asserts that the gravitational
force between two objects has magnitude

‖F‖ = G
m1m2

r2
,

where m1 and m2 are the masses of the two objects and r is the distance between
them.

21
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Remark 2.1.2 — Because the gravitational constant is small, the gravitational
force between two objects with small mass can be neglected and only the gravity
exerted by celestial bodies needs to be considered.

The magnitude of the gravitational force exerted on an object by the planet it is on
is the object’s weight, measured in newtons.

The Earth is the planet humanity lives on and can be modeled as a uniform spherical
object with radius 6.371 × 106 m and mass 5.972 × 1024 kg. Newton’s law of universal
gravitation can be used to determine the force the Earth exerts on objects near its
surface.

Corollary 2.1.3 (Gravity on Earth)

The force the Earth exerts on small objects near its surface has a magnitude pro-
portional to the object’s mass, and this force points towards the center of the Earth.
This constant of proportionality is the gravity of Earth, which is approximately

g ≈ 9.807
m

s2
.

Symbolically,
‖F‖ = mg.

Proof. By the shell theorem (Theorem 8.2.1), the Earth can be treated as a point particle,
so the force exerted on the object by the Earth is approximately

‖F‖ ≈
(

6.674× 10−11
m3

kg · s2
)
·
(
5.972× 1024 kg

)
·m

(6.371× 106 m)2
≈ 9.807

m

s2
·m = mg,

by Newton’s law of universal gravitation.

Fg

Figure 2.1: The gravitational force exerted on the block by the Earth.

In this text, all non-celestial systems are assumed to take place on Earth unless stated
otherwise.
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§2.2 Normal force

Prototypical example for this section: a block on a ramp.

The normal force exerted by an object in contact with another object is the force
which prevents them from passing through each other. It is a contact force, and it is
perpendicular to the plane of contact between the two objects because motion parallel
to the surface of contact is not interpenetrating.

FN

Figure 2.2: The normal force exerted on the block by the ramp.

A spring scale measures the normal force acting on the top of it.

Exercise 2.2.1. A car collides into a wall. Characterize the forces acting on the car.

Exercise 2.2.2. Two balls collide at an oblique angle. Characterize all the forces acting
on each ball.

§2.3 Friction

Prototypical example for this section: a stationary block on a ramp.

Friction is the force resisting the relative motion of two objects sliding against each
other. It is a contact force, and it always points in the direction that opposes movement
or potential movement. Because the frictional force is parallel to the plane of contact
between the two objects, it must be perpendicular to the normal force between the two
objects.

Ff

Figure 2.3: The frictional force exerted on the block by the ramp.

There are two kinds of friction: kinetic friction, which is friction between objects
moving relative to each other, and static friction, which is friction between objects not
moving relative to each other. Amonton’s laws of friction govern the relationship
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between the force of kinetic friction and the normal force, and the Coulomb friction
law governs the relationship between the force of static friction and the normal force.

Law 2.3.1 (Amontons’ laws of friction)

The magnitude of kinetic friction between two objects moving relative to each other
is

(a) directly proportional to the normal force between the objects (1st law),

(b) independent of the contact area (2nd law), and

(c) independent of the sliding velocity (Coulomb’s law of dry friction).

The constant of proportionality in Amontons’ 1st law is the coefficient of kinetic
friction µk between the two surfaces. It is a dimensionless constant that depends
only on the material composition of the two objects. Symbolically,

‖Ff‖ = µk ‖FN‖ .

The coefficient of kinetic friction between two objects is typically between 0.3 and
0.6.

Law 2.3.2 (Coulomb friction law)

The maximum magnitude of static friction between two objects not sliding relative
to each other is proportional to the normal force. The constant of proportionality
is the coefficient of static friction µs between the two surfaces. It is a dimen-
sionless constant that depends only on the material composition of the two objects.
Symbolically,

‖Ff‖ ≤ µs ‖FN‖ .

The following relationship between the coefficient of static friction and the coefficient
of kinetic friction always holds:

Corollary 2.3.3 (Static friction is at least kinetic friction)

The coefficient of static friction between two objects is always at least the coefficient
of kinetic friction between them; that is,

µk ≤ µs.

Proof. Suppose the coefficient of static friction is less than the coefficient of kinetic
friction. Then the force required to keep the objects in motion relative to each other
would be greater than the force required to start the motion, which is absurd.

§2.4 Tension force

Prototypical example for this section: a block hanging from a string.

The tension force is a contact force transmitted by a string. The tension of a string,
measured in newtons, is defined to be the magnitude of the tension force it transmits.
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Ideal strings have no mass, fixed length, and uniform tension throughout. All strings
are assumed to be ideal unless otherwise specified. The tension force points towards the
string.

Strings can curve around a pulley, which direct strings in a particular direction. Ideal
pulleys are frictionless and massless.

FT

Figure 2.4: The tension force exerted on
the block by the string.

Figure 2.5: A string wrapped around a
pulley.

Exercise 2.4.1. Two people standing on Earth are pulling on opposite ends of a rope.
Characterize all forces acting on each person.

§2.5 Spring force

Prototypical example for this section: a block hanging from a spring.

The spring force is the contact force exerted by a spring on an object directed
towards the spring’s equilibrium position, or the position at which the spring exerts
no force. Ideal springs are one-dimensional and have no mass.

Fs

Figure 2.6: The spring force exerted on the block by the spring.

Hooke’s law quantifies the magnitude of the spring force for ideal springs.
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Law 2.5.1 (Hooke’s law)

An ideal spring whose displacement from equilibrium position is x exerts a force
proportional to and in the opposite direction of x. The constant of proportionality
is the spring’s spring constant k. The spring constant is a property of the spring,
and its units are N

m = kg
s2

. Symbolically,

Fs = −kx.

The spring constant of a spring is typically between 10 N
m and 105 N

m .

Exercise 2.5.2. Two blocks connected by a spring hang from two strings as shown in
Figure 2.7. Characterize the forces acting on each block.

Figure 2.7: Two hanging blocks connected by a spring.

§2.6 Drag

Prototypical example for this section: air resistance.

Drag is a contact force acting on an object traveling through a fluid, such as air
or water. It is a contact force and always points in the direction opposite the relative
motion of the object through the fluid. The drag equation quantifies the magnitude
of the drag force under ideal behavior.

Law 2.6.1 (Drag equation)

The magnitude of the drag force experienced on an object is proportional to the
density of the fluid, proportional to square of the speed of the object relative to the
fluid, and proportional to the reference area. Symbolically,

‖FD‖ =
1

2
ρv2CDA,

where ρ is the density of the fluid, v is the speed of the object relative to the
fluid, and A is the reference area, or frontal area. where 1

2CD is the constant of
proportionality. CD is known as drag coefficient, a dimensionless quantity that
depends on both the object’s geometry and the type of fluid.

Conventionally, the drag force from air resistance is ignored unless otherwise stated.
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§2.7 Buoyant force

Prototypical example for this section: a boat floating on water.

The buoyant force is a contact force exerted by a fluid that opposes the weight of
a partially or fully immersed object. Archimedes’ principle quantifies the magnitude
of the buoyant force on an object.

Theorem 2.7.1 (Archimedes’ principle)

The buoyant force exerted on an object in a fluid is equal in magnitude and opposite
in direction to the weight of the displaced fluid.

Archimedes’ principle is proved in Part ??.

Generally, the buoyant force due to air is ignored unless otherwise stated, because the
mass of displaced air is usually neglectable.

§2.8 Newton’s third law

Newton’s third law states that all forces occur in pairs.

Law 2.8.1

If point particle A exerts a force F on point particle B, then B must exert a force −F
on A. In other words, the forces are equal in magnitude and opposite in direction.
Additionally, the force must in the direction of the line connecting A and B.

By Exercise 3.3.3, Newton’s third law also holds for objects and not just point particles.
As expected, Newton’s third law applies to each of the five types of forces described
above. For example,

• the gravitational force exerted by the Sun on the Earth is equal in magnitude and
opposite in direction to the gravitational force exerted by the Earth on the Sun,

• the normal force exerted by a block on a table is equal in magnitude and opposite
in direction to the normal force the table exerts on the block,

• the frictional force a shoe exerts on the ground is equal in magnitude and opposite
in direction to the force the ground exerts on the shoe,

• the tension force exerted on the one team in a game of tug of war is equal in
magnitude and opposite in direction to the tension force exerted on the other
team, and

• the spring force exerted on a block by a spring hanging from a ceiling is equal in
magnitude and opposite in direction to the spring force exerted on the ceiling by
the hanging block.

For strings that curve around a pulley, the equal and opposite force is exerted on the
pulley.
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§2.9 Reference frames

Prototypical example for this section: the coordinate system fixing the Earth.

All kinematic quantities discussed in Chapter 1 have been measured relative to the
absolute coordinate system V = R3 defined in the beginning of this chapter. However,
it is often useful to consider coordinate systems that may continuously vary over time
relative to V . This moving coordinate system is known as a frame of reference. The
kinematic quantities change depending on what frame of reference is used, so when no
frame of reference is specified, all non-celestial systems are assumed to take place in the
frame of reference fixing the Earth.

Example 2.9.1 (Train)

Consider a train accelerating away from a station. If the frame of reference fixes the
train, then the entire world accelerates away from the train. On the other hand, the
train simply accelerates away from the station in the frame of reference fixing the
Earth.

Example 2.9.2 (Merry-go-round)

Consider a rotating merry-go-round. In the frame of reference fixing the merry-
go-round, then the entire world rotates around the merry-go-round. On the other
hand, the merry-go-round simply rotates around its axis in the frame of reference
fixing the Earth.

In general, it is often useful to consider a reference frame fixing an object.

§2.10 Newton’s first law

Newton’s first law asserts the existence of inertial reference frames.

Law 2.10.1 (Newton’s first law of motion)

There exists a frame of reference where every object moves with constant velocity
if and only if there is no net force acting on it. Such a frame is called an inertial
reference frame.

In other words, Newton’s first law states that in an inertial reference frame, an object
at rest will stay at rest and an object in motion will stay in motion unless acted on by
a net force. Symbolically,

F = 0 ⇐⇒ dv

dt
= 0.

Because of Newton’s first law, all systems in classical mechanics are assumed to take
place in inertial reference frames unless otherwise specified.
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Example 2.10.2 (Accelerating reference frame)

Consider a train accelerating away from a station. The reference frame fixing the
train is not inertial because objects in the train appear to have the tendency to
accelerate towards the back of the train; for example, a cup on an accelerating train
will has the tendency to move backwards. However, the reference frame fixing the
station is inertial because the apparent backwards acceleration is a result of an
object’s tendency to move with constant velocity in a reference frame fixing the
ground.

Example 2.10.3 (Rotating reference frame)

Consider a rotating merry-go-round. The reference frame fixing the merry-go-round
is not inertial because objects near the edge of the merry-go-round appear have the
tendency to accelerate outwards. However, the reference frame fixing the ground is
inertial because the apparent outward acceleration is a result of an object’s tendency
to move in a straight line in a reference frame fixing the ground.

Figure 2.8: An apparent outwards acceleration in a rotating reference frame.

Strictly speaking, the reference frame fixing the Earth is not an inertial reference
frame because the Earth rotates. However, deviations are minuscule, so the Earth can
be considered an inertial reference frame for most practical purposes.

Exercise 2.10.4. Explain why the reference frame constructed by taking an inertial refer-
ence frame and moving it at a constant velocity is also inertial.

§2.11 A few harder problems to think about

Problem 2A. Three blocks of masses m1, m2, and m3 are stacked on top of each other
as shown in Figure 2.9. Determine the magnitude of the normal force that each pair of
adjacent blocks exerts on each other.
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m1

m2

m3

Figure 2.9: Three stacked blocks.

Problem 2B. Three blocks of masses m1, m2, and m3 are hanging from three strings
as shown in Figure 2.10. Determine the tension of each string.

m1

m2

m3

Figure 2.10: Three hanging blocks.

Problem 2C. A scale is calibrated so that it gives a correct reading when sitting on the
ground. A person holds the scale and presses it on both sides with their hands pushing
up on the bottom with the left hand and pushing down on the top with the right. The
scale has a mass of 5 kg, and their left hand exerts a force of 200 N. What is the reading
on the scale?

Problem 2D. A block is sliding down an inclined plane with inclination angle α at a
constant velocity as shown in Figure 2.11. Determine the coefficient of kinetic friction
between the block and the inclined plane.

α

Figure 2.11: A block sliding down an inclined plane.
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Problem 2E. Three cubical blocks of the same volume are made out of wood, Sty-
rofoam, and plastic. When the plastic block is placed in water, half of its volume is
submerged. If the wooden block is placed in water with the plastic block on top, the
wooden block is just fully submerged. Similarly, if the Styrofoam block is placed in oil
with the plastic block on top, the Styrofoam block is just fully submerged. The density
of oil is 0.7 times that of the water. What is the ratio of the density of wood to the
density of Styrofoam?

Problem 2F. A block with mass m is hanging from two strings that make angles of
0 < α < 90◦ and 0 < β < 90◦ with the ceiling as shown in Figure 2.12. Determine the
tension of each string.

m

α β

Figure 2.12: A block hanging from two strings.

Problem 2G. Two equal masses m are connected by an elastic string that acts like
an ideal spring with spring constant k and unstretched length l. The two masses are
hung over a pulley, as shown in Figure 2.13. Determine the total length of the string at
equilibrium.

m

m

Figure 2.13: Two masses hanging from an elastic string.

Problem 2H. A block of mass m is attached to a massless string. The string is passed
over a massless pulley and the end of the string is fixed in place. The horizontal part
of the string has length l. Now a small mass m is hung from the horizontal part of the
string, and the system comes to equilibrium, as shown in Figure 2.14.
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(a) Determine the tension at the end of the string.

(b) Determine the height by which the block is raised. Assume the pulley has neglectable
size.

m

l

m

m

Figure 2.14: A mass is placed in the middle of the horizontal string.

Problem 2I. Three blocks, five strings, and five pulleys hang as shown in Figure 2.15.
The center block has a mass of 1 kg. Determine the mass of the other two blocks.

1 kg

Figure 2.15: Three blocks, five strings, and five pulleys.
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Dynamics is the study of forces and their effects on the motion of objects. Linear
dynamics studies the linear, non-rotating component of an object’s motion. In this
chapter, all objects are modeled as rigid bodies.

§3.1 Systems

Prototypical example for this section: the solar system, balls on a billiard table, or any
rigid body.

A system is a collection of point particles; in particular, recall that a rigid body is a
system in which the point particles do not move relative to each other. The mass of a
system is the sum of the masses of the point particles comprising the system:

m =
∑
i

mi.

The center of mass of a system is the weighted sum of the positions of the point
particles:

xcm =
∑
i

[
mi∑
imi
· xi
]

=

∑
imixi
m

.

The linear velocity of a system, often abbreviated as just velocity, is the derivative
of the position of its center of mass:

vcm =
dxcm

dt
.

Lastly, the acceleration of a system is the derivative of its velocity:

acm =
dvcm

dt
.

Abuse of Notation 3.1.1. When the context is clear, the subscripts in xcm, vcm, and
acm are often omitted, and center of mass, velocity, and acceleration are abbreviated as
x, v, and a.

It is often useful to consider the center of mass, linear velocity, and acceleration of a
rigid body because these quantities dictate the non-rotating motion of the object.

§3.2 Momentum

Prototypical example for this section: a moving car.

The momentum of a point particle is a vector equal to the product of its mass and
velocity; that is,

p = mv.

33



34 Physics Napkin, by Holden Mui

The momentum of a system is a vector equal to the sum of the momenta of the point
particles that comprise the system; that is,

p =
∑
i

mivi.

The units of momentum are kg·m
s , the product of the units for mass and velocity; these

units are also the same as N · s. Momentum can be thought of as the quantity of motion.
If the velocity of a system’s center of mass is known, the momentum of a system can

be calculated.

Corollary 3.2.1

The momentum of an system is equal to the product of its mass and the velocity of
its center of mass; that is,

p = mv.

Proof. By the definition of center of mass,

p =
∑
i

mivi =
∑
i

mi
dxi
dt

=
d

dt

∑
i

mixi =
d

dt
mx = mv.

§3.3 Newton’s second law

Newton’s second law equates the net force on a point particle with the rate of change
of its momentum.

Law 3.3.1 (Newton’s second law of motion)

In an inertial reference frame, the instantaneous change in momentum of a point
particle is equal to the net force acting on the point particle; that is,

F =
dp

dt
.

Newton’s second law can be extended to systems by defining the net force on a
system is the sum of all forces acting on the point particles that comprise the system,
regardless of the locations the forces are applied to. This extension is known as Euler’s
first law.

Theorem 3.3.2 (Euler’s first law of motion)

In an inertial reference frame, the change in momentum of a system is equal to the
net external force acting on the system; that is,

F =
dp

dt
.

Proof. Let Fi be the (possibly zero) external force acting on each point particle i in the
system, and let particle i exert a force Fij on particle j. Then the net force acting on
the rigid body is

F =
∑
i

Fi =
∑
i

[Fi] +
∑
i 6=j

[Fij ] =
∑
i

Fi +
∑
j 6=i

Fji

 =
∑
i

dpi
dt

=
d

dt

∑
i

pi =
dp

dt
,
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where the second equality follows because Fij = −Fji by Newton’s third law, and
the fourth equality follows because the net force acting on a particle is its change in
momentum by Newton’s third law.

Exercise 3.3.3. Prove that Newton’s third law can also be extended to rigid bodies; that
is, the net force that rigid body A exerts on rigid body B is equal in magnitude and opposite
in direction to the net force B exerts on A.

If a system’s mass is constant, Euler’s first law associates the net force on an system
with its acceleration.

Theorem 3.3.4 (F=ma)

In an inertial reference frame, the net force acting on an system with constant mass
is the product of its mass and its acceleration; that is,

F = ma.

Proof. Since mass is constant, Euler’s first law gives

F =
dp

dt
=
d(mv)

dt
= m

dv

dt
= ma.

Question 3.3.5. Team A and team B are playing tug-of-war. By Newton’s third law, the
force exerted on team A by team B is equal to the force exerted on team B by team A.
However, Theorem 3.3.4 states that a nonzero net force needs to be present for someone to
win, or else the rope can never accelerate. How is this possible for a team to win?

Much like the law of conservation of mass, the law of conservation of momentum
holds in a closed system not acted upon by external forces. It is a corollary of Newton’s
third law and Euler’s first law.

Theorem 3.3.6 (Law of conservation of momentum)

In a closed system, the total momentum is constant.

Proof. In a closed system, the net force acting on the system is zero. Since

F =
dp

dt
= 0,

momentum is constant.

Question 3.3.7. An object is accelerating towards the Earth, increasing its momentum.
Why does this not violate conservation of momentum?

§3.4 Impulse

Prototypical example for this section: A car crashing into a wall.
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The impulse of a force over a time interval is the integral of the force over the time
interval; that is,

J =

∫ t2

t1

F dt.

It is a vector quantity measured in N · s, the product of the units for mass and velocity;
these units are also the same as kg·m

s .
The impulse-momentum theorem states that the impulse of the net force on an

object is equal to its change in momentum:

Theorem 3.4.1 (Impulse-momentum theorem)

The impulse of a net force on an object over a time period is equal to its change in
momentum over that time period; that is,

J = p2 − p1.

Proof. By Euler’s first law and the Fundamental Theorem of Calculus,

J =

∫ t2

t1

Fdt =

∫ t2

t1

dp

dt
dt = p2 − p1.

§3.5 Projectile motion

Prototypical example for this section: a cannonball shot from a cannon.

A projectile is any object that is thrown such that the only force acting on it through-
out its trajectory is gravity. In particular, air resistance is ignored.

Theorem 3.5.1 (Projectile motion)

A projectile with initial position x0 and initial velocity v0 has trajectory

x = −1

2
gk̂t2 + v0t+ x0.

Proof. By Newton’s second law,

d2x

dt2
= a =

F

m
=
−mgk̂
m

= −gk̂,

so the projectile undergoes constant acceleration and thus has trajectory formula given
by Corollary 1.5.2.

Exercise 3.5.2. An object is dropped from rest at a height of h above the ground. De-
termine the time it takes for it to hit the ground, as well as its speed at the moment of
impact.

§3.6 Atwood machine

Prototypical example for this section: an elevator.

An Atwood machine is a system in which two objects connected by a string are
hanging from a pulley.
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m1

m2

Figure 3.1: An Atwood machine.

Theorem 3.6.1 (Atwood machine formulae)

The tension of the string in an Atwood machine is

2gm1m2

m1 +m2
=

2g
1
m1

+ 1
m2

and the magnitude of the acceleration of the blocks in an Atwood machine is

g
|m1 −m2|
m1 +m2

,

where g is Earth’s gravity.

Proof. Let FT be the tension in the string. Since the weight of the objects are gm1 and
gm2, the magnitude of the net force acting on the m1 is |gm1 − FT | and the magnitude
of the net force acting on the m2 is |gm2 − FT |. Since the accelerations of both blocks
have equal magnitudes and opposite directions,

a =
gm1 − FT

m1
= −gm2 − FT

m2
,

by F = ma. Solving for FT gives

FT =
2gm1m2

m1 +m2
.

Rewriting the acceleration equations as am1 = gm1 − FT and am2 = FT − gm2 gives

|a| = g
|m1 −m2|
m1 +m2

by adding the equations.

§3.7 Terminal velocity

Prototypical example for this section: a skydiver falling at maximum speed.

The terminal velocity of an object is the maximum speed that can be attained by
an object falling through a fluid, such as air.
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Theorem 3.7.1 (Terminal velocity formula)

The terminal velocity of an object falling towards Earth is approximately

vt ≈
√

2mg

ρCdA
,

where g is Earth’s gravity, ρ is the density of the air, A is the reference area, and
CD is the drag coefficient.

Proof. When an object is at its terminal velocity vt, it is moving at a constant velocity,
so the net force acting on the object is zero. Since the buoyant force is neglectable, this
means the magnitude of its weight approximately equals the magnitude of its drag force:

mg ≈ 1

2
ρv2tCDA.

Solving for v gives

vt ≈
√

2mg

ρCDA
.

§3.8 Tsiolkovsky rocket equation

Tsiolkovsky’s rocket equation gives a way to determine the increase in a rocket’s velocity
through fuel ejection. It assumes that no other forces, such as gravity, act on the rocket.

dm

v v + dv

v − ve

m m− dm

Figure 3.2: A rocket ejecting dm fuel over dt time.

Theorem 3.8.1 (Tsiolkovsky rocket equation)

A rocket with initial mass m0 is ejecting fuel at a constant rate and constant velocity
ve relative to the rocket, ending its journey with final mass mf . If no other forces
act on the rocket, its change in velocity is

ve ln
m0

mf
.

Proof. Let v be the velocity of the rocket, and suppose an infinitesimally small mass of
fuel dm is ejected from the rocket over a time interval dt, increasing the rocket’s velocity
by dv.
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Since the absolute velocity of the fuel is v − ve, conservation of momentum gives

mv = (m− dm)(v + dv) + (v − ve)dm.

Expansion and division by dt gives

ve · dm = m · dv − dm · dv
dv

dt
=

ve
m

dm

dt

since dm · dv is a second-order term that vanishes. Finally, integrating both sides over
the duration of fuel ejection gives∫ v(tf )

v(0)

dv

dt
=

∫ mf

m0

ve
m

dm

dt

v(tf )− v(0) = ve(lnmf − lnm0) = ve ln
mf

m0
,

where v(0) is the initial velocity of the rocket and v(tf ) is the final velocity of the
rocket.

§3.9 A few harder problems to think about

Problem 3A. A car with mass m is traveling at a speed of v before it starts applying
its brakes, locking its tires in place. In terms of m, v, and the coefficient of kinetic
friction µk between the tires and the road, determine:

(a) the amount of time it takes for the car to stop, and

(b) the distance it travels before it stops.

Problem 3B. A block with mass m1 and velocity v1 collides with a block with mass m2

and velocity v2, as shown in Figure 3.3, and the blocks stick together. Find the velocity
of the blocks after colliding and the impulse each block experiences. Assume there is no
friction between the ground and the blocks.

m1 m2

v1 v2

Figure 3.3: Colliding blocks.

Problem 3C. Projectiles A,B, and C are simultaneously thrown off a cliff and take
the trajectories shown in Figure 3.4. Rank the times they take to hit the ground.

Problem 3D. Two blocks of masses m1 = 2.0 kg and m2 = 1.0 kg are stacked together
on top of a frictionless table as shown in Figure 3.5. The coefficient of static friction
between the blocks is µs = 0.20. Determine the minimum magnitude of the horizontal
force that must be applied to the top block to make it slide across the bottom block.
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A B C

Figure 3.4: Three projectiles thrown off a cliff.

m1

m2

Figure 3.5: Two stacked blocks.

Problem 3E. Two blocks are connected by a string, and one block is on a platform
as shown in Figure 3.6. The coefficient of kinetic friction between the platform and the
block is µk. Assuming the system is moving, determine the tension in the string and the
magnitude of the accelerations of the blocks.

m1

m2

Figure 3.6: A half-Atwood machine.

Problem 3F. A packing crate with mass 115 kg is slid up a 5.00 m long ramp which
makes an angle of 20.0◦ with respect to the horizontal by an applied force of 1.00×103 N
directed parallel to the ramp’s incline. A frictional force of magnitude 4.00×102N resists
the motion. If the crate starts from rest, what is its speed at the top of the ramp?

Problem 3G. Two masses are attached with pulleys by a massless rope on an inclined
plane as shown in Figure 3.7. All surfaces are frictionless. If the masses are released
from rest, then characterize the motion of the inclined plane.
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Figure 3.7: Two masses on a frictionless inclined plane.

Problem 3H. A block on a ramp is given an initial speed upwards along the ramp, as
shown in Figure 3.8. It slides upward for a time tu, traveling some distance, and then
slides downward for a time td until it returns to its original position. If the height of the
incline is 0.6 times its diagonal length and the coefficient of kinetic friction between the
block and the incline is 0.5, what is td

tu
?

Figure 3.8: A block sliding up and down a ramp.

Problem 3I. A block is released from rest at the top of a fixed, frictionless ramp
with horizontal length 1 m and inclination θ, as shown in Figure 3.9. What value of θ
minimizes the time needed for the block to reach the bottom of the ramp?

θ1 m

Figure 3.9: A block on a ramp.

Problem 3J. A cannon that ejects projectiles at a fixed speed is situated at the base of
an ramp with angle θ, as shown in Figure 3.10. In terms of θ, at what angle should the
cannon be positioned so that the projectile will reach the farthest up the ramp? Assume
the ramp is sufficiently large.
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v
θ

Figure 3.10: A projectile fired up a ramp.

Problem 3K. A point mass m sits on a long block, also of mass m, which rests on the
floor. The coefficient of static and kinetic friction between the mass and the block is µ,
and the coefficient of static and kinetic friction between the block and the floor is 1

3µ.
An impulse gives a horizontal momentum with magnitude p to the point mass. After a
long time, how far has the point mass moved relative to the block? Assume the mass
does not fall off the block.

Problem 3L. An object starts at rest and starts falling. In terms of Earth’s gravity g,
the density of air ρ, the object’s reference area A, and the drag coefficient CD, determine
the object’s velocity as a function of time, without ignoring air resistance.



4 Rotational dynamics

Rotational dynamics studies the rotating component of an object’s motion. In this
chapter, all objects are modeled as rigid bodies whose point particles don’t all lie on a
common line. Certain quantities are measured with respect to the origin of a reference
frame or from an axis `.

§4.1 Moment of inertia

Prototypical example for this section: a spinning hard drive.

The moment of inertia of a point particle with respect to an axis ` is

I` = mr2,

where m is the mass of the particle and r is the distance from the particle to `. The
moment of inertia of a rigid body with respect to ` is the sum of the moment of
inertiae of each particle in the rigid body with respect to `; that is,

I` =
∑
i

mir
2
i .

Moment of inertia is the rotational analogue of mass and its units are kg ·m2. It can be
thought of as a measure of the rigid body’s resistance to rotation around `, in the same
way mass is a resistance to linear acceleration.

The moment of inertiae of solid objects can be found through an integral. The moment
of inertiae of some common objects are below.

Corollary 4.1.1 (Rod moment of inertia)

The moment of inertia of an infinitely thin rod with length l and mass m about a
line through its center perpendicular to the rod is

I =
1

12
ml2.

Figure 4.1: A rod with perpendicular bisector `.
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////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();
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Proof. By interpreting each segment on the rod with length dx as a point particle with
mass mdx

l , the rod’s moment of inertia is the infinite sum

∫ − l
2

− l
2

(m
l

)
x2 dx =

m

3l

(
l

2

)3

− m

3l

(
− l

2

)3

=
1

12
ml2.

Corollary 4.1.2 (Solid cylinder moment of inertia)

The moment of inertia of a solid uniform cylinder with radius r and mass m about
its axis of symmetry is

I =
1

2
mr2.

Figure 4.2: A cylinder with axis of symmetry `.

Proof. Note that the length of the cylinder is irrelevant, so assume the cylinder is in-
finitely thin. By interpreting each infinitesimal rectangle located at the polar coordinates
(s, θ) as a point particle with mass m

πr2
(dθ)(s ds), the cylinder’s moment of inertia is the

infinite sum

I =

∫ 2π

0

∫ r

0

(ms
πr2

)
s2 ds dθ =

∫ 2π

0

m

πr2
· 1

4
r4 dθ = 2π · m

πr2
· 1

4
r4 =

1

2
mr2.

Corollary 4.1.3 (Hollow sphere moment of inertia)

The moment of inertia of an infinitely thin uniform spherical shell with radius r and
mass m about a line through its center is

I =
2

3
mr2.

Proof. By interpreting each infinitesimal rectangle on the surface of the sphere at the
spherical coordinates (r, θ, ϕ) as a point particle with mass m

4πr2
(r dϕ)(r sinϕ dθ), the

shell’s moment of inertia is the infinite sum

I =

∫ π

0

∫ 2π

0

( m

4πr2
· r2 sinϕ

)
· (r sinϕ)2 dθ dϕ =

∫ π

0

mr2(sinϕ)3

2
dϕ =

2

3
mr2.
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Figure 4.3: A shell with axis of symmetry `.

Corollary 4.1.4 (Solid sphere moment of inertia)

The moment of inertia of a solid uniform sphere with radius r and mass m about a
line through its center is

I =
2

5
mr2.

Figure 4.4: A sphere with axis of symmetry `.

Proof. Interpret the solid sphere as a collection of shells with radius s, infinitesimal
thickness ds, and mass m

4
3
πr3
· 4πs2ds. Since the moment of inertia of a shell with radius

s is 2
3ms

2, the moment of inertia of the sphere is

I =

∫ r

0

2

3

(
m

4
3πr

3
· 4πs2

)
s2ds =

∫ r

0

2s4

r3
ds =

2

5
mr2.

The stretch rule and the perpendicular axis theorem can be used to find the
moments of inertia for a variety of rigid bodies and axes.

Theorem 4.1.5 (Stretch rule)

The moment of inertia of a rigid body around a line ` is unchanged when the object
is stretched in a direction parallel to `.

Proof. The distance of each point particle to ` remains unchanged when the object is
stretched in a direction parallel to `, so the moment of inertia remains unchanged as
well.
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Theorem 4.1.6 (Perpendicular axis theorem)

Suppose a rigid body is contained entirely within a plane P, and let ` be a line
perpendicular to P. Then the moment of inertia of the rigid body about ` equals
the sum of the moments of inertia of rigid body about any two perpendicular lines
`x and `y through P passing through `.

Proof. Assume P is the xy-plane, and work in a reference frame where `x is the x-axis,
`y is the y-axis, and `z is the z-axis. Then by the Pythagorean theorem,

I` =
∑
i

mi ‖xi‖2

=
∑
i

mi

(
‖proĵı(xi)‖2 +

∥∥proĵ(xi)
∥∥2)

=
∑
i

[
mi ‖proĵı(xi)‖2

]
+
∑
i

[∥∥proĵ(xi)
∥∥2]

= I`x + I`y .

§4.2 Moment of inertia tensor

The moment of inertia tensor of a rigid body is a 3 × 3 matrix that can be used
to compute the moment of inertia of a rigid body with respect to any axis through the
origin of the reference frame. It is defined as

I =
∑
i

mi[xi]
>
×[xi]× = −

∑
i

mi[xi]
2
×.

Using the definition of the matrix cross product operator, the moment of inertia tensor
is equivalently

I = −
∑
i

mi

 0 −zi yi
zi 0 −xi
−yi xi 0

2

= −
∑
i

mi

− (y2i + z2i
)

xiyi xizi
xiyi −

(
x2i + z2i

)
yizi

xizi yizi −(x2i + y2i )



=


∑
i
mi(y

2
i + z2i ) −∑

i
xiyi −∑

i
xizi

−∑
i
xiyi

∑
i
mi(x

2
i + z2i ) −∑

i
yizi

−∑
i
xizi −∑

i
yizi

∑
i
mi(x

2
i + y2i )

 ,
where xi = xîı + yî + zik̂. Note that the moment of inertia tensor is Hermitian; that is,
symmetric.

Remark 4.2.1 — The moment of inertia tensor is dependent on the frame of
reference, so it generally changes as an object moves or rotates.

The following corollary shows how the moment of inertia tensor can be used to calcu-
late the moment of inertia of any line through the origin.
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Corollary 4.2.2 (Moment of inertia tensor encodes all moments of inertia)

The moment of inertia of a rigid body with respect to a line ` through the origin is

I` = n̂ · In̂,

where n̂ is a unit vector parallel to `.

Proof. Let θi be the angle between xi and n̂. Then

n̂ · In̂ = n̂ ·
∑
i

−mi[xi]
2
×n̂

= n̂ ·
∑
i

−mixi × (xi × n̂)

=
∑
i

min̂ · ((xi · xi)n̂− (xi · n̂)xi)

=
∑
i

mi

(
(xi · xi)− (xi · n̂)2

)
=
∑
i

mi

(
‖xi‖2 − (‖xi‖ cos θi)

2
)

=
∑
i

mi (‖xi‖ sin θi)
2

=
∑
i

mir
2
i

= I`.

Corollary 4.2.3 (Moment of inertia tensor is invertible)

The moment of inertia tensor is invertible.

Proof. Suppose for contradiction that Iv = 0 for some nonzero vector v. Let n̂ = v
‖v‖

and let ` be a line through the origin parallel to n̂. By Corollary 4.2.2,

I` = n̂ · In̂ = 0,

a contradiction since I` is a sum of squared distances to `, which cannot all be zero.

§4.3 Parallel axis theorem

The parallel axis theorem can be used to compute the moment of inertia tensor, given
its moment of inertia tensor with respect to its center of mass.

Theorem 4.3.1 (Parallel axis theorem, tensor form)

The moment of inertia tensor of a rigid body with mass m and center of mass xcm

is
I = Icm +m [xcm]>× [xcm]× = Icm −m [xcm]2× ,

where Icm is the moment of inertia tensor of the rigid body in the reference frame
with the same orientation centered at xcm.
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Proof. Let xi denote the position of each point particle in the rigid body relative to its
center of mass. Then

I− Icm = −
∑
i

mi

(
[xi + xcm]2× − ([xi]×)2

)
= −

∑
i

mi

(
[xi]×[xcm]× + [xcm]×[xi]× − [xcm]2×

)
=

(∑
i

mi[xcm]2×

)
−
(∑

i

mi[xi]×

)
[xcm]× − [xcm]×

(∑
i

mi[xi]×

)
= −

∑
i

mi[xcm]2×,

where the last equality follows because∑
i

mi[xi]×

is the zero matrix by considering each entry in the matrix separately.

The statement of the parallel axis theorem more commonly found in an introductory
physics course is the following.

Corollary 4.3.2 (Parallel axis theorem)

Let `cm be the line through the center of mass of the rigid body parallel to `. Then

I` = I`cm +md2,

where d is the distance between ` and `cm.

Proof. Let n̂ be a unit vector parallel to `. By taking the statement of the parallel axis
theorem in tensor form, multiplying the right side by n̂, and dotting the left side with
n̂, one obtains

I` = I`cm −mn̂ · [xcm]2×n̂

= I`cm −mn̂ · xcm × (xcm × n̂)

= I`cm +mn̂ · ((xcm · xcm)n̂− (xcm · n̂)n̂)

= I`cm +m
(
‖xcm‖2 − (‖xcm‖ sin θ)2

)
= I`cm +m (‖xcm‖ cos θ)2

= I`cm +md2,

where θ is the angle between rcm and n̂.

§4.4 Torque

Prototypical example for this section: sitting on a seesaw.

The torque of a force applied to an object relative to x0 – that is, measured from x0

– is the cross product of its position vector relative to x0 and the force vector. In other
words,

τ = (x− x0)× F = x′ × F.
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The net torque exerted on an object relative to x0 is the sum of all torques applied to

the object relative to x0. Torque is measured in newton-meters, denoted N·m = kg·m2

s2
,

and it can be thought of as the rotational analogue of force. By properties of the cross
product, the torque vector is always perpendicular to the force and position vectors, and

‖τ‖ =
∥∥x′∥∥ ‖F‖ sin θ,

where θ is the angle between x′ and F.

Remark 4.4.1 — When an object is fixed so that it rotates around a fixed point,
it is useful to consider the torque measured from the fixed point. It is also useful to
consider the net torque measured from an object’s center of mass.

Corollary 4.4.2 (Torque from gravity)

The magnitude of the net torque exerted on an rigid body with mass m by gravity
relative to x0 is

‖τ‖ = ‖xcm − x0‖
∥∥∥−mgk̂∥∥∥ sin θ =

∥∥x′cm∥∥mg sin θ,

where θ is the angle between x′cm and k̂.

Proof. Since the planet (or other celestial body) exerting the gravitational force is suf-
ficiently far away from the rigid body, the gravitational force exerted on every particle
in the rigid body all point in the approximately the same direction k̂ with a magnitude
approximately proportional to the mass of the particle. The net torque exerted on the
rigid body relative to x0 is then

τ =
∑
i

(xi − x0)×
(
−migk̂

)
=

(∑
i

mi(xi − x0)

)
×−gk̂

=

(∑
i

mi(xi − xcm)

)
×−gk̂ +

(∑
i

mi(xcm − x0)

)
×−gk̂

= 0 +mx′ ×−gk̂

Thus

‖τ‖ =
∥∥x′cm∥∥mg sin θ.

Remark 4.4.3 — In particular, gravity exerts no torque on an object relative to
its center of mass.

Exercise 4.4.4. Two children with masses m1 and m2 are sitting on opposite ends of a
horizontal seesaw. If they are sitting at a distance of d1 and d2 away from the pivot of the
seesaw, respectively, then determine the torque each child exerts on the seesaw relative to
the pivot point.
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§4.5 Angular momentum

Prototypical example for this section: the Earth relative to the Sun.

The orbital angular momentum of a point particle relative to x0 is a vector equal
to the cross product of its position vector relative to x0 and its momentum relative to
x0; that is,

L = (x− x0)× (m (v − v0)) = x′ × p′,

where p′ is the momentum relative to x0. The angular momentum of a system, such
as a rigid body, relative to x0 is a vector equal to the sum of the orbital angular momenta
of the point particles relative to x0 that comprise the system; that is,

L =
∑
i

(xi − x0)× (mi (vi − v0)) =
∑
i

x′i × p′i.

The spin angular momentum of a system is equal to its orbital angular momentum
relative to its center of mass; that is,

Ls =
∑
i

(xi − xcm)× (mi(vi − vcm)) =
∑
i

(xi − xcm)× (pi −mivcm).

Note that spin angular momentum does not depend on a reference point.
Orbital angular momentum, angular momentum, and spin angular momentum are all

measured in kg·m2

s . The following result exemplifies the necessity for each type of angular
momentum.

Corollary 4.5.1 (Angular momentum decomposition)

The angular momentum of a system relative to x0 is the the sum of its spin angular
momentum and the orbital angular momentum of its center of mass relative to x0;
that is,

L = Ls + Lcm.

Proof. Let x′cm = xcm − x0 be the center of mass relative to x0. By expansion,∑
i

x′i × pi =
∑
i

[
x′cm × pi

]
+
∑
i

[
(x′i − x′cm)× pi

]
= x′cm × p +

∑
i

[
(x′i − x′cm)× (pi −mivcm)

]
+
∑
i

[
(x′i − x′cm)×mivcm

]
= Lcm + Ls + vcm ×

∑
i

[
mi(x

′
i − x′cm)

]
= Lcm + Ls.

The following result makes it clear why angular momentum is the rotational analogue
of momentum.

Theorem 4.5.2 (Angular momentum is moment of inertia tensor times angular velocity)

Let x0 be any fixed reference point. The angular momentum of a system with respect
to x0 is the product of its moment of inertia tensor with respect to x0 and its angular
velocity; that is,

L = Iω.
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Proof. By expansion,

Iω = −
∑
i

mi[x
′
i]
2
×ω = −

∑
i

mix
′
i × (x′i × ω) =

∑
i

x′i ×miv
′
i = L.

§4.6 Euler’s second law

Euler’s second law equates the net torque on an object with the rate of change of its
momentum.

Theorem 4.6.1 (Euler’s second law of motion)

In an inertial reference frame, the rate of change in angular momentum of a system
about a fixed reference x0 is equal to the net torque acting on the system about x0;
that is,

τ =
dL

dt
.

Additionally, the rate of change in spin angular momentum of a system is equal to
the net torque acting on the system about its center of mass; that is,

τcm =
dLs
dt

.

Proof. Let Fi be the (possibly zero) external force acting on each point particle i in the
system, and let particle i exert a force Fij on particle j. Then the time derivative of its
angular momentum relative to x0 is

dL

dt
=
∑
i

d

dt

[
x′i ×mi(v

′
i)
]

=
∑
i

v′i ×mi(v
′
i) + x′i ×

d

dt
mi(vi)

=
∑
i

x′i ×
d

dt
mi(v

′
i)

=
∑
i

x′i ×

Fi +
∑
j 6=i

Fji


=
∑
i

[
x′i × Fi

]
+
∑
i<j

[
x′i × Fji + x′j × Fij

]
= τ +

∑
i<j

[
(x′i − x′j)× Fji

]
= τ ,

where the last equality follows because xi − x′j = xi − xj is parallel to Fji.

Similarly, the time derivative of its angular momentum relative to xcm is

dLs
dt

=
∑
i

d

dt
[(xi − xcm)×mi(vi − vcm)]

=
∑
i

(vi − vcm)×mi(vi − vcm) + (xi − xcm)× d

dt
mi(vi − vcm)
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=
∑
i

(xi − xcm)× d

dt
mi(vi − vcm)

=
∑
i

[
(xi − xcm)× d

dt
mivi

]
−
∑
i

[
(xi − xcm)× d

dt
mivcm

]

=
∑
i

(xi − xcm)×

Fi +
∑
j 6=i

Fji

−∑
i

[mi(xi − xcm)]× acm

=
∑
i

[(xi − xcm)× Fi] +
∑
i<j

[xi × Fji + xj × Fij ]− 0

= τcm +
∑
i<j

[(xi − xj)× Fji]

= τcm.

Unlike linear dynamics, torque is generally not the product of the moment of inertia
tensor and angular acceleration; this is only true under special conditions. However, a
rotational equivalent of F = ma does exist, called Euler’s rotation equation.

Theorem 4.6.2 (Euler’s rotation equation)

The net torque exerted on a rigid body is

τ = Icmα+ ω × Ls.

Proof. Let Ibody be the moment of inertia tensor of a rigid body in a reference frame
fixing the rigid body centered at its center of mass, so that

Icm = RIbodyR
−1 = RIbodyR

>

for some rotation matrix R, which varies as time passes. Note that

dR

dt
= [ω]×R,

since the columns of R have constant length – in particular, unit length. Differentiating
angular momentum gives

τ =
dLs
dt

=
d

dt

[
RIbodyR

>ω
]

=
dR

dt
IbodyR

>ω + RIbody

(
dR

dt

)>
ω + RIbodyR

>dω
dt

= [ω×]RIbodyR
>ω + RIbody ([ω]×R)>ω + RIbodyR

>α

= [ω]×Icmω + RIbodyR
>[ω]>×ω + Icmα

= [ω]×Ls + RIbodyR
> (−[ω]×)ω + Icmα

= ω × Ls + Icmα,

where the first line follows from Euler’s second law, the second line follows from the
product rule, the fifth line follows because [ω]× is skew-symmetric, and the sixth line
follows because ω × ω = 0.

Much like the law of conservation of momentum, the law of conservation of angular
momentum holds in a system not acted upon by external torques. There are two parts
of the law of conservation of angular momentum: one for angular momentum relative to
x0 and one for spin angular momentum.
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Theorem 4.6.3 (Law of conservation of angular momentum)

In a system not acted upon by external torques relative to a fixed point x0, the
total angular momenta relative to x0 is constant. Additionally, when not acted
upon by external torques relative to the center of mass of the system, the spin
angular momentum of a system is constant.

Proof. Both results follow from Euler’s second law, since

τ = 0 =
dL

dt

for the first case, and

τ = 0 =
dLs
dt

for the second case.

Exercise 4.6.4. Suppose a bullet is shot upwards and gets lodged in a block of wood near
its edge, sending the block and the bullet inside it spinning. Before the collision, no objects
were spinning, but after the collision, both objects spin. Explain why this does not violate
conservation of angular momentum.

§4.7 Fixed-axis rotation

Although three-dimensional rigid body motion is in general complex, many of the results
above simplify nicely when considering fixed-axis rotation.

Theorem 4.7.1 (Angular momentum in fixed-axis rotation)

Suppose a rigid body is rotating around a fixed axis `. Then the component of
angular momentum in the direction of angular velocity is the product of its moment
of inertia around ` and its angular velocity; that is,

projω(L) = I`ω.

Proof. Using the definitions,

projω(L) =
∑
i

projω(r×mv)

=
∑
i

r′ ×mv

=
∑
i

r′ × (mω × r′)

=
∑
i

mr2ω

= I`ω,

where r′i is the component of ri parallel to the plane perpendicular to ω.
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Corollary 4.7.2 (Torque in fixed-axis rotation)

Suppose a rigid body is rotating around a fixed axis `. Then the component of
torque in the direction of angular velocity is the product of its moment of inertia
around ` and its angular acceleration; that is,

projω(τ ) = I`α.

Proof. This follows immediately from differentiating the previous result and citing Eu-
ler’s second law.

§4.8 Principal axes

Prototypical example for this section: the Earth’s axis of rotation.

As one can deduce from Euler’s rotation equation, it turns out that three-dimensional
rigid body motion is complex and cannot be described simply as a fixed rotations.
However, there exist special axes around which rigid bodies can rotate around at constant
angular velocity, known as principal axes.

A principal axis of a rigid body is a line through its center of mass parallel to an
eigenvector of its moment of inertia tensor relative to its center of mass Icm. As shown
by the below results, a principal axis is, equivalently, an axis around which the rigid body
can rotate around, torque-free, at constant angular velocity. Note that the principal axis
of a rigid body relative to the rigid body does not depend on its orientation. The angular
velocity vector and the spin angular momentum vector are parallel if and only if they
point in the direction of a principal axis, since Ls = Icmω.

For objects rotating around a principal axis, a rotational analogue to Newton’s second
law holds.

Theorem 4.8.1 (Principal axis rotation)

If an object is rotating around an axis parallel to a principal axis, then

τ = Icmα.

Proof. This follows from Euler’s rotation equation, since

τ = Icmα+ ω × (Iω) = Icmα+ ω × λω = Icmα

where λ is the corresponding eigenvalue of ω, as ω is an eigenvector of Icm.

Exercise 4.8.2. Explain why a figure skater speeds up in rotation rate as she brings her
arms in.

As a result, a rotational analogue of Newton’s first law holds as well.

Corollary 4.8.3 (Torque-free principal axis rotation)

If no torques are acting on a rigid body and the rigid body is rotating around a
principal axis, then its angular velocity is constant.
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Proof. By Theorem 4.8.1,
Icmα = τ = 0.

Since Icm is an invertible matrix, it must follow that α = 0, so ω is constant.

The reflection theorem and the rotation theorem give easy ways of finding prin-
cipal axes of objects with some type of symmetry. The proof of both theorems relies on
the fact that I is diagonalizable since it is symmetric; in particular, two eigenvectors of
I with different eigenvalues must be perpendicular.

Theorem 4.8.4 (Reflection theorem)

If a rigid body has a plane of symmetry, then the line perpendicular to this plane
through the center of mass is a principal axis.

Proof. Let v be an eigenvector of Icm not in the plane of symmetry. By symmetry,
its reflection over the plane v′ must also be an eigenvector with the same eigenvalue.
Hence, their difference v − v′, which is perpendicular to the plane of symmetry, is an
eigenvector.

Theorem 4.8.5 (Rotation theorem)

If a rigid body is rotationally symmetric about a line `, then ` is a principal axis.
Furthermore, if the degree of rotation is less than 180◦, then all lines through the
center of mass perpendicular to ` are also principal axes.

Proof. Suppose the rigid body is rotationally symmetric with an angle of 360◦

n . Let v be
an eigenvector of Icm not perpendicular to `. By symmetry, the n rotations of v around
` are also eigenvectors with the same eigenvalue, so the sum of all n vectors, which is a
nonzero vector parallel to `, is an eigenvector.

As a corollary, it follows that Icm must have an eigenvector u perpendicular to ` as well,
as Icm is symmetric. If n > 2, then the n rotations of u, which are all eigenvectors with
the same eigenvalue, span the plane perpendicular to `. Hence, all lines perpendicular
to ` through the origin are principal axes if the degree of rotation is less than 180◦.

If the diagonal elements of Icm’s diagonalization are all distinct – that is, there are
three distinct eigenvalues – then there are exactly three different principal axes, each
with distinct moments of inertia around them. While the rigid body could in theory
rotate around all three without any external torques, the instability of certain rotations
renders this impossible in reality; this result is known as the tennis racket theorem.

Theorem 4.8.6 (Tennis racket theorem)

Suppose a rigid body has three principal axes `1, `2, `3 with three distinct moments
of inertia I1 > I2 > I3. Then rotation around `1 and `3 is stable, but rotation
around `2 is unstable. That is, any small perturbation in rotation around `1 or `3
will self-correct, but a perturbation in rotation around `2 will be amplified.

Proof. Let b1, b2, b3 be the unit vectors in pointing in the same direction as `1, `2, and
`3; note that they form an orthonormal basis, so ω can be written in the form

ω = ω1b1 + ω2b2 + ω3b3
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for some real numbers ω1, ω2, and ω3. Substituting this into Euler’s rotation equation
and using Iibi = Iibi (which follows because bi · Iibi = Ii) gives

τ = 0 = Icm
dω

dt
+ ω × Iω

= Icm

(
dω1

dt
b1 +

dω2

dt
b2 +

dω3

dt
b3

)
+ (ω1b1 + ω2b2 + ω3b3)× Icm(ω1b1 + ω2b2 + ω3b3)

= I1
dω1

dt
b1 + I2

dω2

dt
b2 + I3

dω3

dt
b3

+ (ω1b1 + ω2b2 + ω3b3)× (I1ω1b1 + I2ω2b2 + I3ω3b3)

=

(
I1
dω1

dt
+ I3ω2ω3 − I2ω3ω2

)
b1

+

(
I2
dω2

dt
+ I1ω3ω1 − I3ω1ω3

)
b2

+

(
I3
dω3

dt
+ I2ω1ω2 − I1ω2ω1

)
b3.

Hence, it follows that

I1
dω1

dt
= (I2 − I3)ω2ω3

I2
dω2

dt
= (I3 − I1)ω3ω1

I3
dω3

dt
= (I1 − I2)ω1ω2.

Differentiating the first equation and substituting the other two gives

I1
d2ω1

dt2
= (I2 − I3)

(
dω2

dt
ω3 + ω2

dω3

dt

)
= (I2 − I3)

(
I3 − I1
I2

ω2
3 +

I1 − I2
I3

ω2
2

)
ω1

When rotating about `2, ω2 is large while ω3 ≈ 0, so d2ω1
dt2

= kω1 for some positive
constant of proportionality k, since (I2− I3)(I1− I2) > 0. Hence any small perturbation
in ω1 will cause ω1 to deviate from zero.

However, when rotating about `3, ω3 is large while ω2 ≈ 0, so d2ω1
dt2

= kω1 for some
negative constant of proportionality k, since (I2 − I3)(I3 − I1) < 0. Hence any small
perturbation in ω1 will return to zero.

Similar analysis by differentiating the second and third equations and substituting
gives

I2
d2ω2

dt2
= (I3 − I1)

(
I1 − I2
I3

ω2
1 +

I2 − I3
I1

ω2
3

)
ω2

I3
d2ω3

dt2
= (I1 − I2)

(
I2 − I3
I1

ω2
2 +

I3 − I1
I2

ω2
1

)
ω3.

One can check that ω2 is stable when rotating around `1 and `3, and ω3 is stable when
rotating around `1 but not around `2. Combining each of these results shows that only
rotation around `2 is unstable.
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This effect is known as the tennis racket theorem because flipping a tennis racket
around its intermediate axis – the one in the plane of the tennis racket perpendicular to
the handle – almost always results in a corresponding half-turn; that is, the side of the
tennis racket initially facing upwards before the flip will almost always face downwards
after the flip. The effect also works for non-square rectangular objects, such as a cell
phone.

§4.9 A few harder problems to think about

Problem 4A. Two massless rods are attached to frictionless pivots, with their ends
touching. The distances between the pivot points and the endpoints of the rods are
shown in Figure 4.5. Neglecting friction between the rods, if a force F is applied at the
left end of the left rod, what force F′ must be applied at the right end of the right rod
to keep the system in equilibrium?

F

F′

2 m 1 m

0.5 m 2 m

Figure 4.5: Two rods in equilibrium.

Problem 4B. A rectangular slab sits on a frictionless surface and a sphere sits on the
slab, as shown in Figure 4.6. There is sufficient friction between the sphere and the slab
such that the sphere will not slip relative to the slab. A force to the right is applied to
the slab, with both the slab and the sphere initially at rest. Characterize the resulting
motion of the sphere.

Figure 4.6: A sphere on a rectangular slab.

Problem 4C. A uniform stick of mass m is originally on a horizontal surface, as shown
in Figure 4.7. One end is attached to a vertical string, which is pulled up with a
constant tension force FT so that the center of the mass of the stick moves upwards with
acceleration a. Determine the normal force the ground exerts on the other end of the
stick shortly after the right end of the stick leaves the ground.
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FT

m

Figure 4.7: A stick pulled by a rope.

Problem 4D. A flat uniform disk of radius 2r has a hole of radius r removed from the
center. The resulting annulus is then cut in half along a diameter. The remaining shape
has mass m. Determine the moment of inertia of this shape about the axis of rotational
symmetry of the original disk.

Problem 4E. An Atwood machine consists of two masses m1 and m2 hanging from a
pulley with radius r and moment of inertia about its spinning axis I. If the string does
not slip relative to the pulley, determine the magnitude of the acceleration of the blocks.

m1

m2

Figure 4.8: An Atwood machine.

Problem 4F. A toilet paper roll is dropped while holding its end so that it unrolls
while dropping, and hits the ground in time t1. If its end was not held fixed so that it
did not unroll while dropping, it would have hit the ground in time t2. Determine t1

t2
.

Problem 4G. A solid uniform cylinder, a hollow uniform cylinder, a solid uniform
sphere, and a hollow uniform sphere are rolling down an inclined plane from the same
height without slipping. Rank the times in which they hit the ground.

Problem 4H. A uniform hollow spherical ball with mass m is placed on the ground
with initial speed v0 and zero spin angular velocity at time t = 0. The coefficient of
friction between the ball and the ground is µs = µk = µ. Determine the time the ball
begins to roll without slipping.

Problem 4I. A hoop of radius r is launched to the right at initial speed v. As it is
launched, it is also spun counterclockwise with spin angular velocity 3v

r . The coefficient
of kinetic friction between the ground and the hoop is µk.



4 Rotational dynamics 59

(a) How long does it take the hoop to return to its starting position?

(b) If the hoop were replaced by a uniform disk, how would the answer change?

Problem 4J. A spool is made of a cylinder with a thin disc attached to either end of
the cylinder as shown in Figure 4.9. The cylinder has radius r and the discs each have
radius R > r. A string is attached to the cylinder and wound around the cylinder a few
times. At what angle above the horizontal can the string be pulled so that the spool will
slip without rotating?

Figure 4.9: A cylindrical spool, side view.

Problem 4K. A uniform solid circular disk of mass m is on a flat, frictionless horizontal
table. The center of mass of the disk is at rest and the disk is spinning with spin angular
velocity ω. A stone, modeled as a point object also of mass m, is placed on the edge
of the disk, with zero initial velocity relative to the table. A rim built into the disk
constrains the stone to slide, with friction, along the disk’s edge. After the stone stops
sliding with respect to the disk, what is the spin angular speed of rotation of the disk
and the stone together?





5 Fictitious forces

A fictitious force is a force that arises when working in non-inertial reference frames.
In a non-inertial reference frame, Newton’s second law does not hold, but the addition of
fictitious forces into the model can resolve the discrepancy. In other words, a fictitious
force is a force that appears to be acting on an object when its motion is described in a
non-inertial frame of reference. Such a force does not actually exist in an inertial frame.

Remark 5.0.1 — Newton’s third law is no longer satisfied when fictitious forces
are added into the model; in particular, fictitious forces do not have a corresponding
force in non-inertial reference frames. However, Newton’s second law remains valid;
after all, fictitious forces serve as a correction to Newton’s second law, allowing it
to hold in non-inertial reference frames.

§5.1 Rectilinear acceleration

Prototypical example for this section: an accelerating car.

Suppose a non-inertial reference frame is linearly accelerating with acceleration a with
respect to an inertial reference frame. Then there is a fictitious force acting on all objects
in the opposite direction of the acceleration, and the fictitious force on an object with
mass m is −ma by Newton’s second law.

Example 5.1.1 (Accelerating car)

Suppose a car is speeding up. Passengers in the car will feel themselves being pushed
back in their seats; that is, in the reference frame fixing the car, it appears that there
is a mysterious backwards-pointing force acting on all objects in the car. This can be
explained in an inertial reference frame because objects tend to move with constant
velocity, but in the non-inertial reference frame this tendency is said to be caused
by a fictitious force.

§5.2 Centrifugal force

Prototypical example for this section: a rotating amusement park ride.

The most common fictitious force is the centrifugal force, which arises when con-
sidering a rotating reference frame, such as the one fixing the Earth.

Example 5.2.1 (Gravitron)

Consider an amusement park ride in which passengers lean against the wall of a
circular contraption which rotates at a high speed. In the non-inertial reference
frame fixing the contraption, passengers appear to be pushed back into their seats.
In the inertial reference frame, this mysterious force can be explained by an object’s
tendency to move in a straight line.

61
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Strictly speaking, the centrifugal force is the apparent force on the object, assuming
the object’s velocity is at rest in the rotating reference frame and the reference frame
rotates at a constant angular velocity.

Theorem 5.2.2 (Centrifugal force formula)

The centrifugal force that appears to act on an object with mass m in a rotating
reference frame with angular velocity ω has magnitude

‖F‖ = m ‖ω‖2 r

and points directly away from the axis of rotation, where r is the distance from the
object to the axis of rotation.

Proof. In the inertial reference frame, the object is moving uniformly around a circle
with radius r at an angular speed of ‖ω‖. By the centripetal force formula, a force
of ‖ω‖2 r point towards the axis of rotation is needed to keep the object in this circle.
However, in the rotating reference frame, the object appears to be stationary, so there
needs to be a fictitious force of magnitude ‖ω‖2 r pointing away from the axis of rotation,
which is the centrifugal force.

§5.3 Coriolis force

The Coriolis force is a fictitious force that appears in a rotating reference frame when
an object has a nonzero velocity in the reference frame.

Example 5.3.1 (Bullet)

Consider a bullet shot from the Northern hemisphere over a very long distance
towards the North Pole of the Earth. The bullet retains some horizontal velocity
from the location it was shot at, but as it moves northwards, the ground under it
moves at a slower rate, so from an observer on the Earth, the bullet appears to be
deflected. This apparent deflection is caused by the Coriolis force.

Strictly speaking, the Coriolis force is the apparent non-centrifugal force on an object
viewed in a rotating reference frame with constant angular velocity.

Before deriving the Coriolis force formula, however, the following lemma is necessary.

Lemma 5.3.2

Let x be the trajectory of a particle in an inertial frame of reference, and let x′ be
its trajectory in a rotating frame of reference fixing the origin with angular velocity
ω. Then

v = v′ + ω × v′

where v′ is the velocity of the particle in the rotating reference frame.
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Proof. By the product rule,

v =
dx

dt
=

d

dt

[
proĵı′(x)̂ı′ + proĵ′(x)̂′ + proj

k̂
′(x)k̂

′]
=

d

dt
[proĵı′(x)] ı̂′ +

d

dt

[
proĵ′(x)

]
̂′ +

d

dt

[
proj

k̂
′(x)

]
k̂
′

+ proĵı′(x)
d̂ı′

dt
+ proĵ′(x)

d̂′

dt
+ proj

k̂
′(x)

dk̂
′

dt

=
dx′

dt
+ proĵı′(x)(ω × ı̂) + proĵ′(x)(ω × ̂) + proj

k̂
′(x)(ω × k̂)

=
dx′

dt
+ ω × (proĵı′(x)̂ı′ + (proĵ′(x)̂′ + (proj

k̂
′(x)k̂

′
)

=
dx′

dt
+ ω × x′,

using Corollary 1.9.2.

Theorem 5.3.3 (Coriolis force formula)

The Coriolis force that appears to act on an object with mass m in a rotating
reference frame with angular velocity ω is

F = −2mω × v′ = 2mv′ × ω,

where v′ is the velocity of the object in the rotating reference frame.

Proof. Suppose the object has trajectory x in the inertial reference frame, and suppose
the rotating reference frame fixes the origin and has angular velocity ω. Additionally,
let x′ be the trajectory of the object with respect to the rotating reference frame.

By Lemma 5.3.2,
dx

dt
= v = v′ + ω × x′;

taking the derivative and applying the lemma once again yields

a =

(
dv′

dt
+ ω × v′

)
+
dω

dt
× x′ + ω × dx′

dt
= a′ + ω × v′ +α× x′ + ω × (v′ + ω × x′),

so rearranging gives

a′ = a− ω × (ω × x′)− 2ω × v′ −α× x′.

Multiplying both sides by m gives

F′ = F−mω × (ω × x′)− 2mω × v′ −mα× x′.

The net fictitious force acting on the particle is thus

−mω × (ω × x′)− 2mω × v′ −mα× x′.

The centrifugal force, from this expression, is equal to

mω × (ω × x′),

since this vector points directly away from the axis of rotation and has magnitude ‖ω‖2 r.
Additionally, α = 0. The remaining term is the Coriolis force, since it depends on the
velocity of the object.
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§5.4 Euler force

The Euler force is the component of the apparent force that only appears when there
is a nonzero angular acceleration of the rotating reference frame.

Example 5.4.1 (Merry-go-round)

Consider a child on a merry-go-round. When the merry-go-round starts accelerating,
the child will appear to experience a force pushing them backwards in the frame
fixing the merry-go-round; this force is the Euler force.

Strictly speaking, the Euler force is the non-centrifugal, non-Coriolis component of
the total fictitious force on an object.

Theorem 5.4.2 (Euler force formula)

The Euler force that appears to act on an object with mass m in a rotating reference
frame with angular velocity ω is

F = −mdω

dt
× r = −mα× r.

Proof. From the derivation of the centrifugal force, the net fictitious force acting on the
object is

−mω × (ω × x′)− 2mω × v′ −mα× x′.

The first two terms are the centrifugal and the Coriolis force, respectively, so the third
force must be the Euler force since it depends on angular acceleration.

§5.5 A few harder problems to think about

Problem 5A. A cylindrical space station produces “artificial gravity” by rotating at a
constant angular velocity along its axis, as shown in Figure 5.1. Consider working in the
reference frame rotating with the space station. In this frame, an astronaut is initially at
rest standing on the floor, facing in the direction that the space station is rotating. The
astronaut jumps up vertically relative to the floor of the space station, with an initial
speed less than that of the speed of the floor. Just after leaving the floor, the motion of
the astronaut, relative to the space station floor, determine

(a) the direction of the component of acceleration perpendicular to the floor, and

(b) where the astronaut lands relative to the point they jumped from.

Figure 5.1: A cylindrical space station.
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Problem 5B. A man standing at 30◦ latitude fires a bullet northward as a speed of
200 m

s . The radius of the Earth is 6371 km. What is the sideways deflection of the bullet
after traveling 100 m?

Problem 5C. A child in a circular, rotating space station tosses a ball in such a way so
that once the station has rotated through one half rotation, the child catches the ball.
From the child’s point of view, plot the trajectory of the ball.

Problem 5D. Alice and Bethany stand side by side on the Earth’s equator. If Alice
jumps directly upward, in her frame of reference, to a small height h much less than
the radius of the Earth, she will land a distance D to the west of Bethany. If Alice had
instead jumped to a height 2h, how far to the west of Bethany would she land? Neglect
air resistance.





6 Energy

§6.1 Work

Prototypical example for this section: pushing a box on the ground.

The work done by a force on a particle over a path C is the line integral of the dot
product of the force and its infinitesimal displacement; that is,

W =

∫
C

F · dx =

∫ t2

t1

F · v dt.

Work is a scalar quantity measured in joules, abbreviated “J”.

Remark 6.1.1 — A joule is defined as the work required to exert a force of one
newton through a displacement of one meter.

One joule can be expressed as

1 J = 1 N ·m = 1
kg ·m2

s2
.

If a force always has a component in the direction of the path, it does positive work.
If a force always has a component opposite the direction of the path, it does negative
work. If a force is always perpendicular to the path, it does no work.

When the force F is constant and the angle between the force and the infinitesimal
displacement ds is always θ, then the work done is given by

W =

∫
C

F · ds = F ·
∫
C
ds = F · s = ‖F‖ ‖s‖ cos θ.

Exercise 6.1.2. A waiter is carrying a tray such that both the tray’s height and the tray’s
velocity is constant. Explain why the waiter does no work on the tray.

The work done by a force on a rigid body is the sum of the work done by the force on
each point particle. Work can be decomposed into a linear component and a rotational
component.

Corollary 6.1.3 (Work on rigid body)

The work done by a force on a rigid body is

W =

∫ t2

t1

F · vcm + τ · ω dt,

where F is the sum of the individual forces on each point particle caused by the
force and τ is the sum of the individual torques on each point particle caused by
the force.
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Proof. Let Fi be the force on particle i caused by the force in consideration. By defini-
tion,

W =
∑
i

∫ t2

t1

Fi · vi dt

=
∑
i

∫ t2

t1

Fi · (vcm + ω × (xi − xcm)) dt

=

∫ t2

t1

[∑
i

[Fi · vcm] +
∑
i

[Fi · ω × (xi − xcm)]

]
dt

=

∫ t2

t1

[
vcm ·

∑
i

[Fi] + ω ·
∑
i

[Fi · (xi − xcm)]

]
dt

=

∫ t2

t1

F · vcm + τ · ω dt.

§6.2 Conservative forces

Prototypical example for this section: gravity near Earth.

A conservative force is a force with the property that the total work needed to
move a particle from one point to another point is independent of the path taken, and
a non-conservative force is a force that does not satisfy this property.

If a force is conservative, given a particle with fixed mass, a numerical value U mea-
sured in joules can be assigned to each point, known as the potential at that point for
the particle. This potential has the property that the total work needed to move the
particle from one point to another point is the negative of the difference between the
potentials of the two points; that is,

W = −∆U = −(U2 − U1).

The negative sign is a result of the convention that work done opposing a force increases
potential energy, while work done in the direction of the force decreases potential energy.

Generally, the assignment of potentials to every point is not unique, since a constant
can be added to every point without changing the difference in potentials between any
two points. Therefore, some convenient location is assigned, by convention, a potential
of zero. This uniquely determines the potential of all other points.

Gravity is an example of a conservative force, while friction is not conservative. Since
friction always acts against the direction of motion and has a constant magnitude, the
work done by a frictional force will be proportional to path length – in particular, it is
not independent of path.

§6.3 Gravitational potential energy near Earth

Prototypical example for this section: a rock on top of a hill.

Gravity near Earth’s surface is conservative because the total work needed to move a
particle m from one point r1 to another point r2 along a path C is∫

C

(
−mgk̂

)
· ds = −mgk̂ ·

∫
C
ds = −mgk̂ · (r2 − r1) = −(mgh2 −mgh1),
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where h1 and h2 are the signed magnitudes of the projections of r1 and r2 onto k̂; that
is, h1 and h2 are the signed distances from r1 and r2 to the ground. Thus, a potential at
each point can be assigned, known as the gravitational potential energy, measured
in joules.

By convention, the gravitational potential energy of a point particle on the ground –
which is assumed to be flat – is zero, so the gravitational potential energy of a particle
with mass m is

Ug = mgh,

where h is the height of the particle above the ground.

§6.4 Spring potential energy

Prototypical example for this section: the energy stored in a wind-up toy.

Because the spring force only depends on the displacement from its equilibrium state
and springs operate one-dimensionally, the spring force is conservative. Thus, a potential
at each point can be assigned, known as the spring potential energy, measured in
joules. The total work needed to move a spring from a position x1 to x2 is∫ x2

x1

(−kx) · dx = −k
∫ x2

x1

x · dx = −k
(

1

2
x22 −

1

2
x21

)
.

By convention, the spring potential energy of a spring in equilibrium position is zero, so
the spring potential energy of a spring stretched or compressed with a displacement of
magnitude x is

Us =
1

2
kx2.

§6.5 Kinetic energy

Prototypical example for this section: a moving car.

The kinetic energy of a point particle is the work needed to accelerate it from rest
to its desired velocity.

Theorem 6.5.1 (Kinetic energy formula)

The kinetic energy of a point particle with mass m and velocity v is

Ek =
1

2
mv · v =

1

2
mv2.

Proof. suppose the particle accelerates from rest to velocity v between times t1 and t2.
Since F = ma = mdv

dt , it follows from the definition of kinetic energy that

Ek =

∫ t2

t1

(
m
dv

dt

)
· vdt =

1

2
m

∫ t2

t1

d

dt
[v · v] dt =

1

2
mv · v − 1

2
m0 · 0 =

1

2
mv2.

The kinetic energy of a rigid body is the sum of the kinetic energies of the point
particles that comprise the rigid body.
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Corollary 6.5.2 (Kinetic energy decomposition)

Let ω be the spin angular speed of a rigid body and let Iω be the moment of inertia
around the line through its center of mass parallel to its spin angular velocity ω.
Then

Ek =
1

2
mv2cm +

1

2
Iωω

2.

Proof. Let θi be the angle between xi − xcm and ω, and let ri be the distance from xi
to the line through the center of mass parallel to ω. By expansion,

Ek =
∑
i

1

2
mivi · vi

=
∑
i

[
1

2
mivcm ·vcm

]
+
∑
i

[mivcm ·(vi − vcm)] +
∑
i

[
1

2
mi (vi − vcm)·(vi − vcm)

]
=

1

2
mvcm · vcm + vcm ·

∑
i

[mi(vi − vcm)] +
∑
i

[
1

2
mi ‖ω × (xi − xcm)‖2

]
=

1

2
m ‖vcm‖2 + vcm · 0 +

∑
i

[
1

2
mi (sin θi ‖xi − xcm‖)2 ‖ω‖2

]
=

1

2
mv2cm +

1

2
‖ω‖2

∑
i

[
mir

2
i

]
=

1

2
mv2cm + Iωω

2.

The components above are known as the translational kinetic energy and the
rotational kinetic energy of a rigid body; that is,

Et =
1

2
mv2cm

and

Er =
1

2
Iωω

2 =
1

2

(ω
ω
· Icm

ω

ω

)
ω2 =

1

2
ω · Icmω =

1

2
=

1

2
ω · Ls.

Intuitively, the translational kinetic energy is equal to the kinetic energy of the rigid
body assuming that all its mass was concentrated at its center of mass, and the rotational
kinetic energy is equal to the kinetic energy of the rigid body in the reference frame
centered at its center of mass.

§6.6 Work-energy principle

The work-energy principle relates the work done on a particle with the change in its
kinetic energy.

Theorem 6.6.1 (Work-energy principle for point particles)

The work done by all forces acting on a particle – that is, the work done by the net
force acting on the particle – equals the change in its kinetic energy; that is,

W = ∆Ek = (Ek)2 − (Ek)1 =
1

2
mv22 −

1

2
mv21.
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Proof. Suppose a force F causes an object to change from a speed v1 to a speed v2

between times t1 and t2. Similarly to the derivation of the kinetic energy formula, the
total work done on the object is

W =

∫ t2

t1

(
m
dv

dt

)
· vdt =

1

2
m

∫ t

0

d

dt
[v · v] dt

=
1

2
mv2 · v2 −

1

2
mv1 · v1 =

1

2
mv22 −

1

2
mv21.

The work-energy principle also holds for rigid bodies.

Theorem 6.6.2 (Work-energy principle)

The work done by all forces acting on a rigid body equals the change in its kinetic
energy; that is,

W = ∆Ek = (Ek)2 − (Ek)1 =

(
1

2
mv22 −

1

2
Iω2ω

2
2

)
−
(

1

2
mv21 −

1

2
Iω1ω

2
1

)
.

Proof. Since Icm is symmetric, ω × Icmα = α · Icmω. Thus,

ω · τ = ω · (Icmα+ω×Ls) = ω · Icmα+ω · (ω×Ls) = α · Icmω+ Ls · (ω×ω) = α ·Ls,
by Euler’s rotation equation, so

d

dt
[Ls · ω] = τ · ω + Ls ·α = 2τ · ω

by the product rule. Hence,

W =

∫ t2

t1

F · vcm + τ · ω dt

=

∫ t2

t1

macm · vcm dt+

∫ t2

t1

τ · ω dt

=
1

2
m

∫ t2

t1

d

dt
[vcm · vcm] dt+

1

2

∫ t2

t1

d

dt
[Ls · ω] dt

=

(
1

2
mv2 · v2 −

1

2
mv1 · v1

)
+

(
1

2
I2ω2 · ω2 −

1

2
I1ω1 · ω1

)
=

(
1

2
mv22 −

1

2
Iω2ω

2
2

)
−
(

1

2
mv21 −

1

2
Iω1ω

2
1

)
.

Remark 6.6.3 — In particular, the kinetic energy of a rigid body without any net
forces or net torques acting on it is constant throughout its trajectory.

Exercise 6.6.4. An object is thrown up into the air. If air resistance is not ignored, explain
why its speed upon return is always smaller than its initial speed.

§6.7 Mechanical energy

Prototypical example for this section: a roller coaster in the middle of its trajectory.

The mechanical energy of an object is the sum of its potential energies and its kinetic
energy.
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Theorem 6.7.1 (Conservation of mechanical energy)

The mechanical energy of a system is constant as long as the non-conservative forces
acting on it always act perpendicular to its direction of motion and exert no net
torque.

Proof. By the work-energy principle, a change in kinetic energy corresponds to work
done on the system by a force. Because the non-conservative forces are assumed to
exert no net torque and always act perpendicularly to the direction of motion, the non-
conservative forces do no work on the system by Corollary 6.1.3.

Now, the work-energy principle states that the change in kinetic energy equals the
work done on the object. Since the non-conservative forces do no work, only the work
done by conservative forces needs to be considered. For each conservative force, the work
done by the conservative force is equal to the decrease in potential energy associated
with the conservative force, by definition. Hence the work done – which is the increase
in potential energy – equals the decrease in potential energy.

The normal force and the tension force are non-conservative, but when they act per-
pendicularly to the direction of motion – such as in the case of an object moving on a
frictionless surface, or a string holding a swinging object – they never do work on an
object.

In a similar vein, we also have the following result.

Corollary 6.7.2 (Rolling without slipping conserves mechanical energy)

If an object is rolling without slipping and the only forces acting on the object are
friction, gravity, and the normal force, then mechanical energy is conserved.

Proof. When rolling without slipping, the friction force does no work because it is exerted
on a point on the rigid body with no velocity.

§6.8 Power

Power is the rate at which work is done; that is,

P =
dW

dt
.

Power is measured in joules per second, also known as watts, abbreviated “W”. One
watt can be expressed as

1 W = 1
J

s
= 1

kg ·m2

s3
.

§6.9 Elastic collisions

Prototypical example for this section: a bouncy ball.

An elastic collision is one in which the total mechanical energy of the system is
constant throughout the collision.



6 Energy 73

Corollary 6.9.1 (Elastic bouncing)

If an object bounces elastically off of a surface, then its speed before the collision
equals its speed after the collision, and its angle of incidence equals its angle of
reflection.

Proof. The easiest way to see this is to note that the component of velocity parallel to the
surface is fixed because the normal force the wall exerts on the object is perpendicular
to this component of velocity and thus cannot change it. Since energy is conserved, its
speed is constant, so the component of velocity perpendicular to the plane of the fixed
object must have the same magnitude before and after the collision, and its sign must
flip.

One-dimensional elastic collision problems are commonly found in an introductory
physics course.

Theorem 6.9.2 (One-dimensional elastic collision)

Suppose a block of mass m1 moving at signed speed v1 collides elastically with a
block of mass m2 moving at signed speed v2. Then their speeds after the collision
are

v′1 =
m1 −m2

m1 +m2
v1 +

2m2

m1 +m2
v2

v′2 =
2m1

m1 +m2
v1 +

m2 −m1

m1 +m2
v2.

Proof. By conservation of momentum,

m1v1 +m2v2 = m1v
′
1 +m2v

′
2.

By conservation of energy,

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

′2
1 +

1

2
m2v

′2
2 .

Solving for v′1 and v′2 gives the solutions

v′1 = v1, v′2 = v2

and

v′1 =
m1 −m2

m1 +m2
v1 +

2m2

m1 +m2
v2, v′2 =

2m1

m1 +m2
v1 +

m2 −m1

m1 +m2
v2.

Since the blocks are assumed to collide, the first solution is not valid, so the second
solution must be the resulting speeds of the blocks.

Exercise 6.9.3. Show that the elasticity of a collision does not depend on the reference
frame as long as the reference frame is inertial.
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§6.10 Inelastic collisions

Prototypical example for this section: a car crash.

An inelastic collision is a collision in which kinetic energy is not conserved. Most
everyday collisions are inelastic.

A perfectly inelastic collision is one in which the maximum amount of kinetic
energy is lost. Perfectly inelastic collisions can be characterized as those for which the
objects stick together after the collision.

Corollary 6.10.1 (Perfectly inelastic collision)

In a perfectly inelastic collision, the resulting velocities of every particle after the
collision is equal.

Proof. By conservation of momentum, ∑
i

mivi

is constant. Suppose that two particles m1 and m2 after the collision have different
velocities v1 and v2. If their velocities were both replaced by the velocity of their center
of mass m1v1+m2v2

m1+m2
(which is possible because momentum is conserved), then the kinetic

energy cannot increase, since

1

2
m1

∥∥∥∥m1v1 +m2v2

m1 +m2

∥∥∥∥2 +
1

2
m2

∥∥∥∥m1v1 +m2v2

m1 +m2

∥∥∥∥2 ≤ 1

2
m1 ‖v1‖2 +

1

2
m2 ‖v2‖2 ,

as the inequality is equivalent to

1

2

m1m2

m1 +m2
‖v2 − v1‖2 ≥ 0.

Since the inequality is tight only when v1 = v2, the least possible kinetic energy after
the collision occurs when the velocity of every point particle is the same.

§6.11 A few harder problems to think about

Problem 6A. An escalator can carry passengers up a vertical distance of 10 m in 30 s.
A mischievous person of mass 50 kg walks down the up-escalator so that they stay in
place with respect to the building. If the child does this for 30 s, determine the total
work the child performs on the escalator in the frame of the building.

Problem 6B. A cylindrical bucket of negligible mass has radius r and height h, and is
open at the top. It is submerged in water of density ρ, with its top a distance H below
the surface, as shown in Figure 6.1. How much work is needed to pull the bucket slowly
up so that its bottom is just above the lake surface?

Problem 6C. An object is thrown at a speed v and angle θ off a building with height
h. Determine its impact speed, in terms of v.

Problem 6D. A ball is launched straight toward the ground from height h. When it
bounces off the ground, it loses half of its kinetic energy. It reaches a maximum height
of 2h before falling back to the ground again. What was the initial speed of the ball?
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r

h

H

Figure 6.1: A submerged bucket.

Problem 6E. A uniform block of mass 10 kg is released at rest from the top of an
incline with length 10 m and inclination 30◦, and slides to the bottom. The coefficients
of static and kinetic friction are µs = µk = 0.1. How much energy is dissipated due to
friction?

Problem 6F. A 3.0 kg moving at 40 m
s to the right collides with and sticks to a 2.0 kg

mass traveling at 20 m
s to the right. Determine the kinetic energy of the system after

the collision.

Problem 6G. A mass of 3m moving at a speed v collides with a mass of m moving
directly towards it, also with a speed v. If the collision is completely elastic, the total
kinetic energy after the collision is Ke. If the two masses stick together, the total kinetic
energy after the collision is Ks. Determine Ke

Ks
.

Problem 6H. Three boxes A, B, and C lie along a straight line on a horizontal friction-
less surface, as shown in Figure 6.2. Box A is initially moving to the right with speed v
while the other two boxes are initially at rest. If all collisions are elastic and the masses
of the boxes can be chosen freely, what is smallest speed that must be greater than all
possible final speeds of box C?

A B C

Figure 6.2: Three boxes on a horizontal frictionless surface.

Problem 6I. A point particle is attached to the end of the massless rod of length l.
The other end of the rod is attached to a frictionless pivot. The object is raised so that
its height is 0.8l above the pivot, as shown in Figure 6.3. After the object is released
from rest, what is the tension in the rod when it is horizontal?

Problem 6J. A block of mass m is launched horizontally onto a curved wedge of mass
M at a velocity v, as shown in 6.4. What is the maximum height reached by the block
after it shoots off the vertical segment of the wedge? Assume all surfaces are frictionless.

Problem 6K. Two springs of spring constants k1 and k2, respectively, are connected
in series and stretched, as shown in Figure 6.5. What is the ratio of their potential
energies, U1

U2
?
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l
0.8l

Figure 6.3: A mass pivoting around a rod.

m
M

v

Figure 6.4: A block launched onto a curved wedge.

k1 k2

F

Figure 6.5: Two springs connected in series.
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Problem 6L. A pogo stick is modeled as a massless spring of spring constant k attached
to the bottom of a block of mass m, as shown in Figure 6.6. The pogo stick is dropped
wit the spring pointing downward and hits the ground with speed v. At the moment of
the collision, the free end of the spring sticks permanently to the ground. Determine the
maximum speed of the block.

m

k v

Figure 6.6: A pogo stick.





7 Periodic motion

A system is in periodic motion if its motion repeats after some fixed amount of time,
known as the system’s period. Periodicity is measured in seconds. The frequency of
a system in periodic motion is the reciprocal of its period and represents how often the
system’s motion oscillates per second. Frequency is measured in inverse seconds 1

s , also
known as hertz, abbreviated Hz.

§7.1 Simple harmonic oscillation

Prototypical example for this section: A mass attached to a spring.

Consider an object positioned in such a way that the force acting on it is always
proportional to and opposite in direction from its displacement, such as a block on a
surface attached to a spring, or a block hanging from a spring. Such a system is called
a harmonic oscillator.

Figure 7.1: A harmonic oscillator.

A system is in simple harmonic oscillation if no other forces, such as friction, act
on the object.

Theorem 7.1.1 (Period of simple harmonic oscillation)

Suppose an object with mass m is in simple harmonic oscillation and the constant
of proportionality between the restoring force and the object’s displacement is k.
Then the object oscillates with period

T = 2π

√
m

k
.

Proof. By Hooke’s law and Newton’s second law,

−kx = F = ma = m
d2x

dt2

79
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which gives the differential equation

d2x

dt2
+
k

m
x = 0.

The characteristic equation of this second-order linear differential equation, r2 + k
m = 0,

has roots ±i
√

k
m , so the general solution is

x = c1 cos

(√
k

m
t+ c2

)
ı̂ + c3 cos

(√
k

m
t+ c4

)
̂ + c5 cos

(√
k

m
t+ c6

)
k̂

for some constants c1, c2, c3, c4, c5, and c6, which is a sinusoidal wave with period

T = 2π

√
m

k
.

In particular, note that the position of the object is a sinusoidal wave, which implies
that the object’s velocity and acceleration are also sinusoidal.

Because the spring force is conservative, the total mechanical energy of a system in
simple harmonic oscillation is constant.

§7.2 Damped harmonic oscillation

Prototypical example for this section: A swinging door.

A system is in damped harmonic oscillation if another force, such as friction,
slows the motion of the system. Typically, the damping force is modeled as being
proportional to and in the opposite direction of the velocity of the object in the system;
this constant of proportionality is known as the viscous damping coefficient of the
system. Symbolically,

F = −kx− cv.

Theorem 7.2.1 (Damped harmonic oscillation)

Let
ζ =

c

2
√
mk

be the damping ratio of a damped harmonic oscillator with mass m. Then the
trajectory of the system is can be modeled as

• exponentially decaying to equilibrium without oscillating if ζ > 1, where larger
values of ζ indicate a slower return to equilibrium,

• exponentially decaying to equilibrium as quickly as possible if ζ = 1, and

• exponentially decaying with oscillation if ζ < 1, where the period of oscillation
is

2π

√
m

k (1− ζ2) .

Proof. By Newton’s second law,

ma + cv + kx = 0.
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The characteristic equation of this second-order linear differential equation, mr2 + cr +
k = 0, has roots

−c±
√
c2 − 4mk

2m
= − c

2m
±
√
k

m
(ζ2 − 1).

If ζ > 1, then the roots are distinct and real, so the general solution to the differential
equation is

x = c1e

(
− c

2m
+
√

k
m
(ζ2−1)

)
t
+ c2e

(
− c

2m
−
√

k
m
(ζ2−1)

)
t

for some vectors c1 and c2. This approximates exponential decay, and the rate of decay
decreases as ζ increases.

If ζ = 1, then the characteristic equation has a double root and the general solution is

x = (c1t+ c2)e
− c

2m
t

for some vectors c1 and c2. Because − c
2m < − c

2m +

√
k(ζ′2−1)

m for all ζ ′ > 1, the decay
for ζ = 1 is faster than the decay for ζ > 1.

Lastly, if ζ < 1, then the roots are non-real, so the general solution to the differential
equation is

x = e−
c

2m
t
(
c1 cos (ωt+ c2) ı̂ + c3 cos (ωt+ c4) ̂ + c5 cos (ωt+ c6) k̂

)
for some constants c1, c2, c3, c4, c5, and c6, where ω =

√
k
m(1− ζ2). This is an expo-

nentially decaying oscillation with period

2π

ω
= 2π

√
m

k (1− ζ2) .

§7.3 Simple gravity pendulum

Prototypical example for this section: A grandfather clock.

A pendulum is a object suspended from a pivot by a string or rod of fixed length.
When pushed, a pendulum oscillates because gravity exerts a restoring force on it. A
simple gravity pendulum is one for which the object is a point particle and the rod
is massless.

Theorem 7.3.1 (Simple gravity pendulum)

The period of a simple gravity pendulum with a length of l is given by

T ≈ 2π

√
l

g
,

where g is the gravity of the planet the pendulum is on.

Proof. Let θ be the signed angle between the rod and its equilibrium position. Then
the net force F acting on the pendulum is the component of the force FG exerted by
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θ

FG

FT

F

Figure 7.2: A pendulum.

gravity on the mass parallel to the direction of motion, since the tension force is directed
towards the rod and the direction of motion is always perpendicular to the rod. Thus,

ml

∣∣∣∣d2θdt2
∣∣∣∣ = m

∥∥∥∥d2xdt2
∥∥∥∥ = ‖F‖ = mg |sin θ| ≈ mg |θ|

by the small-angle approximation, which gives the differential equation

d2θ

dt2
+
g

l
θ ≈ 0,

since the net force on the pendulum is always in the opposite direction of its location.
The characteristic equation of this second-order linear differential equation, r2 + g

l = 0,

has roots ±i
√

g
l , so the general solution is

x ≈ c1 cos

(√
g

l
t+ c2

)
for some constant vectors c1 and c2, which is a sinusoidal wave with period

T ≈ 2π

√
l

g
.

Remark 7.3.2 — Due to the Taylor expansion for sin θ, the error in the period
formula is of order θ3.

§7.4 Compound pendulum

Prototypical example for this section: A swinging rod.

A compound pendulum is a rigid body, such as a rod with mass, free to rotate
about a fixed horizontal axis `.
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Theorem 7.4.1 (Compound pendulum)

The period of a simple gravity pendulum with mass m is

T ≈ 2π

√
I`
mgr

,

where I` is the moment of inertia about `, r is the distance from the center of mass
to `, and g is the gravity of the planet the pendulum is on.

Proof. By Corollary 4.7.2 and Corollary 4.4.2,

I`
d2θ

dθ2
= ‖τ‖ = mgr sin θ ≈ mgrθ

by the small-angle approximation, which gives the differential equation

d2θ

dt2
+
mgr

I`
θ ≈ 0,

since the net force on the pendulum is always in the opposite direction of its location.
The characteristic equation of this second-order linear differential equation, r2+mgr

I`
= 0,

has roots ±i
√

mgr
I`

, so the general solution is

x ≈ c1 cos

(√
mgr

I`
t+ c2

)
for some constant vectors c1 and c2, which is a sinusoidal wave with period

T ≈ 2π

√
I`
mgr

.

§7.5 Foucault pendulum

A Foucault pendulum is a pendulum designed to demonstrate the Earth’s rotation.
Foucault pendulums are typically found as science displays at museums and consist of
a large pendulum that swings for a long period of time. The plane in which a Foucault
pendulum oscillates in rotates very slowly throughout the course of a day due to the
Earth’s rotation.

Theorem 7.5.1 (Foucault pendulum)

The period of precession of the plane of oscillation of a Foucault pendulum is

T ≈ d

sinφ

where d is the length of a sidereal day and φ is the latitude of the pendulum.

Proof. Work in the reference frame fixing the Earth. The only fictitious forces acting on
the pendulum are the centrifugal force and the Coriolis force, and the centrifugal force
can be neglected because it is constant and can be treated as effectively changing the
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local gravity. Additionally, assume that the Foucault pendulum swings through a small
angle, so that its trajectory can be considered to be parallel to the ground.

The Coriolis force on the pendulum is

F = 2mv × ω,

where v is the velocity of the pendulum and ω is the rotation rate of the Earth. Since
the angle between v′ and ω is φ, the magnitude of the Coriolis force is

2m ‖v‖ ‖ω‖ sinφ,

and it points perpendicularly to the velocity of the pendulum, with direction flipping
depending on the direction of the swinging.

Now, the pendulum’s motion can be modeled as existing at the north pole of a imag-
inary planet whose angular speed is ‖ω‖ sinφ, since the Coriolis force on such a planet
exhibits the exact same property as the one acting on the pendulum on Earth.

Working in the inertial frame of reference containing the imaginary planet, it becomes
clear that the imaginary planet rotates under the pendulum, whose plane of oscillation
is fixed, once every 1

‖ω‖ sinφ days. Therefore, the plane of oscillation of the Foucault
pendulum rotates with a period of

1

‖ω‖ sinφ
=

d

sinφ
.

§7.6 Gyroscopic precession

Prototypical example for this section: A spinning top.

A gyroscope is a rapidly spinning object, typically a wheel or a spinning object,
mounted such that its axis of rotation is free to change.

Figure 7.3: A gyroscope.

The axis of rotation of a gyroscope itself rotates; this rotation is known as precession.
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Theorem 7.6.1 (Precession formula)

The period of precession of a gyroscope with mass m is

T ≈ 2π
Iω

mgr
,

where I is the moment of inertia around its spinning axis, ω is the angular speed
of the gyroscope around the spinning axis, and r is the distance from the center of
mass of the gyroscope to the fixed point.

Proof. Let θ be the tilt of the gyroscope. The magnitude of the torque exerted on the
gyroscope relative to the origin is

τ = mgr sin θ

by Corollary 4.4.2, and it points in a direction parallel to the ground and perpendicular to
the axis of rotation. Additionally, since ‖ω‖ is much larger than the speed of precession,

L ≈ Iω,

as the speed of precession can be neglected. Since the projection of angular momentum
onto the plane parallel to the ground has a magnitude of approximately

Iω sin θ

and torque is the derivative of angular momentum, the period of rotation is

T ≈ 2π
Iω sin θ

mgr sin θ
= 2π

Iω

mgr
.

§7.7 A few harder problems to think about

Problem 7A. A massless spring hangs from the ceiling, and a mass is hung from the
bottom of it. The mass is supported so that initially the tension in the spring is zero.
The mass is then suddenly released. At the bottom of its trajectory, the mass is 5
centimeters from its original position. Find its oscillation period.

Problem 7B. A mass m is hanging at the end of an ideal spring attached to a ceiling.
If the spring has spring constant k and the system has a period of T , find the maximum
speed of the mass.

Problem 7C. A mass m is glued inside a massless hollow rod of length ` at an unknown
location. When the rod is pivoted at one end, the period of small oscillations is T . When
the rod is pivoted at the other end, the period of small oscillations is 2T . How far is the
mass from the center?

Problem 7D. A mass m is attached to a thin rod of length ` so that it can freely spin
in a vertical circle with period T . Determine the difference in the tensions in the rod
when the mass is at the top and the bottom of the circle.

Problem 7E. Three identical masses are connected with identical rigid rods and pivoted
at point A, as shown in Figure 7.4. If the lowest mass receives a small horizontal push
to the left, it oscillates with period T1. If it instead receives a small push into the page,
it oscillates with period T2. Determine T1

T2
.



86 Physics Napkin, by Holden Mui

A

Figure 7.4: A compound pendulum with three masses.

Problem 7F. A uniform disk of mass m and radius r is attached at its edge to a flexible
pivot on the ceiling. It is given a small displacement perpendicular to the plane of the
disk so that it begins to oscillate perpendicular to the plane of the disk. What is its
period of oscillation?

Problem 7G. An object of mass 1 kg is attached to a platform of mass 4 kg with a
spring of spring constant 400 N

m , as shown in Figure 7.5. There is no friction between
the object and the platform, and the coefficient of static friction between the platform
and the ground is 0.1. The object is placed at its equilibrium position, and then given a
horizontal velocity v. For what values of v will the platform never slip on the ground?

M

m

v
k

Figure 7.5: A spring on a platform.

Problem 7H. A conical pendulum of length ` swings in a horizontal circle of radius r,
as shown in Figure 7.6. Determine the period of the pendulum.

Figure 7.6: A conical pendulum.

Problem 7I. Two particles with masses m1 and m2 are connected by a massless rigid
rod of length ` and placed on a horizontal frictionless table. At time t = 0, the first
mass receives an impulse perpendicular to the rod, giving it speed v. At this moment,
the second mass is at rest. Determine the next time the second mass is at rest.
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Problem 7J. A mass M sits on top of a vertical spring of spring constant k, in equi-
librium. A mass m is held a height h above it. The mass M is held a height h above it.
The mass M is then pushed downward by a distance x, and both masses are released
from rest simultaneously.

• For what value of h will the two masses first collide when M first returns to its
equilibrium position?

• Assume that h takes the value found in the previous question, and that the collision
between the two masses is perfectly elastic. For what value of x will m rebound
to a maximum height that is exactly equal to its original height?

Problem 7K. A rod passes perpendicularly to a solid, uniform disk of mass m and
radius r, and the disk is pushed by a small amount so that the disk starts oscillating.
Across all possible rod locations, what is the minimum period of the resulting pendulum?

Problem 7L. A simple pendulum has a length of l. If its mass is initially at the
bottommost position and is given a velocity of

√
4lg, will the pendulum ever reach the

uppermost position?





8 Celestial mechanics

Celestial mechanics is the branch of physics that deals with the motion of celestial
bodies in outer space, which are idealized as spheres with uniform density.

§8.1 Gravitational potential energy

Prototypical example for this section: An asteroid near Earth.

Gravity is conservative because the total work needed to move a particle from one point
to another point in the presence of a fixed mass located at the origin is independent of
the path taken, since the gravitational force is spherically symmetric and hence only
the distances from r1 and r2 to the origin matter; in particular, no work is gained from
motion perpendicular to the position vector. Thus, given an object with fixed mass, a
potential at each point can be assigned, known as the gravitational potential energy,
measured in joules.

Remark 8.1.1 — This value is different from the gravitational potential energy of
an object near Earth from Section 6.3. However, it should be clear from context
which gravitational potential energy to consider.

By convention, the gravitational potential energy between two particles that are in-
finitely far away is zero. Therefore, the gravitational potential energy of a system can be
thought of as the amount of work necessary to assemble its constituent parts, given that
the particles start infinitely far away from each other. In particular, the gravitational
potential energy of two particles m1 and m2 separated a distance r from each other is

Ug =

∫ r

∞

Gm1m2

r′2
dr′ = −Gm1m2

∫ ∞
r

1

r′2
dr′ = −Gm1m2

r
.

§8.2 Shell theorem

The shell theorem explains why the gravity of planets can be treated as originating
from a single point at its center.

Theorem 8.2.1 (Shell theorem for external objects)

A spherically symmetric body affects external objects gravitationally as if all of its
mass were concentrated at its center.

Proof. It suffices to assume that the spherically symmetric body is a uniform shell by
decomposing it into a union of disjoint, infinitesimally thin shells. Additionally, assume
that the shell has radius R, mass m1, and is centered at the origin. Lastly, assume that
the external object has mass m2 and lies on the positive x-axis at a distance r away
from the origin.

By Archimedes’ hat-box theorem, the mass of a vertical ring at with width dx is dx
2r′m1.

By the Pythagorean Theorem, the distance between the ring and the external object is√
r2 + r′2 − 2rx,

89
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r′

rx
θ

Figure 8.1: Proving the shell theorem, exterior case.

so the magnitude of the gravitational force exerted by an infinitesimal mass dm is

Gm2dm

r2 + r′2 − 2rx
.

However, only the x-component of the force needs to be considered, because the com-
ponent parallel to the yz-plane cancels out due to the symmetry of the ring. Thus, the
gravitational force exerted by the ring on the external object is

G dx
2r′m1m2

r2 + r′2 − 2rx
cos θ =

Gm1m2(r − x)

2r′ (r2 + r′2 − 2rx)
3
2

dx =
Gm1m2

2r′2
· c− u

(1− 2cu+ c2)
3
2

du,

where u = x
r′ and c = r

r′ > 1 for brevity. Since∫
c− u

(1− 2cu+ c2)
3
2

du =
cu− 1

c2
√

1− 2cu+ c2
+ C,

integrating force over all x between −r′ and r′ – or equivalently, over all u between −1
and 1 – gives

‖Fg‖ =
Gm1m2

2r′2

∫ 1

−1

c− u
(1− 2cu+ c2)

3
2

du

=
Gm1m2

2r′2

(
c− 1

c2
√

1− 2c+ c2
− −c− 1

c2
√

1 + 2c+ c2

)
=
Gm1m2

r2

using the fact that c > 1, which is the gravitational force as if the body’s mass were
concentrated as its center.

Theorem 8.2.2 (Shell theorem for internal objects)

No net gravitational force is exerted by a uniform spherical shell on any object
inside.

Proof. Let P be a point particle inside the shell, and partition the sphere into infinitesi-
mally small regions dA. For each region dA, let dA′ be the region obtained by projecting
dA through P onto the other side of the shell; it suffices to show that the combined net
force exerted by dA and dA′ on P is zero.
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dA

dA′P

Figure 8.2: Proving the shell theorem, interior case.

Since the cone with base dA and apex P is similar to the cone with base dA′ and apex
P , the ratio of the areas of dA and dA′ is equal to the square of the ratio of the distances
from P to dA and dA′. Since gravitational force is proportional to mass and inversely
proportional to the square of the distance, the force exerted by dA on P is equal in
magnitude and opposite in direction to the force exerted by dA′ on P , as desired.

Corollary 8.2.3 (Gravitational force inside planet)

Inside an ideal celestial body, the gravitational force on an object is proportional to
its distance from the center.

Proof. Let r be the distance from the object to the center of the celestial body. By the
shell theorem, only the mass within r of the center contributes to the gravitational force.
Since gravitational force is inverse quadratic with distance but volume varies cubically,
the gravitational force varies linearly with r.

§8.3 Circular orbits

Suppose a planet with mass m is orbiting a star with mass M in a circle with radius r.
Then for all points on the orbit,

GMm

r2
= ‖F‖ =

mv2

r
,

by the centripetal acceleration formula. Solving for v gives

v =

√
GM

r
.

Thus, the orbital period of a planet in a circular orbit is the ratio of the circle’s circum-
ference to its speed, which is

T =
2πr
√
GM
r

= 2π

√
r3

GM
.
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The virial theorem gives a relationship between a planet’s kinetic energy and its
gravitational potential energy in circular motion.

Theorem 8.3.1 (Virial theorem)

The kinetic energy of a planet in a circular orbit is half the magnitude of its gravi-
tational potential energy; that is,

Uk = −1

2
Ug.

Proof. Let r be the radius of the planet’s orbit, and let m be the planet’s mass. Then
by the kinetic energy formula,

Uk =
1

2
mv2 =

1

2
· GMm

r
= −1

2
Ug,

which is half of the gravitational potential energy of the planet.

§8.4 Kepler’s second law of planetary motion

Kepler’s second law informally states that a planet sweeps out equal areas in equal
times.

F

Figure 8.3: Kepler’s second law.

Theorem 8.4.1 (Kepler’s second law)

The line segment connecting a planet and the star it orbits sweeps out an area
proportional to the duration of the time interval.

Proof. Since the mass of the star M is much larger than the mass of the planet m, the
Sun’s position can be assumed to be constant and centered at the origin. The area swept
out in an infinitesimal time period dt is

1

2
‖r× v‖ dt =

1

2

∥∥∥∥L

m

∥∥∥∥ dt,
so integrating over a time period t gives the area as

‖L‖
2m

t.
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Since the net force on the planet is directed towards the star, no net torque is exerted on
the planet. L is constant by conservation of angular momentum, so area is proportional
to time.

Remark 8.4.2 — Note that the inverse-square property of gravity is never used;
only the fact that no net torque is exerted is.

§8.5 Kepler’s first law of planetary motion

Kepler’s first law states that the shapes of all orbits are ellipses.

Theorem 8.5.1 (Kepler’s first law)

The trajectory of a planet is an ellipse with the star it orbits at one of its foci.

Proof. Since the mass of the star M is much larger than the mass of the planet m, the
Sun’s position can be assumed to be constant and centered at the origin. By Newton’s
law of universal gravitation,

a =
F

m
= −GM
‖x‖2

x

‖x‖ .

Since angular momentum is constant by Kepler’s second law,

d

dt
[v × L] = a× L

= −GM
‖x‖2

x

‖x‖ × (x×mv)

= −GMm
(x · v)x− (x · x)v

‖x‖3

= GMm

(√
x · x

)
v − x√

x·xx · v
x · x

= GMm
d

dt

[
x√
x · x

]
.

Therefore,

v × L = GMm
x

‖x‖ + c

for some constant vector c. Finally,

‖L‖2 = L · L = m(x× v) · L = mx · (v × L)

= mx ·
(
GMm

x

‖x‖ + c

)
= GMm2 ‖x‖+m ‖x‖ ‖c‖ cos θ,

where θ is the angle between x and the constant vector c. Solving for ‖x‖ gives

‖x‖ =
‖L‖2

GMm2 +m ‖c‖ cos θ
=

‖L‖2
GMm2

1 + ‖c‖
GMm cos θ

,

which is the polar equation of a conic with eccentricity ‖c‖
GMm and semi-latus rectum

‖L‖2
GMm2 . If the planet does indeed orbit, the conic must be an ellipse.
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The point for which the orbit of a planet around the Sun is closest to the Sun is the
planet’s perihelion, and the point for which the orbit is farthest from the Sun is the
planet’s aphelion. Similarly, the point for which the orbit of a satellite around the
Earth is closest to the Earth is the satellite’s perigee, and the point for which the orbit
is farthest from the Earth is the satellite’s apogee. In general, such extreme points are
referred to as apsides.

Fperihelion aphelion

Figure 8.4: A planet’s perihelion and aphelion.

§8.6 Kepler’s third law of planetary motion

Kepler’s third law gives a relationship between a planet’s period and the semi-major
axis of its orbit.

Theorem 8.6.1 (Kepler’s third law)

The square of a planet’s orbital period is proportional to the cube of the length of
the semi-major axis of its orbit.

Proof. Let a be the semimajor axis of the ellipse guaranteed by Kepler’s first law. The

semi-latus rectum of the ellipse is ‖L‖2
GMm2 by the proof of Kepler’s first law, so it satisfies

(2ae)2 +

(
‖L‖2
GMm2

)2

=

(
2a− ‖L‖2

GMm2

)2

by the Pythagorean theorem, where e is the eccentricity of the ellipse.

2a− ||L||2
GMm2

2ae

||L||2
GMm2

F

Figure 8.5: Proving Kepler’s third law.
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Simplifying gives

1− e2 =
‖L‖2

GMm2a
.

Lastly, Kepler’s second law gives

‖L‖
2m

T = πa2
√

1− e2 = πa2

√
‖L‖2

GMm2a
=

π ‖L‖
m
√
GM

a
3
2 ,

using the ellipse area formula, so

T 2 =
4π2

GM
a3.

§8.7 Two-body problem

The two-body problem is the problem of determining the trajectories of two celestial
bodies given that they only interact through gravity. It turns out that both celestial
bodies will end up orbiting their center of mass elliptically.

Figure 8.6: Two celestial bodies orbiting each other.

To prove this, consider two celestial bodies with masses m1 and m2 that orbit each
other with trajectories x1 and x2. By Newton’s second and third laws,

d2

dx2
[x2 − x1] =

F2

m2
− F1

m1
=

(
1

m1
+

1

m2

)
F2 = − x2 − x1

‖x2 − x1‖
G(m1 +m2)

‖x2 − x1‖2

so the displacement between the planets satisfies the differential equation analogous to
the one that sets up the proof of Kepler’s first law. Hence, the displacement vector, by
Kepler’s first law, traces out an ellipse.

By conservation of momentum, the center of mass of the two celestial bodies moves at
a constant velocity. Since the masses of the two bodies are constant, their center of mass
is always at a constant location relative to their displacement vector. By homothety,
this implies that both bodies orbit elliptically around their center of mass.

Remark 8.7.1 — In particular, note that the orbits, relative to their center of
mass, are confined to a plane.
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§8.8 A few harder problems to think about

Problem 8A. A satellite is in a circular orbit around the Earth. Over a long period of
time, the effects of air resistance decrease the satellite’s total energy by 1 J. How does
the kinetic energy of the satellite change?

Problem 8B. A planet is orbiting a star in a circular orbit of radius r. Over a very long
period of time, much greater than the period of the orbit, the star slowly and steadily
loses 1% of its mass. Throughout the process, the planet’s orbit remains approximately
circular. The final orbit radius is kr for some real number k. Determine k to the nearest
hundredth.

Problem 8C. A satellite is following an elliptical orbit around the Earth, as shown in
8.7. Its engines are capable of providing a one-time impulse of a fixed magnitude. To
maximize the energy of the satellite, where and in what direction should the impulse be
applied?

Earthperigee apogee

Figure 8.7: A satellite’s orbit around the Earth.

Problem 8D. Two planets A and B has masses mA = 2mB. They orbit a star in
circular orbits of radii rA = 3rB. Compair the planets’ kinetic energies, as well as their
angular momenta.

Problem 8E. A very long cylinder of dust is spinning about its axis with constant
angular velocity. Let r be the distance from the axis. If the dust is only held together
by gravity, the density of the dust is proportional to rk for some integer k. Determine
k.

Problem 8F. Two satellites are initially in identical circular orbits around the Sun, with
orbital speed 1×104 m

s . The first satellite fires its thrusters toward the Sun, and quickly
obtains a radial velocity of 1 m

s . The second satellite instead fires its thrusters behind
it, and quickly increases its tangential velocity by ∆v. If the two satellites subsequently
perform orbits with the same period, determine ‖∆v‖ to one significant digit.

Problem 8G. A spherical cloud of dust has uniform mass density ρ and radius R.
Satellite A of negligible mass is orbiting the cloud at its edge, in a circular orbit of
radius R, and satellite B is orbiting the cloud just inside the cloud, in a circular orbit
of radius r, with r < R. Compare the periods of A and B, as well as their speeds.

Problem 8H. A cavity of radius r
2 is dug out of a spherical planet with uniform mass

density of mass m and radius r. What is the magnitude of the gravitational field at
point P in Figure 8.8?
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P

r
r
2

Figure 8.8: A planet with a cavity.

Problem 8I. A particle of mass m is placed at the center of a hemispherical shell of
radius r and mass density σ, which has units kg

m2 , as shown in Figure 8.9. Determine the
gravitational force of the shell on the particle.

m
r

σ

Figure 8.9: A hemispherical shell.

Problem 8J. Spaceman Fred’s trusty pellet sprayer is held at rest a distance h away
from the center of Planet Orb, which has radius r much less than h. The pellet sprayer
ejects pellets radially outward, uniformly in the plane of the page, as shown in Figure
8.10. These pellets are all launched with the same speed v, so that a pellet launched
directly away from Orb by the pellet sprayer can just barely escape it. What fraction of
the pellets eventually lands on Orb? You may use the small angle approximation.

Problem 8K. Two satellites are in circular orbits around a star with equal radius r,
speed v, and period T . The satellites are initially diametrically opposite each other. In
order to meet the second satellite in time 1

2T , the first satellite should decrease its speed
to kv, for some real constant k. Find k.

Problem 8L. Consider two identical masses that interact only by gravitational attrac-
tion to each other. If one mass is fixed in place and the other is released from rest, then
the two masses collide in time T . Determine the time it takes for them to collide if both
masses are released from rest.

Problem 8M. A straight tunnel is dug between two cities on Earth’s surface, and a
frictionless train rolls from one city to the other city. Prove that the duration of the ride
does not depend on the choice of cities.
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r

h

Figure 8.10: A pellet sprayer.
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A Glossary of notations

This is a list of conventions used in this document.

§A.1 General

By convention, boldface variables represent vectors and non-boldface variables represent
scalars. All axioms of physics are defined as laws in the text, and all derived facts are
listed as theorems, corollaries, or propositions. In particular, results are listed in the
order of significance

law > theorem > corollary > proposition.

§A.2 Mathematics

• V : vector space

• R: real numbers

• ‖•‖: magnitude

• ·: dot product

• ×: cross product

• proj: projection

• •>: transpose

• [•]×: matrix cross product operator

• ı̂: unit vector in the x-direction

• ̂: unit vector in the y-direction

• k̂: unit vector in the z-direction

• n̂: generic unit vector

• 0: zero vector

• λ: eigenvalue

• θ: polar angle

• ϕ: azimuthal angle

• r: radius

• s: radius

• i: square root of -1

• c: constant

101
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• C: constant

• c: constant

• A: area

• P : point

• e: Euler’s constant

• e: eccentricity

§A.3 Units

Abbreviation for units is as follows:

• m: meter

• s: second

• kg: kilogram

• N = kg·m
s2

: newton

• J = kg·m2

s2
: joule

• W = kg·m2

s3
: watt

• C: coulomb

§A.4 Diagrams

Diagram conventions for classical mechanics are as follows.

• The ground is light green

• The ceiling is cyan

• Generic objects are light gray

• Auxiliary objects are orange

• Generic solids are white

• Force vectors are dark blue arrows

• Velocity vectors are black arrows

• Ramps are light blue triangles

• Walls are dark red

• Ideal strings are red line segments

• Rods are black line segments

• Pulleys are light pink circles

• Springs are olive zigzags
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§A.5 Classical mechanics

Kinematics notation is as follows.

• t: time (s)

• x: position (m)

• v: velocity
(
m
s

)
• v: speed

(
m
s

)
• a: acceleration

(
m
s2

)
• aT : tangential acceleration

(
m
s2

)
• aC : centripetal acceleration

(
m
s2

)
• ω: angular speed

(
rad
s = 1

s

)
• r: radius (m)

• θ: angular displacement (rad = unitless)

• α: angular acceleration
(
rad
s2

= 1
s2

)
• T : period (s)

• ω: angular velocity
(
rad
s = 1

s

)
• α: angular acceleration

(
rad
s2

= 1
s2

)
• m: mass (kg)

Force notation is as follows.

• F: force
(

N = kg·m
s2

)
• G: gravitational constant

(
≈ 6.674 N·m2

kg2
= 6.674× 10−11 m3

kg·s2
)

• g gravity of Earth
(
≈ 9.807 N

m = 9.807 m
s2

)
• Fg: gravitational force

(
N = kg·m

s2

)
• FN : normal force

(
N = kg·m

s2

)
• Ff : frictional force

(
N = kg·m

s2

)
• µk: coefficient of kinetic friction (unitless)

• µs: coefficient of static friction (unitless)

• FT : tension force
(

N = kg·m
s2

)
• Fs: spring force

(
N = kg·m

s2

)
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• k: spring constant
(

N
m = kg

s2

)
• FD: drag force

(
N = kg·m

s2

)
• ρ: density

(
kg
m3

)
• A: area (m2)

• CD: drag coefficient (unitless)

Linear dynamics notation is as follows.

• xcm: position of center of mass (m)

• vcm: velocity of center of mass
(
m
s

)
• acm: acceleration of center of mass

(
m
s2

)
• p: momentum

(
kg·m
s

)
• J: impulse

(
kg·m
s

)
• vt: terminal velocity

(
m
s

)
Rotational dynamics notation is as follows.

• `: axis

• r: distance to axis (m)

• I`: moment of inertia about ` (kg ·m2)

• l: length (m)

• P: plane

• I: moment of inertia tensor (kg ·m2)

• Icm: moment of inertia tensor with respect to center of mass (kg ·m2)

• x0: position (m)

• τ : torque
(

N ·m = kg·m2

s2

)
• x′: relative position (m)

• p′: relative momentum
(
kg·m
s

)
• L: angular momentum

(
kg·m2

s

)
• Ls: spin angular momentum

(
kg·m2

s

)
• Ibody: moment of inertia tensor in a reference frame fixing the rigid body (kg ·m2)

• r: position relative to a point on an axis (m)
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Energy notation is as follows.

• W : work
(

J = N ·m = kg·m2

s2

)
• U : potential energy

(
J = N ·m = kg·m2

s2

)
• Ug: gravitational potential energy

(
J = N ·m = kg·m2

s2

)
• h: height (m)

• Us: spring potential energy
(

J = N ·m = kg·m2

s2

)
• Ek: kinetic energy

(
J = N ·m = kg·m2

s2

)
• Et: translational kinetic energy

(
J = N ·m = kg·m2

s2

)
• Er: rotational kinetic energy

(
J = N ·m = kg·m2

s2

)
• P : power

(
W = J

s = kg·m2

s3

)
Oscillation notation is as follows.

• c: viscous damping coefficient
(

N
m
s

= kg
s

)
• ζ: damping ratio (unitless)

• φ: latitude (rad = unitless)

Celestial mechanics notation is as follows.

• Ug: gravitational potential energy
(

J = N ·m = kg·m2

s2

)


	Contents
	Introduction
	Acknowledgments

	Classical Mechanics
	Kinematics
	Time
	Position
	Velocity
	Speed
	Acceleration
	Tangential and centripetal acceleration
	Circular motion
	Orbital angular velocity
	Spin angular velocity
	Spin angular acceleration
	Mass
	A few harder problems to think about

	Force
	Gravity
	Normal force
	Friction
	Tension force
	Spring force
	Drag
	Buoyant force
	Newton's third law
	Reference frames
	Newton's first law
	A few harder problems to think about

	Linear dynamics
	Systems
	Momentum
	Newton's second law
	Impulse
	Projectile motion
	Atwood machine
	Terminal velocity
	Tsiolkovsky rocket equation
	A few harder problems to think about

	Rotational dynamics
	Moment of inertia
	Moment of inertia tensor
	Parallel axis theorem
	Torque
	Angular momentum
	Euler's second law
	Fixed-axis rotation
	Principal axes
	A few harder problems to think about

	Fictitious forces
	Rectilinear acceleration
	Centrifugal force
	Coriolis force
	Euler force
	A few harder problems to think about

	Energy
	Work
	Conservative forces
	Gravitational potential energy near Earth
	Spring potential energy
	Kinetic energy
	Work-energy principle
	Mechanical energy
	Power
	Elastic collisions
	Inelastic collisions
	A few harder problems to think about

	Periodic motion
	Simple harmonic oscillation
	Damped harmonic oscillation
	Simple gravity pendulum
	Compound pendulum
	Foucault pendulum
	Gyroscopic precession
	A few harder problems to think about

	Celestial mechanics
	Gravitational potential energy
	Shell theorem
	Circular orbits
	Kepler's second law of planetary motion
	Kepler's first law of planetary motion
	Kepler's third law of planetary motion
	Two-body problem
	A few harder problems to think about


	Appendix
	Glossary of notations
	General
	Mathematics
	Units
	Diagrams
	Classical mechanics



	fd@output-56: 
	fd@output-53: 
	fd@output-37: 
	fd@output-36: 
	fd@output-35: 
	fd@output-34: 


