Vieta's Formulae

Holden Mui

Name: _____

Date: _____

Vieta's formulae are formulae that relate the coefficients of a singlevariable polynomial to certain sums of products of its roots. They can be used to evaluate symmetric expressions involving the roots of a given polynomial.

Vieta's Formulae. Suppose the polynomial

$$a_n x^n + a_{n-1} x^{n-1} + \ldots + a_2 x^2 + a_1 x + a_0$$

has roots r_1, r_2, \ldots, r_n , counted with multiplicity. Then

$$\sum_{1 \le i_1 < i_2 < \dots < i_k \le n} \prod_{j=1}^k r_{i_j} = (-1)^k \frac{a_{n-k}}{a_n}$$

for every integer k between 1 and n, inclusive. That is,

$$r_{1} + r_{2} + \ldots + r_{n-1} + r_{n} = -\frac{a_{n-1}}{a_{n}}$$

$$r_{1}r_{2} + r_{1}r_{3} + \ldots + r_{n-1}r_{n} = \frac{a_{n-2}}{a_{n}}$$

$$\vdots$$

$$r_{1}r_{2} \ldots r_{n} = (-1)^{n}\frac{a_{0}}{a_{n}}.$$

Vieta's Formulae for Quadratics. Suppose the quadratic $a^2 + bx + c$ has roots r_1 and r_2 . Then $r_1 + r_2 = \frac{-b}{a}$

and

$$r_1 r_2 = \frac{c}{a}.$$

Vieta's Formulae for Cubics. Suppose the cubic $ax^3 + bx^2 + cx + d$ has roots r_1 , r_2 , and r_3 . Then

$$r_1 + r_2 + r_3 = \frac{-b}{a}$$
$$r_1 r_2 + r_1 r_3 + r_2 r_3 = \frac{c}{a}$$
$$r_1 r_2 r_3 = \frac{-d}{a}.$$

Example 1. If r and s are the roots of the quadratic $x^2 - 4x + 9$, find r + s, rs, and $r^2 + s^2$.

Example 2. Let r, s, and t be the roots of $x^3 - 6x^2 + 5x - 7$. Find

$$\frac{1}{r^2} + \frac{1}{s^2} + \frac{1}{t^2}$$

Example 3. The roots r_1 , r_2 , and r_3 of $x^3 - 2x^2 - 11x + a$ satisfy

$$r_1 + 2r_2 + 3r_3 = 0.$$

Find all possible values of a.

Example 4. Let r, s, and t be the roots of $x^3 - 3x^2 + 1$.

- Find a polynomial whose roots are r + 3, s + 3, t + 3.
- Find a polynomial whose roots are $\frac{1}{r+3}$, $\frac{1}{s+3}$, and $\frac{1}{t+3}$.
- Compute

$$\frac{1}{r+3} + \frac{1}{s+3} + \frac{1}{t+3}.$$

Example 5. If the polynomial $x^4 + 3x^3 + 11x^2 + 9x + A$ has roots k, l, m, n such that kl = mn, find A.

Problems

Problem 1. Let r and s be the roots of $x^2 + 3x + 1$. Find

$$\frac{r}{s} + \frac{s}{r}.$$

Problem 2. Let r, s, and t be the roots of $5x^3 - 11x^2 + 7x + 3$. Evaluate

$$r(1+s+t) + s(1+t+r) + t(1+r+s).$$

Problem 3. The sum of the reciprocals of the roots of $3x^2 + 7x + k$ is $\frac{7}{3}$. Find k.

Problem 4. Suppose r, s, and t are the roots of $x^3 - 2x^2 + 3x - 4$. Find (r+1)(s+1)(t+1).

Problem 5. Three of the roots of $x^4 + ax^2 + bx + c$ are 2, -3, and 5. Find the value of a + b + c.

Problem 6. If the roots of $3x^3 - 14x^2 + x + 62$ are r, s, and t, determine

$$\frac{1}{r+4} + \frac{1}{s+4} + \frac{1}{t+4}.$$

Problem 8. Let a and b be the roots of $x^2 - mx + 2$. Suppose that $a + \frac{1}{b}$ and $b + \frac{1}{a}$ are the roots of the equation $x^2 - px + q = 0$. Find q.

Problem 9. Let a and b be complex numbers satisfying

$$a^2 + b^2 = 5$$

 $a^3 + b^3 = 7.$

Find the maximum possible value of a + b.

Problem 10. Suppose that the roots of $x^3 + 3x^2 + 4x - 11$ are a, b, and c, and that the roots of $x^3 + rx^2 + sx + t = 0$ are a + b, b + c, and c + a. Find t.

Problem 11. For nonzero constants c and d, the equation

$$4x^3 - 12x^2 + cx + d$$

has two solutions which add to zero. Find $\frac{d}{c}$.

Problem 12. Let x_1 and x_2 be the roots of $x^2 + 3x + 1 = 0$. Compute

$$\left(\frac{x_1}{x_2+1}\right)^2 + \left(\frac{x_2}{x_1+1}\right)^2.$$

Problem 13. Let x, y, and z be three distinct complex numbers satisfying

$$x^{3} + 5y + 5z = y^{3} + 5x + 5z = z^{3} + 5x + 5y = 5.$$

What is $x^2 + y^2 + z^2$?

Problem 14. Given that

$$x + y + z = 1$$

$$x^{2} + y^{2} + z^{2} = 3$$

$$x^{3} + y^{3} + z^{3} = 7,$$

find $x^5 + y^5 + z^5$.

Problem 15. Determine all real numbers a for which

$$16x^4 - ax^3 + (2a + 17)x^2 - ax + 16 = 0$$

has exactly four distinct real roots that form a geometric progression.

Challenge Problems

Challenge 1. Determine all solutions (x, y, z) to

$$x + y + z = 3$$

 $x^{2} + y^{2} + z^{2} = 3$
 $x^{3} + y^{3} + z^{3} = 3.$

Challenge 2. The product of two of the four roots of

$$x^4 - 18x^3 + kx^2 + 200x - 1984$$

is -32. Find k.

Challenge 3. The real numbers w, a, b, c are distinct, such that there exist real numbers x, y, and z satisfying

$$x + y + z = 1$$

$$xa2 + yb2 + zc2 = w2$$

$$xa3 + yb3 + zc3 = w3$$

$$xa4 + yb4 + zc4 = w4.$$

Express w in terms of a, b, c.

Challenge 4. Find all polynomials whose coefficients are either -1 or 1 and have all real roots.

Challenge 5. Let a and b be positive integers such that

$$\frac{a^2 + b^2}{ab + 1}$$

is an integer. Prove that it is a square number.