Prime Factorization

Holden Mui

Name:	

Date: _____

The *prime factorization* of a positive integer is its expression as a product of primes. Prime factorizations can be used to compute the number of divisors of a positive integer, as well as the sum of its divisors.

When factoring large integers, identities such as a difference or sum of n^{th} powers and the Sophie Germain identity are helpful. When solving problems involving the divisors of an integer n, it is helpful to visualize the divisors as entries of an k-dimensional grid, where k is the number of distinct prime divisors of n.

Number of divisors formula. Prove that the number of divisors of a positive integer $n = 2^{e_1} \cdot 3^{e_2} \cdot 5^{e_3} \cdot \ldots$ is

$$(e_1+1)(e_2+1)(e_3+1)\dots$$

Sum of divisors formula. Prove that the sum of the divisors of a positive integer $n = 2^{e_1} \cdot 3^{e_2} \cdot 5^{e_3} \cdot \ldots$ is

$$(1+2+2^2+\ldots+2^{e_1})(1+3+3^2+\ldots+3^{e_2})(1+5+5^2+\ldots+5^{e_3})\ldots$$

Difference of powers. Let x and y be real numbers and n be a positive integer. Then

$$x^{n} - y^{n} = (x - y) \left(x^{n-1} + x^{n-2}y + \ldots + xy^{n-1} + y^{n} \right)$$

Sum of powers. Let x and y be real numbers and n be an odd positive integer. Then

$$x^{n} + y^{n} = (x + y) \left(x^{n-1} - x^{n-2}y + \dots - xy^{n-1} + y^{n} \right)$$

Sophie Germain identity. Let x and y be real numbers. Then

$$x^{4} + 4y^{4} = (x^{2} + 2xy + 2y^{2})(x^{2} - 2xy + 2y^{2}).$$

Example 1. How many positive two-digit integers are factors of $2^{24} - 1$?

Example 2. Find the probability that a randomly chosen positive divisor of 10^{99} is an integer multiple of 10^{88} .

Example 3. Let $N = 34 \cdot 34 \cdot 63 \cdot 270$. What is the ratio of the sum of the odd divisors of N to the sum of the even divisors of N?

Example 4. Let *n* be the smallest positive integer that is a multiple of 75 and has exactly 75 positive integral divisors, including 1 and itself. Find $\frac{n}{75}$.

Example 5. Let d(n) denote the number of divisors of n, and let

$$f(n) = \frac{d(n)}{\sqrt[3]{n}}.$$

Find the unique positive integer N such that f(N) > f(n) for all positive integers $n \neq N$.

1 Problems

Problem 1. Find the prime factorization of 159999.

Problem 2. The number 21! = 51,090,942,171,709,440,000 has over 60,000 positive integer divisors. One of them is chosen at random. What is the probability that it is odd?

Problem 3. For some positive integer n, the number $110n^3$ has 110 positive integer divisors, including 1 and the number $110n^3$. How many positive integer divisors does the number $81n^4$ have?

Problem 4. Find the number of ordered pairs of positive integers (m, n) such that $m^2n = 20^{20}$.

Problem 5. What is the smallest positive integer with six positive odd integer divisors and twelve positive even integer divisors?

Problem 6. What is the largest 2-digit prime factor of $\binom{200}{100}$?

Problem 8. Find the sum of the squares of the divisors of 210.

Problem 9. Let S be the set of positive integer divisors of 20^9 . Three numbers are chosen independently and at random with replacement from the set S and labeled a_1, a_2 , and a_3 in the order they are chosen. Find the probability that both a_1 divides a_2 and a_2 divides a_3 .

Problem 10. Define the function f_1 on the positive integers by setting $f_1(1) = 1$ and if $n = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$ is the prime factorization of n > 1, then

$$f_1(n) = (p_1+1)^{e_1-1}(p_2+1)^{e_2-1}\cdots(p_k+1)^{e_k-1}.$$

For every $m \ge 2$, let $f_m(n) = f_1(f_{m-1}(n))$. For how many Ns in the range $1 \le N \le 400$ is the sequence $(f_1(N), f_2(N), f_3(N), \dots)$ unbounded?

Problem 11. For how many integers n between 1 and 50, inclusive, is

$$\frac{(n^2-1)!}{(n!)^n}$$

an integer?

Problem 12. Find the largest prime factor of $13^4 + 16^5 - 172^2$, given that it is the product of three distinct primes.

Challenge Problems

Challenge 1. Prove that

$$\frac{\gcd(a,b,c)^2}{\gcd(a,b)\gcd(a,c)\gcd(b,c)} = \frac{\operatorname{lcm}(a,b,c)^2}{\operatorname{lcm}(a,b)\operatorname{lcm}(a,c)\operatorname{lcm}(b,c)}.$$

Challenge 2. Prove that

$$(n+1) \cdot \operatorname{lcm}\left(\binom{n}{0}, \binom{n}{1}, \dots, \binom{n}{n}\right) = \operatorname{lcm}(1, 2, \dots, n+1).$$

Challenge 3. Let s_n be the smallest positive integer with exactly n divisors. Prove that s_{2^k} is a factor of $s_{2^{k+1}}$ for all positive integers k.