Vieta's Formulas

Ben Kang, Holden Mui, Mark Saengrungkongka

Name:			
ъ.			
Date:			

Vieta's formulas give a way of relating the roots of a polynomial with its coefficients. The formulas can be used to solve problems involving the roots of a polynomial, without determining what the roots actually are.

Problem 1. Let a and b be the two roots of the quadratic $2x^2 - 4x - 9$. Use the quadratic formula to find:

(a)
$$a+b$$

(c)
$$a^2 + b^2$$

Problem 2 (Vieta's Formula for quadratic polynomials). Let a, b, and c be real numbers such that $a \neq 0$, and let the quadratic expression $ax^2 + bx + c$ have roots r and s. Prove that $r + s = -\frac{b}{a}$ and $rs = \frac{c}{a}$.

Problem 3. Let a and b be the two roots of the quadratic $2x^2 - 4x - 9$. Use Vieta's formula to find:

- (a) a+b
- (b) *ab*
- (c) $a^2 + b^2$
- (d) (a+1)(b+1)

Problem 4. Let r and s be the two roots of the quadratic $x^2 - 7x + 5$. Find:

(a) $(r-s)^2$

(b)
$$(r^2-1)(s^2-1)$$

(c)
$$\frac{1}{r} + \frac{1}{s}$$

(d)
$$\frac{1}{r^2} + \frac{1}{s^2}$$

Problem 5. Let r and s be the two roots of the quadratic $x^2 + 2x - 4$. Find:

(a)
$$r^2 + s^2$$

(b)
$$r^3 + s^3$$

(c)
$$r^4 + s^4$$

(d)
$$\frac{1}{r} + \frac{1}{s}$$

(e)
$$\frac{1}{r^2} + \frac{1}{s^2}$$

(f)
$$\frac{1}{r^3} + \frac{1}{s^3}$$

Problem 6 (Vieta's formula for cubic polynomials). Let a, b, c, and d be real numbers for which $a \neq 0$, and suppose the cubic $ax^3 + bx^2 + cx + d$ has roots r, s, and t. Prove that:

$$r + s + t = -\frac{b}{a}$$

$$rs + rt + st = \frac{c}{a}$$

$$rst = -\frac{d}{a}.$$

Problem 7. Let a, b, and c be the three roots of the cubic $8x^3 - 10x^2 - 25x + 15$. Find:

(a)
$$a + b + c$$

(b)
$$ab + ac + bc$$

(c)
$$abc$$

(d)
$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

(e)
$$a(1+b+c) + b(1+c+a) + c(1+a+b)$$

(f)
$$(a+1)(b+1)(c+1)$$

Problem 8. Let r, s, and t be the three roots of the cubic $x^3 - 2x^2 - 3x + 4$. Find:

(a)
$$r^2 + s^2 + t^2$$

(b)
$$r^3 + s^3 + t^3$$

(c)
$$\frac{1}{r^2} + \frac{1}{s^2} + \frac{1}{t^2}$$

(d)
$$\frac{r+s}{t} + \frac{r+t}{s} + \frac{s+t}{r}$$

(e)
$$(r+s)(r+t)(s+t)$$

(f)
$$(r^2-1)(s^2-1)(t^2-1)$$

Problem 9. Let r, s, and t be the three roots of the cubic $x^3 - 2x - 1$. Find:

(a)
$$r^2 + s^2 + t^2$$

(b)
$$r^3 + s^3 + t^3$$

(c)
$$\frac{1}{r^2} + \frac{1}{s^2} + \frac{1}{t^2}$$

(d)
$$(r+s-t)(r+t-s)(s+t-r)$$

(e)
$$(r^2-4)(s^2-4)(t^2-4)$$