Equations

Ben Kang, Holden Mui, Mark Saengrungkongka

Name: _____

Date: _____

Two methods used to solve systems of equations are *elimination* and *substitution*. Elimination is done by manipulating equations and then adding or subtracting them from each other to get rid of variables. Substitution is done by writing a variable in terms of other variables and then plugging this expression into the other equations.

Problem 1.

(a) Let x and y be real numbers satisfying

$$\begin{aligned} x - y &= 18\\ 2x + 3y &= 4. \end{aligned}$$

Find y.

(b) Let r and s be real numbers satisfying

$$5r + 12s = 13$$

 $16r - 12s = 20.$

Find r.

(c) Let a, b, and c be real numbers satisfying

$$a+b+c = 1$$
$$a+2b+4c = 8$$
$$a+3b+9c = 27.$$

Find a + 4b + 16c.

(d) Let a and b be real numbers satisfying

a+b+c = 6a-b+c = 7a-c = 8.

Find b.

- (e) Let a, b, c, and d be real numbers satisfying
 - a 3b + c = 1 b - 3c + d = 1 c - 3d + a = 1d - 3a + b = 2.

Find a.

(f) Let a, b, c, and d be real numbers satisfying

$$a+b+c+d = 1$$

$$a-b+c-d = 2$$

$$a-b-c+d = 6$$

$$a+b-c-d = 24$$

Find a - b - c - d.

Problem 2.

(a) Let P(x) be a linear polynomial such that P(2) = 4 and P(3) = 9. Find P(4).

(b) Let P(x) be a quadratic polynomial such that P(1) = 1, P(2) = 8, and P(3) = 27. Find P(4).

(c) Let P(x) be a cubic polynomial such that P(1) = 1, P(2) = 16, P(3) = 81, and P(4) = 256. Find P(5).

Theorem 3. Let a, b, and c be real numbers such that $a \neq 0$. Then the two values of x satisfying $ax^2 + bx + c = 0$ are

$$\frac{-b + \sqrt{b^2 - 4ac}}{2a}$$

and

$$\frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

Problem 4. Find all pairs of real numbers (x, y) satisfying:

(a)
$$x + y = 8$$
 and $xy = 15$

(b)
$$x - y = 9$$
 and $x^2 + y^2 = 125$

(c)
$$x - y = 5$$
 and $x^2 - y^2 = 49$

(d)
$$x + \frac{1}{y} = 2$$
 and $y + \frac{1}{x} = \frac{9}{4}$

When solving more complicated systems, clever usage of algebraic identities is important. Here are a few things to keep in mind.

- Try to factor the given equations. Do they factor? If not, can you combine them to make the result factor?
- Make use of common identities. Do the given equations remind you of common identities?

Problem 5. Find all pairs of real numbers (x, y) satisfying:

(a)
$$x^2 + xy = 7$$
 and $y^2 + xy = 9$

(b) $x^2 + y^2 = 58$ and xy = 21

(c)
$$x^3 + 3xy^2 = 260$$
 and $y^3 + 3x^2y = 252$

(d)
$$x^3 + xy^2 = 170$$
 and $y^3 + x^2y = 102$

(e)
$$x^3 + y^3 = 400$$
 and $x^2y + xy^2 = 200$

Problem 6. Let x be a solution to $x + \frac{1}{x} = 3$. Find:

(a)
$$x^2 + \frac{1}{x^2}$$

(b)
$$x^3 + \frac{1}{x^3}$$

(c) $x^4 + \frac{1}{x^4}$

(d) $x^5 + \frac{1}{x^5}$

Problem 7. Find all triples of real numbers (x, y, z) satisfying:

(a) xy = 12, xz = 15, and yz = 20

(b) xy + z = 11, xz + y = 10, and x + y + z = 9

(c)
$$x + y + z = 11$$
, $x^2 + xy + z = 16$, and $y^2 + xy + z = 21$

Problem 8. Find all pairs of real numbers (x, y) satisfying:

(a)
$$x^3 = 3x + y$$
 and $y^3 = 3y + x$

(b) $x^3 + 3xy^2 = 5x + 4y$ and $y^3 + 3x^2y = 5y + 4x$