Introduction to Angle Chasing

Ben Kang, Holden Mui, Mark Saengrungkongka

Name: _____

Date: _

An *angle* is a figure formed by two rays; the size of an angle is measured in *degrees*. Many problems in geometry ask for the degree measure of a particular angle. *Angle chasing* is a method of solving such problems using properties of angles by finding the degree measures of other angles in the diagram. While angle chasing may appear to a simple method, clever applications of angle chasing can be used to solve to solve difficult problems.

Problem 1. Know the following facts and understand why they are true.

- (a) Straight angles measure 180° , and right angles measure 90° .
- (b) Vertical angles are equal.
- (c) A line intersects two parallel lines at the same angle.
- (d) The angles in a triangle sum to 180° .
- (e) The angles opposite the equal sides in an isosceles triangle are equal.

Problem 2.

- (a) Prove that the sum of the four angles in any quadrilateral is 360° .
- (b) Prove that the sum of the five angles in any pentagon is 540° .

Problem 3. In the figure below, Y is the midpoint of \overline{XZ} . If $\angle XPY = 60^{\circ}$ and $\angle PXY = 70^{\circ}$, find $\angle PYZ$.

Problem 4. In the figure below, $\overline{AP} \perp \overline{BP}$ and $\overline{AB} \perp \overline{PQ}$. Given that $\angle BAP = 35^{\circ}$, find $\angle BPQ$.

Problem 5.

- (a) An equilateral triangle ABC is located in the interior of square BCDE. Determine $\angle ADC$.
- (b) A square ABCD is located in the interior of a regular hexagon CDEFGH. Determine $\angle AEF$.

Problem 6. In the diagram below, AM = MB = BN and $\angle BAM = 50^{\circ}$. Find $\angle ANB$.

Problem 7. In the figure below, ABCD is a rectangle, $\angle BXY = 45^{\circ}$, $\angle CZY = 25^{\circ}$, and XY = YZ. What is $\angle YXZ$?

Problem 8.

(a) Let ABC be a triangle with $\angle ABC = 65^{\circ}$ and $\angle ACB = 45^{\circ}$. The altitudes from B and C to \overline{AC} and \overline{AB} meet at point H. Find $\angle BHC$.

(b) Let ABC be an acute triangle. The altitudes from B and C to \overline{AC} and \overline{AB} meet at point H. Prove that $\angle BHC = 180^{\circ} - \angle BAC$.

Problem 9.

(a) Let ABC be a triangle with $\angle ABC = 65^{\circ}$ and $\angle ACB = 45^{\circ}$. The angle bisectors of angles B and C meet at point I. Find $\angle BIC$.

(b) Let ABC be a triangle. The angle bisectors of angles B and C meet at point I. Prove that $\angle BIC = 90^{\circ} + \frac{1}{2} \angle BAC$.

Problem 10.

(a) Let ABC be a triangle with $\angle ABC = 65^{\circ}$ and $\angle ACB = 45^{\circ}$. Let O be the circumcenter of triangle ABC. Find $\angle BOC$.

(b) Let ABC be an acute triangle. Let O be the circumcenter of triangle ABC. Prove that $\angle BOC = 2 \angle BAC$.

Problem 11. Let Ω be a circle with diameter \overline{PQ} , and let X be a point on Ω . Prove that $\overline{PX} \perp \overline{QX}$.

Problem 12. Let ABCD be a cyclic quadrilateral. Prove that

- (a) $\angle BAC = \angle BDC$.
- (b) $\angle A + \angle C = 180^{\circ}$.

Problem 13. Consider the diagram below, where $\angle R = 36^{\circ}$ and $\angle T = 42^{\circ}$. Find $\angle RQV$.

Problem 14. Consider the diagram below, where $\angle BAX = 50^{\circ}$ and $\angle AXY = 70^{\circ}$. Find $\angle BPZ$.

Problem 15.

(a) In the diagram below, explain why $\angle ABC = \angle CDT$.

- (b) What happens when point D approaches point A?
- (c) In the diagram below, point O is the center of the circle, and \overline{TA} is tangent to the circle at point A. Prove that $\angle OAT = 90^{\circ}$.

