Derivative of the Inverse of a Function

One very important application of implicit differentiation is to finding derivatives of inverse functions.

We start with a simple example. We might simplify the equation \(y = \sqrt{x} \) \((x > 0)\) by squaring both sides to get \(y^2 = x \). We could use function notation here to say that \(y = f(x) = \sqrt{x} \) and \(x = g(y) = y^2 \).

In general, we look for functions \(y = f(x) \) and \(g(y) = x \) for which \(g(f(x)) = x \). If this is the case, then \(g \) is the inverse of \(f \) (we write \(g = f^{-1} \)) and \(f \) is the inverse of \(g \) (we write \(f = g^{-1} \)).

How are the graphs of a function and its inverse related? We start by graphing \(f(x) = \sqrt{x} \). Next we want to graph the inverse of \(f \), which is \(g(y) = x \). But this is exactly the graph we just drew. To compare the graphs of the functions \(f \) and \(f^{-1} \) we have to exchange \(x \) and \(y \) in the equation for \(f^{-1} \). So to compare \(f(x) = \sqrt{x} \) to its inverse we replace \(y \)'s by \(x \)'s and graph \(g(x) = x^2 \).

![Figure 1: Pay no attention to the labels. You can think about \(f^{-1} \) as the graph of \(f \) reflected about the line \(y = x \)](https://example.com/figure1.png)

In general, if you have the graph of a function \(f \) you can find the graph of \(f^{-1} \) by exchanging the \(x \)- and \(y \)-coordinates of all the points on the graph. In other words, the graph of \(f^{-1} \) is the reflection of the graph of \(f \) across the line \(y = x \).

This suggests that if \(\frac{dy}{dx} \) is the slope of a line tangent to the graph of \(f \), then

\[
\frac{dx}{dy} = \frac{1}{\frac{dy}{dx}}
\]
is the slope of a line tangent to the graph of f^{-1}. We could use the definition of the derivative and properties of inverse functions to turn this suggestion into a proof, but it’s easier to prove using implicit differentiation.

So, let us use implicit differentiation to find the derivative of the inverse function.

\[
\begin{align*}
y &= f(x) \\
(f^{-1}(y)) &= x \\
\frac{d}{dx}(f^{-1}(y)) &= \frac{d}{dx}(x) = 1
\end{align*}
\]

By the chain rule:

\[
\frac{d}{dy}(f^{-1}(y)) \frac{dy}{dx} = 1
\]

and

\[
\frac{d}{dy}(f^{-1}(y)) = \frac{1}{\frac{dy}{dx}}
\]

Implicit differentiation allows us to find the derivative of the inverse function $x = f^{-1}(y)$ whenever we know the derivative of the original function $y = f(x)$.

For example, the derivative of the inverse of the function $g(x) = x^2$ is just $g'(x) = \frac{1}{2x} = \frac{1}{2}x^{-1}$. Note that this does in fact equal the derivative of $\sqrt{x} = x^{1/2}$.