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A convolutional recurrent neural network was developed for optimal state estimation of
altitude, velocity, and mass in a simulated vertical lunar landing using only images taken
from an on-board camera. The ground truth optimal estimates for training were calculated
using a Rao-Blackwellized particle filter, which used particles for position estimation. As of
now, the RBPF used a simplified model of the lunar terrain to cut computation time, and
generated initial particles close to the real altitude to allow fewer particles to die out after the
first image measurement. This allowed the RBPF to more accurately approximate the optimal
state estimate, with a larger effective number of particles from the start. Currently, the neural
network is able to produce outputs in the correct range, and the simulated lander could stay
above the surface for the entire simulated time, only requiring a slight modification to the
control law. Neural networks can be quickly executed using graphics processing units (GPUs)
whichmay be available on next-generation flight computers, meaning they could help overcome
the curse of dimensionality and computation time required for accurate particle-based state
estimation as heavy computations are performed offline.

I. Introduction

As the need for more precise landings in space operations increases, so will the precision needed in navigation
systems. Accurate navigation systems are required for future missions on the Moon [1] and even around the solar

system that will require precise landings, which are of interest for several reasons. They help solve the hazard avoidance
problem, as a landing area can be predetermined and targeted that doesn’t present any hazards to the lander. In the case
of robotic exploration, they can also relax design criteria as rovers will not have to travel large distances to sites of
interest. Shorter distances also allow rovers to have reduced risks of malfunction, while potentially lowering costs and
leaving space for more equipment. Precise landings can also allow for exploration of rough, inaccessible terrain on
bodies such as the Moon [2] and Mars [3], or accurate landings on small bodies [4].

A large amount of recent research has gone into developing navigation algorithms for the purposes of such pre-
cise landings. For example, Gaudet and Furfaro [5] used a RBPF to develop a navigation system for a Mars landing with
radar altimetry, and note that using a GPU could speed up their algorithm even further. Of particular interest to this
study however are image-based navigation systems for lunar landings. Roumeliotis et al. [6] use image-based motion
estimation (IBME) from images taken while landing, combined with data from an inertial measurement unit (IMU), to
develop a navigation system using an Indirect Kalman filter. Bilodeau et al. [7] developed a Terrain-Relative Absolute
Navigation (TRAN) system for lunar landings that relies on identifying craters for position estimation. A review for
terrain relative navigation approaches using passive imaging and active range sensing such as LIDAR can be found in
Johnson and Montgomery [1].

Due to the great expected computational power of next-generation flight computers with graphics processing units
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(GPUs), artificial intelligence has been increasingly studied as a means for solving space-related problems. Of particular
interest to this study is AI applied to developing guidance, navigation, and control (GNC) systems, though other
applications can be found in surveys by Izzo et al. [8] and Kothari et al. [9]. To address the problem of guidance
and control on Mars, Gaudet et al. [3] make use of deep reinforcement learning to create an integrated guidance
and control (IGC) system that approximates a fuel-optimal control law for a 6-DOF powered descent. In another
work, Furfaro et al. [10] use deep convolutional and recurrent neural networks to translate sequences of images
taken from a lunar lander, as generated by POV-Ray using a Digital Terrain Map (DTM) of the Moon, into 1-D and
2-D fuel-optimal trajectories as calculated by MATLAB’s Gauss Pseudospectral OPtimization Software (GPOPS).
However, this method doesn’t estimate the lander’s state explicitly. Though this approach is sufficient for controls,
having a state estimator is still important for telemetry and in understanding how accurately the state can be controlled
given the available data. Separating estimation and controls also allows for the control system to be more easily
changed, and in the case of a deep learning control system, allows it to more easily be retrained as a state vector has
a much lower dimension than an image. There has been progress towards using deep learning for state estimation,
such as in the study by Campbell et al. [11] where they trained a deep neural network to estimate an optical lunar
lander’s position along one dimension, with images generated in much the same way as the previous study. Outside
ofmoon landings, Proença andGao [12] have also used deep learning to estimate the pose of a spacecraft given images of it.

However, there is still a gap in combining deep learning navigation systems with previously mentioned state es-
timation algorithms. Many of these DL approaches do not provide estimates of hidden states such as translational and
rotational velocities. This paper makes progress in studying DL for state estimation by training a neural network to learn
the output of a particle filter, specifically, a Rao-Blackwellized particle filter, with image data used as measurements.
Such an approach would allow the navigation system to produce better informed estimates about its state, as it uses a
Bayesian algorithm based on past measurements. It could also in theory not suffer from many of the RBPF’s issues, as it
can be trained on a number of particles that is not feasible on-board. This would allow it to be more accurate than a
RBPF that can be used in practice. Should more dimensions or measurements be added, a similarly sized network could
be trained, which could help avoid the curse of dimensionality at the expense of more time spent generating training
data and training the network.

Approximating the optimal state estimate as opposed to the real state may also have the potential to reduce over-fitting
in the neural network. This is because the optimal state estimate is in theory a deterministic function of all previous
measurements and control inputs, while that data is not sufficient to perfectly predict the real state. While this distinction
is small, it may prove useful in systems with a large uncertainty in state estimates. In such examples, the real state and
optimal state estimate may be distant in the state space, leading to significant noise in training data. Of course, the
Monte Carlo nature of particle filters restrict the extent to which this distinction could be important, but this can be
improved by adding more particles.

II. Method
To determine if a deep learning approach could be used to imitate a particle filter for vertical optical lunar landers,

a training set was generated for the deep neural network to use to learn from sample simulated trajectories. In each
trajectory, a simulated lunar lander had a controlled landing, which was cut off at the point where optical navigation
wasn’t feasible due to a lack of detail in the surface. The landing site was the Apollo 16 landing site, which was chosen
due to the availability of terrain data around that area as well as use in similar research testing AI capabilities for lunar
landings, such as Campbell et al. [11]. At each time step, a 64x64 pixel grayscale image was generated, representing
what a camera at the lander’s position and pointing down would observe. After each image was generated, a particle
filter was used to estimate three state variables of the lander: altitude, vertical velocity, and mass. These estimates were
then used with the Zero-Effort-Miss/Zero-Effort-Velocity (ZEM/ZEV) control law to command a new thrust to the
lander, after which the physics of the lander were simulated to update its real state for the next time step. These state
estimates from the RBPF were used as ground truth optimal state estimates, which the deep learning algorithm learned
to estimate.

Specifically, a Rao-Blackwellized particle filter was used as opposed to a regular particle filter, since they tend
to increase accuracy while simultaneously reducing the number of particles needed. Because RBPFs only use particles
to estimate part of the state vector, they require fewer particles than a regular particle filter would need to estimate all the
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states. This means less computation time was needed due to fewer particles, which also had the advantage of allowing
more data points to be calculated to for training.

A. Equations of Motion, Constraints, and Simulation
Due to the motion of the lander being constrained to the vertical direction, the model of this lander only considered

one thruster pointed up being used. The equations of motion of a vertical lunar lander can be derived using Newton’s
laws and the rocket equation. Specifically, the total force on the lander in the vertical direction is given by:

� = ) − <6

where ) is the upwards pointing thrust force generated by the engines and 6 is the local gravitational field at the lander’s
position. The acceleration of the lander can then be found by dividing the net force by the lander’s mass, which can be
written as:
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where 3E/3C denotes the rate of change of velocity E, equivalent to the vertical acceleration. Of course, the rate of
change of position over time is given by the velocity:

3H

3C
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As propellant gets expelled by the engines, the lander holds less mass. This rate of change in mass can written in terms
of the engine’s specific impulse, namely:

3<
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=

)
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Here, �B? is the specific impulse of the engine, and 60 is the gravitational field on Earth that the specific impulse is
measured in.

These derivations assume there are no imperfections in the physics model, which is not true in real hardware.
To model some of this uncertainty, the thrust ) is considered to be a random variable, which takes on a different value at
any given time. This can be seen as being caused by random deviations in the amount of propellant being exhausted due
to hardware imperfections. The real value of thrust ) was chosen to be normally distributed with a mean of )2<3 , the
commanded thrust, and a standard deviation of 1% of )2<3 . Alternatively, this can be written as:

) = )2<3 (1 + 0.01F)

where F is a normally distributed variable with mean 0 and a standard deviation of 1.

Now, the equations of motion can be modified using the theory of stochastic differential equations to account
for this random noise. The position, velocity, and mass states are combined into a state vector G:
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The differential equation describing how all states in I change over time is given by:
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where, is a Wiener process, which can be interpreted as a random variable with a rate of change with a mean of 0
and standard deviation of 1. Each row of this expression determines how the respective state variable changes given a
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change in time and a change in the Wiener process.

To update the state vector, equation (2) was numerically solved at every time step using a stochastic version of
the Improved Euler method, described by Roberts [13], with 10 subintervals. This algorithm can efficiently approximate
such stochastic differential equations.

The specific values of constants for the simulation are given below. Many of the following values for constants
were taken from Furfaro et al. [10] due to the similarities with this research in order to provide reasonable values.
Namely, the authors also develop a neural network for a vertical lunar landing relative terrain navigation system, using a
digital terrain model of the Apollo 16 landing site. In this case, the value 60 = 9.80665m/s2 was used, which is the
standard value of the gravitational field on the surface of the Earth. Additionally, for simulating the motion of the
lander on the moon, the gravitational field was taken to be constant and equal to be 1.622m/s2. The specific impulse of
the thruster was set to 200s. As for the initial conditions of the lander, the starting state was chosen from a Gaussian
distribution, with mean

Ḡ = [1250m,−8m/s, 1300kg])

and a standard deviation of 83.3̄ meters in position, 0.6̄ meters per second in velocity, and 5 grams in mass. These
values create a 3-sigma ellipse contained inside the initial conditions used in Furfaro et al. [10].

B. State Estimation and Rao-Blackwellized Particle Filter
The ground truth mean of the lunar lander’s state were calculated using a Rao-Blackwellized Particle Filter. In

this implementation, the position was estimated using particles, while the marginalized states were velocity and mass.
These marginalized states were estimated using an Unscented Kalman Filter. Though formally marginalized states for a
RBPF should be estimated using an optimal filter, no such filter exists for this specific system due to the nonlinearity
introduced by dividing thrust by mass. However, due to the large mass, it is approximately linear enough that an UKF
can provide a near-optimal estimate, and can thus be used.

It is standard to initialize particles with the same distribution as the state variable - in this case, with a mean of
1.25km and standard deviation of 83.3̄m. However, images taken at that height from the surface had enough information
to estimate the altitude to within a few meters, and most particles ended up dying as a result. Images taken at those
points were too different from the measurement image, and thus the particle weights quickly went to 0 as the probability
of the real position being the particle’s position was low. This was accounted for by instead generating particles with a
mean at the real position and variance of 2 square meters. After the first measurement, the variance in the particle
filter’s estimate was almost always less than 2 square meters, so this ensured that the particles could accurately represent
the real distribution instead of being too close together. This caused particles to be closer to the real position and thus
this problem didn’t arise as often, since images captured at each particle were more similar to the measurement image.
It’s worth noting that due to the initial distribution of particles being different from the initial distribution of the state,
the weights had to be calculated as:

F8
0 ∝

N(HA40; ,
√

2) (H8)
N(1250, 83.3̄) (H8)

where N(G, f) represents a Gaussian probability distribution with average G and standard deviation f, F8 is the weight
of the 8-th particle, and H8 is the altitude of the 8-th particle.

Despite this, there were still many particles which had 0 weight after the first measurement. While there are
techniques such as resampling particles that get rid of these “dead" particles, it was found that resampling at the start
reduced the quality of future estimates greatly. This can be explained by the fact that resampling removes variance
from the set of particles - less examples of states are being represented with the same number of particles, and when
there were already few useful particles to begin with, this caused there to be even less variance. Instead, more particles
were added for the first few seconds, and then they were resampled into a lower number of particles for the rest of the
trajectory.

Due to time constraints of this project so far, the RBPF used 1000 particles for the first 5 seconds of the land-
ing, and 100 for the rest of the landing. This had a good balance of accuracy and computation time, though there are
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plans to increase the number of particles in both segments to reduce the amount of noise.

The estimates from each state were calculated as a weighted average across all particles of the particle’s posi-
tion, and the mean velocity and mass calculated from its Kalman filter, weighted by the particle’s weight. Due to the
relatively low number of particles, some sample trajectories did have an unreasonable amount of error. To determine
which trajectories could not be used, the RBPF also calculated the standard deviations of each state variable. If at any
point in the landing the difference between any real and estimated states exceeded 4 standard deviations, then the entire
trajectory was considered invalid. Normally, data is almost never above 3 standard deviations from the average. However,
the particle filter produces results that have a higher amount of randomness due to its nature as a Monte Carlo algorithm,
and the amount of particles used was not enough to smooth out that random noise enough. Ultimately, about one fourth
of trajectories were invalid due to this reason, but to compensate more were generated in order to get enough training data.

At each time step, the RBPF represented a distribution of states as a set of particles representing positions and
an a corresponding average velocity, mass, and their covariances for each particle. When the lander’s real state was
updated, a sample velocity and mass were generated for each particle, based on the mean and covariance of that particle’s
corresponding UKF. This strategy meant the position was updated in time in the same way as particles were updated,
meaning that recalculating weights was equivalent to multiplying them by d(H8 |I), meaning the probability density that
the altitude H8 of the 8-th particle corresponds to the output image I. The output image I can be found using the equation:

I = ℎ(H) + E

where ℎ(H) is a mathematical function that represents the image render at position H, and E is additive noise representing
errors in the camera’s measurement. In this case, I is a 4096-dimensional vector representing grayscale values for
each pixel in the 64x64 images. The noise that was added as E had an average of 0 and standard deviation of 5/255
in grayscale, which provided a noticeable amount of noise when images were captured. Determining d(H8 |I) is then
reduced to determining the probability density of I − ℎ(H8), meaning that an image must be rendered at each particle.
Calculating this density reduces to taking the product across all pixels of the probability distribution that the pixel in the
measurement image was taken from the same position as the corresponding pixel in the particle image. Using product
notation, this is

d(H8 |I) =
4096∏
9=1

# (0, 5/255) (I 9 − ℎ(H8) 9 )

where a subscript of 9 represents considering the 9-th pixel only.

After the particle filter calculated new estimates at each time step, it also calculated the “effective number of
particles," given by the inverse of the sum of all inverse square weights. Using summation notation, this gives:

#4 5 5 =
1∑
8

1
F2
8

#4 5 5 can be loosely interpreted as how many particles are actually contributing to the calculation instead of being
dead. When #4 5 5 was too low, particles needed to be resampled in order to make the best use of all the computational
time spent on all particles. When #4 5 5 was less than half of the total number of particles, which was 100 or 1000
depending on the time, the particles were resampled using the systematic resampling algorithm. For a description and
comparison of common resampling algorithms, see Douc and Cappé [14]. Resampling tends to replace particles with
low probabilities with copies of particles with high probabilities, in order to more accurately represent a probability
distribution without considering zero weights. The same resampling algorithm was also used to reduce the number of
particles from 1000 to 100 at time C = 5.

Once the particles were updated with new positions H8C , the Unscented Kalman Filter corresponding to the par-
ticle was updated to provide a posterior estimate of the velocity and mass of the preceding time step: E8,+

C−1 and <
8,+
C−1.

This can be done as the position at time C is a function of the Kalman filter state - velocity and mass - and position, all at
time C − 1. By updating this estimate, the uncertainty in the estimate of velocity and mass at time C − 1 can be reduced,
which then improves estimates of the future velocity and mass at time C. Thus, the next step was to predict the velocity
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and mass and their covariance at time C using a Kalman filter predict step. One complication was that when using H8C
as an output that the Kalman filter uses to improve its estimate, there is cross-correlation between the process and
measurement noise. This is because the only source of uncertainty comes from the noise in the real thrust being applied,
which affects both how velocity and mass change over time, and also as a consequence, how the position changes over
time. The fix for this is detailed in Schon et al. [15] for a regular Kalman filter used for Rao-Blackwellized particle
filtering, but a similar algorithm for which was used for Unscented Kalman Filters can be found in Chang [16].

C. Control Law
Once the RBPF estimated the states of the lander, the ZEM/ZEV control law was used to move it towards the target

position and velocity. ZEM/ZEV calculates the Zero-Effort-Miss and Zero-Effort-Velocity, which are the position and
velocity at the end of the landing if no more thrust were to be applied, and uses these to calculate a new thrust to apply.
Specifically, if H) and E) are the target position and velocity and C6> is the time until the lander should arrive at its
target, then:

/�" = H) −
(
H + EC6> +

1
2
6C26>

)
/�+ = E) −

(
E + 6C6>

)
where H, E, and < are the position, velocity, and mass of the lander and 6 is the gravity of the Moon. The thrust the
lander applies is then given by:

) = <

(
6
C26>

/�" − 2
C6>

/�+

)
The targeted position and velocity was 50m and −2m/s, which put the lander above the surface to a point where images
were indistinguishable. At that point, a real lander would need to use another sensor such as an altimeter for landing.
The ZEM/ZEV control law was chosen due to being both easy to implement and effective at controlling the landing. For
a more thorough description of ZEM/ZEV along with other applications, see Hawkins et al. [17].

Uniform random noise was added to the thrust, of 20-200 Newtons, with the specific value decreasing linearly
over time. This was done to ensure that the neural network would not memorize the thrust and would instead need to be
able to generalize to other ways of calculating a thrust to apply, as ZEM/ZEV is not the only control law. This specific
amount of noise was found to provide a good amount of noise in the thrust while still guaranteeing a landing.

D. Image Generation
For the simulator, images were generated using Blender, a 3D modeling software. This software was picked due to

its general ease of use, abundant documentation, and ability to seamlessly integrate Python scripts into its rendering.
It’s worth noting that the purpose of the image generation was not to be hyperrealistic or accurate, but rather to be able
to quickly produce images for the particle filter that matched reality enough that they could show promise for future
application given this project’s time constraints.

A Digital Terrain Model (DTM) of the 6x6 kilometer patch of the moon’s surface around the Apollo 16 land-
ing site with 2 meter resolution was used to model the landing area. The DTM was taken from publicly available data
from the Lunar Reconnaissance Orbiter. This resolution was found to be sufficient, given the images were relatively low
quality, being only 64x64, and thus not too much fine detail was needed in the surface.

It was found that a typical approach to generating images from a DTM was too slow for the time constraints of
this project so far, given how many images had to be generated for each trajectory for the particle filter to work. Therefore,
3 separate Blender files were created, each one using the last in some way, and being faster to render than the last. The
first file was such a typical approach mentioned above, and the others used some optimization to speed up rendering. In
the end, the particle filter used the third file for generating rendered images.

In the first file, the DTM was loaded into a displacement shader for a 6-by-6 square meters (with one meter in
Blender corresponding to 1 kilometer in real life) 2D plane in Blender in order to add accurate height variation. The
shader had a scale of 0.001 to convert kilometers in the DTM to Blender meters. The plane was also given a principled
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BSDF material, and its displacement setting was set to “Displacement and Bump" in order to generate accurate rendering
given the height displacement. The plane was configured to be adaptively subdivided, meaning every time the image
was rendered, Blender automatically divided the plane into enough smaller segments to provide sufficient accuracy
for the image. Without any sort of subdividing, the plane would just remain flat but angled as the corners had their
heights displaced. Sunlight was represented as coming from a Blender Sun object, with an X rotation of -65.3 degrees
in order for light to come in at an angle and cast a shadow on the surface, as would be expected during a real landing. To
produce a rendering that was reasonably faithful to real life, the object’s base color to the shade of gray specified by
hexadecimal color #717171. The plane’s material’s specularity was set to 0 to reflect the moon’s surface’s low amount
of light reflection, and the roughness to 1 due to the moon’s terrain’s roughness. Again, these values were not chosen to
product hyperrealistic simulated images, but rather to give a ballpark estimate of what a captured image might look
like. All other settings in the BSDF were not changed from their default values. The Cycles render engine was used in
order to accurately calculate how sunlight would bounce around the surface, with an experimental feature set to enable
adaptive subdivisions. Cycles was configured to use the GPU Compute device, in order to speed up rendering when
applicable. Using this method, images took about 3 seconds to render.

Fig. 1 Screenshot from Blender of the first file
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Fig. 2 Screenshot of the first file’s Shader Editor screen for the plane

In order to speed up the rendering in the second file, another 6-by-6 meter plane was created, but instead a displace
modifier was used to incorporate DTM height data. Like before, the strength of the modifer was set to 0.001 to properly
scale the height. This way, the displacements would not have to be recalculated for every render as they would be for a
displacement shader used in the first file, but rather only once at the start, which sped up rendering. The emission of the
first Blender file was also “baked" as rendered from 1.25km from the surface, meaning the colors at different points
along the surface were saved into a file. The bake was loaded into the Surface input in the Material Output shader in the
plane’s Shader Editor in Blender, so that the stored colors from the first file would be shown. To have enough detail
in the surface, the plane was manually subdivided 200 times using the “Edge > Subdivide" button in its edit mode.
Adaptive subdividing added more computation time as Blender needed to decide which areas to subdivide more in each
render, and thus subdividing the surface manually was faster, albeit missing details when close to the surface. However,
this wasn’t a problem as there was not much detail in the landing site anyways, and any detail that was there would get
lose in random noise added to the camera’s output.
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Fig. 3 Screenshot of the second file’s Shader Editor screen for the plane

To create the third and final Blender file, the second file’s plane was simply exported as a Wavefront file, and
imported into another Blender file. This way, Blender would not even need to calculate the height displacements as they
were stored directly in the file. The second Blender file, on the other hand, stored them by storing information on how to
retrieve the height data. This did not provide a significant speed-up, as most of the computation time was already cut by
baking the first file’s plane’s emission. This third file also used the Cycles renderer. Cycles renders images by simulating
how light would bounce around the surface from the light source. However, in this case there was no need for a light
source as the colors were already stored in the plane object. To take advantage of this, all the light path settings were set
to their minimum values to make sure Cycles wasn’t doing unnecessary calculations, such as simulating light bounces
that didn’t contribute to the lighting.

Computations for image generation and particle filtering were done using the University of Arizona’s High Per-
formance Computing systems, specifically, their Puma supercomputer. It was found that there was no significant
difference between using the GPU or CPU Compute in the Device setting for Cycles, as previous optimizations were
enough that using a GPU couldn’t speed up rendering much further. As such, no GPU nodes were requested on Puma
for training set generation, which allowed it to more easily allocate a computing node to run the code. In the end, it took
around 0.07 seconds per render on Puma. Despite this speed, each of the 750 valid trajectories generated required 1000
images for the first 5 seconds and 100 for the next 65. This totaled to about 167 hours of computation time spent solely
generating images for the particle filter.
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Fig. 4 Screenshot from Blender of the third file

E. Simplifications for RBPF
In developing this algorithm, multiple simplifications were made to reduce the complexity of the particle filter and

to ensure data collection would not take too long. This is acceptable since the aim of this research is not to develop an
algorithm that works in a high fidelity environment, but rather to show neural networks should be explored more for
real-time Bayesian state estimation.

Starting with the system dynamics, the model used here failed to account for random noise in the specific im-
pulse of the engine, and only accounted for random noise in the thrust. Additionally, in practice, any a lunar landing
happens in three dimensions and also requires attitude control. Thus, a navigation system would have to estimate the
full 3-dimensional position and velocity vectors, along with the lander’s attitude and its velocity as it enters at an angle,
instead of just vertical position and velocity used here. It may also be useful to account for deviations in the Moon’s
gravitational field which make it not uniform.

In addition, a navigation system used in practice would likely have access to more sensors to improve position
and velocity estimate accuracy, such as an accelerometer and/or an altimeter. Real systems would also require a sensor
such as a gyroscope for attitude estimation. The only sensor used in this research was a camera, and while estimates
could be improved using more sensors, the control system was still able to land well without any more. In fact, adding
in an accelerometer would have increased the complexity and computation time of the particle filter. The equation for
acceleration, given in (1), depends on mass, so each UKF would need to have a second update step conditioned on
the measurement. Additionally, there would be cross-correlation between the acceleration measurement and system
dynamics noises to account for, as both depend on the random variable thrust.

F. Deep Learning Algorithm
Deep learning is able to approximate highly complex mathematical functions using layers of mathematical “neurons,"

each one producing a mathematical output based on the output of all the neurons in the previous layer, starting at the
inputs. The simplest kind of layer is a fully-connected (FC) layer, sometimes also called a Dense layer, where each
neuron’s output is some pre-specified “activation function" of a weighted sum of all the previous layer’s outputs, with
the condition that the function must not be linear. Over time, the neural network is able to change the weights in this
weighted sum to minimize a specified “loss" function, which is a measure of how badly the network performs.

The neural network developed in this study learned from a training set comprised of 700 trajectories generated
by the RBPF and ZEM/ZEV. 50 other trajectories were used as “validation data," to make sure that the network’s
performance on the training data extended to data it had never seen before.
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The deep learning approach used took advantage of research in Convolutional Neural Networks (CNNs) and Recurrent
Neural Networks (RNNs). CNNs have “convolutional" layers which apply a mathematical convolution to smaller areas
of an input image, of specified size and separated by a specified amount of pixels between these areas. The convolution
has a “convolutional kernel," a matrix of the same size as the smaller areas. The output of the convolution is defined by
multiply corresponding values in the smaller areas of the picture and convolutional kernel, and adding these products
together. This is able to efficiently detect difference between pixels near each other, which helps with image processing.
The convolutional kernel is one of the weights that the network learns over time. Some CNNs also have some sort of
“pooling" layer which reduces the amount of data they produce, but given the small size of images, pooling layers were
not added to avoid potentially losing important information. For a more thorough description of convolutional neural
networks, see Wu [18]

RNNs provide a framework for a neural network to learn to process sequences of data, separated in time. In
an RNN, some “hidden state" is stored, and is used in conjunction with the sequence of inputs to produce an output.
Each input is combined with the hidden state in a mathematical function to create a new hidden state for the next input.
At the end of this chain, the final output is usually taken to be the final hidden state.

In this case, the data was a list of images and thrusts, each one being 1 simulated second apart. A Long-Short-
Term-Memory cell was used, which stores two different hidden state vectors: one for short-term data, and another
for long-term data. The input to the layer gets combined with the short-term and long-term states through a series of
mathematical functions to create the output. In the process, the long-term state goes through a “forget gate," which
multiplies terms in the long-term state by numbers generated by an FC layer of the input data. This lets it stop storing
information that is no longer relevant as time progresses and it analyzes data later on in the sequence of inputs. New
information, calculated as the product of two FC layers of the input, is added after the forget gate to produce the long-term
data used for the next input in time. The next time step’s short-term state is calculated by multiplying the output of
another FC layer of the input by the long-term state, after being passed through the mathematical “hyperbolic tangent"
function. Amore complete description of LSTMs, with an application in space landings can be found in Furfaro et al. [10].

Various architectures, numbers of neurons, loss functions, and activation functions in each layer were tested, and the
network described below tended to have the best performance. It first took an an input that was a sequence of thrusts
applied to the lander and images taken from the lander in the next time step. The sequence consisted of images and
thrusts from the 1 through =-th simulated seconds of the landing, where = is the amount of seconds into the landing that
the neural network is called. For example, to estimate the state of the lander at 35 seconds into the landing, images from
1 second to 35 seconds and thrusts from 0 seconds (the start) to 34 seconds into the landing were incorporated into the
input sequence. The neural network used processed the sequence of images with 3 convolutional layers, and then passed
the output of the convolution into a FC layer. The output of the FC layer for a given image was then concatenated to the
corresponding thrust applied before the image was taken. This new concatenated output was passed into an LSTM layer
that worked with the sequence of thrusts and processed images. The output of the LSTM, was fed into 4 consecutive FC
layers, and the output of the last one was taken to be the estimated position, velocity, and mass.

The first two convolutional layers had 32 different kernels, a kernel size of 3x3, and applied kernels separated
by 2 pixels in the image. The third convolutional layer had 64 kernels, with a size of 2x2, and applied the kernels
separated by 4 pixels in the image. The FC layer following the convolutions used 128 neurons, and so did the 3 FC
layers immediately following the LSTM cell. The LSTM cell used hidden states composed of 256 different values. At
the end, a FC layer with 3 neurons was used to give the final outputs.

The most successful activation function tested was the Leaky Rectified Linear Unit (LeakyReLU). This function takes
an input G and returns G when it is positive, and a parameter U multiplied by G when it is negative. In this case, U = 0.3
was used. LeakyReLU is a very simple nonlinear function, which makes it easy to use to train a neural network, and
variants of ReLU have seen a lot of success in deep neural networks.

One other thing done to improve accuracy was to add dropout of 0.5 to the LSTM cell. This meant that every
time the LSTM cell processed input data to train on, about half of its neurons in the FC layers were removed. Dropout
has been shown to be successful in increasing accuracy of networks, as it forces neurons to learn more useful weights.
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The training input and output data were also rescaled so that the minimum and maximum values were 0 and 1
respectively, for each pixel in all images, each thrust, and each value of position, velocity, and mass. This is standard
practice so that the network has to work less to learn the proper scaling of data.

The loss function used to determine how badly the network was approximating the position, velocity, and mass
of the lander is given below:

! =

√√√√
1

70

70−1∑
C6>=0

(
6
C26>
· H) −

2
C6>
· E) − 6

)2

42
< +

(
36
C46>

42
H +

16
C26>

42
E

)
42
< +

(
6
C26>

H̄ − 2
C6>

Ē
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where H) = 50< is the target position, E) = −2</B is the target velocity, H̄, Ē, and <̄ are the real position, velocity, and
mass as predicted by the particle filter, and 4<, 4E , and 4< is the error between the particle filter and neural network
prediction. This particular loss function was inspired by considering how much variance would be in the commanded
thrust from the ZEM/ZEV control law after a filter approximated the state variables. Namely, that variance would be
given by:
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where Var(G) represents the variance of G. Notice that the variance is averaged across all times in the landing, which is
done because constants of proportionality in ZEM/ZEV vary over time. In principle, it might be desirable to minimize
this variance, to ensure the thrust profile closely follows what it would if all states were known with exact certainty.

To minimize the cost function, the Adam optimizer was used. A common optimizer, Stochastic Gradient De-
scent (SGD), changes all the weights of the network proportional to the “gradient" of the loss. That is, proportional to
how much the loss would change if each weight was changed by a small amount. Over time, SGD tends to approach a
minimum value in the loss. Adam is a computationally efficient improvement of SGD described in Kingma and Ba [19].
Adam uses a few manually tunable parameters, but the recommended parameters [ = 0.001, V1 = 0.9, V2 = 0.999, and
Y = 0.0000001 worked well for this application.

In the training process, it was noticed that data near the start and end of the trajectory tended to have abnor-
mally large loss values. This was compensated for by weighing how much each data point in each trajectory contributed
to the loss depending on how far away it was from the middle time C = 35. Specifically, the first and last simulated times
weighed 5 times more than the ones at C = 34 and C = 35, and in between the weight scaled linearly.

G. Computations
The Rao-Blackwellized Particle Filter and image generation were run in the same Python script, which was loaded

alongside the third Blender file. Blender was called from the command line on Puma, and there it was specified to load
the Python script and to run Blender in the background, without its usual graphical interface. There was no way to
easily display graphics on Puma outside of the command line, and running Blender in the background also tends to
make it render faster as it only has to generate images without displaying them. Blender could not be run as-is in Puma
and instead had to be wrapped inside of a Singularity container. Singularity provides a way to package together any
needed programs and code for running jobs on HPC systems. Blender also comes with its own version of Python, so the

12



SciPy and FilterPy Python libraries had to be installed for statistical functions and Kalman filtering respectively into
Blender’s Python.

III. Preliminary Results
A representative sample trajectory in the training data is shown below.

Fig. 5 Altitude over time for a RBPF trajectory
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Fig. 6 Velocity over time for a RBPF trajectory
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Fig. 7 Mass over time for a RBPF trajectory

Clearly, the RBPF performed very well, and from the collected data, it was able to successfully get close to the
targeted position and velocity in all of the valid training trajectories. When looking at the difference of the data real
states and the estimates, along with estimates of standard deviation, it becomes clearer that there is a lot of noise added
by the particle filter’s lack of particles however:
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Fig. 8 Error in position over time for a RBPF trajectory
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Fig. 9 Error in velocity over time for a RBPF trajectory
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Fig. 10 Error in mass over time for a RBPF trajectory

Below are graphs of loss over time as the network trained, for both training data and validation data. Both graphs
are in the log-scale in order to highlight how it progressed over time, as the initial loss would’ve been high enough that
all detail in losses after would be lost. There is a noticeable increase in the graphs when it was switched to weigh times
near the end and start more than those in the middle, which is to be expected as changing the weighing makes them no
longer comparable.
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Fig. 11 Graph of training loss of the network over time
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Fig. 12 Graph of validation loss of the network over time

With the network trained, the particle filter in the original code was replaced by the network. Below is a representative
sample of the performance:
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Fig. 13 Graph of thrust over time when using neural network estimation
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Fig. 14 Graph of position over time when using neural network estimation

These graphs show that the thrust unexpecedly decreases when compared to the RBPF thrust profile, and this change
caused the neural network to be unable to accurately estimation position anymore as it diverged slowly. The real altitude
descents below zero meaning the lander crashed, while the estimated altitude does not.

One fix that was found for this was to modify the control law so that once the thrust went above the minimum
1kN thrust, it would always increase by at least 25 Newtons. When using this new control law, the neural network was
able to more frequently see amounts of thrust it was used to, and was able to effectively stay above the surface for all 10
test trials. Below is one of these trajectories:
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Fig. 15 Graph of thrust over time when using neural network estimation with corrected control law
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Fig. 16 Graph of position over time when using neural network estimation with corrected control law

In this case, the correction to the control law can be seen at around 40 seconds, when there is a constant slope in the
applied thrust.

IV. Improvements to Be Made
This project started as a school assignment for the first author’s Research class at BASIS Tucson North High School,

and as such it had a tight schedule and the results obtained so far are only preliminary. Now that the assignment is
over, the authors will spend more time improving the results obtained in this paper to make them more significant.
Comparing the results of the RBPF estimation and the neural network estimation reveal that the NN is not nearly as
good, although it isn’t as computationally intense. This is especially seen towards the end of the trajectory, despise
efforts to mitigate it by weighing those times more heavily. A well trained network shouldn’t need to have a modified
control law in order to get a similar performance to the RBPF’s. As such, the authors will be continuing to improve
the results. For example, more network architectures will be tested. Particularly, the amount of convolutional layers,
along with their hyperparameters was not explored as well as the rest of the architecture. The loss function will also be
changed, as this particularly odd function was only chosen when standard ones such as a weighted mean square error
didn’t seem to work well. The authors speculate those didn’t work well because of the network architecture.

In addition, the authors will increase the quality of the training data in a few ways ways. Firstly, they will in-
crease the number of particles used in order to smooth out noise in the particle filter estimates. Secondly, they
may also cut down on the amount of simplifications in the image generation process in order to demonstrate the
algorithm could work with more realistic images. They may also incorporate other sensors into the final product
to show a neural network could handle more than optical measurements. Additionally, because generating images
took a long amount of time, given how many particles were needed, the authors will also explore using the same
concepts for a neural network trained on a RBPF that used a LIDAR flash as its measurement input. LIDAR flashes are
easier to simulate compared to images, so substantially more particles can be used with the same amount of time for
generating training data. It’s possible that the convolutional layers will also be able to process LIDAR flashmeasurements.
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If the authors have time, they may also explore adding a second dimension to the landing to demonstrate neu-
ral networks would be able to perform Bayesian state estimation with more than just a vertical dimension. However, this
would require an order of magnitude more particles and possibly more training time. If the authors have time, they
may also explore adding a second dimension to the landing to demonstrate neural networks would be able to perform
Bayesian state estimation with more than just a vertical dimension.If the authors have time, they may also explore adding
a second dimension to the landing to demonstrate neural networks would be able to perform Bayesian state estimation
with more than just a vertical dimension.

Also learning this covariance matrix was initially explored, but that was abandoned in order to have more time to
train a network that could at least learn the mean state. However, now that they have more time, learning the covariance
can be explored again. This would be done by learning the diagonal and lower triangular matrices in the Cholesky
decomposition of the covariance. This decomposition would guarantee positive semi-definiteness of the outputted
covariance, which has been used in other studies for covariance estimation, such as Liu et al. [20]
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